1
|
Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature 1998; 394:539-44. [PMID: 9707114 DOI: 10.1038/28998] [Citation(s) in RCA: 1614] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly presents a 'bottom-up' approach to the fabrication of objects specified with nanometre precision. DNA molecular structures and intermolecular interactions are particularly amenable to the design and synthesis of complex molecular objects. We report the design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules. Intermolecular interactions between the structural units are programmed by the design of 'sticky ends' that associate according to Watson-Crick complementarity, enabling us to create specific periodic patterns on the nanometre scale. The patterned crystals have been visualized by atomic force microscopy.
Collapse
|
|
27 |
1614 |
2
|
Lin T, Chen IW, Liu F, Yang C, Bi H, Xu F, Huang F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015; 350:1508-13. [DOI: 10.1126/science.aab3798] [Citation(s) in RCA: 1577] [Impact Index Per Article: 157.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
10 |
1577 |
3
|
Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6:1258-66. [PMID: 10455434 DOI: 10.1038/sj.gt.3300947] [Citation(s) in RCA: 1373] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of methods that allow an efficient expression of exogenous genes in animals would provide tools for gene function studies, treatment of diseases and for obtaining gene products. Therefore, we have developed a hydrodynamics-based procedure for expressing transgenes in mice by systemic administration of plasmid DNA. Using cDNA of luciferase and beta-galactosidase as a reporter gene, we demonstrated that an efficient gene transfer and expression can be achieved by a rapid injection of a large volume of DNA solution into animals via the tail vein. Among the organs expressing the transgene, the liver showed the highest level of gene expression. As high as 45 microg of luciferase protein per gram of liver can be achi- eved by a single tail vein injection of 5 microg of plasmid DNA into a mouse. Histochemical analysis using beta-galactosidase gene as a reporter reveals that approximately 40percent of hepatocytes express the transgene. The time-response curve shows that the level of transgene expression in the liver reaches the peak level in approximately 8 h after injection and decreases thereafter. The peak level of gene expression can be regained by repeated injection of plasmid DNA. These results suggest that a simple, convenient and efficient method has been developed and which can be used as an effective means for studying gene function, gene regulation and molecular pathophysiology through gene transfer, as well as for expressing proteins in animals.
Collapse
|
|
26 |
1373 |
4
|
Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature 1994; 369:744-7. [PMID: 7911978 DOI: 10.1038/369744a0] [Citation(s) in RCA: 1281] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurotransmitter released from neurons is known to signal to neighbouring neurons and glia. Here we demonstrate an additional signalling pathway in which glutamate is released from astrocytes and causes an NMDA (N-methyl-D-aspartate) receptor-mediated increase in neuronal calcium. Internal calcium was elevated and glutamate release stimulated by application of the neuroligand bradykinin to cultured astrocytes. Elevation of astrocyte internal calcium was also sufficient to induce glutamate release. To determine whether this released glutamate signals to neurons, we studied astrocyte-neuron co-cultures. Bradykinin significantly increased calcium levels in neurons co-cultured with astrocytes, but not in solitary neurons. The glutamate receptor antagonists D-2-amino-5-phosphonopentanoic acid and D-glutamylglycine prevented bradykinin-induced neuronal calcium elevation. When single astrocytes were directly stimulated to increase internal calcium and release glutamate, calcium levels of adjacent neurons were increased; this increase could be blocked by D-glutamylglycine. Thus, astrocytes regulate neuronal calcium levels through the calcium-dependent release of glutamate.
Collapse
|
|
31 |
1281 |
5
|
Hai TW, Liu F, Coukos WJ, Green MR. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 1989; 3:2083-90. [PMID: 2516827 DOI: 10.1101/gad.3.12b.2083] [Citation(s) in RCA: 808] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An activating transcription factor (ATF)-binding site (consensus sequence 5'-GTGACGTACAG-3') is a promoter element present in a wide variety of viral and cellular genes. The two best-characterized classes of genes that contain ATF sites are E1A-inducible adenoviral genes and cAMP-inducible cellular genes. Here, we report the isolation of eight ATF cDNA clones, each of which is derived from a separate gene. All ATF cDNA clones examined contain a leucine zipper motif and are significantly similar to one another only within this region. The leucine zipper region of ATF proteins is also similar to that of the AP-1/c-jun family of transcription factors, whose DNA-binding site differs from the ATF-binding site at a single position. DNA binding studies reveal two mechanisms for generating further diversity from the ATF proteins. First, some, but not all, combinations of ATF proteins form heterodimers that efficiently bind to DNA. Second, although all ATF proteins bind to the ATF site, their precise interactions with DNA differ from one another, as evidenced by methylation interference analysis. Our results help to explain how a single promoter element, an ATF site, can be present in a wide variety of promoters.
Collapse
|
|
36 |
808 |
6
|
Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2011; 7:656-64. [PMID: 20678074 DOI: 10.2174/156720510793611592] [Citation(s) in RCA: 728] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/20/2010] [Indexed: 01/17/2023]
Abstract
Tau is the major microtubule associated protein (MAP) of a mature neuron. The other two neuronal MAPs are MAP1 and MAP2. An established function of MAPs is their interaction with tubulin and promotion of its assembly into microtubules and stabilization of the microtubule network. The microtubule assembly promoting activity of tau, a phosphoprotein, is regulated by its degree of phosphorylation. Normal adult human brain tau contains 2-3 moles phosphate/mole of tau protein. Hyperphosphorylation of tau depresses this biological activity of tau. In Alzheimer disease (AD) brain tau is ~three to four-fold more hyperphosphorylated than the normal adult brain tau and in this hyperphosphorylated state it is polymerized into paired helical filaments ([PHF) admixed with straight filaments (SF) forming neurofibrillary tangles. Tau is transiently hyperphosphorylated during development and during anesthesia and hypothermia but not to the same state as in AD brain. The abnormally hyperphosphorylated tau in AD brain is distinguished from transiently hyperphosphorylated tau by its ability (1) to sequester normal tau, MAP1 and MAP2 and disrupt microtubules, and (2) to self-assemble into PHF/SF. The cytosolic abnormally hyperphosphorylated tau, because of oligomerization, unlike normal tau, is sedimentable and on self-assembly into PHF/SF, loses its ability to sequester normal MAPs. Some of the tau in AD brain is truncated which also promotes its self-assembly. Tau mutations found in frontotemporal dementia apparently promote its abnormal hyperphosphorylation. Thus, the AD abnormally hyperphosphorylated tau (1) is distinguishable from both normal and transiently hyperphosphorylated taus, and (2) is inhibitory when in a cytosolic/oligomeric state but not when it is self-assembled into PHF/SF. Inhibition of abnormal hyperphosphorylation of tau offers a promising therapeutic target for AD and related tauopathies.
Collapse
|
Review |
14 |
728 |
7
|
Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 2001; 108:689-701. [PMID: 11544274 PMCID: PMC209379 DOI: 10.1172/jci12450] [Citation(s) in RCA: 698] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Substances released by platelets during blood clotting are essential participants in events that link hemostasis and angiogenesis and ensure adequate wound healing and tissue injury repair. We assessed the participation of sphingosine 1-phosphate (Sph-1-P), a biologically active phosphorylated lipid growth factor released from activated platelets, in the regulation of endothelial monolayer barrier integrity, which is key to both angiogenesis and vascular homeostasis. Sph-1-P produced rapid, sustained, and dose-dependent increases in transmonolayer electrical resistance (TER) across both human and bovine pulmonary artery and lung microvascular endothelial cells. This substance also reversed barrier dysfunction elicited by the edemagenic agent thrombin. Sph-1-P-mediated barrier enhancement was dependent upon G(ialpha)-receptor coupling to specific members of the endothelial differentiation gene (Edg) family of receptors (Edg-1 and Edg-3), Rho kinase and tyrosine kinase-dependent activation, and actin filament rearrangement. Sph-1-P-enhanced TER occurred in conjunction with Rac GTPase- and p21-associated kinase-dependent endothelial cortical actin assembly with recruitment of the actin filament regulatory protein, cofilin. Platelet-released Sph-1-P, linked to Rac- and Rho-dependent cytoskeletal rearrangement, may act late in angiogenesis to stabilize newly formed vessels, which often display abnormally increased vascular permeability.
Collapse
|
research-article |
24 |
698 |
8
|
Abstract
The superoxide and hydroxyl radical scavenging activities of eight mushroom antitumor polysaccharide extracts were investigated using phenazin methosulphate-NADH-nitroblue tetrazolium system and ascorbic acid-Cu(2+)-cytochrome C system respectively. The results showed that six of eight mushroom polysaccharide extracts had superoxide and hydroxyl radical scavenging activities. The protein content of the polysaccharide extracts appeared to contribute a direct effect on free radical scavenging activity. However, none of the mushroom polysaccharide extracts had antioxidative activity as measured by detecting malondialdehyde (MDA) contents of liver microsomes.
Collapse
|
Comparative Study |
28 |
588 |
9
|
Abstract
In the last three decades, numerous polysaccharides and polysaccharide-protein complexes have been isolated from mushrooms and used as a source of therapeutic agents. The most promising biopharmacological activities of these biopolymers are their immunomodulation and anti-cancer effects. They are mainly present as glucans with different types of glycosidic linkages such as (1-->3), (1-->6)-beta-glucans and (1-->3)-alpha-glucans, and as true herteroglycans, while others mostly bind to protein residues as polysaccharide-protein complexes. Three antitumor mushroom polysaccharides, i.e. lentinan, schizophyllan and protein-bound polysaccharide (PSK, Krestin), isolated respectively, from Lentinus edodes, Schizophyllum commune and Coriolus versicolor, have become large market items in Japan. Lentinan and schizophyllan are pure beta-glucans, whereas PSK is a protein-bound beta-glucan. A polysaccharide peptide (PSP), isolated from a strain of Coriolus versicolor in China, has also been widely used as an anti-cancer and immunomodulatory agent. Although the mechansim of their antitumor action is still not completely clear, these polysaccharides and polysaccharide-protein complexes are suggested to enhance cell-mediated immune responses in vivo and in vitro and act as biological response modifiers. Potentiation of the host defense system may result in the activation of many kinds of immune cells that are vitally important for the maintenance of homeostasis. Polysaccharides or polysaccharide-protein complexes are considered as multi-cytokine inducers that are able to induce gene expression of vaious immunomodulatory cytokines and cytokine receptors. Some interesting studies focus on investigation of the relationship between their structure and antitumor activity, elucidation of their antitumor mechanism at the molecular level, and improvement of their various biological activities by chemical modifications.
Collapse
|
Review |
25 |
558 |
10
|
Liu F, Hata A, Baker JC, Doody J, Cárcamo J, Harland RM, Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996; 381:620-3. [PMID: 8637600 DOI: 10.1038/381620a0] [Citation(s) in RCA: 523] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The TGF-beta/activin/BMP cytokine family signals through serine/threonine kinase receptors, but how the receptors transduce the signal is unknown. The Mad (Mothers against decapentaplegic) gene from Drosophila and the related Sma genes from Caenorhabditis elegans have been genetically implicated in signalling by members of the bone-morphogenetic-protein (BMP) subfamily. We have cloned Smad1, a human homologue of Mad and Sma. Microinjection of Smad1 messenger RNA into Xenopus embryo animal caps mimics the mesoderm-ventralizing effects of BMP4. Smad1 moves into the nucleus in response to BMP4. Smad1 has transcriptional activity when fused to a heterologous DNA-binding domain, and this activity is increased by BMP4 acting through BMP-receptor types I and II. The transactivating activity resides in the conserved carboxy-terminal domain of Smad1 and is disrupted by a nonsense mutation that corresponds to null mutations found in Mad and in the related gene DPC4, a candidate tumour-suppressor gene in human pancreatic cancer. Additionally, we show that DPC4 contains a transcriptional activation domain. The results suggests that the Smad proteins are a new class of transcription factors that mediate responses to the TGF-beta family.
Collapse
|
|
29 |
523 |
11
|
Liu F, Ventura F, Doody J, Massagué J. Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 1995; 15:3479-86. [PMID: 7791754 PMCID: PMC230584 DOI: 10.1128/mcb.15.7.3479] [Citation(s) in RCA: 475] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bone morphogenic proteins (BMPs) are universal regulators of animal development. We report the identification and cloning of the BMP type II receptor (BMPR-II), a missing component of this receptor system in vertebrates. BMPR-II is a transmembrane serine/threonine kinase that binds BMP-2 and BMP-7 in association with multiple type I receptors, including BMPR-IA/Brk1, BMPR-IB, and ActR-I, which is also an activin type I receptor. Cloning of BMPR-II resulted from a strong interaction of its cytoplasmic domain with diverse transforming growth factor beta family type I receptor cytoplasmic domains in a yeast two-hybrid system. In mammalian cells, however, the interaction of BMPR-II is restricted to BMP type I receptors and is ligand dependent. BMPR-II binds BMP-2 and -7 on its own, but binding is enhanced by coexpression of type I BMP receptors. BMP-2 and BMP-7 can induce a transcriptional response when added to cells coexpressing ActR-I and BMPR-II but not to cells expressing either receptor alone. The kinase activity of both receptors is essential for signaling. Thus, despite their ability to bind to type I and II receptors receptors separately, BMPs appear to require the cooperation of these two receptors for optimal binding and for signal transduction. The combinatorial nature of these receptors and their capacity to crosstalk with the activin receptor system may underlie the multifunctional nature of their ligands.
Collapse
|
research-article |
30 |
475 |
12
|
Abstract
Recognition of discrete commitment and differentiation stages requires characterization of changes in proliferative capacity together with the temporal acquisition or loss of expression of molecular and morphological traits. Both cell lines and primary cultures have been useful for analysis of transitional steps in the chondroblast (CB) and osteoblast (OB) lineages. One striking feature is that OBs and CBs share expression of some molecules, including newer markers such as epsilon BP (galectin-3), while also having unique markers. The fact that hypertrophic chondrocytes appear able to downregulate cartilage markers and upregulate OB markers also points to an interesting lineage relationship that needs to be explored further. Recently, we have focused on the osteoprogenitors that divide and differentiate into mature OBs forming bone nodules in fetal rat calvaria cell cultures. We use cellular, immunocytochemical, and molecular approaches, including PCR on small numbers of cells, to discriminate stages. Nodule formation is characterized by loss of proliferative capacity and sequential increased marker expression, that is, alkaline phosphatase (AP), followed by bone sialoprotein (BSP), and osteocalcin. Upregulation of collagen type I and biphasic expression of osteopontin, with two peaks corresponding to proliferation and differentiation stages, also occurs. A variety of other molecules are also upregulated in the mature OB, including epsilon BP and CD44s. By replica plating and PCR, we have begun to study the expression of the messenger RNAs (mRNAs) for potential regulatory molecules (e.g., PTHrP) and their receptors (e.g., PTHR, FGFR-1, and PDGFR alpha) and have found all to be modulated during the progression from committed osteoprogenitor to mature OB.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Review |
30 |
463 |
13
|
Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, Mou HM, Wang LH, Zhang HR, Fu WJ, Luo T, Liu F, Guo QN, Chen C, Xiao HL, Guo HT, Lin S, Xiang DF, Shi Y, Pan GQ, Li QR, Huang X, Cui Y, Liu XZ, Tang W, Pan PF, Huang XQ, Ding YQ, Bian XW. [A pathological report of three COVID-19 cases by minimal invasive autopsies]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2020; 49:411-417. [PMID: 32172546 DOI: 10.3760/cma.j.cn112151-20200312-00193] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: To investigate the pathological characteristics and the clinical significance of novel coronavirus (2019-nCoV)-infected pneumonia (termed by WHO as coronavirus disease 2019, COVID-19). Methods: Minimally invasive autopsies from lung, heart, kidney, spleen, bone marrow, liver, pancreas, stomach, intestine, thyroid and skin were performed on three patients died of novel coronavirus pneumonia in Chongqing, China. Hematoxylin and eosin staining (HE), transmission electron microcopy, and histochemical staining were performed to investigate the pathological changes of indicated organs or tissues. Immunohistochemical staining was conducted to evaluate the infiltration of immune cells as well as the expression of 2019-nCoV proteins. Real time PCR was carried out to detect the RNA of 2019-nCoV. Results: Various damages were observed in the alveolar structure, with minor serous exudation and fibrin exudation. Hyaline membrane formation was observed in some alveoli. The infiltrated immune cells in alveoli were majorly macrophages and monocytes. Moderate multinucleated giant cells, minimal lymphocytes, eosinophils and neutrophils were also observed. Most of infiltrated lymphocytes were CD4-positive T cells. Significant proliferation of type Ⅱ alveolar epithelia and focal desquamation of alveolar epithelia were also indicated. The blood vessels of alveolar septum were congested, edematous and widened, with modest infiltration of monocytes and lymphocytes. Hyaline thrombi were found in a minority of microvessels. Focal hemorrhage in lung tissue, organization of exudates in some alveolar cavities, and pulmonary interstitial fibrosis were observed. Part of the bronchial epithelia were exfoliated. Coronavirus particles in bronchial mucosal epithelia and type Ⅱ alveolar epithelia were observed under electron microscope. Immunohistochemical staining showed that part of the alveolar epithelia and macrophages were positive for 2019-nCoV antigen. Real time PCR analyses identified positive signals for 2019-nCoV nucleic acid. Decreased numbers of lymphocyte, cell degeneration and necrosis were observed in spleen. Furthermore, degeneration and necrosis of parenchymal cells, formation of hyaline thrombus in small vessels, and pathological changes of chronic diseases were observed in other organs and tissues, while no evidence of coronavirus infection was observed in these organs. Conclusions: The lungs from novel coronavirus pneumonia patients manifest significant pathological lesions, including the alveolar exudative inflammation and interstitial inflammation, alveolar epithelium proliferation and hyaline membrane formation. While the 2019-nCoV is mainly distributed in lung, the infection also involves in the damages of heart, vessels, liver, kidney and other organs. Further studies are warranted to investigate the mechanism underlying pathological changes of this disease.
Collapse
|
Journal Article |
5 |
458 |
14
|
Lin CR, Kioussi C, O'Connell S, Briata P, Szeto D, Liu F, Izpisúa-Belmonte JC, Rosenfeld MG. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 1999; 401:279-82. [PMID: 10499586 DOI: 10.1038/45803] [Citation(s) in RCA: 447] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pitx1 and Pitx2 are highly homologous, bicoid-related transcription factors. Pitx2 was initially identified as the gene responsible for the human Rieger syndrome, an autosomal dominant condition that causes developmental abnormalities. Pitx2 is asymmetrically expressed in the left lateral-plate mesoderm, and mutant mice with laterality defects show altered patterns of Pitx2 expression that correlate with changes in the visceral symmetry (situs). Ectopic expression of Pitx2 in the right lateral-plate mesoderm alters looping of the heart and gut and reverses body rotation in chick and Xenopus embryos. Here we describe the phenotype of Pitx2 gene-deleted mice, characterized by defective body-wall closure, right pulmonary isomerism, altered cardiac position, arrest in turning and, subsequently, a block in the determination and proliferation events of anterior pituitary gland and tooth organogenesis. Thus, Pitx2 is a transcription factor that encodes 'leftness' of the lung.
Collapse
|
|
26 |
447 |
15
|
Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 2001; 294:2323-8. [PMID: 11743194 DOI: 10.1126/science.1066803] [Citation(s) in RCA: 439] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.
Collapse
|
|
24 |
439 |
16
|
Kretzschmar M, Liu F, Hata A, Doody J, Massagué J. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 1997; 11:984-95. [PMID: 9136927 DOI: 10.1101/gad.11.8.984] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-beta family that regulate cell proliferation, apoptosis, and differentiation, and participate in the development of most tissues and organs in vertebrates. Smad proteins function downstream of TGF-beta receptor serine/threonine kinases and undergo serine phosphorylation in response to receptor activation. Smad1 is regulated in this fashion by BMP receptors, and Smad2 and Smad3 by TGF-beta and activin receptors. Here, we report that BMP receptors phosphorylate and activate Smad1 directly. Phosphorylation of Smad1 in vivo involves serines in the carboxy-terminal motif SSXS. These residues are phosphorylated directly by a BMP type I receptor in vitro. Mutation of these carboxy-terminal serines prevents several Smad1 activation events, namely, Smad1 association with the related protein DPC4, accumulation in the nucleus, and gain of transcriptional activity. Similar carboxy-terminal serines in Smad2 are required for its phosphorylation and association with DPC4 in response to TGF-beta, indicating the generality of this process of Smad activation. As a direct physiological substrate of BMP receptors, Smad1 provides a link between receptor serine/threonine kinases and the nucleus.
Collapse
|
|
28 |
428 |
17
|
Wang J, Zhou M, Liu F. Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China. J Hosp Infect 2020; 105:100-101. [PMID: 32147406 PMCID: PMC7134479 DOI: 10.1016/j.jhin.2020.03.002] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
|
Letter |
5 |
403 |
18
|
Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, Kurokawa R, Kumar V, Liu F, Seto E, Hedrick SM, Mandel G, Glass CK, Rose DW, Rosenfeld MG. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 2000; 102:753-63. [PMID: 11030619 DOI: 10.1016/s0092-8674(00)00064-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional repression plays crucial roles in diverse aspects of metazoan development, implying critical regulatory roles for corepressors such as N-CoR and SMRT. Altered patterns of transcription in tissues and cells derived from N-CoR gene-deleted mice and the resulting block at specific points in CNS, erythrocyte, and thymocyte development indicated that N-CoR was a required component of short-term active repression by nuclear receptors and MAD and of a subset of long-term repression events mediated by REST/NRSF. Unexpectedly, N-CoR and a specific deacetylase were also required for transcriptional activation of one class of retinoic acid response element. Together, these findings suggest that specific combinations of corepressors and histone deacetylases mediate the gene-specific actions of DNA-bound repressors in development of multiple organ systems.
Collapse
|
|
25 |
393 |
19
|
Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 1996; 5:491-501. [PMID: 8934575 DOI: 10.1016/s1074-7613(00)80504-x] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have generated mice carrying a homozygous null mutation in the granulocyte colony-stimulating factor receptor (G-CSFR) gene. G-CSFR-deficient mice have decreased numbers of phenotypically normal circulating neutrophils. Hematopoietic progenitors are decreased in the bone marrow, and the expansion and terminal differentiation of these progenitors into granulocytes is impaired. Neutrophils isolated from G-CSFR-deficient mice have an increased susceptibility to apoptosis, suggesting that the G-CSFR may also regulate neutrophil survival. These data confirm a role for the G-CSFR as a major regulator of granulopoiesis in vivo and provide evidence that the G-CSFR may regulate granulopoiesis by several mechanisms. However, the data also suggest that G-CSFR-independent mechanisms of granulopoiesis must exist.
Collapse
|
|
29 |
390 |
20
|
Liu F, Pouponnot C, Massagué J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 1997; 11:3157-67. [PMID: 9389648 PMCID: PMC316747 DOI: 10.1101/gad.11.23.3157] [Citation(s) in RCA: 369] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upon ligand binding, the receptors of the TGFbeta family phosphorylate Smad proteins, which then move into the nucleus where they activate transcription. To carry out this function, the receptor-activated Smads 1 and 2 require association with the product of deleted in pancreatic carcinoma, locus 4 (DPC4), Smad4. We investigated the step at which Smad4 is required for transcriptional activation. Smad4 is not required for nuclear translocation of Smads 1 or 2, or for association of Smad2 with a DNA binding partner, the winged helix protein FAST-1. Receptor-activated Smad2 takes Smad4 into the nucleus where they form a complex with FAST-1 that requires these three components to activate transcription. Smad4 contributes two functions: Through its amino-terminal domain, Smad4 promotes binding of the Smad2/Smad4/FAST-1 complex to DNA; through its carboxy-terminal domain, Smad4 provides an activation function required for Smad1 or Smad2 to stimulate transcription. The dual function of Smad4 in transcriptional activation underscores its central role in TGFbeta signaling.
Collapse
|
research-article |
28 |
369 |
21
|
Liu F, Green MR. A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein. Cell 1990; 61:1217-24. [PMID: 2142019 DOI: 10.1016/0092-8674(90)90686-9] [Citation(s) in RCA: 342] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adenovirus E1a protein stimulates transcription of viral early genes. Recent experiments indicate that E1a contains a transcriptional activating region, which functions when directed to a promoter. Because E1a is not a sequence-specific DNA binding protein, how it targets to viral promoters has been a question. Several of the viral early promoters contain one or more binding sites for ATFs, a family of cellular transcription factors. Here we show that E1a can function through a specific ATF protein, designated ATF-2. We provide evidence that E1a interacts with a discrete region of promoter-bound ATF-2, thereby positioning the E1a activating region at a viral promoter.
Collapse
|
|
35 |
342 |
22
|
Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 2015; 21:76-80. [PMID: 25501907 PMCID: PMC4289085 DOI: 10.1038/nm.3710] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
333 |
23
|
Abstract
A variety of flavonoids, lignans, an alkaloid, a bisbenzyl, coumarins and terpenes isolated from Chinese herbs was tested for antioxidant activity as reflected in the ability to inhibit lipid peroxidation in rat brain and kidney homogenates and rat erythrocyte hemolysis. The pro-oxidant activities of the aforementioned compounds were assessed by their effects on bleomycin-induced DNA damage. The flavonoids baicalin and luteolin-7-glucuronide-6'-methyl ester, the lignan 4'-demethyldeoxypodophyllotoxin, the alkaloid tetrahydropalmatine, the bisbenzyl erianin and the coumarin xanthotoxol exhibited potent antioxidative activity in both lipid peroxidation and hemolysis assays. The flavonoid rutin and the terpene tanshinone I manifested potent antioxidative activity in the lipid peroxidation assay but no inhibitory activity in the hemolysis assay. The lignan deoxypodophyllotoxin, the flavonoid naringin and the coumarins columbianetin, bergapten and angelicin slightly inhibited lipid peroxidation in brain and kidney homogenates. It is worth stressing that the compounds with antioxidant effects in this assay, with the exception of tetrahydropalmatin and tanshinone I, have at least one free aromatic hydroxyl group in structure. Obviously, the aromatic hydroxyl group is very important for antioxidative effects of the compounds. None of the compounds tested exerted an obvious pro-oxidant effect.
Collapse
|
|
25 |
332 |
24
|
Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm (Vienna) 2004; 112:813-38. [PMID: 15517432 DOI: 10.1007/s00702-004-0221-0] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 08/07/2004] [Indexed: 10/26/2022]
Abstract
Microtubule-associated protein tau undergoes several post-translational modifications and aggregates into paired helical filaments (PHFs) in Alzheimer's disease (AD) and other tauopathies. These modifications of tau include hyperphosphorylation, glycosylation, ubiquitination, glycation, polyamination, nitration, and proteolysis. Hyperphosphorylation and glycosylation are crucial to the molecular pathogenesis of neurofibrillary degeneration of AD. The others appear to represent failed mechanisms for neurons to remove damaged, misfolded, and aggregated proteins. This review summarizes the abnormal post-translational modifications of tau and discusses the pathophysiological relevance of hyperphosphorylation and glycosylation of tau. Total tau and phosphorylated tau levels in cerebrospinal fluid as a diagnostic biomarkers are also reviewed. Analyses of the current advances in tau modifications suggest that intervention addressing these abnormalities may offer promising therapeutic opportunities to prevent and treat neurofibrillary degeneration of AD and other tauopathies.
Collapse
|
Review |
21 |
321 |
25
|
Lee FJ, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 2001; 15:916-26. [PMID: 11292651 DOI: 10.1096/fj.00-0334com] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in alpha-synuclein, a protein highly enriched in presynaptic terminals, have been implicated in the expression of familial forms of Parkinson's disease (PD) whereas native alpha-synuclein is a major component of intraneuronal inclusion bodies characteristic of PD and other neurodegenerative disorders. Although overexpression of human alpha-synuclein induces dopaminergic nerve terminal degeneration, the molecular mechanism by which alpha-synuclein contributes to the degeneration of these pathways remains enigmatic. We report here that alpha-synuclein complexes with the presynaptic human dopamine transporter (hDAT) in both neurons and cotransfected cells through the direct binding of the non-A beta amyloid component of alpha-synuclein to the carboxyl-terminal tail of the hDAT. alpha-Synuclein--hDAT complex formation facilitates the membrane clustering of the DAT, thereby accelerating cellular dopamine uptake and dopamine-induced cellular apoptosis. Since the selective vulnerability of dopaminergic neurons in PD has been ascribed in part to oxidative stress as a result of the cellular overaccumulation of dopamine or dopamine-like molecules by the presynaptic DAT, these data provide mechanistic insight into the mode by which the activity of these two proteins may give rise to this process.
Collapse
|
|
24 |
311 |