151
|
Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, Syamsul M. Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239358. [PMID: 36502059 PMCID: PMC9735910 DOI: 10.3390/s22239358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
Collapse
|
152
|
Biz C, Gracia J, Fianchini M. Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. Int J Mol Sci 2022; 23:14768. [PMID: 36499096 PMCID: PMC9739051 DOI: 10.3390/ijms232314768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between magnetism and catalysis has been an important topic since the mid-20th century. At present time, the scientific community is well aware that a full comprehension of this relationship is required to face modern challenges, such as the need for clean energy technology. The successful use of (para-)magnetic materials has already been corroborated in catalytic processes, such as hydrogenation, Fenton reaction and ammonia synthesis. These catalysts typically contain transition metals from the first to the third row and are affected by the presence of an external magnetic field. Nowadays, it appears that the most promising approach to reach the goal of a more sustainable future is via ferromagnetic conducting catalysts containing open-shell metals (i.e., Fe, Co and Ni) with extra stabilization coming from the presence of an external magnetic field. However, understanding how intrinsic and extrinsic magnetic features are related to catalysis is still a complex task, especially when catalytic performances are improved by these magnetic phenomena. In the present review, we introduce the relationship between magnetism and catalysis and outline its importance in the production of clean energy, by describing the representative case of 3d metal Pt-based alloys, which are extensively investigated and exploited in PEM fuel cells.
Collapse
|
153
|
Dehghanpour Kalan R, Amiri K, Rominger F, Balalaie S, Bijanzadeh HR. Regio- and diastereoselective transition metal-free hydroalkylation of N-allenyl sulfonamides by push-pull 2-alkynylquinolines. Org Biomol Chem 2022; 20:8269-8272. [PMID: 36226516 DOI: 10.1039/d2ob01362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We describe a novel and efficient synthetic strategy to construct the linear homoallylic quinolone structures through the intermolecular addition of 2-alkynylquinoline to N-allenyl sulfonamides. We developed the regio- and diastereoselective transition metal-free hydroalkylation of 1,2-dienes by a structure containing a push-pull system. Moreover, the present work was carried out with a high atom economy, mild reaction conditions, and moderate to high yields.
Collapse
|
154
|
Li JR, Chen C, Liu XB, Hu YL. Novel and sustainable carboxylation of terminal alkynes and CO 2 to alkynyl carboxylic acids using triazolium ionic liquid-modified PMO-supported transition metal acetylacetonate as effective cooperative catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83247-83261. [PMID: 35761139 DOI: 10.1007/s11356-022-21630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Efficient and sustainable chemical fixation of CO2 into value-added chemicals is one of the most promising objectives in environmental chemistry. In this work, transition metal acetylacetonate immobilized onto triazolium ionic liquid-modified periodic mesoporous organosilica PMO-IL-M(x) was successfully prepared and investigated as an effective and heterogeneous catalyst in the direct carboxylation of terminal alkynes and CO2 to the desired alkynyl carboxylic acids. It was found that the catalyst PMO-IL-Sn(0.3) exhibited extraordinary catalytic performance in terms of excellent activity, stability, productivity, and excellent yields under mild reaction conditions. Moreover, the catalyst PMO-IL-Sn(0.3) could be easily recovered and reused at least six times without considerable loss in catalytic activity. This work provides a sustainable and efficient synergistic strategy for the chemical fixation of carbon dioxide into valuable alkynyl carboxylic acids.
Collapse
|
155
|
Fusco L, Gazzi A, Shuck CE, Orecchioni M, Alberti D, D'Almeida SM, Rinchai D, Ahmed E, Elhanani O, Rauner M, Zavan B, Grivel JC, Keren L, Pasqual G, Bedognetti D, Ley K, Gogotsi Y, Delogu LG. Immune Profiling and Multiplexed Label-Free Detection of 2D MXenes by Mass Cytometry and High-Dimensional Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205154. [PMID: 36207284 PMCID: PMC10915970 DOI: 10.1002/adma.202205154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Indexed: 06/16/2023]
Abstract
There is a critical unmet need to detect and image 2D materials within single cells and tissues while surveying a high degree of information from single cells. Here, a versatile multiplexed label-free single-cell detection strategy is proposed based on single-cell mass cytometry by time-of-flight (CyTOF) and ion-beam imaging by time-of-flight (MIBI-TOF). This strategy, "Label-free sINgle-cell tracKing of 2D matErials by mass cytometry and MIBI-TOF Design" (LINKED), enables nanomaterial detection and simultaneous measurement of multiple cell and tissue features. As a proof of concept, a set of 2D materials, transition metal carbides, nitrides, and carbonitrides (MXenes), is selected to ensure mass detection within the cytometry range while avoiding overlap with more than 70 currently available tags, each able to survey multiple biological parameters. First, their detection and quantification in 15 primary human immune cell subpopulations are demonstrated. Together with the detection, mass cytometry is used to capture several biological aspects of MXenes, such as their biocompatibility and cytokine production after their uptake. Through enzymatic labeling, MXenes' mediation of cell-cell interactions is simultaneously evaluated. In vivo biodistribution experiments using a mixture of MXenes in mice confirm the versatility of the detection strategy and reveal MXene accumulation in the liver, blood, spleen, lungs, and relative immune cell subtypes. Finally, MIBI-TOF is applied to detect MXenes in different organs revealing their spatial distribution. The label-free detection of 2D materials by mass cytometry at the single-cell level, on multiple cell subpopulations and in multiple organs simultaneously, will enable exciting new opportunities in biomedicine.
Collapse
|
156
|
Alfonso‐Herrera LA, Rosete‐Luna S, Hernández‐Romero D, Rivera‐Villanueva JM, Olivares‐Romero JL, Cruz‐Navarro JA, Soto‐Contreras A, Arenaza‐Corona A, Morales‐Morales D, Colorado‐Peralta R. Transition Metal Complexes with Tridentate Schiff Bases (O N O and O N N) Derived from Salicylaldehyde: An Analysis of Their Potential Anticancer Activity. ChemMedChem 2022; 17:e202200367. [PMID: 36068174 PMCID: PMC9826236 DOI: 10.1002/cmdc.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.
Collapse
|
157
|
Marmolejo-Tejada JM, Roll JE, Poudel SP, Barraza-Lopez S, Mosquera MA. Slippery Paraelectric Transition-Metal Dichalcogenide Bilayers. NANO LETTERS 2022; 22:7984-7991. [PMID: 36190418 DOI: 10.1021/acs.nanolett.2c03373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional ferroelectrics undergo thermally induced phase transitions whereby their structural symmetry increases. The associated higher-symmetry structure is dubbed paraelectric. Ferroelectric transition-metal dichalcogenide bilayers have been recently shown to become paraelectric, but not much has been said of the atomistic configuration of such a phase. As discovered through numerical calculations that include molecular dynamics here, their paraelectricity can only be ascribed to a time average of ferroelectric phases with opposing intrinsic polarizations, whose switching requires macroscopically large areas to slip in unison.
Collapse
|
158
|
Ding W, Li M, Fan J, Cheng X. Palladium-catalyzed asymmetric allylic 4-pyridinylation via electroreductive substitution reaction. Nat Commun 2022; 13:5642. [PMID: 36163325 PMCID: PMC9512896 DOI: 10.1038/s41467-022-33452-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The enantioselective pyridinylation is important for providing chiral compounds bearing heterocycles of pharmaceutical interests. 4-CN-pyrinde is extensively applied in the radical pyridinylation reaction, however, its' enantioselective application is highly challenging. To achieve this goal, we propose an electrochemical catalytic activation of 4-CN-pyridine with a chiral transition metal complex instead of direct cathodic reduction. The chiral catalyst acts as the electron mediator and the transition metal catalysis in turn. The radical species from 4-CN-pyridine is captured via radical rebound by chiral catalyst, and undergoes enantioselective pyridinylation reaction. Here, we show the first method for catalytic asymmetric allylic 4-pyridinylation reactions using 4-CN-pyridine under electrochemical conditions.
Collapse
|
159
|
Fan J, Li W, Li S, Yang J. High-Throughput Screening of Bicationic Redox Materials for Chemical Looping Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202811. [PMID: 35871554 PMCID: PMC9507380 DOI: 10.1002/advs.202202811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Ammonia recently has gained increasing attention as a carrier for the efficient and safe usage of hydrogen to further advance the hydrogen economy. However, there is a pressing need to develop new ammonia synthesis techniques to overcome the problem of intense energy consumption associated with the widely used Haber-Bosch process. Chemical looping ammonia synthesis (CLAS) is a promising approach to tackle this problem, but the ideal redox materials to drive these chemical looping processes are yet to be discovered. Here, by mining the well-established MP database, the reaction free energies for CLAS involving 1699 bicationic inorganic redox pairs are screened to comprehensively investigate their potentials as efficient redox materials in four different CLAS schemes. A state-of-the-art machine learning strategy is further deployed to significantly widen the chemical space for discovering the promising redox materials from more than half a million candidates. Most importantly, using the three-step H2 O-CL as an example, a new metric is introduced to determine bicationic redox pairs that are "cooperatively enhanced" compared to their corresponding monocationic counterparts. It is found that bicationic compounds containing a combination of alkali/alkaline-earth metals and transition metal (TM)/post-TM/metalloid elements are compounds that are particularly promising in this respect.
Collapse
|
160
|
Tang L, Teng C, Xu R, Zhang Z, Khan U, Zhang R, Luo Y, Nong H, Liu B, Cheng HM. Controlled Growth of Wafer-Scale Transition Metal Dichalcogenides with a Vertical Composition Gradient for Artificial Synapses with High Linearity. ACS NANO 2022; 16:12318-12327. [PMID: 35913980 DOI: 10.1021/acsnano.2c03263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial synapses are promising for dealing with large amounts of data computing. Great progress has been made recently in terms of improving the on/off current ratio, the number of states, and the energy efficiency of synapse devices. However, the nonlinear weight update behavior of a synapse caused by the uncertain direction of the conductive filament leads to complex weight modulation, which degrades the delivery accuracy of information. Here we propose a strategy to improve the weight update behavior of synapses using chemical-vapor-deposition-grown transition metal dichalcogenides (TMDCs) with a vertical composition gradient, where the sulfur concentration decreases gradually along the thickness direction of TMDCs and thus forms a certain direction of the conduction filament for synapse devices. It is worth noting that the devices show an excellent linear conductance of potentiation and depression with a high linearity of 0.994 (surpassing most state-of-the-art synapses), have a large number of states, and are able to fabricate synapse arrays with wafer-scale. Furthermore, the devices based on the TMDCs with the vertical composition gradient exhibit an asymmetric feature of potentiation and depression behaviors with high linearity and follow the simulated linear Leaky ReLU function, resulting in a high recognition accuracy of 94.73%, which overcomes the unreliability issue in the Sigmoid function due to the vanishing gradient phenomenon. This study not only provides a universal method to grow TMDCs with a vertical composition gradient but also contributes to exploring highly linear synapses toward neuromorphic computing.
Collapse
|
161
|
Petronek MS, Allen BG, Luthe G, Stolwijk JM. Polyoxometalate Nanoparticles as a Potential Glioblastoma Therapeutic via Lipid-Mediated Cell Death. Int J Mol Sci 2022; 23:ijms23158263. [PMID: 35897839 PMCID: PMC9332768 DOI: 10.3390/ijms23158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polyoxometalate nanoparticles (POMs) are a class of compounds made up of multiple transition metals linked together using oxygen atoms. POMs commonly include group 6 transition metals, with two of the most common forms using molybdenum and tungsten. POMs are suggested to exhibit antimicrobial effects. In this study, we developed two POM preparations to study anti-cancer activity. We found that Mo-POM (NH4)Mo7O24) and W-POM (H3PW12O40) have anti-cancer effects on glioblastoma cells. Both POMs induced morphological changes marked by membrane swelling and the presence of multinucleated cells that may indicate apoptosis induction along with impaired cell division. We also observed significant increases in lipid oxidation events, suggesting that POMs are redox-active and can catalyze detrimental oxidation events in glioblastoma cells. Here, we present preliminary indications that molybdenum polyoxometalate nanoparticles may act like ferrous iron to catalyze the oxidation of phospholipids. These preliminary results suggest that Mo-POMs (NH4)Mo7O24) and W-POMs (H3PW12O40) may warrant further investigation into their utility as adjunct cancer therapies.
Collapse
|
162
|
Huang R, Hirschbiegel CM, Zhang X, Gupta A, Fedeli S, Xu Y, Rotello VM. Engineered Polymer-Supported Biorthogonal Nanocatalysts Using Flash Nanoprecipitation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31594-31600. [PMID: 35802797 DOI: 10.1021/acsami.2c04496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition-metal catalysts (TMCs) effect bioorthogonal transformations that enable the generation of therapeutic agents in situ, minimizing off-target effects. The encapsulation of insoluble TMCs into polymeric nanoparticles to generate "polyzymes" has vastly expanded their applicability in biological environments by enhancing catalyst solubility and stability. However, commonly used precipitation approaches provide limited encapsulation efficiency in polyzyme fabrication and result in a low catalytic activity. Herein, we report the creation of polyzymes with increased catalyst loading and optimized turnover efficiency using flash nanoprecipitation (FNP). Polyzymes with controlled size and catalyst loading were fabricated by tuning the process conditions of FNP. The biological applicability of polyzymes was demonstrated by efficiently transforming a non-toxic prodrug into the active drug within cancer cells.
Collapse
|
163
|
Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BUW, Orru RVA. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chem Soc Rev 2022; 51:5842-5877. [PMID: 35748338 PMCID: PMC9580617 DOI: 10.1039/d1cs00305d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/21/2022]
Abstract
Transition metal-catalysed carbene- and nitrene transfer to the C1-building blocks carbon monoxide and isocyanides provides heteroallenes (i.e. ketenes, isocyanates, ketenimines and carbodiimides). These are versatile and reactive compounds allowing in situ transformation towards numerous functional groups and organic compounds, including heterocycles. Both one-pot and tandem processes have been developed providing valuable synthetic methods for the organic chemistry toolbox. This review discusses all known transition metal-catalysed carbene- and nitrene transfer reactions towards carbon monoxide and isocyanides and in situ transformation of the heteroallenes hereby obtained, with a special focus on the general mechanistic considerations.
Collapse
|
164
|
Eckert S, Mascarenhas EJ, Mitzner R, Jay RM, Pietzsch A, Fondell M, Vaz da Cruz V, Föhlisch A. From the Free Ligand to the Transition Metal Complex: FeEDTA - Formation Seen at Ligand K-Edges. Inorg Chem 2022; 61:10321-10328. [PMID: 35764301 PMCID: PMC9277664 DOI: 10.1021/acs.inorgchem.2c00789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.
Collapse
|
165
|
Suzuki K, Sugihara N, Nishimoto Y, Yasuda M. anti-Selective Borylstannylation of Alkynes with (o-Phenylenediaminato)borylstannanes by a Radical Mechanism. Angew Chem Int Ed Engl 2022; 61:e202201883. [PMID: 35485137 DOI: 10.1002/anie.202201883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/20/2022]
Abstract
We have achieved the first anti-borylstannylation of alkynes by using (o-phenylenediaminato)borylstannanes. This reaction afforded 1-boryl-2-stannylalkenes with excellent regio- and stereoselectivity by a radical mechanism. This anti-addition manner is in sharp contrast to the syn-selectivity obtained during transition metal-catalyzed borylstannylation. The mild radical conditions enabled a broad substrate scope, and various types of aromatic and aliphatic alkynes were applicable. The origin of regio- and stereoselectivity was elucidated by DFT calculation of the reaction mechanism. The application of the borylstannylation products to cross- or homocoupling reactions provided ready access to either triarylethenes or bisborylbutadienes.
Collapse
|
166
|
Mang C, Li G, Rao M, Zhang X, Luo J, Jiang T. Transition metal ions-modified birnessite toward highly efficiency photocatalytic formaldehyde oxidation under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49739-49751. [PMID: 35218489 DOI: 10.1007/s11356-022-19425-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Accelerating the interfacial charge transfer process (ICTS) of the catalysts can immensely improve the photocatalytic efficiency. Doping transition metal ions not only promote the ICTS, but also boost multielectron reduction reactions of oxygen. Herein, birnessite-type MnO2 have been modified by different transition metal ions (TM = Zn2+, Cu2+, and Fe3+) in this work. Post-doping, Fe-Birnessite was featured by the highest photocatalytic HCHO oxidation activity with 80 ppm of HCHO which presented complete removal of HCHO for 80 min, while K-, Cu-, and Zn-Birnessite took 105, 135, and 170 min, respectively. In detail, the photoexcited electrons were caught by Fe (III) and then generated Fe (II),which could continue to capture photoexcited electrons to produce Fe (I) under visible light; on the other hand, the Fe (I) could be oxidized by O2 to obtain Fe (II) and then recover to Fe (III). This process tremendously improved the ICTS.
Collapse
|
167
|
Das C, Sinha N, Roy P. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202033. [PMID: 35703063 DOI: 10.1002/smll.202202033] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The identification of hydrogen as green fuel in the near future has stirred global realization toward a sustainable outlook and thus boosted extensive research in the field of water electrolysis focusing on the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). A huge class of compounds consisting of transition metal-based nitrides, carbides, chalcogenides, phosphides, and borides, which can be collectively termed transition metal non-oxides (TMNOs), has emerged recently as an efficient class of electrocatalysts in terms of performance and longevity when compared to transition metal oxides (TMOs). Moreover, the superiority of TMNOs over TMOs to effectively catalyze not only OERs but also HERs and ORRs renders bifunctionality and even trifunctionality in some cases and therefore can replace conventional noble metal electrocatalysts. In this review, the crystal structure and phases of different classes of nanostructured TMNOs are extensively discussed, focusing on recent advances in design strategies by various regulatory synthetic routes, and hence diversified properties of TMNOs are identified to serve as next-generation bi/trifunctional electrocatalysts. The challenges and future perspectives of materials in the field of energy conversion and storage aiding toward a better hydrogen economy are also discussed in this review.
Collapse
|
168
|
Hiragond CB, Powar NS, Lee J, In SI. Single-Atom Catalysts (SACs) for Photocatalytic CO 2 Reduction with H 2 O: Activity, Product Selectivity, Stability, and Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201428. [PMID: 35695355 DOI: 10.1002/smll.202201428] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2 O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal- and transition metal-based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered.
Collapse
|
169
|
Lambert FN, Raimondo S, Barron MG. Assessment of a New Approach Method for Grouped Chemical Hazard Estimation: The Toxicity-Normalized Species Sensitivity Distribution (SSDn). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8278-8289. [PMID: 35533293 PMCID: PMC11441989 DOI: 10.1021/acs.est.1c05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
New approach methods are being developed to address the challenges of reducing animal testing and assessing risks to the diversity of species in aquatic environments for the multitude of chemicals with minimal toxicity data. The toxicity-normalized species sensitivity distribution (SSDn) approach is a novel method for developing compound-specific hazard concentrations using data for toxicologically similar chemicals. This approach first develops an SSDn composed of acute toxicity values for multiple related chemicals that have been normalized by the sensitivity of a common species tested with each compound. A toxicity-normalized hazard concentration (HC5n) is then computed from the fifth percentile of the SSDn. Chemical-specific HC5 values are determined by back-calculating the HC5n using the chemical-specific sensitivity of the normalization species. A comparison of the SSDn approach with the single-chemical SSD method was conducted by using data for nine transition metals to generate and compare HC5 values between the two methods. We identified several guiding principles for this method that, when applied, resulted in accurate HC5 values based on comparisons with results from single-metal SSDs. The SSDn approach shows promise for developing statistically robust hazard concentrations when adequate taxonomic representation is not available for a single chemical.
Collapse
|
170
|
Zhang B, Guo T, Li Z, Kühn FE, Lei M, Zhao ZK, Xiao J, Zhang J, Xu D, Zhang T, Li C. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat Commun 2022; 13:3365. [PMID: 35690613 PMCID: PMC9188570 DOI: 10.1038/s41467-022-30815-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Heteroatom-participated lignin depolymerization for heterocyclic aromatic compounds production is of great importance to expanding the product portfolio and meeting value-added biorefinery demand, but it is also particularly challenging. In this work, the synthesis of pyrimidines from lignin β-O-4 model compounds, the most abundant segment in lignin, mediated by NaOH through a one-pot multi-component cascade reaction is reported. Mechanism study suggests that the transformation starts by NaOH-induced deprotonation of Cα-H bond in β-O-4 model compounds, and involves highly coupled sequential cleavage of C-O bonds, alcohol dehydrogenation, aldol condensation, and dehydrogenative aromatization. This strategy features transition-metal free catalysis, a sustainable universal approach, no need of external oxidant/reductant, and an efficient one-pot process, thus providing an unprecedented opportunity for N-containing aromatic heterocyclic compounds synthesis from biorenewable feedstock. With this protocol, an important marine alkaloid meridianin derivative can be synthesized, emphasizing the application feasibility in pharmaceutical synthesis.
Collapse
|
171
|
Hu C, Wang Y, Chen J, Wang HF, Shen K, Tang K, Chen L, Li Y. Main-Group Metal Single-Atomic Regulators in Dual-Metal Catalysts for Enhanced Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201391. [PMID: 35523724 DOI: 10.1002/smll.202201391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Single-atom sites can not only act as active centers, but also serve as promising catalyst regulators and/or promoters. However, in many complex reaction systems such as electrochemical CO2 reduction reaction (CO2 RR), the introduction of single-atom regulators may inevitably induce the competitive hydrogen evolution reaction (HER) and thus reduce the selectivity. Here, the authors demonstrate that introducing HER-inert main-group metal single atoms adjacent to transition-metal single atoms can modify their electronic structure to enhance the CO2 RR to CO without inducing the HER side reaction. Dual-metal Cu and In single-site atoms anchored on mesoporous nitrogen-doped carbon (denoted as Cu-In-NC) are prepared by the pyrolysis of a multimetallic metal-organic framework. Cu-In-NC shows a high faradic efficiency of 96% toward CO formation at -0.7 V versus reversible hydrogen electrode, superior to that of its monometallic single-atom counterparts. Density functional theory studies reveal that the HER-inert In sites can activate the adjacent Cu sites through electronic modifications, strengthening the binding of *COOH intermediate and thus boosting the electrochemical reduction of CO2 to CO.
Collapse
|
172
|
Silva VLM, Silva AMS. Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity. Molecules 2022; 27:molecules27113493. [PMID: 35684432 PMCID: PMC9182008 DOI: 10.3390/molecules27113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Vinylpyrazoles, also known as pyrazolyl olefins, are interesting motifs in organic chemistry but have been overlooked. This review describes the properties and synthetic routes of vinylpyrazoles and highlights their versatility as building blocks for the construction of more complex organic molecules. Concerning the reactivity of vinylpyrazoles, the topics surveyed herein include their use in cycloaddition reactions, free-radical polymerizations, halogenation and hydrohalogenation reactions, and more recently in transition-metal-catalyzed reactions, among other transformations. The current state of the art about vinylpyrazoles is presented with an eye to future developments regarding the chemistry of these interesting compounds. Styrylpyrazoles were not considered in this review, as they were the subject of a previous review article published in 2020.
Collapse
|
173
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
|
174
|
Chan MH, Huang WT, Chen KC, Su TY, Chan YC, Hsiao M, Liu RS. The optical research progress of nanophosphors composed of transition elements in the fourth period of near-infrared windows I and II for deep-tissue theranostics. NANOSCALE 2022; 14:7123-7136. [PMID: 35353112 DOI: 10.1039/d2nr00343k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research in the field of nano-optics is advancing by leaps and bounds, among which near-infrared (NIR) light optics have attracted much attention. NIR light has a longer wavelength than visible light, such that it can avoid shielding caused by biological tissues. This advantage has driven its importance and practicality in human treatment applications and has attracted significant attention from researchers in academia and industry. In the broad spectrum of infrared light wavelengths, the most noticeable ones are the NIR biological window I of 700-900 nm and window II of 1000-1700 nm. Luminescent materials can effectively cover the NIR biological window with different doping strategies. These doped elements are mostly transition elements with multielectron orbitals. Several nanomaterials based on narrow-spectrum lanthanides have been developed to correspond to biological applications of different wavelengths. However, this review explicitly introduces the absorption and reflection/luminescence interactions between NIR light and biological tissues independently. Unlike the adjustment of the wavelength of the lanthanide series, this review analyzes the NIR optical properties of the fourth-period element ions in transition elements (such as Cr3+ and Ni2+). These elements have a broadband wavelength of NIR light emission and higher quantum efficiency, corresponding to the absorption and emission spectrum and photobiological absorption of different NIR windows for therapeutic diagnosis. Finally, this review lists and explores other broadband NIR phosphors and has tried to discover the possibility of non-invasive precision medicine in the future.
Collapse
|
175
|
Penner PM, Green JR. Generation and Reactions of ε-Carbonyl Cations via Group 13 Catalysis. Molecules 2022; 27:3078. [PMID: 35630554 PMCID: PMC9146154 DOI: 10.3390/molecules27103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
The generation of ε-carbonyl cations and their reactions with nucleophiles is accomplished readily without transition metal cation stabilization, using the ε-bromide dienoate or dienone starting materials and GaCl3 or InCl3 catalysis. Arene nucleophiles are somewhat more straightforward than allyltrimethylsilane, but allyltrimethylsilane and propiophenone trimethysilyl enol ether each react successfully with InCl3 catalysis. The viability of these cations is supported by DFT calculations.
Collapse
|