1
|
Chaudhari P, Lacey J, Doyle J, Galligan E, Lien SC, Callegari A, Hougham G, Lang ND, Andry PS, John R, Yang KH, Lu M, Cai C, Speidell J, Purushothaman S, Ritsko J, Samant M, Stöhr J, Nakagawa Y, Katoh Y, Saitoh Y, Sakai K, Satoh H, Odahara S, Nakano H, Nakagaki J, Shiota Y. Atomic-beam alignment of inorganic materials for liquid-crystal displays. Nature 2001; 411:56-9. [PMID: 11333974 DOI: 10.1038/35075021] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The technique used to align liquid crystals-rubbing the surface of a substrate on which a liquid crystal is subsequently deposited-has been perfected by the multibillion-dollar liquid-crystal display industry. However, it is widely recognized that a non-contact alignment technique would be highly desirable for future generations of large, high-resolution liquid-crystal displays. A number of alternative alignment techniques have been reported, but none of these have so far been implemented in large-scale manufacturing. Here, we report a non-contact alignment process, which uses low-energy ion beams impinging at a glancing angle on amorphous inorganic films, such as diamond-like carbon. Using this approach, we have produced both laptop and desktop displays in pilot-line manufacturing, and found that displays of higher quality and reliability could be made at a lower cost than the rubbing technique. The mechanism of alignment is explained by adopting a random network model of atomic arrangement in the inorganic films. Order is induced by exposure to an ion beam because unfavourably oriented rings of atoms are selectively destroyed. The planes of the remaining rings are predominantly parallel to the direction of the ion beam.
Collapse
|
|
24 |
351 |
2
|
Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 2014; 33:2815-25. [PMID: 23752196 PMCID: PMC4890635 DOI: 10.1038/onc.2013.235] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/17/2022]
Abstract
The metabolic functions of androgen receptor (AR) in normal prostate are circumvented in prostate cancer (PCa) to drive tumor growth, and the AR also can acquire new growth-promoting functions during PCa development and progression through genetic and epigenetic mechanisms. Androgen deprivation therapy (ADT, surgical or medical castration) is the standard treatment for metastatic PCa, but patients invariably relapse despite castrate androgen levels (castration-resistant PCa, CRPC). Early studies from many groups had shown that AR was highly expressed and transcriptionally active in CRPC, and indicated that steroids from the adrenal glands were contributing to this AR activity. More recent studies showed that CRPC cells had increased expression of enzymes mediating androgen synthesis from adrenal steroids, and could synthesize androgens de novo from cholesterol. Phase III clinical trials showing a survival advantage in CRPC for treatment with abiraterone (inhibitor of the enzyme CYP17A1 required for androgen synthesis that markedly reduces androgens and precursor steroids) and for enzalutamide (new AR antagonist) have now confirmed that AR activity driven by residual androgens makes a major contribution to CRPC, and led to the recent Food and Drug Administration approval of both agents. Unfortunately, patients treated with these agents for advanced CRPC generally relapse within a year and AR appears to be active in the relapsed tumors, but the molecular mechanisms mediating intrinsic or acquired resistance to these AR-targeted therapies remain to be defined. This review outlines AR functions that contribute to PCa development and progression, the roles of intratumoral androgen synthesis and AR structural alterations in driving AR activity in CRPC, mechanisms of action for abiraterone and enzalutamide, and possible mechanisms of resistance to these agents.
Collapse
MESH Headings
- Androgen Receptor Antagonists/therapeutic use
- Androgens/metabolism
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Progression
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/chemistry
- Receptors, Androgen/metabolism
- Repressor Proteins/metabolism
- Steroid 17-alpha-Hydroxylase/antagonists & inhibitors
- Steroid 17-alpha-Hydroxylase/metabolism
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
|
Research Support, N.I.H., Extramural |
11 |
279 |
3
|
Barth JV, Weckesser J, Cai C, Günter P, Bürgi L, Jeandupeux O, Kern K. Building Supramolecular Nanostructures at Surfaces by Hydrogen Bonding Fruitful discussions with A. de Vita, B. Müller, and H. Brune are acknowleged. Angew Chem Int Ed Engl 2000; 39:1230-1234. [PMID: 10767015 DOI: 10.1002/(sici)1521-3773(20000403)39:7<1230::aid-anie1230>3.0.co;2-i] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
25 |
225 |
4
|
Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang LL, Zhou F, Xiao S, Liu L, Zeng X, Zheng H, Yang C, Zhao Z, Zhao G, Zhou JQ, Xue X, Qin Z. Creating a functional single-chromosome yeast. Nature 2018; 560:331-335. [PMID: 30069045 DOI: 10.1038/s41586-018-0382-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/22/2018] [Indexed: 02/02/2023]
Abstract
Eukaryotic genomes are generally organized in multiple chromosomes. Here we have created a functional single-chromosome yeast from a Saccharomyces cerevisiae haploid cell containing sixteen linear chromosomes, by successive end-to-end chromosome fusions and centromere deletions. The fusion of sixteen native linear chromosomes into a single chromosome results in marked changes to the global three-dimensional structure of the chromosome due to the loss of all centromere-associated inter-chromosomal interactions, most telomere-associated inter-chromosomal interactions and 67.4% of intra-chromosomal interactions. However, the single-chromosome and wild-type yeast cells have nearly identical transcriptome and similar phenome profiles. The giant single chromosome can support cell life, although this strain shows reduced growth across environments, competitiveness, gamete production and viability. This synthetic biology study demonstrates an approach to exploration of eukaryote evolution with respect to chromosome structure and function.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
164 |
5
|
Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, Hu S, Tyson GW. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. THE ISME JOURNAL 2020; 14:1030-1041. [PMID: 31988473 PMCID: PMC7082337 DOI: 10.1038/s41396-020-0590-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 11/09/2022]
Abstract
Anaerobic oxidation of methane (AOM) is a major biological process that reduces global methane emission to the atmosphere. Anaerobic methanotrophic archaea (ANME) mediate this process through the coupling of methane oxidation to different electron acceptors, or in concert with a syntrophic bacterial partner. Recently, ANME belonging to the archaeal family Methanoperedenaceae (formerly known as ANME-2d) were shown to be capable of AOM coupled to nitrate and iron reduction. Here, a freshwater sediment bioreactor fed with methane and Mn(IV) oxides (birnessite) resulted in a microbial community dominated by two novel members of the Methanoperedenaceae, with biochemical profiling of the system demonstrating Mn(IV)-dependent AOM. Genomic and transcriptomic analyses revealed the expression of key genes involved in methane oxidation and several shared multiheme c-type cytochromes (MHCs) that were differentially expressed, indicating the likely use of different extracellular electron transfer pathways. We propose the names "Candidatus Methanoperedens manganicus" and "Candidatus Methanoperedens manganireducens" for the two newly described Methanoperedenaceae species. This study demonstrates the ability of members of the Methanoperedenaceae to couple AOM to the reduction of Mn(IV) oxides, which suggests their potential role in linking methane and manganese cycling in the environment.
Collapse
|
research-article |
5 |
150 |
6
|
Chu PH, Ruiz-Lozano P, Zhou Q, Cai C, Chen J. Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech Dev 2000; 95:259-65. [PMID: 10906474 DOI: 10.1016/s0925-4773(00)00341-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LIM domain containing proteins play critical roles in animal development and cellular differentiation. Here, we describe the cloning and expression patterns of three members of the four and a half LIM domain-only protein family, FHL1, 2, and 3, from mouse. A comparison of embryonic expression patterns of these three highly-related genes indicates that they are expressed in an overlapping pattern in the developing cardiovascular system, and skeletal muscle. In adult tissues, the three genes are expressed in a predominant and overlapping manner in cardiac and skeletal muscle. Of the three genes, FHL2 appears to have the most restricted expression pattern during development, in heart, blood vessels, and skeletal muscle. Expression in heart is highest in cardiac septa and in the region adjacent to the atrio-ventricular ring, suggesting a potential role in septation or conduction system development. In the heart, FHL1expression was observed strongly in developing outflow tract, and to a lesser extent in myocardium. FHL3 displays low and ubiquitous expression during mouse development. Cardiac ventricular expression of FHL1, but not FHL2 or FHL3, was upregulated in two mouse models of cardiac hypertrophic and dilated cardiomyopathy. Taken together, these data indicate the potential importance of this FHL family in the development and maintenance of the cardiovascular system and striated muscle, and suggest that FHL1 may play a role in the development of heart disease.
Collapse
|
|
25 |
142 |
7
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, Toan S, Muid D, Tan Y. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol 2022; 52:102288. [PMID: 35325804 PMCID: PMC8938627 DOI: 10.1016/j.redox.2022.102288] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Mitophagy preserves microvascular structure and function during myocardial ischemia/reperfusion (I/R) injury. Empagliflozin, an anti-diabetes drug, may also protect mitochondria. We explored whether empagliflozin could reduce cardiac microvascular I/R injury by enhancing mitophagy. In mice, I/R injury induced luminal stenosis, microvessel wall damage, erythrocyte accumulation and perfusion defects in the myocardial microcirculation. Additionally, I/R triggered endothelial hyperpermeability and myocardial neutrophil infiltration, which upregulated adhesive factors and endothelin-1 but downregulated vascular endothelial cadherin and endothelial nitric oxide synthase in heart tissue. In vitro, I/R impaired the endothelial barrier function and integrity of cardiac microvascular endothelial cells (CMECs), while empagliflozin preserved CMEC homeostasis and thus maintained cardiac microvascular structure and function. I/R activated mitochondrial fission, oxidative stress and apoptotic signaling in CMECs, whereas empagliflozin normalized mitochondrial fission and fusion, neutralized supraphysiologic reactive oxygen species concentrations and suppressed mitochondrial apoptosis. Empagliflozin exerted these protective effects by activating FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Both in vitro and in vivo, genetic ablation of AMPKα1 or FUNDC1 abolished the beneficial effects of empagliflozin on the myocardial microvasculature and CMECs. Taken together, the preservation of mitochondrial function through an activation of the AMPKα1/ULK1/FUNDC1/mitophagy pathway is the working mechanism of empagliflozin in attenuating cardiac microvascular I/R injury. Empagliflozin reduces I/R-induced microvascular damage. Empagliflozin suppresses I/R-induced endothelial cell damage. Empagliflozin activates FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Ablation of FUNDC1 or AMPKα1 abolishes the protective effects of empagliflozin against I/R-induced microvascular damage.
Collapse
|
|
3 |
133 |
8
|
Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL, Buyske S, Cai C, Fesinmeyer MD, Haiman C, Heiss G, Hindorff LA, Hsu CN, Jackson RD, Kooperberg C, Le Marchand L, Lin Y, Matise TC, Moreland L, Monroe K, Reiner AP, Wallace R, Wilkens LR, Crawford DC, Ritchie MD. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet Epidemiol 2011; 35:410-22. [PMID: 21594894 DOI: 10.1002/gepi.20589] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/01/2011] [Accepted: 04/03/2011] [Indexed: 01/09/2023]
Abstract
The field of phenomics has been investigating network structure among large arrays of phenotypes, and genome-wide association studies (GWAS) have been used to investigate the relationship between genetic variation and single diseases/outcomes. A novel approach has emerged combining both the exploration of phenotypic structure and genotypic variation, known as the phenome-wide association study (PheWAS). The Population Architecture using Genomics and Epidemiology (PAGE) network is a National Human Genome Research Institute (NHGRI)-supported collaboration of four groups accessing eight extensively characterized epidemiologic studies. The primary focus of PAGE is deep characterization of well-replicated GWAS variants and their relationships to various phenotypes and traits in diverse epidemiologic studies that include European Americans, African Americans, Mexican Americans/Hispanics, Asians/Pacific Islanders, and Native Americans. The rich phenotypic resources of PAGE studies provide a unique opportunity for PheWAS as each genotyped variant can be tested for an association with the wide array of phenotypic measurements available within the studies of PAGE, including prevalent and incident status for multiple common clinical conditions and risk factors, as well as clinical parameters and intermediate biomarkers. The results of PheWAS can be used to discover novel relationships between SNPs, phenotypes, and networks of interrelated phenotypes; identify pleiotropy; provide novel mechanistic insights; and foster hypothesis generation. The PAGE network has developed infrastructure to support and perform PheWAS in a high-throughput manner. As implementing the PheWAS approach has presented several challenges, the infrastructure and methodology, as well as insights gained in this project, are presented herein to benefit the larger scientific community.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
14 |
131 |
9
|
Weckesser J, De Vita A, Barth JV, Cai C, Kern K. Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. PHYSICAL REVIEW LETTERS 2001; 87:096101. [PMID: 11531578 DOI: 10.1103/physrevlett.87.096101] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Indexed: 05/23/2023]
Abstract
The ordering of 4-[trans-2-(pyrid-4-yl-vinyl)] benzoic acid, a two-dimensional chiral species, was studied by scanning tunneling microscopy at noble metal surfaces. Homochiral molecules self-assemble in supramolecular chiral hydrogen-bonded twin chains, which order in nanogratings where the supramolecular chirality is strictly correlated over the entire microm domains without intimate molecular contact. Model simulations indicate that the underlying mesoscopic chiral resolution is associated with twin chains acting as chiroselective templates for transient molecular attachment, which process mediates the gratings' evolution.
Collapse
|
|
24 |
129 |
10
|
Zhang N, Wang X, Huo Q, Sun M, Cai C, Liu Z, Hu G, Yang Q. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene 2014; 33:3119-3128. [PMID: 23851509 DOI: 10.1038/onc.2013.286] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 02/07/2023]
Abstract
Accumulating data have shown the involvement of microRNAs in cancerous processes as either oncogenes or tumor suppressor genes. Here, we established miR-30a as a tumor suppressor gene in breast cancer development and metastasis. Ectopic expression of miR-30a in breast cancer cell lines resulted in the suppression of cell growth and metastasis in vitro. Consistently, the xenograft mouse model also unveiled the suppressive effects of miR-30a on tumor growth and distal pulmonary metastasis. With dual luciferase reporter assay, we revealed that miR-30a could bind to the 3'-untranslated region of metadherin (MTDH) gene, thus exerting inhibitory effect on MTDH. Furthermore, we demonstrated that silence of MTDH could recapitulate the effects of miR-30a overexpression, while overexpression of MTDH could partially abrogate miR-30a-mediated suppression. Of significance, expression level of miR-30a was found to be significantly lower in primary breast cancer tissues than in the paired normal tissues. Further evaluation verified that miR-30a was negatively correlated with the extent of lymph node and lung metastasis in patients with breast cancer. Taken together, our findings indicated miR-30a inhibits breast cancer proliferation and metastasis by directly targeting MTDH, and miR-30a can serve as a prognostic marker for breast cancer. Manipulation of miR-30a may provide a promising therapeutic strategy for breast cancer treatment.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Apoptosis
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/prevention & control
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/prevention & control
- Carcinoma, Lobular/secondary
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Movement
- Cell Proliferation
- DNA Primers/chemistry
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Luciferases/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- RNA, Messenger/genetics
- RNA-Binding Proteins
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
|
|
11 |
125 |
11
|
Abstract
In these studies, we have taken advantage of a transient transgenic strategy in Xenopus embryos to demonstrate that BMP signaling is required in vivo for heart formation in vertebrates. Ectopic expression of dominant negative Type I (tALK3) or Type II (tBMPRII) BMP receptors in developing Xenopus embryos results in reduction or absence of heart formation. Additionally, blocking BMP signaling in this manner downregulates expression of XNkx2-5, a homeobox gene required for cardiac specification, prior to differentiation. Notably, however, initial expression of XNkx2-5 is not affected. Mutant phenotypes can be rescued by co-injection of mutant with wild-type receptors or co-injection of mutant receptors with XSmad1, a downstream mediator of BMP signaling. Whole-mount in situ analyses indicate that ALK3 and XSmad1 are coexpressed in cardiogenic regions. Together, our results demonstrate that BMP signaling is required for maintenance of XNkx2-5 expression and heart formation and suggest that ALK3, BMPRII, and XSmad1 may mediate this signaling.
Collapse
|
|
25 |
124 |
12
|
Xie GJ, Liu T, Cai C, Hu S, Yuan Z. Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor. WATER RESEARCH 2018; 131:196-204. [PMID: 29289920 DOI: 10.1016/j.watres.2017.12.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
To achieve energy neutral wastewater treatment, mainstream anaerobic ammonium oxidation (anammox) has attracted extensive attention in the past decade. However, the relatively high effluent nitrogen concentration (>10 mg N L-1) remains a significant barrier hindering its practical implementation. A novel technology integrating the anammox and denitrifying anaerobic methane oxidation (DAMO) reactions in a membrane biofilm reactor (MBfR) was developed in this study to enhance the mainstream anammox process. With the hydraulic retention time (HRT) progressively decreased from 12 to 4 h, the total nitrogen (TN) removal rate increased stepwise from 0.09 to 0.28 kg N m-3 d-1, with an effluent TN concentration below 3.0 mg N L-1 achieved. Mass balance analysis showed that 30-60% of the nitrate produced by the anammox reaction was reduced back to nitrite by DAMO archaea, and the anammox and DAMO bacteria were jointly responsible for nitrite removal with contributions of >90% and <10%, respectively. Additionally, the established MBfR was robust and achieved consistently high effluent quality with >90% TN removal when the influent nitrite to ammonium molar ratio varied in the range of 1.17-1.55. Fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing indicated that anammox bacteria, DAMO bacteria and DAMO archaea jointly dominated the biofilm, and were likely the key contributors to nitrogen removal. This is the first study that a high nitrogen removal rate (>0.2 kg N m-3 d-1) and satisfactory effluent quality (∼3 mg TN L-1) were achieved simultaneously by integrating anammox and DAMO reactions in mainstream wastewater treatment.
Collapse
|
|
7 |
115 |
13
|
Breitkopf-Heinlein K, Meyer C, König C, Gaitantzi H, Addante A, Thomas M, Wiercinska E, Cai C, Li Q, Wan F, Hellerbrand C, Valous NA, Hahnel M, Ehlting C, Bode JG, Müller-Bohl S, Klingmüller U, Altenöder J, Ilkavets I, Goumans MJ, Hawinkels LJAC, Lee SJ, Wieland M, Mogler C, Ebert MP, Herrera B, Augustin H, Sánchez A, Dooley S, Ten Dijke P. BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 2017; 66:939-954. [PMID: 28336518 DOI: 10.1136/gutjnl-2016-313314] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/22/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Bone morphogenetic protein (BMP)-9, a member of the transforming growth factor-β family of cytokines, is constitutively produced in the liver. Systemic levels act on many organs and tissues including bone and endothelium, but little is known about its hepatic functions in health and disease. DESIGN Levels of BMP-9 and its receptors were analysed in primary liver cells. Direct effects of BMP-9 on hepatic stellate cells (HSCs) and hepatocytes were studied in vitro, and the role of BMP-9 was examined in acute and chronic liver injury models in mice. RESULTS Quiescent and activated HSCs were identified as major BMP-9 producing liver cell type. BMP-9 stimulation of cultured hepatocytes inhibited proliferation, epithelial to mesenchymal transition and preserved expression of important metabolic enzymes such as cytochrome P450. Acute liver injury caused by partial hepatectomy or single injections of carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) into mice resulted in transient downregulation of hepatic BMP-9 mRNA expression. Correspondingly, LPS stimulation led to downregulation of BMP-9 expression in cultured HSCs. Application of BMP-9 after partial hepatectomy significantly enhanced liver damage and disturbed the proliferative response. Chronic liver damage in BMP-9-deficient mice or in mice adenovirally overexpressing the selective BMP-9 antagonist activin-like kinase 1-Fc resulted in reduced deposition of collagen and subsequent fibrosis. CONCLUSIONS Constitutive expression of low levels of BMP-9 stabilises hepatocyte function in the healthy liver. Upon HSC activation, endogenous BMP-9 levels increase in vitro and in vivo and high levels of BMP-9 cause enhanced damage upon acute or chronic injury.
Collapse
|
|
8 |
114 |
14
|
Xie GJ, Cai C, Hu S, Yuan Z. Complete Nitrogen Removal from Synthetic Anaerobic Sludge Digestion Liquor through Integrating Anammox and Denitrifying Anaerobic Methane Oxidation in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:819-827. [PMID: 27983816 DOI: 10.1021/acs.est.6b04500] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Partial nitritation and Anammox processes are increasingly used for nitrogen removal from anaerobic sludge digestion liquor. However, their nitrogen removal efficiency is often limited due to the production of nitrate by the Anammox reaction and the sensitivity to the nitrite to ammonium ratio. This work develops and demonstrates an innovative process that achieves complete nitrogen removal from partially nitrified anaerobic sludge digestion liquor through the use of a membrane biofilm reactor (MBfR), with methane supplied through hollow fiber membranes. When steady state with a hydraulic retention time (HRT) of 1 day was reached, the process achieved complete nitrite and ammonium removal at rates of 560 mg N/L/d and 470 mg N/L/d, respectively, without any nitrate accumulation. The process is relatively insensitive to the nitrite to ammonium ratio, achieving complete nitrogen removal when their ratio in influent varied in the range of 1.125-1.32. Pyrosequencing and fluorescence in situ hybridization analysis revealed that denitrifying anaerobic methane oxidation (DAMO) archaea, Anammox bacteria and DAMO bacteria jointly dominated the microbial community. Mass balance analysis showed that nitrate produced by Anammox (122.2 mg N/L/d) was entirely converted to nitrite by DAMO archaea, while nitrite in the feed and produced by DAMO archaea was jointly removed by Anammox (90%) and DAMO bacteria (10%). The nitrogen removal rate of over 1 kg N/m3/d is comparable to the practical rates reported for side-stream nitrogen removal processes.
Collapse
|
|
8 |
100 |
15
|
|
|
9 |
97 |
16
|
Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, Wang T, Li S, Zhang H, Huang B, Lai P, Wang H, Liu A, Zeng C, Cai D, Jiang Y, Bai X. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun 2016; 7:11151. [PMID: 27039827 PMCID: PMC4822018 DOI: 10.1038/ncomms11151] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
Precise coordination of cell growth, proliferation and differentiation is essential for the development of multicellular organisms. Here, we report that although the mechanistic target of rapamycin complex 1 (mTORC1) activity is required for chondrocyte growth and proliferation, its inactivation is essential for chondrocyte differentiation. Hyperactivation of mTORC1 via TSC1 gene deletion in chondrocytes causes uncoupling of the normal proliferation and differentiation programme within the growth plate, resulting in uncontrolled cell proliferation, and blockage of differentiation and chondrodysplasia in mice. Rapamycin promotes chondrocyte differentiation and restores these defects in mutant mice. Mechanistically, mTORC1 downstream kinase S6K1 interacts with and phosphorylates Gli2, and releases Gli2 from SuFu binding, resulting in nuclear translocation of Gli2 and transcription of parathyroid hormone-related peptide (PTHrP), a key regulator of bone development. Our findings demonstrate that dynamically controlled mTORC1 activity is crucial to coordinate chondrocyte proliferation and differentiation partially through regulating Gli2/PTHrP during endochondral bone development.
Collapse
|
research-article |
9 |
96 |
17
|
Cai C, Min S, Yan B, Liu W, Yang X, Li L, Wang T, Jin A. MiR-27a promotes the autophagy and apoptosis of IL-1β treated-articular chondrocytes in osteoarthritis through PI3K/AKT/mTOR signaling. Aging (Albany NY) 2019; 11:6371-6384. [PMID: 31460867 PMCID: PMC6738432 DOI: 10.18632/aging.102194] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder, which involves articular cartilage degeneration as well as joint inflammatory reactions. The recent studies have identified microRNA (miRNA) as one of the epigenetic mechanisms for the regulation of gene expression. Here we aim to reveal the role of miRNA in the regulation of gene expression in articular chondrocytes and its significance in the OA pathogenesis. In the present study, miRNA profiling was performed using OA cartilage and normal healthy cartilage tissues. As compared to their levels in normal cells and tissues, miR-27a expression was found to be upregulated in OA cartilage and IL-1β-treated articular chondrocytes. TUNEL staining, as well as flow cytometry with Annexin V-FITC/PI double labeling indicated that miR-27a inhibition reduced the apoptosis of IL-1β-treated articular chondrocytes. Bioinformatics prediction and the dual-luciferase reporter assay indicated that miR-27a targeted the 3'-UTR of the PI3K gene to silence it. The PI3K mRNA level in OA cartilage and IL-1β-treated articular chondrocytes was also downregulated, comparing with normal cells and tissues. Transfection of chondrocytes transfected with the miR-27a inhibitor upregulated the PI3K expression. This study demonstrated miR-27a is a regulator of the PI3K-Akt-mTOR axis in human chondrocytes and could participate in OA pathogenesis.
Collapse
|
Retracted Publication |
6 |
88 |
18
|
Chang X, Li Y, Cai C, Wu F, He J, Zhang Y, Zhong J, Tan Y, Liu R, Zhu H, Zhou H. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism 2022; 137:155313. [PMID: 36126721 DOI: 10.1016/j.metabol.2022.155313] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been regarded as a hallmark of diabetic cardiomyopathy. In addition to their canonical metabolic actions, mitochondria influence various other aspects of cardiomyocyte function, including oxidative stress, iron regulation, metabolic reprogramming, intracellular signaling transduction and cell death. These effects depend on the mitochondrial quality control (MQC) system, which includes mitochondrial dynamics, mitophagy and mitochondrial biogenesis. Mitochondria are not static entities, but dynamic units that undergo fission and fusion cycles to maintain their structural integrity. Increased mitochondrial fission elevates the number of mitochondria within cardiomyocytes, a necessary step for cardiomyocyte metabolism. Enhanced mitochondrial fusion promotes communication and cooperation between pairs of mitochondria, thus facilitating mitochondrial genomic repair and maintenance. On the contrary, erroneous fission or reduced fusion promotes the formation of mitochondrial fragments that contain damaged mitochondrial DNA and exhibit impaired oxidative phosphorylation. Under normal/physiological conditions, injured mitochondria can undergo mitophagy, a degradative process that delivers poorly structured mitochondria to lysosomes. However, defective mitophagy promotes the accumulation of nonfunctional mitochondria, which may induce cardiomyocyte death. A decline in the mitochondrial population due to mitophagy can stimulate mitochondrial biogenesis), which generates new mitochondrial offspring to maintain an adequate mitochondrial number. Energy crises or ATP deficiency also increase mitochondrial biogenesis, because mitochondrial DNA encodes 13 subunits of the electron transport chain (ETC) complexes. Disrupted mitochondrial biogenesis diminishes the mitochondrial mass, accelerates mitochondrial senescence and promotes mitochondrial dysfunction. In this review, we describe the involvement of MQC in the pathogenesis of diabetic cardiomyopathy. Besides, the potential targeted therapies that could be applied to improve MQC during diabetic cardiomyopathy are also discussed and accelerate the development of cardioprotective drugs for diabetic patients.
Collapse
|
Review |
3 |
84 |
19
|
Woodhall S, Ramsey T, Cai C, Crouch S, Jit M, Birks Y, Edmunds WJ, Newton R, Lacey CJN. Estimation of the impact of genital warts on health-related quality of life. Sex Transm Infect 2008; 84:161-6. [PMID: 18339658 DOI: 10.1136/sti.2007.029512] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES One of the two new human papillomavirus (HPV) vaccines protects against HPV types 6 and 11, which cause over 95% of genital warts, in addition to protecting against HPV types 16 and 18. In anticipation of HPV vaccine implementation, the impact of genital warts on health-related quality of life (HRQoL) was measured to assess the potential benefits of the quadrivalent over the bivalent vaccine. METHODS Genitourinary medicine clinic patients aged 18 years and older with a current diagnosis of genital warts were eligible; 81 consented and were interviewed by a member of the research team. A generic HRQoL questionnaire, the EQ-5D (comprising EQ-5D index and EQ visual analogue scale (VAS) scores) and a disease-specific HRQoL instrument, the CECA10, were administered. Previously established UK population norms were used as a control group for EQ-5D comparisons. RESULTS Cases (with genital warts) had lower EQ VAS and EQ-5D index scores than controls. After adjusting for age a mean difference between cases and controls 30 years of age and under (n = 70) of 13.9 points (95% CI 9.9 to 17.6, p<0.001) for the EQ VAS and 0.039 points (95% CI 0.005 to 0.068, p = 0.02) on the EQ-5D index (also adjusted for sex) was observed. The difference between cases and controls for the EQ VAS was especially notable in young women. CONCLUSIONS Genital warts are associated with a significant detriment to HRQoL. The potential added benefit of preventing most cases of genital warts by HPV vaccination should be considered in decisions about which HPV vaccine to implement in the United Kingdom.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
78 |
20
|
Soloshonok VA, Cai C, Hruby VJ. (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: ideal Michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives. Org Lett 2000; 2:747-50. [PMID: 10754676 DOI: 10.1021/ol990402f] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[formula: see text] Enantiomerically pure (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones were found to serve as ideal Michael acceptors in addition reactions with achiral Ni(II) complexes of glycine Schiff bases. Virtually complete control of simple and face diastereoselectivity, observed in these reactions, combined with quantitative chemical yields renders this methodology synthetically superior to the previous methods.
Collapse
|
|
25 |
77 |
21
|
Cai C, Hu S, Guo J, Shi Y, Xie GJ, Yuan Z. Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. WATER RESEARCH 2015; 87:211-217. [PMID: 26414889 DOI: 10.1016/j.watres.2015.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 06/05/2023]
Abstract
Methane in biogas has been proposed to be an electron donor to facilitate complete nitrogen removal using denitrifying anaerobic methane oxidizing (DAMO) microorganisms in an anaerobic ammonium oxidation (anammox) reactor, by reducing the nitrate produced. However, the slow growth and the low activity of DAMO microorganisms cast a serious doubt about the practical usefulness of such a process. In this study, a previously established lab-scale membrane biofilm reactor (MBfR), with biofilms consisting of a coculture of DAMO and anammox microorganisms, was operated to answer if the DAMO reactor can achieve a nitrate reduction rate that can potentially be applied for wastewater treatment. Through progressively increasing nitrate and ammonium loading rates to the reactor, a nitrate removal rate of 684 ± 10 mg-N L(-1) d(-1) was achieved after 453 days of operation. This rate is, to our knowledge, by far the highest reported for DAMO reactors, and far exceeds what is predicted to be required for nitrate removal in a sidestream (5.6-135 mg-N L(-1) d(-1)) or mainstream anammox reactor (3.2-124 mg-N L(-1) d(-1)). Mass balance analysis showed that the nitrite produced by nitrate reduction was jointly reduced by anammox bacteria at a rate of 354 ± 3 mg-N L(-1) d(-1), accompanied by an ammonium removal rate of 268 ± 2 mg-N L(-1) d(-1), and DAMO bacteria at a rate of 330 ± 9 mg-N L(-1) d(-1). This study shows that the nitrate reduction rate achieved by the DAMO process can be high enough for removing nitrate produced by anammox process, which would enable complete nitrogen removal from wastewater.
Collapse
|
|
10 |
75 |
22
|
Soloshonok VA, Cai C, Hruby VJ, Van Meervelt L, Yamazaki T. Rational design of highly diastereoselective, organic base-catalyzed, room-temperature Michael addition reactions. J Org Chem 2000; 65:6688-96. [PMID: 11052120 DOI: 10.1021/jo0008791] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Via the rational design of a single-preferred transition state, stabilized by electron donor-acceptor-type attractive interactions, structural and geometric requirements for the corresponding starting compounds have been determined. The Ni(II) complex of the Schiff base of glycine with o-[N-alpha-picolylamino]acetophenone, as a nucleophilic glycine equivalent, and N-(trans-enoyl)oxazolidin-2-ones, as derivatives of an alpha,beta-unsaturated carboxylic acid, were found to be the substrates of choice featuring geometric/conformational homogeneity and high reactivity. The corresponding Michael addition reactions were found to proceed at room temperature in the presence of catalytic amounts of DBU to afford quantitatively the addition products with virtually complete diastereoselectivity. Acidic decomposition of the products followed by treatment of the reaction mixture with NH4OH gave rise to the diastereomerically pure 3-substituted pyroglutamic acids.
Collapse
|
|
25 |
74 |
23
|
Song YC, Haddrell AE, Bzdek BR, Reid JP, Bannan T, Topping DO, Percival C, Cai C. Measurements and Predictions of Binary Component Aerosol Particle Viscosity. J Phys Chem A 2016; 120:8123-8137. [DOI: 10.1021/acs.jpca.6b07835] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
9 |
73 |
24
|
Cai M, Cai C, Mayorov AV, Xiong C, Cabello CM, Soloshonok VA, Swift JR, Trivedi D, Hruby VJ. Biological and conformational study of beta-substituted prolines in MT-II template: steric effects leading to human MC5 receptor selectivity. ACTA ACUST UNITED AC 2004; 63:116-31. [PMID: 15009533 DOI: 10.1111/j.1399-3011.2003.00105.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the molecular basis for the interaction of the chi-constrained conformation of melanotropin peptide with the human melanocortin receptors, a series of beta-substituted proline analogs were synthesized and incorporated into the Ac-Nle-C[Asp-His-D-Phe-Arg-Trp-Lys]-NH2 (MT-II) template at the His6 and D-Phe7 positions. It was found that the binding affinities generally diminished as the steric bulk of the p-substituents of the 3-phenylproline residues increased. From (2S, 3R)-3-phenyl-Pro6 to (2S, 3R)-3-(p-methoxyphenyl)-Pro6 analogs the binding affinity decreased 23-fold at the human melanocortin-3 receptor (hMC3R), 17-fold at the hMC4R, and eight-fold at the hMC5R, but selectivity for the hMC5R increased. In addition, the substitution of the D-Phe7 residue with a (2R, 3S)-3-phenyl-Pro resulted in greatly reduced binding affinity (10(3)-10(5)) at these melanocortin receptors. Macromodel's Large Scale Low Mode (LLMOD) with OPLS-AA force field simulations revealed that both MT-II and SHU-9119 share a similar backbone conformation and topography with the exception of the orientation of the side chains of D-Phe7/D-Nal (2')7 in chi space. Introduction of the dihedrally constrained phenylproline analogs into the His6 position (analogs 2-6) caused topographical changes that might be responsible for the lower binding affinities. Our findings indicate that hMC3 and hMC4 receptors are more sensitive to steric effects and conformational constraints than the hMC5 receptor. This is the first example for melanocortin receptor selectivity where the propensity of steric interactions in chi space of beta-modified Pro6 analogs of MT-II has been shown to play a critical role for binding as well as bioefficacy of melanotropins at hMC3 and hMC4 receptors, but not at the hMC5 receptor.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
72 |
25
|
Shen LD, Liu S, Zhu Q, Li XY, Cai C, Cheng DQ, Lou LP, Xu XY, Zheng P, Hu BL. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. MICROBIAL ECOLOGY 2014; 67:341-349. [PMID: 24272281 DOI: 10.1007/s00248-013-0330-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/12/2013] [Indexed: 06/02/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) process was reported to be mediated by "Candidatus Methylomirabilis oxyfera", which belongs to the candidate phylum NC10. M. oxyfera-like bacteria have been detected in lake ecosystems, while their distribution, diversity and abundance in river ecosystems have not been well studied. In this study, both the 16S rRNA and the pmoA molecular biomarkers confirmed the presence of diverse NC10 phylum bacteria related to M. oxyfera in a river ecosystem-the Qiantang River, Zhejiang Province (China). Phylogenetic analysis of 16S rRNA genes demonstrated that the recovered M. oxyfera-like sequences could be grouped into several distinct clusters that exhibited 89.8% to 98.9% identity to the M. oxyfera 16S rRNA gene. Similarly, several different clusters of pmoA gene sequences were observed, and these clusters displayed 85.1-95.4% sequence identity to the pmoA gene of M. oxyfera. Quantitative PCR showed that the abundance of M. oxyfera-like bacteria varied from 1.32 ± 0.16 × 10(6) to 1.03 ± 0.12 × 10(7) copies g (dry weight)(-1). Correlation analysis demonstrated that the total inorganic nitrogen content, the ammonium content and the organic content of the sediment were important factors affecting the distribution of M. oxyfera-like bacterial groups in the examined sediments. This study demonstrated the distribution of diverse M. oxyfera-like bacteria and their correlation with environmental factors in Qiantang River sediments.
Collapse
|
|
11 |
71 |