151
|
Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, Rane A, Nicholls DG, Choi J, Andersen JK. Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 2007; 27:13997-4006. [PMID: 18094238 PMCID: PMC6673525 DOI: 10.1523/jneurosci.3885-07.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the preferential loss of midbrain dopaminergic neurons in the substantia nigra (SN). One of the earliest detectable biochemical alterations that occurs in the Parkinsonian brain is a marked reduction in SN levels of total glutathione (glutathione plus glutathione disulfide), occurring before losses in mitochondrial complex I (CI) activity, striatal dopamine levels, or midbrain dopaminergic neurodegeneration associated with the disease. Previous in vitro data from our laboratory has suggested that prolonged depletion of dopaminergic glutathione results in selective impairment of mitochondrial complex I activity through a reversible thiol oxidation event. To address the effects of depletion in dopaminergic glutathione levels in vivo on the nigrostriatal system, we created genetically engineered transgenic mouse lines in which expression of gamma-glutamyl cysteine ligase, the rate-limiting enzyme in de novo glutathione synthesis, can be inducibly downregulated in catecholaminergic neurons, including those of the SN. A novel method for isolation of purified dopaminergic striatal synaptosomes was used to study the impact of dopaminergic glutathione depletion on mitochondrial events demonstrated previously to occur in vitro as a consequence of this alteration. Dopaminergic glutathione depletion was found to result in a selective reversible thiol-oxidation-dependent mitochondrial complex I inhibition, followed by an age-related nigrostriatal neurodegeneration. This suggests that depletion in glutathione within dopaminergic SN neurons has a direct impact on mitochondrial complex I activity via increased nitric oxide-related thiol oxidation and age-related dopaminergic SN cell loss.
Collapse
|
152
|
Gruszka A, Ren SG, Dong J, Culler MD, Melmed S. Regulation of growth hormone and prolactin gene expression and secretion by chimeric somatostatin-dopamine molecules. Endocrinology 2007; 148:6107-14. [PMID: 17656461 DOI: 10.1210/en.2007-0378] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dopamine (DA) regulates both prolactin (PRL) secretion and gene expression, whereas somatostatin (SRIF) inhibits GH secretion with unclear effects on GH gene expression. We therefore tested the effects of SRIF analogs and chimeric SRIF/DA compounds BIM 23A760 and BIM 23A761 on GH and PRL secretion and gene expression in primary rat pituitary cultures and pituitary tumor GH(3) and MMQ cells. Chimeric SRIF/DA molecules suppressed GH release with a similar efficacy to SRIF receptor subtype 2 agonists in rat pituitary and GH(3) cells. After 24 h, BIM 23A760 and BIM 23A761 did not exert additive effects on GH secretion, and after 48 h were less effective than the combination of respective mono-receptor agonists in GH(3) cells. Real-time PCR did not reveal changes in GH mRNA levels after treatment with SRIF analogs and SRIF/DA molecules. SRIF/DA compounds suppressed PRL and PRL mRNA in rat pituitary and MMQ cells with a similar efficacy to D(2)-DA receptor agonist. In GH(3) cells, they suppressed PRL and PRL mRNA levels with a similar efficacy to SRIF receptor subtype 2 agonists. SRIF/DA molecules did not exhibit additive effects on PRL secretion and mRNA levels as compared with cotreatment with mono-receptor ligands. The results show that SRIF analogs and SRIF/DA molecules inhibit GH and PRL secretion and suppress PRL but not GH gene expression.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cells, Cultured
- Dopamine/genetics
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Gene Expression Regulation/drug effects
- Growth Hormone/genetics
- Growth Hormone/metabolism
- Male
- Pituitary Gland/cytology
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- Prolactin/genetics
- Prolactin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Somatostatin/agonists
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Somatostatin/analogs & derivatives
- Somatostatin/genetics
- Somatostatin/pharmacology
Collapse
|
153
|
Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A 2007; 104:16311-6. [PMID: 17913879 PMCID: PMC2042203 DOI: 10.1073/pnas.0706111104] [Citation(s) in RCA: 465] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Indexed: 11/18/2022] Open
Abstract
What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.
Collapse
|
154
|
Goldman D, Lappalainen J, Ozaki N. Direct analysis of candidate genes in impulsive behaviours. CIBA FOUNDATION SYMPOSIUM 2007; 194:139-52; discussion 152-4. [PMID: 8862874 DOI: 10.1002/9780470514825.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antisocial behaviour is both heterogeneous and the product of interacting genetic and environmental factors acting at different levels of causation. Heritability studies show that individual differences in predisposition to antisocial behaviour are transmitted vertically in families by genetic mechanisms. Owing to aetiological heterogeneity and complexity, study of a variety of other behavioural phenotypes may shed more light on the antecedents of antisocial behaviour than direct studies on antisocial behaviour. Identification of genetic vulnerability factors would clarify mechanisms of vulnerability and the role of the environment. Direct gene analysis and genetic linkage analysis have identified structural variants in genes involved in neurotransmitter function, and some progress has been made towards relating these genetic variants to antisocial personality and other behaviours. Thyroid hormone receptor variants can cause attention deficit/hyperactivity disorder, and a monoamine oxidase A variant leads to aggressive behaviour in one family. Direct gene analyses have revealed non-conservative amino acid substitutions and structural variants (generally rare) at DRD2, DRD3 and DRD4 dopamine receptors and 5-HT1A, 5-HT2A, 5-HT2C and 5-HT7 serotonin receptors. The stage is set to identify the phenotypic significance of these as well as genetic variants at other loci which may be relevant as candidate genes for antisocial behaviour and related behavioural differences.
Collapse
|
155
|
Abstract
The dopamine hypothesis of schizophrenia (SZ) has motivated a large number of genetic association studies but few if any dopaminergic (DA) polymorphisms are accepted as credible risk factors at present. To evaluate whether dopamine-related genes have been investigated adequately, we surveyed public genetic databases and published SZ association studies with regard to 14 conventional DA genes and 7 selected dopamine-interacting proteins. We estimate that 325 polymorphisms would be required to evaluate the impact of common variation on SZ risk among Caucasian samples. To date, 98 polymorphisms have been analyzed in published association studies. We estimate that only 19 of these variations have been evaluated in samples with at least 50% power to detect an association of the effect size commonly found in genetically complex disorders. While it is possible that DA genes do not harbor genetic risk factors for SZ, our review suggests that satisfactory conclusions for most genes cannot be drawn at present. Whole-genome association studies have begun to fill this void, but additional analyses are likely to be needed. Recommendations for future association studies include analysis of adequately powered samples, judiciously selected polymorphisms, multiple ethnic groups, and concurrent evaluation of function at associated single-nucleotide polymorphisms.
Collapse
|
156
|
Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL, Colebrooke RE, Di Monte DA, Emson PC, Miller GW. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 2007; 27:8138-48. [PMID: 17652604 PMCID: PMC6672727 DOI: 10.1523/jneurosci.0319-07.2007] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The vesicular monoamine transporter 2 (VMAT2; SLC18A2) is responsible for packaging dopamine into vesicles for subsequent release and has been suggested to serve a neuroprotective role in the dopamine system. Here, we show that mice that express approximately 5% of normal VMAT2 (VMAT2 LO) display age-associated nigrostriatal dopamine dysfunction that ultimately results in neurodegeneration. Elevated cysteinyl adducts to L-DOPA and DOPAC are seen early and are followed by increased striatal protein carbonyl and 3-nitrotyrosine formation. These changes were associated with decreased striatal dopamine and decreased expression of the dopamine transporter and tyrosine hydroxylase. Furthermore, we observed an increase in alpha-synuclein immunoreactivity and accumulation and neurodegeneration in the substantia nigra pars compacta in aged VMAT2 LO mice. Thus, VMAT2 LO animals display nigrostriatal degeneration that begins in the terminal fields and progresses to eventual loss of the cell bodies, alpha-synuclein accumulation, and an L-DOPA responsive behavioral deficit, replicating many of the key aspects of Parkinson's disease. These data suggest that mishandling of dopamine via reduced VMAT2 expression is, in and of itself, sufficient to cause dopamine-mediated toxicity and neurodegeneration in the nigrostriatal dopamine system. In addition, the altered dopamine homeostasis resulting from reduced VMAT2 function may be conducive to pathogenic mechanisms induced by genetic or environmental factors thought to be involved in Parkinson's disease.
Collapse
|
157
|
Wang C, Lu R, Ouyang X, Ho MWL, Chia W, Yu F, Lim KL. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci 2007; 27:8563-70. [PMID: 17687034 PMCID: PMC6672933 DOI: 10.1523/jneurosci.0218-07.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 06/26/2007] [Accepted: 06/29/2007] [Indexed: 11/21/2022] Open
Abstract
Mutations in the parkin gene are a predominant cause of familial parkinsonism. Although initially described as a recessive disorder, emerging evidence suggest that single parkin mutations alone may confer increased susceptibility to Parkinson's disease. To better understand the effects of parkin mutations in vivo, we generated transgenic Drosophila overexpressing two human parkin missense mutants, R275W and G328E. Transgenic flies that overexpress R275W, but not wild-type or G328E, human parkin display an age-dependent degeneration of specific dopaminergic neuronal clusters and concomitant locomotor deficits that accelerate with age or in response to rotenone treatment. Furthermore, R275W mutant flies also exhibit prominent mitochondrial abnormalities in their flight muscles. Interestingly, these defects caused by the expression of human R275W parkin are highly similar to those triggered by the loss of endogenous parkin in parkin null flies. Together, our results provide the first in vivo evidence demonstrating that parkin R275W mutant expression mediates pathogenic outcomes and suggest the interesting possibility that select parkin mutations may directly exert neurotoxicity in vivo.
Collapse
|
158
|
Trzaska KA, Kuzhikandathil EV, Rameshwar P. Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells 2007; 25:2797-808. [PMID: 17656644 DOI: 10.1634/stemcells.2007-0212] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dopamine (DA) neurons derived from stem cells are a valuable source for cell replacement therapy in Parkinson disease, to study the molecular mechanisms of DA neuron development, and for screening pharmaceutical compounds that target DA disorders. Compared with other stem cells, MSCs derived from the adult human bone marrow (BM) have significant advantages and greater potential for immediate clinical application. We report the identification of in vitro conditions for inducing adult human MSCs into DA cells. Using a cocktail that includes sonic hedgehog and fibroblast growth factors, human BM-derived MSCs were induced in vitro to become DA cells in 12 days. Based on tyrosine hydroxylase (TH) expression, the efficiency of induction was determined to be approximately 67%. The cells develop a neuronal morphology expressing the neuronal markers NeuN and beta III tubulin, but not glial markers, glial fibrillary acidic protein and Olig2. As the cells acquire a postmitotic neuronal fate, they downregulate cell cycle activator proteins cyclin B, cyclin-dependent kinase 2, and proliferating cell nuclear antigen. Molecular characterization revealed the expression of DA-specific genes such as TH, Pitx3, Nurr1, DA transporter, and vesicular monoamine transporter 2. The induced MSCs also synthesize and secrete DA in a depolarization-independent manner. The latter observation is consistent with the low expression of voltage gated Na(+) and Ca(2+) channels in the induced MSCs and suggests that the cells are at an immature stage of development likely representing DA neuronal progenitors. Taken together, the results demonstrate the ability of adult human BM-derived MSCs to form DA cells in vitro.
Collapse
|
159
|
Swan GE, Jack LM, Valdes AM, Ring HZ, Ton CC, Curry SJ, McAfee T. Joint effect of dopaminergic genes on likelihood of smoking following treatment with bupropion SR. Health Psychol 2007; 26:361-8. [PMID: 17500623 DOI: 10.1037/0278-6133.26.3.361] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine the relationship between joint variation in 2 dopaminergic genes and the likelihood of nonsmoking following treatment with bupropion sustained release (SR). DESIGN Three hundred twenty-three participants in a bupropion SR smoking cessation effectiveness trial with 12-month follow-up were genotyped for variants of dopamine receptor gene DRD2 and dopamine transporter SLC6A3. MAIN OUTCOME MEASURES Self-reported 7-day point prevalence of nonsmoking. RESULTS Neither genotype alone was associated with 7-day point-prevalent nonsmoking at the 12-month follow-up. However, in the presence of the DRD2 A1 allele, SLC6A3 status was significantly associated with the likelihood of nonsmoking at the 12-month follow-up (individuals with DRD2 A1+ and SLC6A3 9- were more likely to be smoking). In the absence of the DRD2 A1 allele, the association between SLC6A3 status and nonsmoking was nonsignificant. CONCLUSION Although these results are suggestive, a more compelling test is needed of the hypothesis that dopaminergic gene interaction underlies, in part, the likelihood of smoking following treatment with bupropion SR. Most likely this will come from larger studies involving prospective randomization to treatment based on genotype.
Collapse
|
160
|
Tylec A, Stryjecka-Zimmer M, Kucharska-Pietura K. [Genetic polymorphism of COMT in mental disorders]. PSYCHIATRIA POLSKA 2007; 41:473-483. [PMID: 18046978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many neurobiochemical studies show abnormalities within dopaminergic neuropathways, particularly altered dopamine transmission in etiopathogenesis of mental disorders. Evaluation of genes associated with the dopaminergic system include five well known subtypes of dopaminergic receptors, dopamine transporter and enzymes associated with the synthesis and degradation of dopamine, such as tyrosine hydroxylase, dopa decarboxylase, monoamine oxidase (MAO) and catechol O-methyltransferase (COMT). None of these genes is 'a' pathognomonic factor of schizophrenia onset. In each sequence of the following genes 'a' functional polymorphism can occur. The polymorphisms of genes MAO-A and COMT have been described in relation to various expression or altered activity of these enzymes, their influence on cognitive functions, affective and anxiety disorders, learning disabilities, aggressive behaviour, eating disorders or gender differences.
Collapse
|
161
|
Caron MG, Gainetdinov RR. Dopamine: from pharmacology to molecular biology and back. Wien Klin Wochenschr 2007; 118:565-8. [PMID: 17136328 DOI: 10.1007/s00508-006-0735-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
162
|
Neuman RJ, Lobos E, Reich W, Henderson CA, Sun LW, Todd RD. Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry 2007; 61:1320-8. [PMID: 17157268 DOI: 10.1016/j.biopsych.2006.08.049] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/29/2006] [Accepted: 08/01/2006] [Indexed: 01/23/2023]
Abstract
BACKGROUND In utero exposure to smoking and alcohol are common risk factors that have been associated with attention-deficit/hyperactivity disorder (ADHD) in human beings and animal models. Furthermore, molecular studies have focused on the association between ADHD and DNA polymorphisms in dopamine pathway-related genes. We examined the joint effects of genetic and prenatal substance exposures on DSM-IV and population-defined subtypes of ADHD. METHODS Logistic regression was used to assess the relationship between ADHD subtypes, DAT1 and DRD4 polymorphisms, and prenatal substance exposures in a birth-record sample of male and female twin pairs, aged 7-19 years. RESULTS Interactions between prenatal exposure to smoking and variations in the DAT1 and DRD4 loci were observed in children with either the DSM-IV or population-defined ADHD combined subtypes. The odds of a diagnosis of DSM-IV combined subtype was 2.9 times greater in twins who had inherited the DAT1 440 allele and who were exposed, than in unexposed twins without the risk allele. The OR was 2.6 in the population-defined subtype. Odds ratios for the DRD4 seven-repeat allele were 3.0 (2.8) in the population-defined (DSM-IV) combined ADHD subtypes. The OR for exposed children with both alleles was 9.0 (95% confidence interval=2.0-41.5) for the population-defined combined subtypes. CONCLUSIONS Results indicate that smoking during pregnancy is associated with specific subtypes of ADHD in genetically susceptible children.
Collapse
|
163
|
Mijatovic J, Airavaara M, Planken A, Auvinen P, Raasmaja A, Piepponen TP, Costantini F, Ahtee L, Saarma M. Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. J Neurosci 2007; 27:4799-809. [PMID: 17475787 PMCID: PMC6672089 DOI: 10.1523/jneurosci.5647-06.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ret is the common signaling receptor for glial cell line-derived neurotrophic factor (GDNF) and other ligands of the GDNF family that have potent effects on brain dopaminergic neurons. The Met918Thr mutation leads to constitutive activity of Ret receptor tyrosine kinase, causing the cancer syndrome called multiple endocrine neoplasia type B (MEN2B). We used knock-in MEN2B mice with the Ret-MEN2B mutation to study the effects of constitutive Ret activity on the brain dopaminergic system and found robustly increased concentrations of dopamine (DA) and its metabolites in the striatum, cortex, and hypothalamus. The concentrations of brain serotonin were not affected and those of noradrenaline were slightly increased only in the lower brainstem. Tyrosine hydroxylase (TH) protein levels were increased in the striatum and substantia nigra/ventral tegmental area (SN/VTA), and TH mRNA levels were increased in SN/VTA of MEN2B mice, suggesting that constitutive Ret activity increases DA levels by increasing its synthesis. Also, the striatal DA transporter protein levels in the MEN2B mice were increased, which agrees with increased sensitivity of these mice to the stimulatory effects of cocaine. In the SN pars compacta of homozygous MEN2B mice, we found a 26% increase in the number of TH-positive cells, but no differences were found in the VTA. Thus, we show here that the constitutive Ret activity in mice is sufficient to increase the number of dopaminergic neurons and leads to profound elevation of brain DA concentration. These data clearly suggest that Ret activity per se can have a direct biological function that actively changes and shapes the brain dopaminergic system.
Collapse
|
164
|
Zhang D, Kanthasamy A, Yang Y, Anantharam V, Kanthasamy A. Protein kinase C delta negatively regulates tyrosine hydroxylase activity and dopamine synthesis by enhancing protein phosphatase-2A activity in dopaminergic neurons. J Neurosci 2007; 27:5349-62. [PMID: 17507557 PMCID: PMC3407040 DOI: 10.1523/jneurosci.4107-06.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, can be regulated by phosphorylation at multiple serine residues, including serine-40. In the present study, we report a novel interaction between a key member of the novel PKC family, protein kinase Cdelta (PKCdelta), and TH, in which the kinase modulates dopamine synthesis by negatively regulating TH activity via protein phosphatase 2A (PP2A). We observed that PKCdelta is highly expressed in nigral dopaminergic neurons and colocalizes with TH. Interestingly, suppression of PKCdelta activity with the kinase inhibitor rottlerin, PKCdelta-small interfering RNA, or with PKCdelta dominant-negative mutant effectively increased a number of key biochemical events in the dopamine pathway, including TH-ser40 phosphorylation, TH enzymatic activity, and dopamine synthesis in neuronal cell culture models. Additionally, we found that PKCdelta not only physically associates with the PP2A catalytic subunit (PP2Ac) but also phosphorylates the phosphatase to increase its activity. Notably, inhibition of PKCdelta reduced the dephosphorylation activity of PP2A and thereby increased TH-ser40 phosphorylation, TH activity, and dopamine synthesis. To further validate our findings, we used the PKCdelta knock-out (PKCdelta-/-) mouse model. Consistent with other results, we found greater TH-ser40 phosphorylation and reduced PP2A activity in the substantia nigra of PKCdelta-/- mice than in wild-type mice. Importantly, this was accompanied by an increased dopamine level in the striatum of PKCdelta-/- mice. Collectively, these results suggest that PKCdelta phosphorylates PP2Ac to enhance its activity and thereby reduces TH-ser40 phosphorylation and TH activity and ultimately dopamine synthesis.
Collapse
|
165
|
Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci 2007; 27:3338-46. [PMID: 17376994 PMCID: PMC6672466 DOI: 10.1523/jneurosci.0285-07.2007] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the synaptic protein alpha-synuclein cause rare genetic forms of Parkinson's disease. Alpha-synuclein is thought to play a critical role in more common sporadic cases of Parkinson's disease as well because the protein aggregates in the hallmark intraneuronal inclusions of the disorder, Lewy bodies. To test the role of protein aggregation in the pathogenesis of Parkinson's disease, we expressed a form of alpha-synuclein with a deletion of amino acids 71-82 that is unable to aggregate in vitro in a transgenic Drosophila model of the disorder. We found no evidence of large aggregates or oligomeric species of alpha-synuclein in these animals and no loss of tyrosine hydroxylase-positive neurons. We also expressed a truncated form of alpha-synuclein that has enhanced ability to aggregate in vitro. This truncated form of alpha-synuclein showed increased aggregation into large inclusions bodies, increased accumulation of high molecular weight alpha-synuclein species, and demonstrated enhanced neurotoxicity in vivo. Our findings thus support a critical role for aggregation of alpha-synuclein in mediating toxicity to dopaminergic neurons in vivo, although the precise role each aggregated form of alpha-synuclein plays in neurotoxicity remains to be determined.
Collapse
|
166
|
Robinson S, Rainwater AJ, Hnasko TS, Palmiter RD. Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology (Berl) 2007; 191:567-78. [PMID: 17093978 DOI: 10.1007/s00213-006-0579-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/23/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Instrumental responding was evaluated to determine whether mice lacking dopamine [dopamine-deficient mice (DD mice)] could learn to preferentially press a visually cued, active lever for food reward over an inactive lever. RESULTS When DD mice were treated with 3,4-L: -dihydroxyphenalanine (L-dopa) to restore dopamine signaling systemically, they were able to learn to press the active lever as well as control mice, whereas mice lacking dopamine would not perform the task. Importantly, DD mice treated with caffeine (to stimulate locomotor and feeding behaviors) also failed to show preference for the active lever and were slower to retrieve rewards after making a reinforced operant response. Selective restoration of dopamine signaling to the nigrostriatal pathway of DD mice via viral-mediated gene transfer completely restored learning and performance of this simple instrumental task. Furthermore, the virally treated DD mice were willing to lever press as much as control mice for reward in progressive-ratio and high fixed-ratio schedules of reinforcement. CONCLUSION These results suggest that the deficit in goal-directed behavior observed in mice without dopamine signaling is the result of decreased motivation to obtain reward, and that dopamine signaling in the dorsal striatum is sufficient to restore normal goal-directed behavior on a variety of operant responding tasks.
Collapse
|
167
|
Sang TK, Chang HY, Lawless GM, Ratnaparkhi A, Mee L, Ackerson LC, Maidment NT, Krantz DE, Jackson GR. A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci 2007; 27:981-92. [PMID: 17267552 PMCID: PMC6673194 DOI: 10.1523/jneurosci.4810-06.2007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in human parkin have been identified in familial Parkinson's disease and in some sporadic cases. Here, we report that expression of mutant but not wild-type human parkin in Drosophila causes age-dependent, selective degeneration of dopaminergic (DA) neurons accompanied by a progressive motor impairment. Overexpression or knockdown of the Drosophila vesicular monoamine transporter, which regulates cytosolic DA homeostasis, partially rescues or exacerbates, respectively, the degenerative phenotypes caused by mutant human parkin. These results support a model in which the vulnerability of DA neurons to parkin-induced neurotoxicity results from the interaction of mutant parkin with cytoplasmic dopamine.
Collapse
|
168
|
Calamusa M, Pattabiraman PP, Pozdeyev N, Iuvone PM, Cellerino A, Domenici L. Specific alterations of tyrosine hydroxylase immunopositive cells in the retina of NT-4 knock out mice. Vision Res 2007; 47:1523-36. [PMID: 17350071 DOI: 10.1016/j.visres.2007.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/23/2022]
Abstract
To assess the effect of NT-4 deprivation on maturation of retinal circuitry, we investigated a mouse with targeted deletion of the gene encoding nt-4 (nt-4(-/-)). In particular, we studied neurons immunostained by an antibody recognizing tyrosine hydroxylase (TH), the rate limiting enzyme for dopamine (DA) synthesis. We found that TH immunopositive processes were altered in the retina of nt-4(-/-). Alteration of TH immunopositive processes in nt-4(-/-) mice resulted in changes of DA turnover, as assessed by high-pressure liquid chromatography measurements. These findings suggest that retinal NT-4 plays a role in the morphological maturation of dopaminergic retinal cells.
Collapse
|
169
|
Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O'Donnell JM. Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci 2007; 27:2457-67. [PMID: 17344383 PMCID: PMC6672491 DOI: 10.1523/jneurosci.4239-06.2007] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 01/02/2007] [Accepted: 01/21/2007] [Indexed: 12/21/2022] Open
Abstract
Catastrophic loss of dopaminergic neurons is a hallmark of Parkinson's disease. Despite the recent identification of genes associated with familial parkinsonism, the etiology of most Parkinson's disease cases is not understood. Environmental toxins, such as the herbicide paraquat, appear to be risk factors, and it has been proposed that susceptibility is influenced by genetic background. The genetic model organism Drosophila is an advantageous system for the identification of genetic susceptibility factors. Genes that affect dopamine homeostasis are candidate susceptibility factors, because dopamine itself has been implicated in neuron damage. We find that paraquat can replicate a broad spectrum of parkinsonian behavioral symptoms in Drosophila that are associated with loss of specific subsets of dopaminergic neurons. In parallel with epidemiological studies that show an increased incidence of Parkinson's disease in males, male Drosophila exhibit paraquat symptoms earlier than females. We then tested the hypothesis that variation in dopamine-regulating genes, including those that regulate tetrahydrobiopterin, a requisite cofactor in dopamine synthesis, can alter susceptibility to paraquat-induced oxidative damage. Drosophila mutant strains that have increased or decreased dopamine and tetrahydrobiopterin production exhibit variation in susceptibility to paraquat. Surprisingly, protection against the neurotoxicity of paraquat is conferred by mutations that elevate dopamine pathway function, whereas mutations that diminish dopamine pools increase susceptibility. We also find that loss-of-function mutations in a negative regulator of dopamine production, Catecholamines-up, delay the onset of neurological symptoms, dopaminergic neuron death, and morbidity during paraquat exposure but confer sensitivity to hydrogen peroxide.
Collapse
|
170
|
Hoenicka J, Aragüés M, Ponce G, Rodríguez-Jiménez R, Jiménez-Arriero MA, Palomo T. From dopaminergic genes to psychiatric disorders. Neurotox Res 2007; 11:61-72. [PMID: 17449449 DOI: 10.1007/bf03033483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Individual vulnerability to develop neurological and psychiatric disorders is associated with both genetic and environmental factors. Association studies in patients have explored the contribution of gene variants in the dopaminergic system in these disorders. This system is involved in motor control, endocrinological function, the reward system and cognition. The diverse physiological functions of dopamine are mediated by five different dopamine receptors, encoded by the genes DRD1, DRD2, DRD3, DRD4 and DRD5. These genes have various types of polymorphisms that can produce changes in the genetic product or expression levels. In recent years, the development of new technologies for genetic analysis, and a wider comprehension of the genetic sequences of these genes have increased our understanding of the implications of the dopaminergic system in both health and pathological states. It has also allowed the identification of genetic variants that may represent risk or protection factors for a variety of psychiatric disorders.
Collapse
MESH Headings
- Animals
- Dopamine/genetics
- Dopamine/physiology
- Humans
- Mental Disorders/genetics
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/physiology
Collapse
|
171
|
Fallahi-Sichani M, Soleimani M, Najafi SMA, Kiani J, Arefian E, Atashi A. In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biol Int 2007; 31:299-303. [PMID: 17196845 DOI: 10.1016/j.cellbi.2006.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 09/29/2006] [Accepted: 11/05/2006] [Indexed: 11/29/2022]
Abstract
An intensive study is underway to evaluate different potential candidates for cell therapy of neurodegenerative disorders such as Parkinson's disease (PD). Availability and lower immunogenicity compared to other sources for stem cell therapy such as bone marrow have made human umbilical cord blood stem cells a considerable source for cell therapy. The present study aimed to investigate differentiation of recently introduced pluripotent cord blood stem cells, known as unrestricted somatic stem cells (USSCs), into cells with neural features in serum-withdrawal medium. Using reverse transcription polymerase chain reaction and immunocytochemistry assays, we have shown the expression of neuron-specific genes following a 2week treatment of USSCs in serum-withdrawal induction medium. In addition, we have found that USSCs and USSC-derived neuron-like cells express transcripts of genes associated with development and/or survival of dopaminergic mesencephalic neurons including En1, En2, Nurr1, Ptx3, Pax2, Wnt1 and Wnt3a. The expression of dopamine-associated genes suggests that these cells may be potential candidates to be used for cell therapy of PD.
Collapse
|
172
|
Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, Mercer AR. Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci U S A 2007; 104:2460-4. [PMID: 17287354 PMCID: PMC1892986 DOI: 10.1073/pnas.0608224104] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Indexed: 11/18/2022] Open
Abstract
Honey bee queens produce a sophisticated array of chemical signals (pheromones) that influence both the behavior and physiology of their nest mates. Most striking are the effects of queen mandibular pheromone (QMP), a chemical blend that induces young workers to feed and groom the queen and primes bees to perform colony-related tasks. But how does this pheromone operate at the cellular level? This study reveals that QMP has profound effects on dopamine pathways in the brain, pathways that play a central role in behavioral regulation and motor control. In young worker bees, dopamine levels, levels of dopamine receptor gene expression, and cellular responses to this amine are all affected by QMP. We identify homovanillyl alcohol as a key contributor to these effects and provide evidence linking QMP-induced changes in the brain to changes at a behavioral level. This study offers exciting insights into the mechanisms through which QMP operates and a deeper understanding of the queen's ability to regulate the behavior of her offspring.
Collapse
|
173
|
Hnasko TS, Hnasko RM, Sotak BN, Kapur RP, Palmiter RD. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia. Neuroendocrinology 2007; 86:48-57. [PMID: 17622754 DOI: 10.1159/000105242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 05/07/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. METHODS We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because these animals require daily treatment with 3,4-L-dihydroxyphenylalanine (L-dopa) to survive, it has not been possible to examine the consequences of chronic loss of dopamine on pituitary physiology. We use viral-mediated gene transfer to selectively restore dopamine to the dorsal striatum of dopamine-deficient mice which allows the mice to survive without L-dopa. RESULTS We find that mice chronically lacking tuberoinfundibular dopamine secrete large amounts of prolactin due to the development of severely enlarged pituitaries composed principally of hyperplastic hypertrophic lactotrophs and multifocal prolactinomas. In addition, these mice have elevated serum growth hormone levels and aged males develop hypertrophy of the seminal vesicles. CONCLUSION Our observations are consistent with the hypothesis that hypothalamic dopamine is a critical inhibitor of lactotroph proliferation and suggest additional roles for dopamine in the regulation of pituitary function.
Collapse
|
174
|
Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:113-20. [PMID: 17982884 DOI: 10.1007/978-3-211-73574-9_14] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biochemical studies on postmortem brains of patients with Parkinson's disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCHI), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTH1-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine beta-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains. Programmed cell death of the nigro-striatal dopamine neurons in PD has been suggested from the following findings on postmortem brains: (1) increased levels of pro-inflammatory cytokines such as TNF-alpha and IL-6; (2) increased levels of apoptosis-related factors such as TNF-alpha receptor R1 (p 55), soluble Fas and bcl-2, and increased activities of caspases 1 and 3; and (3) decreased levels of neurotrophins such as brain-derived nerve growth factor (BDNF). Immunohistochemical data and the mRNA levels of the above molecules in PD brains supported these biochemical data. We confirmed by double immunofluorescence staining the production of TNF-alpha and IL-6 in activated microglia in the putamen of PD patients. Owing to the recent development of highly sensitive and wide-range analytical methods for quantifying mRNAs and proteins, future assays of the levels of various mRNAs and proteins not only in micro-dissected brain tissues containing neurons and glial cells, but also in single cells from frozen brain slices isolated by laser capture micro-dissection, coupled with toluidine blue, Nissl staining or immunohistochemical staining, should further contribute to the elucidation of the molecular pathogenesis of PD and other neurodegenerative or neuropsychiatric diseases.
Collapse
|
175
|
Wakamatsu M, Ishii A, Iwata S, Sakagami J, Ukai Y, Ono M, Kanbe D, Muramatsu SI, Kobayashi K, Iwatsubo T, Yoshimoto M. Selective loss of nigral dopamine neurons induced by overexpression of truncated human alpha-synuclein in mice. Neurobiol Aging 2006; 29:574-85. [PMID: 17174013 DOI: 10.1016/j.neurobiolaging.2006.11.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/04/2006] [Accepted: 11/16/2006] [Indexed: 11/20/2022]
Abstract
Parkinson's disease is characterized by loss of nigral dopaminergic neurons and presence of Lewy bodies, whose major component is alpha-synuclein. In the present study, we generated transgenic mice termed Syn130m that express truncated human alpha-synuclein (amino acid residue number: 1-130) in dopaminergic neurons. Notably, dopaminergic neurons were selectively diminished in the substantia nigra pars compacta of Syn130m, while transgenic mice that expressed comparable amount of full-length human alpha-synuclein did not develop such pathology. Therefore, the truncation of human alpha-synuclein seems to be primarily responsible for the loss of nigral dopaminergic neurons. The nigral pathology resulted in impairment of axon terminals in the striatum and concomitant decrease in striatal dopamine content. Behaviorally, spontaneous locomotor activities of Syn130m were reduced, but the abnormality was ameliorated by treatment with L-DOPA. The loss of nigral dopaminergic neurons was not progressive and seemed to occur during embryogenesis along with the onset of expression of the transgene. Our results indicate that truncated human alpha-synuclein is deleterious to the development and/or survival of nigral dopaminergic neurons.
Collapse
|