1
|
Xu Y, Yu M, Huang X, Wang G, Wang H, Zhang F, Zhang J, Gao X. Differences in salivary microbiome among children with tonsillar hypertrophy and/or adenoid hypertrophy. mSystems 2024; 9:e0096824. [PMID: 39287377 PMCID: PMC11494981 DOI: 10.1128/msystems.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Children diagnosed with severe tonsillar hypertrophy display discernible craniofacial features distinct from those with adenoid hypertrophy, prompting illuminating considerations regarding microbiota regulation in this non-inflammatory condition. The present study aimed to characterize the salivary microbial profile in children with tonsillar hypertrophy and explore the potential functionality therein. A total of 112 children, with a mean age of 7.79 ± 2.41 years, were enrolled and divided into the tonsillar hypertrophy (TH) group (n = 46, 8.4 ± 2.5 years old), adenoid hypertrophy (AH) group (n = 21, 7.6 ± 2.8 years old), adenotonsillar hypertrophy (ATH) group (n = 23, 7.2 ± 2.1 years old), and control group (n = 22, 8.6 ± 2.1 years old). Unstimulated saliva samples were collected, and microbial profiles were analyzed by 16S rRNA sequencing of V3-V4 regions. Diversity and composition of salivary microbiome and the correlation with parameters of overnight polysomnography and complete blood count were investigated. As a result, children with tonsillar hypertrophy had significantly higher α-diversity indices (P<0.05). β-diversity based on Bray-Curtis distance revealed that the salivary microbiome of the tonsillar hypertrophy group had a slight separation from the other three groups (P<0.05). The linear discriminant analysis effect size (LEfSe) analysis indicated that Gemella was most closely related to tonsillar hypertrophy, and higher abundance of Gemella, Parvimonas, Dialister, and Lactobacillus may reflect an active state of immune regulation. Meanwhile, children with different degrees of tonsillar hypertrophy shared similar salivary microbiome diversity. This study demonstrated that the salivary microbiome in pediatric tonsillar hypertrophy patients had different signatures, highlighting that the site of upper airway obstruction primarily influences the salivary microbiome rather than hypertrophy severity.IMPORTANCETonsillar hypertrophy is the most frequent cause of upper airway obstruction and one of the primary risk factors for pediatric obstructive sleep apnea (OSA). Studies have discovered that children with isolated tonsillar hypertrophy exhibit different craniofacial morphology features compared with those with isolated adenoid hypertrophy or adenotonsillar hypertrophy. Furthermore, characteristic salivary microbiota from children with OSA compared with healthy children has been identified in our previous research. However, few studies provided insight into the relationship between the different sites of upper airway obstruction resulting from the enlargement of pharyngeal lymphoid tissue at different sites and the alterations in the microbiome. Here, to investigate the differences in the salivary microbiome of children with tonsillar hypertrophy and/or adenoid hypertrophy, we conducted a cross-sectional study and depicted the unique microbiome profile of pediatric tonsillar hypertrophy, which was mainly characterized by a significantly higher abundance of genera belonging to phyla Firmicutes and certain bacteria involving in the immune response in tonsillar hypertrophy, offering novel perspectives for future related research.
Collapse
Affiliation(s)
- Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guixiang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hua Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fengzhen Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
2
|
Ghanbari A, Danaie Fard P, Azarmehr N, Mahmoudi R, Roozbehi A, Zibara K, Hosseini E. D-galactose Induces Senescence in Adult Mouse Neural Stem Cells by Imbalanced Oxidant and Antioxidant Activity and Differential Expression of Specific Hub Genes. Mol Neurobiol 2024:10.1007/s12035-024-04546-1. [PMID: 39425831 DOI: 10.1007/s12035-024-04546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells under various stresses causing age-related disorders. This study investigated the role of D-galactose in inducing premature senescence of neural stem cells (NSCs) and the genes involved in this process. After NSC isolation and proliferation, senescence was induced with 10, 20, or 30 µM concentrations of D-galactose for 24 h. Cell viability was tested using the MTT assay, and senescent cells were identified based on increased lysosomal β-galactosidase activity. In addition, levels of NO and malondialdehyde (MDA) oxidative biomarkers but also total thiols (T-SH) and total antioxidant FRAP, as well as inflammatory cytokines, were investigated. Besides, RNA-Seq was performed on the various groups, the gene network was mapped, and genes with the most significant changes were examined. Treatment of NSCs with 20 or 30 µM concentrations of D-galactose caused a significant decrease in cell survival, a number of neurospheres, and a number of neurosphere-derived cells, compared to the control group. In addition, the number of BrdU + cells significantly decreased after induction of NSC senescence with 10 or 20 μM D-galactose, whereas aging-related β-galactosidase (SA-β-gal) increased significantly. Moreover, treatment with 10 or 20 μM D-galactose showed a significant increase in NO production, but not malondialdehyde (MDA). However, the levels of total thiol (T-SH) and antioxidant FRAP levels decreased significantly. Furthermore, TNF-α and IL-6 cytokines significantly increased in NSCs treated with 20 μM, but not 10 μM, D-galactose. Finally, a gene network consisting of 860 gene orthologs was mapped using RNA-Seq. Protein interactions were obtained in 11 hub genes which were classified using gene ontology based on molecular function, biological processes, or cellular processes. Genes with the most significant changes in aging included Fn1, Itga2, Itga3, Itga6, Itga8, Ptk2b, Grin2b, Cacna2d3, Pde4d, Shisa6, and Stac3. This study showed that D-galactose reduces NSC proliferation and antioxidant activity while increasing oxidative stress and inflammatory cytokines. A survey of the genes involved in premature aging may be used as therapeutic candidates for aging-related disorders.
Collapse
Affiliation(s)
- Amir Ghanbari
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Parisa Danaie Fard
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nahid Azarmehr
- Medicinal Plants Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amrollah Roozbehi
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Ebrahim Hosseini
- Medicinal Plants Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
3
|
Liu XW, Xu HW, Yi YY, Zhang SB, Chang SJ, Pan W, Wang SJ. Inhibition of Mettl3 ameliorates osteoblastic senescence by mitigating m6A modifications on Slc1a5 via Igf2bp2-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167273. [PMID: 38844111 DOI: 10.1016/j.bbadis.2024.167273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Age-related osteoporosis is characterized by a marked decrease in the number of osteoblasts, which has been partly attributed to the senescence of cells of the osteoblastic lineage. Epigenetic studies have provided new insights into the mechanisms of current osteoporosis treatments and bone repair pathophysiology. N6-methyladenosine (m6A) is a novel transcript modification that plays a major role in cellular senescence and is essential for skeletal development and internal environmental stability. Bioinformatics analysis revealed that the expression of the m6A reading protein Igf2bp2 was significantly higher in osteoporosis patients. However, the role of Igf2bp2 in osteoblast senescence has not been elucidated. In this study, we found that Igf2bp2 levels are increased in ageing osteoblasts induced by multiple repetition and H2O2. Increasing Igf2bp2 expression promotes osteoblast senescence by increasing the stability of Slc1a5 mRNA and inhibiting cell cycle progression. Additionally, Mettl3 was identified as Slc1a5 m6A-methylated protein with increased m6A modification. The knockdown of Mettl3 in osteoblasts inhibits the reduction of senescence, whereas the overexpression of Mettl3 promotes the senescence of osteoblasts. We found that administering Cpd-564, a specific inhibitor of Mettl3, induced increased bone mass and decreased bone marrow fat accumulation in aged rats. Notably, in an OVX rat model, Igf2bp2 small interfering RNA delivery also induced an increase in bone mass and decreased fat accumulation in the bone marrow. In conclusion, our study demonstrated that the Mettl3/Igf2bp2-Slc1a5 axis plays a key role in the promotion of osteoblast senescence and age-related bone loss.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sheng-Jie Chang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Pan
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Ding S, Ren T, Song S, Peng C, Liu C, Wu J, Chang X. Combined application of mesenchymal stem cells and different glucocorticoid dosing alleviates osteoporosis in SLE murine models. Immun Inflamm Dis 2024; 12:e1319. [PMID: 38888448 PMCID: PMC11184931 DOI: 10.1002/iid3.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Bone mesenchymal stem cells (BMSCs) have been tentatively applied in the treatment of glucocorticoid-induced osteoporosis (GIOP) and systemic lupus erythematosus (SLE). However, the effects of BMSCs on osteoporosis within the context of glucocorticoid (GC) application in SLE remain unclear. Our aim was to explore the roles of BMSCs and different doses of GC interventions on osteoporosis in SLE murine models. METHODS MRL/MpJ-Faslpr mice were divided into eight groups with BMSC treatment and different dose of GC intervention. Three-dimensional imaging analysis and hematoxylin and eosin (H&E) staining were performed to observe morphological changes. The concentrations of osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) in serum were measured by enzyme-linked immunosorbent assay (ELISA). The subpopulation of B cells and T cells in bone marrows and spleens were analyzed by flow cytometry. Serum cytokines and chemokines were assessed using Luminex magnetic bead technology. RESULTS BMSCs ameliorated osteoporosis in murine SLE models by enhancing bone mass, improving bone structure, and promoting bone formation through increased bone mineral content and optimization of trabecular morphology. BMSC and GC treatments reduced the number of B cells in bone marrows, but the effect was not significant in spleens. BMSCs significantly promoted the expression of IL-10 while reducing IL-18. Moreover, BMSCs exert immunomodulatory effects by reducing Th17 expression and rectifying the Th17/Treg imbalance. CONCLUSION BMSCs effectively alleviate osteoporosis induced by SLE itself, as well as osteoporosis resulting from SLE combined with various doses of GC therapy. The therapeutic effects of BMSCs appear to be mediated by their influence on bone marrow B cells, T cell subsets, and associated cytokines. High-dose GC treatment exerts a potent anti-inflammatory effect but may hinder the immunotherapeutic potential of BMSCs. Our research may offer valuable guidance to clinicians regarding the use of BMSC treatment in SLE and provide insights into the judicious use of GCs in clinical practice.
Collapse
Affiliation(s)
- Sisi Ding
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tian Ren
- Department of RheumatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Saizhe Song
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Cheng Peng
- Department of RheumatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Cuiping Liu
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jian Wu
- Department of RheumatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Chang
- Department of RheumatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
5
|
Wu S, Gai T, Chen J, Chen X, Chen W. Smart responsive in situ hydrogel systems applied in bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1389733. [PMID: 38863497 PMCID: PMC11165218 DOI: 10.3389/fbioe.2024.1389733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
The repair of irregular bone tissue suffers severe clinical problems due to the scarcity of an appropriate therapeutic carrier that can match dynamic and complex bone damage. Fortunately, stimuli-responsive in situ hydrogel systems that are triggered by a special microenvironment could be an ideal method of regenerating bone tissue because of the injectability, in situ gelatin, and spatiotemporally tunable drug release. Herein, we introduce the two main stimulus-response approaches, exogenous and endogenous, to forming in situ hydrogels in bone tissue engineering. First, we summarize specific and distinct responses to an extensive range of external stimuli (e.g., ultraviolet, near-infrared, ultrasound, etc.) to form in situ hydrogels created from biocompatible materials modified by various functional groups or hybrid functional nanoparticles. Furthermore, "smart" hydrogels, which respond to endogenous physiological or environmental stimuli (e.g., temperature, pH, enzyme, etc.), can achieve in situ gelation by one injection in vivo without additional intervention. Moreover, the mild chemistry response-mediated in situ hydrogel systems also offer fascinating prospects in bone tissue engineering, such as a Diels-Alder, Michael addition, thiol-Michael addition, and Schiff reactions, etc. The recent developments and challenges of various smart in situ hydrogels and their application to drug administration and bone tissue engineering are discussed in this review. It is anticipated that advanced strategies and innovative ideas of in situ hydrogels will be exploited in the clinical field and increase the quality of life for patients with bone damage.
Collapse
Affiliation(s)
- Shunli Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Hangzhou Singclean Medical Products Co., Ltd, Hangzhou, China
| | - Tingting Gai
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Chen
- Jiaxing Vocational Technical College, Department of Student Affairs, Jiaxing, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Weikai Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Geng X, Tang Y, Gu C, Zeng J, Zhao Y, Zhou Q, Jia L, Zhou S, Chen X. Integrin αVβ3 antagonist-c(RGDyk) peptide attenuates the progression of ossification of the posterior longitudinal ligament by inhibiting osteogenesis and angiogenesis. Mol Med 2024; 30:57. [PMID: 38698308 PMCID: PMC11067224 DOI: 10.1186/s10020-024-00822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVβ3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVβ3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVβ3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVβ3. Integrin αVβ3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVβ3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVβ3 and regulating the FAK/ERK pathway. CONCLUSIONS Therefore, the integrin αVβ3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.
Collapse
Affiliation(s)
- Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yifan Tang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yin Zhao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Quanwei Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Lianshun Jia
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Shengyuan Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| |
Collapse
|
7
|
Park J, Jung SY, Kim HY, Lee KE, Go YJ, Kim HS, Yoon SY, Kwon CO, Park YS. Microbiomic association between the saliva and salivary stone in patients with sialolithiasis. Sci Rep 2024; 14:9184. [PMID: 38649387 PMCID: PMC11035639 DOI: 10.1038/s41598-024-59546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Salivary stones, known as sialoliths, form within the salivary ducts due to abnormal salivary composition and cause painful symptoms, for which surgical removal is the primary treatment. This study explored the role of the salivary microbial communities in the formation of sialoliths. We conducted a comparative analysis of microbial communities present in the saliva and salivary stones, and sequenced the 16S rRNA gene in samples obtained from patients with sialoliths and from healthy individuals. Although the diversity in the saliva was high, the essential features of the microbial environment in sialoliths were low diversity and evenness. The association of microbial abundance between stones and saliva revealed a positive correlation between Peptostreptococcus and Porphyromonas, and a negative correlation for Pseudomonas in saliva. The functional potential differences between saliva and stones Bacterial chemotaxis and the citrate cycle were negatively correlated with most genera found in salivary stone samples. However, the functions required for organic compound degradation did not differ between the saliva samples. Although some microbes were shared between the sialoliths and saliva, their compositions differed significantly. Our study presents a novel comparison between salivary stones and salivary microbiomes, suggesting potential preventive strategies against sialolithiasis.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Soo Yeon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, 07865, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, 07865, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yu Jin Go
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, 07865, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, 07865, Republic of Korea
| | | | - Cheol-O Kwon
- MD Healthcare Inc., Seoul, 03923, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Abraham M, Kori I, Vishwakarma U, Goel S. Comprehensive assessment of goat adipose tissue-derived mesenchymal stem cells cultured in different media. Sci Rep 2024; 14:8380. [PMID: 38600175 PMCID: PMC11006890 DOI: 10.1038/s41598-024-58465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potential in treating livestock diseases that are unresponsive to conventional therapies. MSCs derived from goats, a valuable model for studying orthopaedic disorders in humans, offer insights into bone formation and regeneration. Adipose tissue-derived MSCs (ADSCs) are easily accessible and have a high capacity for expansion. Although the choice of culture media significantly influences the biological properties of MSCs, the optimal media for goat ADSCs (gADSCs) remains unclear. This study aimed to assess the effects of four commonly used culture media on gADSCs' culture characteristics, stem cell-specific immunophenotype, and differentiation. Results showed that MEM, DMEM/F12, and DMEM-LG were superior in maintaining cell morphology and culture parameters of gADSCs, such as cell adherence, metabolic activity, colony-forming potential, and population doubling. Conversely, DMEM-HG exhibited poor performance across all evaluated parameters. The gADSCs cultured in DMEM/F12 showed enhanced early proliferation and lower apoptosis. The cell surface marker distribution exhibited superior characteristics in gADSCs cultured in MEM and DMEM/F12. In contrast, the distribution was inferior in gADSCs cultured in DMEM-LG. DMEM/F12 and DMEM-LG culture media demonstrated a significantly higher potential for chondrogenic differentiation and DMEM-LG for osteogenic differentiation. In conclusion, DMEM/F12 is a suitable culture medium for propagating gADSCs as it effectively maintains cell morphology, growth parameters, proliferation and lower apoptosis while exhibiting desirable expression patterns of MSC-specific markers. These findings contribute to optimising culture conditions for gADSCs, enhancing their potential applications in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Michelle Abraham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Ibraz Kori
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Utkarsha Vishwakarma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Sandeep Goel
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India.
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
9
|
Ryu HS, Abueva C, Padalhin A, Park SY, Yoo SH, Seo HH, Chung PS, Woo SH. Oral ulcer treatment using human tonsil-derived mesenchymal stem cells encapsulated in trimethyl chitosan hydrogel: an animal model study. Stem Cell Res Ther 2024; 15:103. [PMID: 38589946 PMCID: PMC11003084 DOI: 10.1186/s13287-024-03694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Oral ulcers are a common side effect of chemotherapy and affect patients' quality of life. While stem cell transplantation is a potential treatment for oral ulcers, its efficacy is limited as the stem cells tend to remain in the affected area for a short time. This study aims to develop a treatment for oral ulcers by using trimethyl chitosan (TMC) hydrogel with human tonsil-derived stem cells (hTMSCs) to increase the therapeutic effect of stem cells and investigate their effectiveness. METHODS Animals were divided into four experimental groups: Control, TMC hydrogel, hTMSCs, and hTMSCs loaded in TMC hydrogel (Hydrogel + hTMSCs) (each n = 8). Oral ulcers were chemically induced by anesthetizing the rats followed by injection of dilute acetic acid in the right buccal mucosa. After confirming the presence of oral ulcers in the animals, a single subcutaneous injection of 100 µL of each treatment was applied to the ulcer area. Histological analyses were performed to measure inflammatory cells, oral mucosal thickness, and fibrosis levels. The expression level of inflammatory cytokines was also measured using RT-PCR to gauge therapeutic the effect. RESULTS The ulcer size was significantly reduced in the TMC hydrogel + hTMSCs group compared to the control group. The stem cells in the tissue were only observed until Day 3 in the hTMSCs treated group, while the injected stem cells in the TMC Hydrogel + hTMSCs group were still present until day 7. Cytokine analysis related to the inflammatory response in the tissue confirmed that the TMC Hydrogel + hTMSCs treated group demonstrated superior wound healing compared to other experimental groups. CONCLUSION This study has shown that the adhesion and viability of current stem cell therapies can be resolved by utilizing a hydrogel prepared with TMC and combining it with hTMSCs. The combined treatment can promote rapid healing of oral cavity wounds by enhancing anti-inflammatory effects and expediting wound healing. Therefore, hTMSC loaded in TMC hydrogel was the most effective wound-healing approach among all four treatment groups prolonging stem cell survival. However, further research is necessary to minimize the initial inflammatory response of biomaterials and assess the safety and long-term effects for potential clinical applications.
Collapse
Affiliation(s)
- Hyun Seok Ryu
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Celine Abueva
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Andrew Padalhin
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - So Young Park
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Seung Hyeon Yoo
- School of Medical Laser, Dankook University, Cheonan, Republic of Korea
| | - Hwee Hyon Seo
- School of Medical Laser, Dankook University, Cheonan, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, 201 Manghyang-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea.
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, 201 Manghyang-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
10
|
Hyun J, Eom J, Im J, Kim YJ, Seo I, Kim SW, Im GB, Kim YH, Lee DH, Park HS, Yun DW, Kim DI, Yoon JK, Um SH, Yang DH, Bhang SH. Fibroblast function recovery through rejuvenation effect of nanovesicles extracted from human adipose-derived stem cells irradiated with red light. J Control Release 2024; 368:453-465. [PMID: 38447812 DOI: 10.1016/j.jconrel.2024.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Fibroblasts (hDFs) are widely employed for skin regeneration and the treatment of various skin disorders, yet research were rarely investigated about restoration of diminished therapeutic efficacy due to cell senescence. The application of stem cell and stem cell-derived materials, exosomes, were drawn attention for the restoration functionality of fibroblasts, but still have limitation for unintended side effect or low yield. To advance, stem cell-derived nanovesicle (NV) have developed for effective therapeutic reagents with high yield and low risk. In this study, we have developed a method using red light irradiated human adipose-derived stem cells (hADSCs) derived NV (R-NVs) for enhancing the therapeutic efficacy and rejuvenating hDFs. Through red light irradiation, we were able to significantly increase the content of stemness factors and angiogenic biomolecules in R-NVs. Treatment with these R-NVs was found to enhance the migration ability and leading to rejuvenation of old hDFs to levels similar to those of young hDFs. In subsequent in vivo experiments, the treatment of old hDFs with R-NVs demonstrated a superior skin wound healing effect, surpassing that of young hDFs. In summary, this study successfully induced rejuvenation and leading to increased therapeutic efficacy to R-NVs treated old hDFs previously considered as biowaste.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiin Eom
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Surgery, Harvard Medical School, Boston, MA, 02115 USA
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae Won Yun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, South Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong 4726, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae Hyeok Yang
- Department of Medical Life Sciences, College of Medicine, Institute of Cell and Tissue Engineering, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Lin JJ, Ning T, Jia SC, Li KJ, Huang YC, Liu Q, Lin JH, Zhang XT. Evaluation of genetic response of mesenchymal stem cells to nanosecond pulsed electric fields by whole transcriptome sequencing. World J Stem Cells 2024; 16:305-323. [PMID: 38577234 PMCID: PMC10989289 DOI: 10.4252/wjsc.v16.i3.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) modulated by various exogenous signals have been applied extensively in regenerative medicine research. Notably, nanosecond pulsed electric fields (nsPEFs), characterized by short duration and high strength, significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways. Consequently, we used transcriptomics to study changes in messenger RNA (mRNA), long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA expression during nsPEFs application. AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs. METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing. MSCs were pretreated with 5-pulse nsPEFs (100 ns at 10 kV/cm, 1 Hz), followed by total RNA isolation. Each transcript was normalized by fragments per kilobase per million. Fold change and difference significance were applied to screen the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions, complemented by quantitative polymerase chain reaction verification. RESULTS In total, 263 DEGs were discovered, with 92 upregulated and 171 downregulated. DEGs were predominantly enriched in epithelial cell proliferation, osteoblast differentiation, mesenchymal cell differentiation, nuclear division, and wound healing. Regarding cellular components, DEGs are primarily involved in condensed chromosome, chromosomal region, actin cytoskeleton, and kinetochore. From aspect of molecular functions, DEGs are mainly involved in glycosaminoglycan binding, integrin binding, nuclear steroid receptor activity, cytoskeletal motor activity, and steroid binding. Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation. CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs, 2 miRNAs, and 65 lncRNAs. Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways, which are involved in vesicular transport, calcium ion transport, cytoskeleton, and cell differentiation.
Collapse
Affiliation(s)
- Jian-Jing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Tong Ning
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Shi-Cheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Ke-Jia Li
- Department of Biomedical Engineering, Institute of Future Technology, Peking University, Beijing 100871, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Qiang Liu
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing 100044, China
| | - Jian-Hao Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing 100044, China
| | - Xin-Tao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
12
|
Le Thi P, Tran DL, Park KM, Lee S, Oh DH, Park KD. Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B 2024; 12:1538-1549. [PMID: 38251728 DOI: 10.1039/d3tb01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.
Collapse
Affiliation(s)
- Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dieu Linh Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1A - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Simin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
13
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
14
|
Herdiana Y, Sofian FF, Shamsuddin S, Rusdiana T. Towards halal pharmaceutical: Exploring alternatives to animal-based ingredients. Heliyon 2024; 10:e23624. [PMID: 38187251 PMCID: PMC10770512 DOI: 10.1016/j.heliyon.2023.e23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Halal is a crucial concept for Muslim consumers regarding consumed products, including pharmaceutical ingredients, which are essential in modern medicine. To address the issue of using porcine-sourced ingredients in pharmaceuticals, it is essential to search for halal alternatives derived from poultry, animal by-products from meat processing, marine sources, and plants. However, the complexity of this problem is further compounded by the rapid advances in innovation and technology, which can lead to adulteration of ingredients derived from pigs. Other challenges include the sustainability of alternative materials, management of waste or by-products practice, halal awareness, certification, government policies, religious adherence of consumers, food suppliers, marketers, and purchasing of products. The importance of halal and non-halal problems, specifically in the context of pharmaceutical materials, is still rarely discussed, including alternatives derived from poultry, animal by-products, marine sources, and plants. Due to the increasing global population, there is a growing need to increase awareness and concern among Muslim consumers for halal products, including pharmaceuticals. Therefore, this research aimed to investigate the importance of halal and non-halal issues in pharmaceutical ingredients, the potential impact on the Muslim community, as well as opportunities and challenges in the search for alternative ingredients.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Halal Food Pharmaceutical and Healthcare Society, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
- Halal Food Pharmaceutical and Healthcare Society, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, 11800, Penang, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
15
|
Ma J, Li J, Wei S, Ge Q, Wu J, Xue L, Qi Y, Xu S, Jin H, Gao C, Lin J. Delivery of dental pulp stem cells by an injectable ROS-responsive hydrogel promotes temporomandibular joint cartilage repair via enhancing anti-apoptosis and regulating microenvironment. J Tissue Eng 2024; 15:20417314241260436. [PMID: 38911101 PMCID: PMC11193934 DOI: 10.1177/20417314241260436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Temporomandibular joint (TMJ) cartilage repair poses a considerable clinical challenge, and tissue engineering has emerged as a promising solution. In this study, we developed an injectable reactive oxygen species (ROS)-responsive multifunctional hydrogel (RDGel) to encapsulate dental pulp stem cells (DPSCs/RDGel in short) for the targeted repair of condylar cartilage defect. The DPSCs/RDGel composite exhibited a synergistic effect in the elimination of TMJ OA (osteoarthritis) inflammation via the interaction between the hydrogel component and the DPSCs. We first demonstrated the applicability and biocompatibility of RDGel. RDGel encapsulation could enhance the anti-apoptotic ability of DPSCs by inhibiting P38/P53 mitochondrial apoptotic signal in vitro. We also proved that the utilization of DPSCs/RDGel composite effectively enhanced the expression of TMJOA cartilage matrix and promoted subchondral bone structure in vivo. Subsequently, we observed the synergistic improvement of DPSCs/RDGel composite on the oxidative stress microenvironment of TMJOA and its regulation and promotion of M2 polarization, thereby confirmed that M2 macrophages further promoted the condylar cartilage repair of DPSCs. This is the first time application of DPSCs/RDGel composite for the targeted repair of TMJOA condylar cartilage defects, presenting a novel and promising avenue for cell-based therapy.
Collapse
Affiliation(s)
- Jinjin Ma
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Li
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shibo Wei
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qinwen Ge
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jie Wu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leilei Xue
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yezi Qi
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyi Xu
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Changyou Gao
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jun Lin
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Duan B, Gan M, Xu Z, Chen WX. Tonsil microbiome in pediatric patients with post tonsillectomy hemorrhage for tonsillar hypertrophy. Int J Pediatr Otorhinolaryngol 2024; 176:111788. [PMID: 38039804 DOI: 10.1016/j.ijporl.2023.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE This study aimed to compare the tonsillar microbiota between post tonsillectomy patients with bleeding and without bleeding, and to investigate the potential role of tonsillar microbiota in the development of post-tonsillectomy hemorrhage (PTH). METHODS Nineteen tonsillar tissues from PTH patients and 21 tissues from control patients were collected. Metagenomic sequencing was used to compare the microbiota in PTH and control groups. Alpha diversity indices were used to compare the richness and evenness of the microbiota between the two groups. PCoA and NMDS analyses were used to evaluate beta diversity. LDA analysis was conducted to identify significantly abundant genera. RESULTS No significant difference in alpha diversity indices was found between PTH and control patients. The dominant bacteria in the tonsillar microbiota were Haemophilus, Streptococcus, and Fusobacterium. PCoA and NMDS analyses showed significant differences in beta diversity between PTH and control patients. PTH patients had a significantly higher relative abundance of Neisseria, Capnocytophaga, and Veillonella. Capnocytophaga was also identified as a significantly abundant genus by LDA analysis. CONCLUSION This study demonstrates that there is a difference in the tonsillar microbiota between PTH and control patients. The results suggest that Neisseria, Capnocytophaga, and Veillonella may be associated with the development of PTH. These findings provide new insights into the potential role of the tonsillar microbiota in the development of PTH, and may help to develop new strategies for preventing and treating this potentially life-threatening complication.
Collapse
Affiliation(s)
- Bo Duan
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Mingyu Gan
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Zhengmin Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Wen-Xia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
17
|
Park J, Lee KE, Choi DH, Kim YK, Lee WH, Kim MS, Sung HWJ, Chang JW, Park YS. The association of tonsillar microbiota with biochemical indices based on obesity and tonsillar hypertrophy in children. Sci Rep 2023; 13:22716. [PMID: 38123635 PMCID: PMC10733282 DOI: 10.1038/s41598-023-49871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The correlation between tonsil microbiome and tonsillar hypertrophy has not been well established. Given that oral dysbiosis is related to several metabolic diseases and that tonsillar hypertrophy leads to disordered breathing during sleep and obesity in children, it is necessary to investigate the relationship between the oral microbiome and tonsillar hypertrophy. After 16S rRNA amplicon sequencing of tonsillectomy samples, we evaluated the correlation between the tonsil microbiome and biochemical blood indices in pediatric patients who underwent tonsillectomy. Groups are classified into two categories: based on BMI, and grades 2, 3, and 4 based on tonsil size. Children with obesity and tonsillar hypertrophy have similar microbiome compositions and induce comparable changes in microbiome abundance and composition, confirming the association from a metagenomic perspective. In addition, obesity and tonsillar hypertrophy demonstrated a strong correlation with the Proteobacteria to Firmicutes (P/F) ratio, and among various biochemical indicators, alanine aminotransferase (ALT) levels increase with obesity and tonsillar hypertrophy, indicating a possible association of tonsil microbiome and liver metabolism. These novel findings demonstrate the significance of the tonsil microbiome and suggest the need for tonsil regulation, particularly during childhood.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul, 03923, Republic of Korea
| | - Won Hee Lee
- Institute of MD Healthcare Inc., Seoul, 03923, Republic of Korea
| | - Min Su Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Han Wool John Sung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
18
|
Hoes L, Voordeckers K, Dok R, Boeckx B, Steemans B, Gopaul D, Pasero P, Govers SK, Lambrechts D, Nuyts S, Verstrepen KJ. Ethanol induces replication fork stalling and membrane stress in immortalized laryngeal cells. iScience 2023; 26:108564. [PMID: 38213791 PMCID: PMC10783606 DOI: 10.1016/j.isci.2023.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
Although ethanol is a class I carcinogen and is linked to more than 700,000 cancer incidences, a clear understanding of the molecular mechanisms underlying ethanol-related carcinogenesis is still lacking. Further understanding of ethanol-related cell damage can contribute to reducing or treating alcohol-related cancers. Here, we investigated the effects of both short- and long-term exposure of human laryngeal epithelial cells to different ethanol concentrations. RNA sequencing shows that ethanol altered gene expression patterns in a time- and concentration-dependent way, affecting genes involved in ribosome biogenesis, cytoskeleton remodeling, Wnt signaling, and transmembrane ion transport. Additionally, ethanol induced a slower cell proliferation, a delayed cell cycle progression, and replication fork stalling. In addition, ethanol exposure resulted in morphological changes, which could be associated with membrane stress. Taken together, our data yields a comprehensive view of molecular changes associated with ethanol stress in epithelial cells of the upper aerodigestive tract.
Collapse
Affiliation(s)
- Lore Hoes
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Bart Steemans
- Laboratory of Microbial Systems Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Diyavarshini Gopaul
- Institute of Human Genetics, CNRS, University of Montpellier, 34396 Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, CNRS, University of Montpellier, 34396 Montpellier, France
| | - Sander K. Govers
- Laboratory of Microbial Systems Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospital Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Wang P, Arntz OJ, Husch JFA, Kraan P M VD, Beucken JJJPVD, van de Loo FAJ. Polyethylene glycol precipitation is an efficient method to obtain extracellular vesicle-depleted fetal bovine serum. PLoS One 2023; 18:e0295076. [PMID: 38051739 DOI: 10.1371/journal.pone.0295076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Mesenchymal stromal/stem cell derived-extracellular vesicles (MSC-EVs) have gained interest as drug delivery nanoparticles, having immunoregulatory and potentiating tissue repair property. To maintain growth of MSCs and obtain pure MSC-derived EVs, the culture media should contain fetal bovine serum (FBS) devoid of EVs, as the presence of FBS EVs confounds the properties of MSC-EVs. Therefore, we tested three methods: 18h ultracentrifugation (UC) and ultrafiltration (UF), which are common FBS EV depletion methods in current MSC-EV research, and polyethylene glycol (PEG) precipitation to obtain three EV depleted FBS (EVdFBS) batches, and compared them to FBS and commercial (Com) EVdFBS on human adipose stem cell (hADSC) growth, differentiation, enrichment of EVs in hADSC supernatant and their biological function on collagen metabolism. Our comparative study showed UC and UF vary in terms of depletion efficiency and do not completely deplete EVs and affects the growth-promoting quality of FBS. Specifically, FBS EV depletion was comparable between PEG (95.6%) and UF (96.6%) but less by UC (82%), as compared to FBS. FBS protein loss was markedly different among PEG (47%), UF (87%), and UC (51%), implying the ratio of EV depletion over protein loss was PEG (2.03), UF (1.11), and UC (1.61). A significant decrease of TGFβ/Smad signaling, involving in MSC growth and physiology, was observed by UF. After 96 hours of exposure to 5% FBS or 5% four different EVdFBS cell growth media, the osteogenesis ability of hADSCs was not impaired but slightly lower mRNA expression level of Col2a observed in EVdFBS media during chondrogenesis. In consistent with low confluency of hADSCs observed by optical microscope, cell proliferation in response to 5% UF EVdFBS media was inhibited significantly. Importantly, more and purer ADSCs EVs were obtained from ADSCs cultured in 5% PEG EVdFBS media, and they retained bioactive as they upregulated the expression of Col1a1, TIMP1 of human knee synovial fibroblast. Taken together, this study showed that PEG precipitation is the most efficient method to obtain EV depleted FBS for growth of MSCs, and to obtain MSC EVs with minimal FBS EV contamination.
Collapse
Affiliation(s)
- Peng Wang
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johanna F A Husch
- Department of Dentistry Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands
| | - Van der Kraan P M
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Wang X, Ouyang L, Chen W, Cao Y, Zhang L. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system. Stem Cell Res Ther 2023; 14:284. [PMID: 37794520 PMCID: PMC10552362 DOI: 10.1186/s13287-023-03514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) are widely used in cell therapy due to their robust immunomodulatory and tissue regenerative capabilities. Currently, the predominant method for obtaining hUC-MSCs for clinical use is through planar culture expansion, which presents several limitations. Specifically, continuous cell passaging can lead to cellular aging, susceptibility to contamination, and an absence of process monitoring and control, among other limitations. To overcome these challenges, the technology of microcarrier-bioreactor culture was developed with the aim of ensuring the therapeutic efficacy of cells while enabling large-scale expansion to meet clinical requirements. However, there is still a knowledge gap regarding the comparison of biological differences in cells obtained through different culture methods. METHODS We developed a culture process for hUC-MSCs using self-made microcarrier and stirred bioreactor. This study systematically compares the biological properties of hUC-MSCs amplified through planar culture and microcarrier-bioreactor systems. Additionally, RNA-seq was employed to compare the differences in gene expression profiles between the two cultures, facilitating the identification of pathways and genes associated with cell aging. RESULTS The findings revealed that hUC-MSCs expanded on microcarriers exhibited a lower degree of cellular aging compared to those expanded through planar culture. Additionally, these microcarrier-expanded hUC-MSCs showed an enhanced proliferation capacity and a reduced number of cells in the cell cycle retardation period. Moreover, bioreactor-cultured cells differ significantly from planar cultures in the expression of genes associated with the cytoskeleton and extracellular matrix. CONCLUSIONS The results of this study demonstrate that our microcarrier-bioreactor culture method enhances the proliferation efficiency of hUC-MSCs. Moreover, this culture method exhibits the potential to delay the process of cell aging while preserving the essential stem cell properties of hUC-MSCs.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wenxia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yulin Cao
- Beijing Tang Yi Hui Kang Biomedical Technology Co., LTD, Beijing, 100032, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
21
|
Kim D, Lee DW, Yoon G, Jeong EK, Choi MS, Lee HC, Park YS, Chung CP, Lee JY, Park YJ. Therapeutic Effect of HDAC5 Binding and Cell Penetrating Peptide for the Treatment of Inflammatory Bowel Disease. Tissue Eng Regen Med 2023; 20:965-979. [PMID: 37589886 PMCID: PMC10519921 DOI: 10.1007/s13770-023-00572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an incurable disease that negatively influences the quality of life of patients. Current and emerging therapies target proinflammatory cytokines and/or receptors to downregulate proinflammatory responses, but insufficient remission requires other therapeutic agents. Herein, we report that the synthetic anti-inflammatory peptide 15 (SAP15) is capable of cell penetration and anti-inflammatory activity in human macrophages. METHODS SAP15 was labeled with fluorescence and administered to human leukemia monocytic cells (THP-1) cells for cell penetration analysis. Using biolayer interferometry analysis, the binding affinity of SAP15 with histone deacetylase 5 (HDAC5) was measured. SAP15-treated THP-1 cells were analyzed by protein phosphorylation assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). In addition, in vivo analysis of the therapeutic effect on IBD was observed in a dextran sulfate sodium (DSS)-induced model. Samples from SAP15-treated mice were analyzed at both the macroscopic and microscopic levels using ELISA, myeloperoxidase (MPO) assays, and histological evaluations. RESULTS SAP15 was internalized within the cytosol and nucleus of THP-1 cells and bound to the HDAC5 protein. SAP15-treated macrophages were assessed for protein phosphorylation and showed inhibited phosphorylation of HDAC5 and other immune-related proteins, which led to increased M2-like macrophage markers and decreased M1-like macrophage markers and tumor necrosis factor-α and interleukin-6 cytokine levels. The SAP15 treatment on IBD model showed significant recovery of colon length. Further histological analysis of colon demonstrated the therapeutic effect of SAP15 on mucosal layer. Moreover, proinflammatory cytokine levels and MPO activity from the plasma show that SAP15 is effective in reduced proinflammatory responses. CONCLUSION These findings suggest that SAP15 is a novel peptide with a novel cell-penetrating peptide with anti-inflammatory property that can be used as a therapeutic agent for IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Deogil Kim
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Dong Woo Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry, Seoul National University, #403 Biomaterial Research Building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gookjin Yoon
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry, Seoul National University, #403 Biomaterial Research Building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eui Kyun Jeong
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Moon Sil Choi
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Hoo Cheol Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chong Pyung Chung
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Jue-Yeon Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Yoon Jeong Park
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea.
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry, Seoul National University, #403 Biomaterial Research Building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
22
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Yu C, Yang W, Yang L, Ye L, Sun R, Gu T, Ying X, Wang M, Tang R, Fan S, Yao S. Synergistic Effect of Magneto-Mechanical Bioengineered Stem Cells and Magnetic Field to Alleviate Osteoporosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19976-19988. [PMID: 37058439 DOI: 10.1021/acsami.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Therapeutic bioengineering based on stem cell therapy holds great promise in biomedical applications. However, the application of this treatment is limited in orthopedics because of their poor survival, weak localization, and low cell retention. In this work, magneto-mechanical bioengineered cells consisting of magnetic silica nanoparticles (MSNPs) and mesenchymal stem cells (MSCs) are prepared to alleviate osteoporosis. The magneto-mechanical bioengineered MSCs with spatial localization, cell retention, and directional tracking capabilities could be mediated by a guided magnetic field (MF) in vitro and in vivo. Furthermore, high uptake rates of the MSNPs ensure the efficient construction of magnetically controlled MSCs within 2 h. In conjunction with external MF, the magneto-mechanical bioengineered MSCs have the potential for the activation of the YAP/β-catenin signaling pathway, which could further promote osteogenesis, mineralization, and angiogenesis. The synergistic effects of MSNPs and guided MF could also decline bone resorption to rebalance bone metabolism in bone loss diseases. In vivo experiments confirm that the functional MSCs and guided MF could effectively alleviate postmenopausal osteoporosis, and the bone mass of the treated osteoporotic bones by using the bioengineered cells for 6 weeks is nearly identical to that of the healthy ones. Our results provide a new avenue for osteoporosis management and treatment, which contribute to the future advancement of magneto-mechanical bioengineering and treatment.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Linjun Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou 310003, Zhejiang, China
| | - Monian Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
24
|
Bai L, Tao G, Feng M, Xie Y, Cai S, Peng S, Xiao J. Hydrogel Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2023; 15:pharmaceutics15051334. [PMID: 37242576 DOI: 10.3390/pharmaceutics15051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.
Collapse
Affiliation(s)
- Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Maogeng Feng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
25
|
Li J, Chen X, Ren L, Chen X, Wu T, Wang Y, Ren X, Cheng B, Xia J. Type H vessel/platelet-derived growth factor receptor β + perivascular cell disintegration is involved in vascular injury and bone loss in radiation-induced bone damage. Cell Prolif 2023:e13406. [PMID: 36694343 DOI: 10.1111/cpr.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Collapse of the microvascular system is a prerequisite for radiation-induced bone loss. Since type H vessels, a specific bone vessel subtype surrounded by platelet-derived growth factor receptor β+ (PDGFRβ+ ) perivascular cells (PVCs), has been recently identified to couple angiogenesis and osteogenesis, we hypothesize that type H vessel injury initiates PDGFRβ+ PVC dysfunction, which contributes to the abnormal angiogenesis and osteogenesis after irradiation. In this study, we found that radiation led to the decrease of both type H endothelial cell (EC) and PDGFRβ+ PVC numbers. Remarkably, results from lineage tracing showed that PDGFRβ+ PVCs detached from microvessels and converted the lineage commitment from osteoblasts to adipocytes, leading to vascular injury and bone loss after irradiation. These phenotype transitions above were further verified to be associated with the decrease in hypoxia-inducible factor-1α (HIF-1α)/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs. Pharmacological blockade of HIF-1α/PDGF-BB/PDGFRβ signalling induced a phenotype similar to radiation-induced bone damage, while the rescue of this signalling significantly alleviated radiation-induced bone injury. Our findings show that the decrease in HIF-1α/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs after irradiation affects the homeostasis of EC-PVC coupling and plays a part in vascular damage and bone loss, which has broad implications for effective translational therapies.
Collapse
Affiliation(s)
- Jiayan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tong Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yun Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Cyclin-Dependent Kinase 1 Inhibition Potentiates the Proliferation of Tonsil-Derived Mesenchymal Stem Cells by Delaying Cellular Senescence. Stem Cells Int 2022; 2022:4302992. [PMID: 35910534 PMCID: PMC9337930 DOI: 10.1155/2022/4302992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in tissue regeneration and stem cell therapy and are currently being tested in numerous clinical trials. Senescence-related changes in MSC properties have attracted considerable attention. Senescent MSCs exhibit a compromised potential for proliferation; senescence acts as a stress response that prevents the proliferation of dysfunctional cells by inducing an irreversible cell cycle arrest. Here, we established a senescent MSC model using senescence-associated β-galactosidase, proliferation, and cell cycle assays. We further identified novel biomarker candidates for old, senescent tonsil-derived MSCs (TMSCs) using transcriptomics. A plot of the cellular senescence pathway showed cyclin-dependent kinase 1 (CDK1; +8-fold) and CDK2 (+2-fold), and transforming growth factor beta 2 (TGFB2; +2-fold) showed significantly higher expression in old TMSCs than in young TMSCs. The CDK family was shown to be related to cell cycle and proliferation, as confirmed by quantitative RT-PCR. As replicative senescence of TMSCs, the gene and protein expression of CDK1 was significantly increased, which was further validated by inhibiting CDK1 using an inhibitor and siRNA. Taken together, we suggest that the CDK1 can be used as a selective senescence biomarker of MSCs and broaden the research criteria for senescent mechanisms.
Collapse
|
27
|
Basic Fibroblast Growth Factor Induces Cholinergic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Tissue Eng Regen Med 2022; 19:1063-1075. [PMID: 35857260 DOI: 10.1007/s13770-022-00474-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are considered a potential tool for regenerating damaged tissues due to their great multipotency into various cell types. Here, we attempted to find the appropriate conditions for neuronal differentiation of tonsil-derived MSCs (TMSCs) and expand the potential application of TMSCs for treating neurological diseases. METHODS The TMSCs were differentiated in DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12) supplemented with various neurotrophic factors for 7-28 days to determine the optimal neuronal differentiation condition for the TMSCs. The morphologies as well as the levels of the neural markers and neurotransmitters were assessed to determine neuronal differentiation potentials and the neuronal lineages of the differentiated TMSCs. RESULTS Our initial study demonstrated that DMEM/F12 supplemented with 50 ng/mL basic fibroblast growth factor with 10 μM forskolin was the optimal condition for neuronal differentiation for the TMSCs. TMSCs had higher protein expression of neuronal markers, including neuron-specific enolase (NSE), GAP43, postsynaptic density protein 95 (PSD95), and synaptosomal-associated protein of 25 kDa (SNAP25) compared to the undifferentiated TMSCs. Immunofluorescence staining also validated the increased mature neuron markers, NeuN and synaptophysin, in the differentiated TMSCs. The expression of glial fibrillar acidic protein and ionized calcium-binding adaptor molecule 1 the markers of astrocytes and microglia, were also slightly increased. Additionally, the differentiated TMSCs released a significantly higher level of acetylcholine, the cholinergic neurotransmitter, as analyzed by the liquid chromatography-tandem mass spectrometry and showed an enhanced choline acetyltransferase immunoreactivity compared to the undifferentiated cells. CONCLUSION Our study suggests that the optimized condition favors the TMSCs to differentiate into cholinergic neuron-like phenotype, which could be used as a possible therapeutic tool in treating certain neurological disorders such as Alzheimer's disease.
Collapse
|
28
|
BMP9 reduces age-related bone loss in mice by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. Cell Death Dis 2022; 8:254. [PMID: 35523787 PMCID: PMC9076651 DOI: 10.1038/s41420-022-01048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Age-related osteoporosis is characterized by the accumulation of senescent osteoblastic cells in bone microenvironment and significantly reduced osteogenic differentiation. Clearing of the senescent cells is helpful to improve bone formation in aged mice. Bone morphogenetic protein 9 (BMP9), a multifunctional protein produced and secreted by liver, was reported to improve osteoporosis caused by estrogen withdrawal. However, the mechanism of BMP9 has not been fully elucidated, and its effect on senile osteoporosis has not been reported. This study reveals that BMP9 significantly increases bone mass and improves bone biomechanical properties in aged mice. Furthermore, BMP9 reduces expression of senescent genes in bone microenvironment, accompanied by decreased senescence-associated secretory phenotypes (SASPs) such as Ccl5, Mmp9, Hmgb1, Nfkb1, and Vcam1. In vitro, Bmp9 treatment inhibits osteoblast senescence through activating Smad1, which suppresses the transcriptional activity of Stat1, thereby inhibits P21 expression and SASPs production. Furthermore, inhibiting the Smad1 signal in vivo can reverse the inhibitory effect of BMP9 on Stat1 and downstream senescent genes, which eliminates the protection of BMP9 on age-related osteoporosis. These findings highlight the critical role of BMP9 on reducing age-related bone loss by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. BMP9 inhibits cellular senescence by activation of Smad1, which suppresses the transcription of Stat1, resulting in decreased P21 expression and SASPs production in osteoblast. The anti-aging effect of BMP9 is benefit to improving age-related osteoporosis.![]()
Collapse
|
29
|
Engineering osteoarthritic cartilage model through differentiating senescent human mesenchymal stem cells for testing disease-modifying drugs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:309-327. [PMID: 34109475 PMCID: PMC10077511 DOI: 10.1007/s11427-021-1933-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Significant cellular senescence has been observed in cartilage harvested from patients with osteoarthritis (OA). In this study, we aim to develop a senescence-relevant OA-like cartilage model for developing disease-modifying OA drugs (DMOADs). Specifically, human bone marrow-derived mesenchymal stromal cells (MSCs) were expanded in vitro up to passage 10 (P10-MSCs). Following their senescent phenotype formation, P10-MSCs were subjected to pellet culture in chondrogenic medium. Results from qRT-PCR, histology, and immunostaining indicated that cartilage generated from P10-MSCs displayed both senescent and OA-like phenotypes without using other OA-inducing agents, when compared to that from normal passage 4 (P4)-MSCs. Interestingly, the same gene expression differences observed between P4-MSCs and P10-MSC-derived cartilage tissues were also observed between the preserved and damaged OA cartilage regions taken from human samples, as demonstrated by RNA Sequencing data and other analysis methods. Lastly, the utility of this senescence-initiated OA-like cartilage model in drug development was assessed by testing several potential DMOADs and senolytics. The results suggest that pre-existing cellular senescence can induce the generation of OA-like changes in cartilage. The P4- and P10-MSCs derived cartilage models also represent a novel platform for predicting the efficacy and toxicity of potential DMOADs on both preserved and damaged cartilage in humans.
Collapse
|
30
|
Song N, Pan K, Chen L, Jin K. Platelet Derived Vesicles Enhance the TGF-beta Signaling Pathway of M1 Macrophage. Front Endocrinol (Lausanne) 2022; 13:868893. [PMID: 35370988 PMCID: PMC8972998 DOI: 10.3389/fendo.2022.868893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023] Open
Abstract
Macrophages, mainly divided into M1 pro-inflammatory and M2 anti-inflammatory types, play a key role in the transition from inflammation to repair after trauma. In chronic inflammation, such as diabetes and complex bone injury, or the process of certain inflammatory specific emergencies, the ratio of M1/M2 cell populations is imbalanced so that M1-macrophages cannot be converted into M2 macrophages in time, resulting in delayed trauma repair. Early and timely transformation of macrophages from the pro-inflammatory M1-type into the pro-reparative M2-type is an effective strategy to guide trauma repair and establish the original homeostasis. We prepared purified nano-platelet vesicles (NPVs) and assessed their effects on macrophage phenotype switching through transcriptome analysis. The results elucidate that NPVs promote pathways related to angiogenesis, collagen synthesis, cell adhesion, and migration in macrophages, and we speculate that these advantages may promote healing in traumatic diseases.
Collapse
Affiliation(s)
- Nan Song
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, China
- Zhejiang Decell Biotechnology Co. LTD, Hangzhou, China
| | - Kaifeng Pan
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, China
| | - Lei Chen
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Lei Chen, ; Keke Jin,
| | - Keke Jin
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, China
- *Correspondence: Lei Chen, ; Keke Jin,
| |
Collapse
|
31
|
Chen Y, Li S, Zhao J, Cao X, Wang F. Efficient drug delivery by novel cell-penetrating peptide derived from Midkine, with two heparin binding sites braced by a length-specific helix. J Drug Target 2021; 30:326-333. [PMID: 34708678 DOI: 10.1080/1061186x.2021.1999960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-penetrating peptides (CPPs) have been regarded as potential drug carriers for cancer therapy. However, most well-studied CPPs fail to deliver exogenous drugs efficiently and selectively. In this study, a tumour-targeted CPP with high efficiency derived from heparin-binding domain (HBD) of Midkine (named HMD) was discovered. HMD exhibited higher delivery efficiency than classic CPPs (TAT and R9) and manifested selectivity in tumour cells. Normally, the positive charge is the key factor for the transmembrane activity of CPPs such as TAT and R9. Here, the length of α-helix inside CPP was found also important for in the recognition of heparan sulphate proteoglycans (HSPGs). Subsequently, the introduction of HMD enhanced the inhibitory effect of Momordica antiviral protein of 30 kDa (MAP30) on tumour cells, resulting in a 6.07-fold and 5.42-fold increase in HeLa cells and MGC80-3 cells respectively without enhanced cytotoxicity in normal cells. These results show that HMD possesses high efficiency and good tumour specificity and can be utilised as a promising agent for the tumour-targeted delivery of drug. This study is also a supplement to the existing theories about the biological activities of the α-helix in CPPs.
Collapse
Affiliation(s)
- Yihui Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Si Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xuewei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Fujun Wang
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, People's Republic of China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., Dongyang, People's Republic of China
| |
Collapse
|
32
|
Hu B, Dong Y, Zhou W, Ma Y, Li L, Fu X, Zhang W, Luo Y, Pu J, Deng X, Zhang R, Liu S. Effect of Inonotus obliquus polysaccharide on composition of the intestinal flora in mice with acute endometritis. PLoS One 2021; 16:e0259570. [PMID: 34739514 PMCID: PMC8570517 DOI: 10.1371/journal.pone.0259570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inonotus obliquus Polysaccharide (IOP) is a large molecule extracted from Inonotus obliqus, a medicinal fungus, which has a wide range of biological activities and has been shown to be associated with inflammation. The purpose of this study is to investigate whether IOP can help to reduce acute endometritis by regulating intestinal flora. We observed pathological changes in mice with endometritis following treatment with IOP and evaluated changes in the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), and further studied the effects of IOP on the intestinal flora of endometritis mice using 16S rRNA high-throughput sequencing. The results showed that IOP improved the condition of uterine tissues and reduced the release of pro-inflammatory cytokines. Meanwhile, the 16S rRNA sequencing results showed that IOP could regulate the changes in intestinal microflora at the level of genera, possibly by changing the relative abundance of some genera.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yuqing Dong
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wenjing Zhou
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yichuan Ma
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Luyao Li
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Xianhua Fu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Wenxuan Zhang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yuanyue Luo
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyu Pu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| |
Collapse
|
33
|
Characterization of Tonsil Microbiota and Their Effect on Adenovirus Reactivation in Tonsillectomy Samples. Microbiol Spectr 2021; 9:e0124621. [PMID: 34668748 PMCID: PMC8528100 DOI: 10.1128/spectrum.01246-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The adenoviral DNA is prevalent in adenotonsillectomy specimens from pediatric patients, though the virus seems to be in latent state. The tonsils are at the forefront of airway entry point and are the first line of defense against airway viral and bacterial infections. We hypothesized that tonsil microbiota plays a role in human adenovirus (HAdV) latency and reactivation. In this study, we surveyed the presence of HAdV in tonsillectomy samples from 81 patients and found that HAdV DNA was in 85.2% of the tonsil samples. We then determined the microbiota of the samples. Taxonomic profiling showed that Proteobacteria, Firmicutes, Fusobacteriota, and Bacteroidota accounted for approximately 70% of the total phyla in tonsil samples. A correlation analysis showed that the HAdV-positive samples had significantly higher abundance of Neisseria and Bifidobacterium and lower abundance of Streptococcus, Ochrobactrum, and Lactobacillus than that of the HAdV-negative samples. Culture-based isolation followed by 16S rRNA sequencing identified Staphylococcus aureus, Streptococcus pneumoniae, Veillonella, Prevotella,Capnocytophaga sputigena, Pseudomonas aeruginosa, Neisseria, and Moraxella catarrhalis from the samples. Gas chromatography-mass spectrometry (GC-MS) profiling of short-chain fatty acids in bacterial cultures of minced tonsillectomy tissues or representative isolates showed the cultures contained various amounts of short-chain fatty acids (SCFAs). Treatment of isolated tonsil lymphocytes with bacterial lipopolysaccharide (LPS) or with SCFAs promoted HAdV reactivation. The compounds also promoted HAdV reactivation in a xenograft model with implanted tonsil fragments. This study shows a potential interplay between tonsil microbiota and HAdV reactivation that may lead to recurrent virus infection of respiratory tract disease. IMPORTANCE Human adenovirus infection is common among pediatric patients and can be life-threatening among organ transplant recipients. Adenovirus is transmitted by close contact, but it is believed that a majority of invasive events appear to arise from viral reactivation. The human tonsil is a reservoir for virus latency and has a high prevalence of latently infected adenovirus. Also, tonsils are located at the gateway of the respiratory tracts and are commonly exposed to bacterial pathogens. Here, we uncovered adenoviral DNA-positive and -negative samples that appeared to harbor distinct distribution patterns of microorganisms. SCFAs, primary metabolites of microbiota on tonsils, could induce the adenovirus reactivation in tonsil lymphocytes, resulting in adenovirus replication and production of infectious virions. The study suggests that viral-bacterial interaction plays a role in virus reactivation from latency and could be a contributing factor for recurrent viral infection in pediatric patients.
Collapse
|
34
|
Choi DH, Lee KE, Oh SY, Lee SM, Jo BS, Lee JY, Park JC, Park YJ, Park KD, Jo I, Park YS. Tonsil-derived mesenchymal stem cells incorporated in reactive oxygen species-releasing hydrogel promote bone formation by increasing the translocation of cell surface GRP78. Biomaterials 2021; 278:121156. [PMID: 34597900 DOI: 10.1016/j.biomaterials.2021.121156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Controlling the senescence of mesenchymal stem cells (MSCs) is essential for improving the efficacy of MSC-based therapies. Here, a model of MSC senescence was established by replicative subculture in tonsil-derived MSCs (TMSCs) using senescence-associated β-galactosidase, telomere-length related genes, stemness, and mitochondrial metabolism. Using transcriptomic and proteomic analyses, we identified glucose-regulated protein 78 (GRP78) as a unique MSC senescence marker. With increasing cell passage number, GRP78 gradually translocated from the cell surface and cytosol to the (peri)nuclear region of TMSCs. A gelatin-based hydrogel releasing a sustained, low level of reactive oxygen species (ROS-hydrogel) was used to improve TMSC quiescence and self-renewal. TMSCs expressing cell surface-specific GRP78 (csGRP78+), collected by magnetic sorting, showed better stem cell function and higher mitochondrial metabolism than unsorted cells. Implantation of csGRP78+ cells embedded in ROS-hydrogel in rats with calvarial defects resulted in increased bone regeneration. Thus, csGRP78 is a promising biomarker of senescent TMSCs, and the combined use of csGRP78+ cells and ROS-hydrogel improved the regenerative capacity of TMSCs by regulating GRP78 translocation.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Si Min Lee
- Department of Molecular Science and Technology, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Beom Soo Jo
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jue-Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
35
|
Nazeer N, Rodriguez-Lecompte JC, Ahmed M. Bacterial-Specific Aggregation and Killing of Immunomodulatory Host Defense Peptides. Pharmaceuticals (Basel) 2021; 14:839. [PMID: 34577539 PMCID: PMC8467575 DOI: 10.3390/ph14090839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
This study involves the design and development of disulfide bridge-linked antimicrobial peptides using the host defense protein Angiogenin 4 (chAng4) as a template. The mini peptides derived from chAng4 (mCA4s) were evaluated for their antibacterial efficacies in various pathogenic bacterial strains, and the role of the oxidation state of thiols in the peptide sequence and its implication on antibacterial properties were explored. A remarkable property of these synthetic mCA4 peptides is their capability to flocculate bacteria and mediate bacterial-specific killing, in the absence of any other external stimulus. mCA4s were further evaluated for their cellular uptake, hemolytic activities, toxicities, and immunomodulatory activities in different eukaryotic cell lines. The results indicate that disulfide bridge-containing cationic amphipathic peptides show superior antibacterial efficacies, are nontoxic and nonhemolytic, and mediate bacterial flocculation and killing, in the absence of external stimuli.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
36
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
De Martin A, Lütge M, Stanossek Y, Engetschwiler C, Cupovic J, Brown K, Demmer I, Broglie MA, Geuking MB, Jochum W, McCoy KD, Stoeckli SJ, Ludewig B. Distinct microbial communities colonize tonsillar squamous cell carcinoma. Oncoimmunology 2021; 10:1945202. [PMID: 34367729 PMCID: PMC8312615 DOI: 10.1080/2162402x.2021.1945202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Squamous cell carcinoma of the tonsil is one of the most frequent cancers of the oropharynx. The escalating rate of tonsil cancer during the last decades is associated with the increase of high risk-human papilloma virus (HR-HPV) infections. While the microbiome in oropharyngeal malignant diseases has been characterized to some extent, the microbial colonization of HR-HPV-associated tonsil cancer remains largely unknown. Using 16S rRNA gene amplicon sequencing, we have characterized the microbiome of human palatine tonsil crypts in patients suffering from HR-HPV-associated tonsil cancer in comparison to a control cohort of adult sleep apnea patients. We found an increased abundance of the phyla Firmicutes and Actinobacteria in tumor patients, whereas the abundance of Spirochetes and Synergistetes was significantly higher in the control cohort. Furthermore, the accumulation of several genera such as Veillonella, Streptococcus and Prevotella_7 in tonsillar crypts was associated with tonsil cancer. In contrast, Fusobacterium, Prevotella and Treponema_2 were enriched in sleep apnea patients. Machine learning-based bacterial species analysis indicated that a particular bacterial composition in tonsillar crypts is tumor-predictive. Species-specific PCR-based validation in extended patient cohorts confirmed that differential abundance of Filifactor alocis and Prevotella melaninogenica is a distinct trait of tonsil cancer. This study shows that tonsil cancer patients harbor a characteristic microbiome in the crypt environment that differs from the microbiome of sleep apnea patients on all phylogenetic levels. Moreover, our analysis indicates that profiling of microbial communities in distinct tonsillar niches provides microbiome-based avenues for the diagnosis of tonsil cancer.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | | | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Kirsty Brown
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Izadora Demmer
- Institute of Pathology, Kantonsspital Sankt Gallen, St. Gallen, Switzerland
| | - Martina A Broglie
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases; Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital Sankt Gallen, St. Gallen, Switzerland
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Lee HI, Heo Y, Baek SW, Kim DS, Song DH, Han DK. Multifunctional Biodegradable Vascular PLLA Scaffold with Improved X-ray Opacity, Anti-Inflammation, and Re-Endothelization. Polymers (Basel) 2021; 13:polym13121979. [PMID: 34208677 PMCID: PMC8234203 DOI: 10.3390/polym13121979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(L-lactic acid) (PLLA) has been used as a biodegradable vascular scaffold (BVS) material due to high mechanical property, biodegradability, and biocompatibility. However, acidic byproducts from hydrolysis of PLLA reduce the pH after the surrounding implanted area and cause inflammatory responses. As a result, severe inflammation, thrombosis, and in-stent restenosis can occur after implantation by using BVS. Additionally, polymers such as PLLA could not find on X-ray computed tomography (CT) because of low radiopacity. To this end, here, we fabricated PLLA films as the surface of BVS and divided PLLA films into two coating layers. At the first layer, PLLA film was coated by 2,3,5-triiodobenzoic acid (TIBA) and magnesium hydroxide (MH) with poly(D,L-lactic acid) (PDLLA) for radiopaque and neutralization of acidic environment, respectively. The second layer of coated PLLA films is composed of polydopamine (PDA) and then cystamine (Cys) for the generation of nitric oxide (NO) release, which is needed for suppression of smooth muscle cells (SMCs) and proliferation of endothelial cells (ECs). The characterization of the film surface was conducted via various analyses. Through the surface modification of PLLA films, they have multifunctional abilities to overcome problems of BVS effectively such as X-ray penetrability, inflammation, thrombosis, and neointimal hyperplasia. These results suggest that the modification of biodegradable PLLA using TIBA, MH, PDA, and Cys will have important potential in implant applications.
Collapse
Affiliation(s)
- Ho In Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
| | - Yun Heo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
- Correspondence:
| |
Collapse
|
39
|
Yoo M, Cho S, Shin S, Kim JM, Park HG, Cho S, Hwang YK, Park DH. Therapeutic Effect of IL1β Priming Tonsil Derived-Mesenchymal Stem Cells in Osteoporosis. Tissue Eng Regen Med 2021; 18:851-862. [PMID: 34115339 PMCID: PMC8440756 DOI: 10.1007/s13770-021-00350-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Stem cell therapies can be a new therapeutic strategy that may rebalance anabolic and anti-resorptive effects in osteoporosis patients. Tonsil-derived mesenchymal stem cells (TMSCs) can be an alternative therapeutic source for chronic degenerative diseases including osteoporosis. MSCs acquire immune regulatory function under the inflammatory cytokines. Since interleukin (IL) 1β is known to be one of inflammatory cytokines involved in osteoporosis progression, treatment of IL1β with TMSCs may enhance immunomodulatory function and therapeutic effects of TMSCs in osteoporosis. METHODS For IL1β priming, TMSCs were cultured in the presence of the medium containing IL1β for 1 day. Characteristics of IL1β priming TMSCs such as multipotent differentiation properties, anti-inflammatory potential, and suppression of osteoclast differentiation were assessed in vitro. For in vivo efficacy study, IL1β priming TMSCs were intravenously infused twice with ovariectomized (OVX) osteoporosis mouse model, and blood serum and bone parameters from micro computed tomography images were analyzed. RESULTS IL1β priming TMSCs had an enhanced osteogenic differentiation and secreted factors that regulate both osteoclastogenesis and osteoblastogenesis. IL1β priming TMSCs also suppressed proliferation of peripheral blood mononuclear cells (PBMCs) and decreased expression of Receptor activator of nuclear factor kappa-Β ligand (RANKL) in PHA-stimulated PBMCs. Furthermore, osteoclast specific genes such as Nuclear factor of activated T cells c1 (NFATc1) were effectively down regulated when co-cultured with IL1β priming TMSCs in RANKL induced osteoclasts. In OVX mice, IL1β priming TMSCs induced low level of serum RANKL/osteoprotegerin (OPG) ratio on the first day of the last administration. Four weeks after the last administration, bone mineral density and serum Gla-osteocalcin were increased in IL1β priming TMSC-treated OVX mice. Furthermore, bone formation and bone resorption markers that had been decreased in OVX mice with low calcium diet were recovered by infusion of IL1β priming TMSCs. CONCLUSION IL1β priming can endow constant therapeutic efficacy with TMSCs, which may contribute to improve bone density and maintain bone homeostasis in postmenopausal osteoporosis. Therefore, IL1β priming TMSCs can be a new therapeutic option for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Minjoo Yoo
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Sungkuk Cho
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Sunhye Shin
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Jung-Mi Kim
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Hyeon-Gyeong Park
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Sungyoo Cho
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yu Kyeong Hwang
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Dae Hwi Park
- Cell Therapy Research Center, Green Cross LabCell, 107, Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea.
| |
Collapse
|
40
|
Sarmiento Varón L, De Rosa J, Rodriguez R, Fernández PM, Billordo LA, Baz P, Beccaglia G, Spada N, Mendoza FT, Barberis CM, Vay C, Arabolaza ME, Paoli B, Arana EI. Role of Tonsillar Chronic Inflammation and Commensal Bacteria in the Pathogenesis of Pediatric OSA. Front Immunol 2021; 12:648064. [PMID: 33995367 PMCID: PMC8116894 DOI: 10.3389/fimmu.2021.648064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Immune responses at the boundary between the host and the world beyond are complex and mucosal tissue homeostasis relies on them. Obstructive sleep apnea (OSA) is a syndrome suffered by children with hypertrophied tonsils. We have previously demonstrated that these tonsils present a defective regulatory B cell (Breg) compartment. Here, we extend those findings by uncovering the crucial role of resident pro-inflammatory B and T cells in sustaining tonsillar hypertrophy and hyperplasia by producing TNFα and IL17, respectively, in ex vivo cultures. Additionally, we detected prominent levels of expression of CD1d by tonsillar stratified as well as reticular epithelium, which have not previously been reported. Furthermore, we evidenced the hypertrophy of germinal centers (GC) and the general hyperplasia of B lymphocytes within the tissue and the lumen of the crypts. Of note, such B cells resulted mainly (IgG/IgM)+ cells, with some IgA+ cells located marginally in the follicles. Finally, by combining bacterial culture from the tonsillar core and subsequent identification of the respective isolates, we determined the most prevalent species within the cohort of OSA patients. Although the isolated species are considered normal oropharyngeal commensals in children, we confirmed their capacity to breach the epithelial barrier. Our work sheds light on the pathological mechanism underlying OSA, highlighting the relevance taken by the host immune system when defining infection versus colonization, and opening alternatives of treatment.
Collapse
Affiliation(s)
- Lindybeth Sarmiento Varón
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Javier De Rosa
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Raquel Rodriguez
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Allergy and Immunology Division, Clinical Hospital 'José de San Martín', UBA, Buenos Aires, Argentina
| | - Pablo M Fernández
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| | - L Ariel Billordo
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Plácida Baz
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Gladys Beccaglia
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Nicolás Spada
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - F Tatiana Mendoza
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Claudia M Barberis
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Carlos Vay
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - M Elena Arabolaza
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Bibiana Paoli
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Eloísa I Arana
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| |
Collapse
|
41
|
Choi JS, Lee MS, Kim J, Eom MR, Jeong EJ, Lee M, Park SA, Jeong JH, Kwon SK. Hyaluronic Acid Coating on Hydrophobic Tracheal Scaffold Enhances Mesenchymal Stem Cell Adhesion and Tracheal Regeneration. Tissue Eng Regen Med 2021; 18:225-233. [PMID: 33765289 PMCID: PMC8012419 DOI: 10.1007/s13770-021-00335-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long segmental tracheal repair is challenging in regenerative medicine due to low adhesion of stem cells to tracheal scaffolds. Optimal transplantation of stem cells for tracheal defects has not been established. We evaluated the role of hyaluronic acid (HA) coating of tracheal scaffolds in mesenchymal stem cell (MSC) adhesion and tracheal regeneration in a rabbit model. METHODS A three-dimensionally printed tubular tracheal prosthesis was incubated with dopa-HA-fluorescein isothiocyanate in phosphate-buffered saline for 2 days. MSCs were incubated with an HA-coated scaffold, and their adhesion was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. HA coated scaffolds with or without MSC seeding were transplanted at the circumferential tracheal defect in rabbits, and survival, rigid bronchoscopy, radiologic findings, and histologic findings were compared between the two groups. RESULTS HA-coated scaffolds showed better MSC adhesion than non-coated scaffolds. The HA-coated scaffolds with MSC group showed a wider airway and greater mucosal regeneration compared to the HA-coated scaffolds without MSC group. CONCLUSION HA coating of scaffolds can promote MSC adhesion and tracheal regeneration.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Min Sang Lee
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jooyoung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Min Rye Eom
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Eun Ji Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Minhyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
| |
Collapse
|
42
|
Lee KE, Choi DH, Joo C, Kang SW, Huh KM, Park YS. Octanoyl glycol chitosan enhances the proliferation and differentiation of tonsil-derived mesenchymal stem cells. Carbohydr Polym 2021; 264:117992. [PMID: 33910730 DOI: 10.1016/j.carbpol.2021.117992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Biofunctional polymers have been widely used to enhance the proliferation and functionality of stem cells. Here, we report the development of a new biofunctional polymer, octanoyl glycol chitosan (OGC), and demonstrate its effects on the cell cycle and stem cell function using tonsil-derived mesenchymal stem cells (TMSCs). OGC treatment (100 μg/mL) significantly increased the proliferation of TMSCs, which could be attributed to cyclin D1 up-regulation in the G1 phase of the cell cycle. Additionally, OGC enhanced the ability of TMSCs to differentiate into adipocytes, chondrocytes, and osteoblasts. Taken together, this new biofunctional polymer, OGC, can promote stemness and osteogenesis, as well as induce stem cell proliferation by enhancing the intracellular metabolic rate and regulating the cell cycle. Thus, in the future, OGC could be a potential therapeutic additive for improving stem cell function.
Collapse
Affiliation(s)
- Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chanyang Joo
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, Daejeon, 34134, Republic of Korea.
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
43
|
Kim HY, Oh SY, Choi YM, Park JH, Kim HS, Jo I. Transient receptor potential vanilloid 2 mediates the inhibitory effect of far-infrared irradiation on adipogenic differentiation of tonsil-derived mesenchymal stem cells. Stem Cell Res 2021; 53:102291. [PMID: 33780730 DOI: 10.1016/j.scr.2021.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS Far-infrared (FIR) irradiation inhibits adipogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs) by activating Ca2+-dependent protein phosphatase 2B (PP2B), but it stimulates osteogenic differentiation in a PP2B-independent pathway. We investigated the potential involvement of transient receptor potential vanilloid (TRPV) channels, a well-known Ca2+-permeable channel, in the effects of FIR irradiation on adipogenic or osteogenic differentiation of TMSCs. METHODS TMSCs, in the absence or presence of activators or inhibitors, were exposed to FIR irradiation followed by adipogenic or osteogenic differentiation, which was assessed using Oil red O or Alizarin red S staining, respectively. RT-PCR, qRT-PCR, and Western blotting were used to determine gene and protein expression of calcium channels and adipocyte-specific markers. RESULTS Treatment with the calcium ionophore ionomycin simulated the inhibitory effect of FIR irradiation on adipogenic differentiation but had no effect on osteogenic differentiation, indicating the involvement of intracellular Ca2+ in adipogenic differentiation. Inhibition of pan-TRP channels using ruthenium red reversed the FIR irradiation-induced inhibition of adipogenic differentiation. Among the TRP channels tested, inhibition of the TRPV2 channel by tranilast or siRNA against TRPV2 attenuated the inhibitory effect of FIR irradiation on adipogenic differentiation, accompanied by a decrease in intracellular Ca2+ levels. By contrast, activation of the TRPV2 channel by probenecid simulated FIR irradiation-induced inhibition of adipogenic differentiation. Expectedly, the stimulatory effect of FIR irradiation on osteogenic differentiation was independent of the TRPV2 channel. CONCLUSION Our data demonstrate that the TRPV2 channel is a sensor/receptor for the inhibited adipogenic differentiation of TMSCs associated with FIR irradiation.
Collapse
Affiliation(s)
- Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Young Min Choi
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
| |
Collapse
|
44
|
Staton GJ, Clegg SR, Ainsworth S, Armstrong S, Carter SD, Radford AD, Darby A, Wastling J, Hall N, Evans NJ. Dissecting the molecular diversity and commonality of bovine and human treponemes identifies key survival and adhesion mechanisms. PLoS Pathog 2021; 17:e1009464. [PMID: 33780514 PMCID: PMC8049484 DOI: 10.1371/journal.ppat.1009464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/15/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Here, we report the first complete genomes of three cultivable treponeme species from bovine digital dermatitis (DD) skin lesions, two comparative human treponemes, considered indistinguishable from bovine DD species, and a bovine gastrointestinal (GI) treponeme isolate. Key genomic differences between bovine and human treponemes implicate microbial mechanisms that enhance knowledge of how DD, a severe disease of ruminants, has emerged into a prolific, worldwide disease. Bovine DD treponemes have additional oxidative stress genes compared to nearest human-isolated relatives, suggesting better oxidative stress tolerance, and potentially explaining how bovine strains can colonize skin surfaces. Comparison of both bovine DD and GI treponemes as well as bovine pathogenic and human non-pathogenic saprophyte Treponema phagedenis strains indicates genes encoding a five-enzyme biosynthetic pathway for production of 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, a rare di-N-acetylated mannuronic acid sugar, as important for pathogenesis. Bovine T. phagedenis strains further differed from human strains by having unique genetic clusters including components of a type IV secretion system and a phosphate utilisation system including phoU, a gene associated with osmotic stress survival. Proteomic analyses confirmed bovine derived T. phagedenis exhibits expression of PhoU but not the putative secretion system, whilst the novel mannuronic acid pathway was expressed in near entirety across the DD treponemes. Analysis of osmotic stress response in water identified a difference between bovine and human T. phagedenis with bovine strains exhibiting enhanced survival. This novel mechanism could enable a selective advantage, allowing environmental persistence and transmission of bovine T. phagedenis. Finally, we investigated putative outer membrane protein (OMP) ortholog families across the DD treponemes and identified several families as multi-specific adhesins capable of binding extra cellular matrix (ECM) components. One bovine pathogen specific adhesin ortholog family showed considerable serodiagnostic potential with the Treponema medium representative demonstrating considerable disease specificity (91.6%). This work has shed light on treponeme host adaptation and has identified candidate molecules for future diagnostics, vaccination and therapeutic intervention.
Collapse
Affiliation(s)
- Gareth J. Staton
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Simon R. Clegg
- School of Life Sciences, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart Armstrong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart D. Carter
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alan D. Radford
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alistair Darby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Jonathan Wastling
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nicholas J. Evans
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| |
Collapse
|
45
|
Pańczyszyn E, Jaśko M, Miłek O, Niedziela M, Męcik-Kronenberg T, Hoang-Bujnowicz A, Zięba M, Adamus G, Kowalczuk M, Osyczka AM, Tylko G. Gellan gum hydrogels cross-linked with carbodiimide stimulates vacuolation of human tooth-derived stem cells in vitro. Toxicol In Vitro 2021; 73:105111. [PMID: 33588021 DOI: 10.1016/j.tiv.2021.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The natural polysaccharides are promising compounds for applications in regenerative medicine. Gellan gum (GG) is the bacteria-derived polysaccharide widely used in food industry. Simple modifications of its chemical properties make GG superior for the development of biocompatible hydrogels. Beside reversible cationic integration of GG chains, more efficient binding is accomplished with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). However, the side-products of polymer cross-linking might affect viability and differentiation of stem cells introduced into the hydrogels. We found that O-acylisourea (EDU) stimulates autophagy-based vacuolation in both periodontal ligament and dental pulp stem cells. 24-h treatment of cells with GG extracts cross-linked with 15 mM EDC developed large cytoplasmic vacuoles. Freshly prepared EDU (2-6 mM) but not 15 mM EDC solutions initiated vacuole development with concomitant reduction of cell viability/metabolism. Most of the vacuoles stained with acridine orange displayed highly acidic environment further confirmed by flow cytometric analysis. Western blot of the LC3 autophagy marker followed by a transmission electron microscopy indicated the process is autophagy-dependent. We propose that the high reactivity of EDU with intracellular components initiates autophagy, although the targets of EDU remain unknown. Nevertheless, a burst release of EDU from GG hydrogels might modulate negatively cellular processes and final effectiveness of tissue regeneration.
Collapse
Affiliation(s)
- Elżbieta Pańczyszyn
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Marta Jaśko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Oliwia Miłek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Matylda Niedziela
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences, Medical University of Silesia, 3 Maja 13, 41-800 Zabrze, Poland.
| | - Agnieszka Hoang-Bujnowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Anna M Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
46
|
Nuclear localization of endothelial nitric oxide synthase and nitric oxide production attenuates aphidicolin-induced endothelial cell death. Nitric Oxide 2021; 109-110:12-19. [PMID: 33592314 DOI: 10.1016/j.niox.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Aphidicolin represses DNA replication by inhibiting DNA polymerase α and δ, which leads to cell cycle arrest and cell damage. Nitric oxide (NO) generated by endothelial NO synthase (eNOS) plays an essential role in maintenance of endothelial integrity including endothelial cell (EC) survival. Previously, we reported that aphidicolin increases NO production in bovine aortic ECs (BAECs). However, the role of aphidicolin-induced NO on EC viability and its molecular mechanism remain to be elucidated. Treatment with 20 μM aphidicolin for 24 h reduced BAEC viability by ~40%, which was accompanied by increased NO production, phosphorylation of eNOS at Ser1179 (p-eNOS-Ser1179), and eNOS protein expression. The aphidicolin-increased eNOS expression and p-eNOS-Ser1179 were not altered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a cell permeable and specific intracellular Ca2+ chelator. Co-treatment with 2-phenyl-4, 4, 5, 5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), an NO scavenger, or Nω-Nitro-l-arginine methyl ester hydrochloride (l-NAME), a NOS inhibitor, exacerbated aphidicolin-stimulated BAEC death. Knockdown of eNOS gene expression using siRNA aggravated aphidicolin-induced BAEC death. However, exogenous NO donors including S-nitroso-l-glutathione (GSNO) or diethylenetriamine NONOate (DETA NO) had no effect on aphidicolin-decreased BAEC viability and aggravated BAEC viability at higher doses. Interestingly, aphidicolin accumulated eNOS protein in the active form, p-eNOS-Ser1179, in the nucleus. When cells were ectopically transfected with a wild-type (WT)-eNOS gene, aphidicolin induced significant localization of the protein product in the nucleus. Additionally, aphidicolin-elicited cell death was significantly reversed in WT-eNOS gene-transfected BAECs. Furthermore, overexpression of the eNOS gene containing nuclear localization signal (NLS) but not nuclear export signal (NES) significantly attenuated aphidicolin-induced BAEC death. When G2A-eNOS mutant lacking myristoylation at Gly2 was transfected, its intracellular distribution became diffuse and included the nucleus. Finally, expression of N-myristoyltransferase 2 (NMT2) but not NMT1 significantly decreased in aphidicolin-treated BAECs. Taken together, our results suggest that aphidicolin attenuates BAEC death in part by increasing nuclear eNOS localization and NO production.
Collapse
|
47
|
Jiang Y, Zhang P, Zhang X, Lv L, Zhou Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif 2021; 54:e12956. [PMID: 33210341 PMCID: PMC7791182 DOI: 10.1111/cpr.12956] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disease with characteristics of bone loss and microstructural degeneration. The personal and societal costs of osteoporosis are increasing year by year as the ageing of population, posing challenges to public health care. Homing disorders, impaired capability of osteogenic differentiation, senescence of mesenchymal stem cells (MSCs), an imbalanced microenvironment, and disordered immunoregulation play important roles during the pathogenesis of osteoporosis. The MSC transplantation promises to increase osteoblast differentiation and block osteoclast activation, and to rebalance bone formation and resorption. Preclinical investigations on MSC transplantation in the osteoporosis treatment provide evidences of enhancing osteogenic differentiation, increasing bone mineral density, and halting the deterioration of osteoporosis. Meanwhile, the latest techniques, such as gene modification, targeted modification and co-transplantation, are promising approaches to enhance the therapeutic effect and efficacy of MSCs. In addition, clinical trials of MSC therapy to treat osteoporosis are underway, which will fill the gap of clinical data. Although MSCs tend to be effective to treat osteoporosis, the urgent issues of safety, transplant efficiency and standardization of the manufacturing process have to be settled. Moreover, a comprehensive evaluation of clinical trials, including safety and efficacy, is still needed as an important basis for clinical translation.
Collapse
Affiliation(s)
- Yuhe Jiang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Longwei Lv
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| |
Collapse
|
48
|
A Novel Method to Differentiate Tonsil-Derived Mesenchymal Stem Cells In Vitro into Estrogen-Secreting Cells. Tissue Eng Regen Med 2020; 18:253-264. [PMID: 33113109 DOI: 10.1007/s13770-020-00307-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The advantages of tonsil-derived mesenchymal stem cells (TMSCs) over other mesenchymal stem cells (MSCs) include higher proliferation rates, various differentiation potentials, efficient immune-modulating capacity, and ease of obtainment. Specifically, TMSCs have been shown to differentiate into the endodermal lineage. Estrogen deficiency is a major cause of postmenopausal osteoporosis and is associated with higher incidences of ischemic heart disease and cerebrovascular attacks during the postmenopausal period. Therefore, stem cell-derived, estrogen-secreting cells might be used for estrogen deficiency. METHODS Here, we developed a novel method that utilizes retinoic acid, insulin-like growth factor-1, basic fibroblast growth factor, and dexamethasone to evaluate the differentiating potential of TMSCs into estrogen-secreting cells. The efficacy of the novel differentiating method for generation of estrogen-secreting cells was also evaluated with bone marrow- and adipose tissue-derived MSCs. RESULTS Incubating TMSCs in differentiating media induced the gene expression of cytochrome P450 19A1 (CYP19A1), which plays a key role in estrogen biosynthesis, and increased 17β-estradiol secretion upon testosterone addition. Furthermore, CYP11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase type-1 gene expression levels were significantly increased in TMSCs. In bone marrow-derived and adipose tissue-derived MSCs, this differentiation method also induced the gene expression of CYP19A1, but not CYP17A1, suggesting TMSCs are a superior source for estrogen secretion. CONCLUSION These results imply that TMSCs can differentiate into functional estrogen-secreting cells, thus providing a novel, alternative cell therapy for estrogen deficiency.
Collapse
|
49
|
Han G, Bedair TM, Kim DH, Park KH, Park W, Han DK. Improved mechanical and biological properties of biodegradable thinner poly(l-lactic acid) tubes by bi-directional drawing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Choi DH, Park J, Choi JK, Lee KE, Lee WH, Yang J, Lee JY, Park YJ, Oh C, Won HR, Koo BS, Chang JW, Park YS. Association between the microbiomes of tonsil and saliva samples isolated from pediatric patients subjected to tonsillectomy for the treatment of tonsillar hyperplasia. Exp Mol Med 2020; 52:1564-1573. [PMID: 32887934 PMCID: PMC8080726 DOI: 10.1038/s12276-020-00487-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies. Analysing the microbes on tonsils and in saliva from the mouths of children in South Korea provides comparisons of the microbial populations in these distinct but nearby regions, offering possible guidance for developing new therapies for various oral diseases. Researchers in South Korea led by Yoon Shin Park at Chungbuk National University, Cheongju, and Jae Won Chang at Chungnam National University, Daejeon, examined surgically removed tonsils from 29 patients, together with samples of the patients’ saliva. They identified many specific microbe types, finding broad similarities between the populations of an individual’s tonsils and saliva. They also identified positive and negative correlations between the presence of specific microbes in the two populations. The results could guide future treatment choices, including the use of microbes to treat disease.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiwon Park
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ju Kwang Choi
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Won Hee Lee
- Institute of MD Healthcare Inc, Seoul, 03923, Republic of Korea
| | - Jinho Yang
- Institute of MD Healthcare Inc, Seoul, 03923, Republic of Korea
| | - Ju Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.,Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chan Oh
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Yoon Shin Park
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|