1
|
Innab N, Alsubai S, Alabdulqader EA, Alarfaj AA, Umer M, Trelova S, Ashraf I. Automated approach for fetal and maternal health management using light gradient boosting model with SHAP explainable AI. Front Public Health 2024; 12:1462693. [PMID: 39758195 PMCID: PMC11695363 DOI: 10.3389/fpubh.2024.1462693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Fetal health holds paramount importance in prenatal care and obstetrics, as it directly impacts the wellbeing of mother and fetus. Monitoring fetal health through pregnancy is crucial for identifying and addressing potential risks and complications that may arise. Early detection of abnormalities and deviations in fetal health can facilitate timely interventions to mitigate risks and improve outcomes for the mother and fetus. Monitoring fetal health also provides valuable insights into the effectiveness of prenatal interventions and treatments. For fetal health classification, this research work makes use of cardiotocography (CTG) data containing 21 features including fetal growth, development, and physiological parameters such as heart rate and movement patterns with three target classes "normal," "suspect," and "pathological." The proposed methodology makes use of data upsampled using the synthetic minority oversampling technique (SMOTE) to handle the class imbalance problem that is very crucial in medical diagnosing with a light gradient boosting machine. The results show that the proposed model gives 0.9989 accuracy, 0.9988 area under the curve, 0.9832 recall, 0.9834 precision, 0.9832 F1 score, 0.9748 Kappa score, and 0.9749 Matthews correlation coefficient value on the test dataset. The performance of the proposed model is compared with other machine learning models to show the dominance of the proposed model. The proposed model's significance is further evaluated using 10-fold cross-validation and comparing the proposed model with other state-of-the-art models.
Collapse
Affiliation(s)
- Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh, Saudi Arabia
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ebtisam Abdullah Alabdulqader
- Department of Information Technology, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aisha Ahmed Alarfaj
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Umer
- Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Silvia Trelova
- Faculty of Management, Comenius University Bratislava, Bratislava, Slovakia
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Alzakari SA, Aldrees A, Umer M, Cascone L, Innab N, Ashraf I. Artificial intelligence-driven predictive framework for early detection of still birth. SLAS Technol 2024; 29:100203. [PMID: 39424101 DOI: 10.1016/j.slast.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Predictive modeling is becoming increasingly popular in the context of early disease detection. The use of machine learning approaches for predictive modeling can help early detection of diseases thereby enabling medical experts to appropriate medical treatments. Stillbirth prediction is a similar domain where artificial intelligence-based predictive modeling can alleviate this significant global health challenge. Despite advancements in prenatal care, the prevention of stillbirths remains a complex issue requiring further research and interventions. The cardiotocography (CTG) dataset is used in this research work from the UCI machine learning (ML) repository to investigate the efficiency of the proposed approach regarding stillbirth prediction. This research work adopts the Tabular Prior Data Fitted Network (TabPFN) model which was originally designed to solve small tabular classification. TabPFN is used to predict the still or live birth during pregnancy with 97.91% accuracy. To address this life-saving problem with more accurate results and in-depth analysis of ML models, this research work makes use of 13 renowned ML models for performance comparison with the proposed model. The proposed model is evaluated using precision, recall, F-score, Mathews Correlation Coefficient (MCC), and the area under the curve evaluation parameters and the results are 97.87%, 98.26%, 98.05%, 96.42%, and 98.88%, respectively. The results of the proposed model are further evaluated using k-fold cross-validation and its performance comparison with other state-of-the-art studies indicating the superior performance of TabPFN model.
Collapse
Affiliation(s)
- Sarah A Alzakari
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Asma Aldrees
- Department of Informatics and Computer Systems, College of Computer Science, King Khalid University, Abha, Saudi Arabia.
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Lucia Cascone
- Department of Computer Science, University of Salerno, Fisciano, Italy.
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Imran Ashraf
- Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Mushtaq G, K V. AI driven interpretable deep learning based fetal health classification. SLAS Technol 2024; 29:100206. [PMID: 39396731 DOI: 10.1016/j.slast.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
In this study, a deep learning model is proposed for the classification of fetal health into 3 categories: Normal, suspect, and pathological. The primary objective is to utilize the power of deep learning to improve the efficiency and effectiveness of diagnostic processes. A deep neural network (DNN) model is proposed for fetal health analysis using data obtained from Cardiotocography (CTG). A dataset containing 21 attributes is used to carry out this work. The model incorporates multiple hidden layers, augmented with batch normalization and dropout layers for improved generalization. This study assesses the model's interpretation ability in fetal health classification using explainable deep learning. This enhances transparency in decision-making of the classifier model by leveraging feature importance and feature saliency analysis, fostering trust and facilitating the clinical adoption of fetal health assessments. Our proposed model demonstrates a remarkable performance with 0.99 accuracy, 0.93 sensitivity, 0.93 specificity, 0.96 AUC, 0.93 precision, and 0.93 F1 scores in classifying fetal health. We also performed comparative analysis with six other models including Logistic Regression, KNN, SVM, Naive Bayes, Random Forest, and Gradient Boosting to assess and compare the effectiveness of our model and the accuracies of 0.89, 0.88, 0.90, 081, 0.93, and 0.93 were achieved respectively by these baseline models. The results revealed that our proposed model outperformed all the baseline models in terms of accuracy. This indicates the potential of deep learning in improving fetal health assessment and contributing to the field of obstetrics by providing a robust tool for early risk detection.
Collapse
Affiliation(s)
- Gazala Mushtaq
- Department of Computer Science and Engineering, National Institute of Technology Srinagar, Jammu and Kashmir 190006, India.
| | - Veningston K
- Department of Computer Science and Engineering, National Institute of Technology Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
4
|
Kuang Z, Guo L, Wang J, Zhao J, Wang L, Geng K. Seizure Onset Zone Detection Based on Convolutional Neural Networks and EEG Signals. Brain Sci 2024; 14:1090. [PMID: 39595852 PMCID: PMC11592383 DOI: 10.3390/brainsci14111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The localization of seizure onset zones (SOZs) is a critical step before the surgical treatment of epilepsy. METHODS AND RESULTS In this paper, we propose an SOZ detection method based on convolutional neural networks and EEG signals. This method aims to locate SOZs through the seizure status of each channel in multi-channel EEG signals. First, we preprocess the data with filtering, segmentation, resampling, and standardization to ensure their quality and consistency. Then, the single-channel UCI epilepsy seizure recognition dataset is used to train and test the convolutional neural network (CNN) model, achieving an accuracy of 98.70%, a sensitivity of 97.53%, and a specificity of 98.98%. Next, the multi-channel clinical EEG dataset collected by a hospital is divided into 21 single-channel site datasets and input into the model for detection, and then the seizure results of 21 sites per second are obtained. Finally, the seizure sites are visualized through the international 10-20 system electrode distribution map, diagrams of the change process of the seizure sites during seizures are drawn, and patients' SOZs are located. CONCLUSIONS Our proposed method well classifies seizure and non-seizure data and successfully locates SOZs by detecting the seizure results of 21 sites through a single-channel model. This study can effectively assist doctors in locating the SOZs of patients and provide help for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Zhejun Kuang
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Liming Guo
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Jingrui Wang
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Jian Zhao
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Liu Wang
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| | - Kangwei Geng
- College of Computer Science and Technology, Changchun University, Changchun 130022, China; (Z.K.); (L.G.); (J.W.); (L.W.); (K.G.)
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Ministry of Education, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130022, China
| |
Collapse
|
5
|
Xuanzhi L, Hakeem A, Mohaisen L, Umer M, Khan MA, Alsenan S, Alsubai S, Innab N. BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model. Front Comput Neurosci 2024; 18:1482994. [PMID: 39512386 PMCID: PMC11540660 DOI: 10.3389/fncom.2024.1482994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024] Open
Abstract
Brain stress monitoring has emerged as a critical research area for understanding and managing stress and neurological health issues. This burgeoning field aims to provide accurate information and prediction about individuals' stress levels by analyzing behavioral data and physiological signals. To address this emerging problem, this research study proposes an innovative approach that uses an attention mechanism-based XLNet model (called BrainNet) for continuous stress monitoring and stress level prediction. The proposed model analyzes streams of brain data, including behavioral and physiological signal patterns using Swell and WESAD datasets. Testing on the Swell multi-class dataset, the model achieves an impressive accuracy of 95.76%. Furthermore, when evaluated on the WESAD dataset, it demonstrates even higher accuracy, reaching 98.32%. When applied to the binary classification of stress and no stress using the Swell dataset, the model achieves an outstanding accuracy of 97.19%. Comparative analysis with other previously published research studies underscores the superior performance of the proposed approach. In addition, cross-validation confirms the significance, efficacy, and robustness of the model in brain stress level prediction and aligns with the goals of smart diagnostics for understanding neurological behaviors.
Collapse
Affiliation(s)
- Liao Xuanzhi
- College of Electronic and Information Engineering, Beibu Gulf University, Qinzhou, China
| | - Abeer Hakeem
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Linda Mohaisen
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Attique Khan
- Department of AI, College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Shrooq Alsenan
- Information Systems Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, Saudi Arabia
| |
Collapse
|
6
|
Assim OM, Mahmood AF. A novel universal deep learning approach for accurate detection of epilepsy. Med Eng Phys 2024; 131:104219. [PMID: 39284648 DOI: 10.1016/j.medengphy.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Epilepsy claims the lives of many people, so researchers strive to build highly accurate diagnostic models. One of the limitations of obtaining high accuracy is the scarcity of Electroencephalography (EEG) data and the fact that they are from different devices in terms of the channels number and sampling frequency. The paper proposes universal epilepsy diagnoses with high accuracy from electroencephalography signals taken from any device. The novelty of the proposal is to convert VEEG video into images, separating some parts and unifying images taken from different devices. The images were tested by dividing the video into labeled frames of different periods. By adding the spatial attention layer to the deep learning in the new model, classification accuracy increased to 99.95 %, taking five seconds/frame. The proposed has high accuracy in detecting epilepsy from any EEG without being restricted to a specific number of channels or sampling frequencies.
Collapse
|
7
|
Anjum M, Shahab S, Ahmad S, Dhahbi S, Whangbo T. Aggregated Pattern Classification Method for improving neural disorder stage detection. Brain Behav 2024; 14:e3519. [PMID: 39169422 PMCID: PMC11338743 DOI: 10.1002/brb3.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Neurological disorders pose a significant health challenge, and their early detection is critical for effective treatment planning and prognosis. Traditional classification of neural disorders based on causes, symptoms, developmental stage, severity, and nervous system effects has limitations. Leveraging artificial intelligence (AI) and machine learning (ML) for pattern recognition provides a potent solution to address these challenges. Therefore, this study focuses on proposing an innovative approach-the Aggregated Pattern Classification Method (APCM)-for precise identification of neural disorder stages. METHOD The APCM was introduced to address prevalent issues in neural disorder detection, such as overfitting, robustness, and interoperability. This method utilizes aggregative patterns and classification learning functions to mitigate these challenges and enhance overall recognition accuracy, even in imbalanced data. The analysis involves neural images using observations from healthy individuals as a reference. Action response patterns from diverse inputs are mapped to identify similar features, establishing the disorder ratio. The stages are correlated based on available responses and associated neural data, with a preference for classification learning. This classification necessitates image and labeled data to prevent additional flaws in pattern recognition. Recognition and classification occur through multiple iterations, incorporating similar and diverse neural features. The learning process is finely tuned for minute classifications using labeled and unlabeled input data. RESULTS The proposed APCM demonstrates notable achievements, with high pattern recognition (15.03%) and controlled classification errors (CEs) (10.61% less). The method effectively addresses overfitting, robustness, and interoperability issues, showcasing its potential as a powerful tool for detecting neural disorders at different stages. The ability to handle imbalanced data contributes to the overall success of the algorithm. CONCLUSION The APCM emerges as a promising and effective approach for identifying precise neural disorder stages. By leveraging AI and ML, the method successfully resolves key challenges in pattern recognition. The high pattern recognition and reduced CEs underscore the method's potential for clinical applications. However, it is essential to acknowledge the reliance on high-quality neural image data, which may limit the generalizability of the approach. The proposed method allows future research to refine further and enhance its interpretability, providing valuable insights into neural disorder progression and underlying biological mechanisms.
Collapse
Affiliation(s)
- Mohd Anjum
- Department of Computer EngineeringAligarh Muslim UniversityAligarhIndia
| | - Sana Shahab
- Department of Business AdministrationCollege of Business AdministrationPrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Shabir Ahmad
- Department of Computer EngineeringCollege of IT ConvergenceGachon UniversitySeongnamRepublic of Korea
| | - Sami Dhahbi
- Department of Computer science, College of Science and Art at MahayilKing Khalid UniversityMuhayil AseerSaudi Arabia
| | - Taegkeun Whangbo
- Department of Computer EngineeringCollege of IT ConvergenceGachon UniversitySeongnamRepublic of Korea
| |
Collapse
|
8
|
Patro KK, Prakash AJ, Sahoo JP, Routray S, Baihan A, Samee NA, Huang G. SMARTSeiz: Deep Learning With Attention Mechanism for Accurate Seizure Recognition in IoT Healthcare Devices. IEEE J Biomed Health Inform 2024; 28:3810-3818. [PMID: 38055360 DOI: 10.1109/jbhi.2023.3336935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The Internet of Things (IoT) is capable of controlling the healthcare monitoring system for remote-based patients. Epilepsy, a chronic brain syndrome characterized by recurrent, unpredictable attacks, affects individuals of all ages. IoT-based seizure monitoring can greatly enhance seizure patients' quality of life. IoT device acquires patient data and transmits it to a computer program so that doctors can examine it. Currently, doctors invest significant manual effort in inspecting Electroencephalograph (EEG) signals to identify seizure activity. However, EEG-based seizure detection algorithms face challenges in real-world scenarios due to non-stationary EEG data and variable seizure patterns among patients and recording sessions. Therefore, a sophisticated computer-based approach is necessary to analyze complex EEG records. In this work, the authors proposed a hybrid approach by combining traditional convolution neural (CN) and recurrent neural networks (RNN) along with an attention mechanism for the automatic recognition of epileptic seizures through EEG signal analysis. This attention mechanism focuses on significant subsets of EEG data for class recognition, resulting in improved model performance. The proposed methods are evaluated using a publicly available UCI epileptic seizure recognition dataset, which consists of five classes: four normal conditions and one abnormal seizure condition. Experimental results demonstrate that the suggested approach achieves an overall accuracy of 97.05% for the five-class EEG recognition data, with an accuracy of 99.52% for binary classification distinguishing seizure cases from normal instances. Furthermore, the proposed intelligent seizure recognition model is compatible with an IoMT (Internet of Medical Things) cloud-based smart healthcare framework.
Collapse
|
9
|
Mallick S, Baths V. Novel deep learning framework for detection of epileptic seizures using EEG signals. Front Comput Neurosci 2024; 18:1340251. [PMID: 38590939 PMCID: PMC11000706 DOI: 10.3389/fncom.2024.1340251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Epilepsy is a chronic neurological disorder characterized by abnormal electrical activity in the brain, often leading to recurrent seizures. With 50 million people worldwide affected by epilepsy, there is a pressing need for efficient and accurate methods to detect and diagnose seizures. Electroencephalogram (EEG) signals have emerged as a valuable tool in detecting epilepsy and other neurological disorders. Traditionally, the process of analyzing EEG signals for seizure detection has relied on manual inspection by experts, which is time-consuming, labor-intensive, and susceptible to human error. To address these limitations, researchers have turned to machine learning and deep learning techniques to automate the seizure detection process. Methods In this work, we propose a novel method for epileptic seizure detection, leveraging the power of 1-D Convolutional layers in combination with Bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) and Average pooling Layer as a single unit. This unit is repeatedly used in the proposed model to extract the features. The features are then passed to the Dense layers to predict the class of the EEG waveform. The performance of the proposed model is verified on the Bonn dataset. To assess the robustness and generalizability of our proposed architecture, we employ five-fold cross-validation. By dividing the dataset into five subsets and iteratively training and testing the model on different combinations of these subsets, we obtain robust performance measures, including accuracy, sensitivity, and specificity. Results Our proposed model achieves an accuracy of 99-100% for binary classifications into seizure and normal waveforms, 97.2%-99.2% accuracy for classifications into normal-interictal-seizure waveforms, 96.2%-98.4% accuracy for four class classification and accuracy of 95.81%-98% for five class classification. Discussion Our proposed models have achieved significant improvements in the performance metrics for the binary classifications and multiclass classifications. We demonstrate the effectiveness of the proposed architecture in accurately detecting epileptic seizures from EEG signals by using EEG signals of varying lengths. The results indicate its potential as a reliable and efficient tool for automated seizure detection, paving the way for improved diagnosis and management of epilepsy.
Collapse
Affiliation(s)
- Sayani Mallick
- Cognitive Neuroscience Laboratory, Department of Electrical and Electronics Engineering, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, India
| | - Veeky Baths
- Cognitive Neuroscience Laboratory, Department of Biological Sciences, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, India
| |
Collapse
|
10
|
Zhang Z, Xiao M, Ji T, Jiang Y, Lin T, Zhou X, Lin Z. Efficient and generalizable cross-patient epileptic seizure detection through a spiking neural network. Front Neurosci 2024; 17:1303564. [PMID: 38268711 PMCID: PMC10805904 DOI: 10.3389/fnins.2023.1303564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Epilepsy is a global chronic disease that brings pain and inconvenience to patients, and an electroencephalogram (EEG) is the main analytical tool. For clinical aid that can be applied to any patient, an automatic cross-patient epilepsy seizure detection algorithm is of great significance. Spiking neural networks (SNNs) are modeled on biological neurons and are energy-efficient on neuromorphic hardware, which can be expected to better handle brain signals and benefit real-world, low-power applications. However, automatic epilepsy seizure detection rarely considers SNNs. Methods In this article, we have explored SNNs for cross-patient seizure detection and discovered that SNNs can achieve comparable state-of-the-art performance or a performance that is even better than artificial neural networks (ANNs). We propose an EEG-based spiking neural network (EESNN) with a recurrent spiking convolution structure, which may better take advantage of temporal and biological characteristics in EEG signals. Results We extensively evaluate the performance of different SNN structures, training methods, and time settings, which builds a solid basis for understanding and evaluation of SNNs in seizure detection. Moreover, we show that our EESNN model can achieve energy reduction by several orders of magnitude compared with ANNs according to the theoretical estimation. Discussion These results show the potential for building high-performance, low-power neuromorphic systems for seizure detection and also broaden real-world application scenarios of SNNs.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mingqing Xiao
- National Key Lab of General AI, School of Intelligence Science and Technology, Peking University, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Tong Lin
- National Key Lab of General AI, School of Intelligence Science and Technology, Peking University, Beijing, China
| | - Xiaohua Zhou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
- Peking University Chongqing Institute for Big Data, Chongqing, China
| | - Zhouchen Lin
- National Key Lab of General AI, School of Intelligence Science and Technology, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| |
Collapse
|
11
|
Ukpata JO, Ewa DE, Success NG, Alaneme GU, Otu ON, Olaiya BC. Effects of aggregate sizes on the performance of laterized concrete. Sci Rep 2024; 14:448. [PMID: 38172194 PMCID: PMC10764962 DOI: 10.1038/s41598-023-50998-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Due to the high costs of traditional concrete materials in Nigeria, such as river sand, there is an increasing demand to explore alternative materials like laterite for fine aggregates. Although laterite is abundant in Nigeria, its full potential in the construction industry remains untapped. Previous studies have shown that partially replacing river sand with laterite produces concrete with competitive strength properties. This research aims to validate and extend these findings, evaluating the impact of different aggregate sizes (12 mm, 20 mm, and 40 mm) on the strength of concrete with 10% and 25% laterite replacements for fine aggregate. Results revealed that as the laterite percentage increased, compressive, flexural, and split tensile strengths decreased. While 0% and 10% laterite replacements met the required strength, the mix with 25% laterite fell short. Increasing maximum coarse aggregate size led to higher strengths, with 40 mm sizes exhibiting the highest, and 12 mm the lowest. Compressive strengths ranged from 22.1 to 37.6 N/mm2, flexural strengths from 4.07 to 5.99 N/mm2 and split-tensile strengths from 2.93 to 4.30 N/mm2. This research highlights the need for meticulous mix design adjustments when using laterite, balancing workability with strength objectives. The developed regression models offer a valuable tool for predicting concrete properties based on mix parameters, providing insights for optimizing laterized concrete designs across diverse construction applications and supporting sustainable building practices.
Collapse
Affiliation(s)
- Joseph O Ukpata
- Department of Civil Engineering, University of Cross River State, Calabar, Nigeria
| | - Desmond E Ewa
- Department of Civil Engineering, University of Cross River State, Calabar, Nigeria
| | | | - George Uwadiegwu Alaneme
- Department of Civil Engineering, Kampala International University, Kampala, Uganda.
- Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria.
| | - Obeten Nicholas Otu
- Department of Civil Engineering, University of Cross River State, Calabar, Nigeria
| | | |
Collapse
|
12
|
Pre-processed and combined EEG data for epileptic seizure classification using deep learning. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Obianyo JI, Udeala RC, Alaneme GU. Application of neural networks and neuro-fuzzy models in construction scheduling. Sci Rep 2023; 13:8199. [PMID: 37211564 DOI: 10.1038/s41598-023-35445-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/18/2023] [Indexed: 05/23/2023] Open
Abstract
Construction scheduling is a complex process that involves a large number of variables, making it difficult to develop accurate and efficient schedules. Traditional scheduling techniques rely on manual analysis and intuition, which are prone to errors and often fail to account for all the variables involved. This results in project delays, cost overruns, and poor project performance. Artificial intelligence models have shown promise in improving construction scheduling accuracy by incorporating historical data, site-specific conditions, and other variables that traditional scheduling methods may not consider. In this research study, application of soft-computing techniques to evaluate construction schedule and control of project activities in order to achieve optimal performance in execution of building projects were carried out. Artificial neural network and neuro-fuzzy models were developed using data extracted from a residential two-storey reinforced concrete framed-structure construction schedule and project execution documents. The evaluation of project performance indicators in earned value analysis from 0 to 100% progress at 5% increment with a total of seventeen tasks were carried out using Microsoft Project software and data obtained from the computation were utilized for model development. Using input-output and curve-fitting (nftool) function in MATLAB, a 6-10-1 two-layer feed-forward network with tansig activation-function (AF) for the hidden neurons and linear AF output neurons was generated with Levenberg-Marquardt (Trainlm) training algorithm. Similarly, with the aid of ANFIS toolbox in MATLAB software, the training, testing and validation of the ANFIS model were carried out using hybrid optimization learning algorithm at 100 epochs and the Gaussian-membership-function (gaussmf). Loss-function parameters namely MAE, RMSE and R-values were taken as the performance evaluation criteria of the developed models. The generated statistical results indicates no significant difference between model-results and experimental values with MAE, RMSE, R2 of 1.9815, 2.256 and 99.9% respectively for ANFIS-model and MAE, RMSE, R2 of 2.146, 2.4095 and 99.998% respectively for the ANN-model. The model performance indicated that the ANFIS-model outclassed the ANN-model with their results satisfactory to deal with complex relationships between the model variables to produce accurate target response. The findings from this research study will improve the accuracy of construction scheduling, resulting in improved project performance and reduced costs.
Collapse
Affiliation(s)
- Jude Iloabuchi Obianyo
- Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia, 440109, Abia State, Nigeria
| | - Richard Chinenye Udeala
- Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia, 440109, Abia State, Nigeria
| | - George Uwadiegwu Alaneme
- Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia, 440109, Abia State, Nigeria.
- Department of Civil Engineering, Kampala International University, Kampala, Uganda.
| |
Collapse
|
14
|
Al-Alawi L, Al Shaqsi J, Tarhini A, Al-Busaidi AS. Using machine learning to predict factors affecting academic performance: the case of college students on academic probation. EDUCATION AND INFORMATION TECHNOLOGIES 2023:1-26. [PMID: 37361752 PMCID: PMC9999331 DOI: 10.1007/s10639-023-11700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
This study aims to employ the supervised machine learning algorithms to examine factors that negatively impacted academic performance among college students on probation (underperforming students). We used the Knowledge Discovery in Databases (KDD) methodology on a sample of N = 6514 college students spanning 11 years (from 2009 to 2019) provided by a major public university in Oman. We used the Information Gain (InfoGain) algorithm to select the most effective features and ensemble methods to compare the accuracy with more robust algorithms, including Logit Boost, Vote, and Bagging. The algorithms were evaluated based on the performance evaluation metrics such as accuracy, precision, recall, F-measure, and ROC curve, and then validated using 10-folds cross-validation. The study revealed that the main identified factors affecting student academic achievement include study duration in the university and previous performance in secondary school. Based on the experimental results, these features were consistently ranked as the top factors that negatively impacted academic performance. The study also indicated that gender, estimated graduation year, cohort, and academic specialization significantly contributed to whether a student was under probation. Domain experts and other students were involved in verifying some of the results. The theoretical and practical implications of this study are discussed.
Collapse
Affiliation(s)
- Lamees Al-Alawi
- Department of Information Systems, College of Economics and Political Science, Sultan Qaboos University, P.O. Box 20, PC 123 Muscat, Oman
| | - Jamil Al Shaqsi
- Department of Information Systems, College of Economics and Political Science, Sultan Qaboos University, P.O. Box 20, PC 123 Muscat, Oman
| | - Ali Tarhini
- Department of Information Systems, College of Economics and Political Science, Sultan Qaboos University, P.O. Box 20, PC 123 Muscat, Oman
| | - Adil S. Al-Busaidi
- Department of Information Systems, College of Economics and Political Science, Sultan Qaboos University, P.O. Box 20, PC 123 Muscat, Oman
- Innovation and Technology Transfer Center, Sultan Qaboos University, Muscat, Oman; Department of Business Communication, Sultan Qaboos University, P.O. Box 20, PC 123 Muscat, Oman
| |
Collapse
|
15
|
Ewa DE, Ukpata JO, Otu ON, Memon ZA, Alaneme GU, Milad A. Scheffe's Simplex Optimization of Flexural Strength of Quarry Dust and Sawdust Ash Pervious Concrete for Sustainable Pavement Construction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:598. [PMID: 36676334 PMCID: PMC9863484 DOI: 10.3390/ma16020598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Pervious concrete provides a tailored surface course with high permeability properties which permit the easy flow of water through a larger interconnected porous structure to prevent flooding hazards. This paper reports the modeling of the flexural properties of quarry dust (QD) and sawdust ash (SDA) blended green pervious concrete for sustainable road pavement construction using Scheffe's (5,2) optimization approach. The simplex mixture design method was adapted to formulate the mixture proportion to eliminate the set-backs encountered in empirical or trials and the error design approach, which consume more time and resources to design with experimental runs required to evaluate the response function. For the laboratory evaluation exercise, a maximum flexural strength of 3.703 N/mm2 was obtained with a mix proportion of 0.435:0.95:0.1:1.55:0.05 for water, cement, QD, coarse aggregate and SDA, respectively. Moreover, the minimal flexural strength response of 2.504 N/mm2 was obtained with a mix ratio of 0.6:0.75:0.3:4.1:0.25 for water, cement, QD, coarse aggregate and SDA, respectively. The test of the appropriateness of the developed model was statistically verified using the Student' t-test and an analysis of variance (ANOVA), and was confirmed to be acceptable based on computational outcomes at the 95% confidence interval. Furthermore, the scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) were used to evaluate the morphological and mineralogical behavior of green prior concrete samples with various additive mixture compositions. The addition of QD and SDA, on the other hand, aided the creation of porous microstructures in the concrete matrix due to fabric changes in the concrete mixture, potentially aided by the formation of cementitious compounds such as calcium aluminate hydrate and calcium silicate hydrate.
Collapse
Affiliation(s)
- Desmond E. Ewa
- Department of Civil Engineering, University of Cross River State, Calabar 540271, Nigeria
| | - Joseph O. Ukpata
- Department of Civil Engineering, University of Cross River State, Calabar 540271, Nigeria
| | - Obeten Nicholas Otu
- Department of Civil Engineering, University of Cross River State, Calabar 540271, Nigeria
| | - Zubair Ahmed Memon
- Department of Engineering Management, College of Engineering, Prince Sultan University (PSU), Riyadh 11586, Saudi Arabia
| | - George Uwadiegwu Alaneme
- Department of Civil Engineering, Kampala International University, Kampala 20000, Uganda
- Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia 440109, Nigeria
| | - Abdalrhman Milad
- Department of Civil and Environmental Engineering, College of Engineering, University of Nizwa, Nizwa P.O. Box 33, Oman
| |
Collapse
|
16
|
Vision-based Pakistani sign language recognition using bag-of-words and support vector machines. Sci Rep 2022; 12:21325. [PMID: 36494382 PMCID: PMC9734649 DOI: 10.1038/s41598-022-15864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
In order to perform their daily activities, a person is required to communicating with others. This can be a major obstacle for the deaf population of the world, who communicate using sign languages (SL). Pakistani Sign Language (PSL) is used by more than 250,000 deaf Pakistanis. Developing a SL recognition system would greatly facilitate these people. This study aimed to collect data of static and dynamic PSL alphabets and to develop a vision-based system for their recognition using Bag-of-Words (BoW) and Support Vector Machine (SVM) techniques. A total of 5120 images for 36 static PSL alphabet signs and 353 videos with 45,224 frames for 3 dynamic PSL alphabet signs were collected from 10 native signers of PSL. The developed system used the collected data as input, resized the data to various scales and converted the RGB images into grayscale. The resized grayscale images were segmented using Thresholding technique and features were extracted using Speeded Up Robust Feature (SURF). The obtained SURF descriptors were clustered using K-means clustering. A BoW was obtained by computing the Euclidean distance between the SURF descriptors and the clustered data. The codebooks were divided into training and testing using fivefold cross validation. The highest overall classification accuracy for static PSL signs was 97.80% at 750 × 750 image dimensions and 500 Bags. For dynamic PSL signs a 96.53% accuracy was obtained at 480 × 270 video resolution and 200 Bags.
Collapse
|
17
|
An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1502934. [PMID: 36213561 PMCID: PMC9519296 DOI: 10.1155/2022/1502934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023]
Abstract
Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain's function. EEG is an effective instrument for deciphering the brain's complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader's level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.
Collapse
|
18
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
19
|
Dash DP, Kolekar MH, Chakraborty C, Khosravi MR. Review of Machine and Deep Learning Techniques in Epileptic Seizure Detection using Physiological Signals and Sentiment Analysis. ACM T ASIAN LOW-RESO 2022. [DOI: 10.1145/3552512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Epilepsy is one of the significant neurological disorders affecting nearly 65 million people worldwide. The repeated seizure is characterized as epilepsy. Different algorithms were proposed for efficient seizure detection using intracranial and surface EEG signals. In the last decade, various machine learning techniques based on seizure detection approaches were proposed. This paper discusses different machine learning and deep learning techniques for seizure detection using intracranial and surface EEG signals. A wide range of machine learning techniques such as support vector machine (SVM) classifiers, artificial neural network (ANN) classifier, and deep learning techniques such as a convolutional neural network (CNN) classifier, long-short term memory (LSTM) network for seizure detection are compared in this paper. The effectiveness of time-domain features, frequency domain features, and time-frequency domain features are discussed along with different machine learning techniques. Along with EEG, other physiological signals such as electrocardiogram are used to enhance seizure detection accuracy which are discussed in this paper. In recent years deep learning techniques based on seizure detection have found good classification accuracy. In this paper, an LSTM deep learning-network-based approach is implemented for seizure detection and compared with state-of-the-art methods. The LSTM based approach achieved 96.5% accuracy in seizure-nonseizure EEG signal classification. Apart from analyzing the physiological signals, sentiment analysis also has potential to detect seizure.
Impact Statement-
This review paper gives a summary of different research work related to epileptic seizure detection using machine learning and deep learning techniques. Manual seizure detetion is time consuming and requires expertise. So the artificial intelligence techniques such as machine learning and deep learning techniques are used for automatic seizure detection. Different physiological signals are used for seizure detection. Different researchers are working on developing automatic seizure detection using EEG, ECG, accelerometer, sentiment analysis. There is a need for a review paper that can discuss previous techniques and give further research direction. We have discussed different techniques for seizure detection with an accuracy comparison table. It can help the researcher to get an overview of both surface and intracranial EEG-based seizure detection approaches. The new researcher can easily compare different models and decide the model they want to start working on. A deep learning model is discussed to give a practical application of seizure detection. Sentiment analysis is another dimension of seizure detection and summerizing it will give a new prospective to the reader.
Collapse
|
20
|
Li C, Lammie C, Dong X, Amirsoleimani A, Azghadi MR, Genov R. Seizure Detection and Prediction by Parallel Memristive Convolutional Neural Networks. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:609-625. [PMID: 35737626 DOI: 10.1109/tbcas.2022.3185584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During the past two decades, epileptic seizure detection and prediction algorithms have evolved rapidly. However, despite significant performance improvements, their hardware implementation using conventional technologies, such as Complementary Metal-Oxide-Semiconductor (CMOS), in power and area-constrained settings remains a challenging task; especially when many recording channels are used. In this paper, we propose a novel low-latency parallel Convolutional Neural Network (CNN) architecture that has between 2-2,800x fewer network parameters compared to State-Of-The-Art (SOTA) CNN architectures and achieves 5-fold cross validation accuracy of 99.84% for epileptic seizure detection, and 99.01% and 97.54% for epileptic seizure prediction, when evaluated using the University of Bonn Electroencephalogram (EEG), CHB-MIT and SWEC-ETHZ seizure datasets, respectively. We subsequently implement our network onto analog crossbar arrays comprising Resistive Random-Access Memory (RRAM) devices, and provide a comprehensive benchmark by simulating, laying out, and determining hardware requirements of the CNN component of our system. We parallelize the execution of convolution layer kernels on separate analog crossbars to enable 2 orders of magnitude reduction in latency compared to SOTA hybrid Memristive-CMOS Deep Learning (DL) accelerators. Furthermore, we investigate the effects of non-idealities on our system and investigate Quantization Aware Training (QAT) to mitigate the performance degradation due to low Analog-to-Digital Converter (ADC)/Digital-to-Analog Converter (DAC) resolution. Finally, we propose a stuck weight offsetting methodology to mitigate performance degradation due to stuck [Formula: see text] memristor weights, recovering up to 32% accuracy, without requiring retraining. The CNN component of our platform is estimated to consume approximately 2.791 W of power while occupying an area of 31.255 mm2 in a 22 nm FDSOI CMOS process.
Collapse
|
21
|
Wang Z, Ma Z, Liu W, An Z, Huang F. A Depression Diagnosis Method Based on the Hybrid Neural Network and Attention Mechanism. Brain Sci 2022; 12:834. [PMID: 35884641 PMCID: PMC9313113 DOI: 10.3390/brainsci12070834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Depression is a common but easily misdiagnosed disease when using a self-assessment scale. Electroencephalograms (EEGs) provide an important reference and objective basis for the identification and diagnosis of depression. In order to improve the accuracy of the diagnosis of depression by using mainstream algorithms, a high-performance hybrid neural network depression detection method is proposed in this paper combined with deep learning technology. Firstly, a concatenating one-dimensional convolutional neural network (1D-CNN) and gated recurrent unit (GRU) are employed to extract the local features and to determine the global features of the EEG signal. Secondly, the attention mechanism is introduced to form the hybrid neural network. The attention mechanism assigns different weights to the multi-dimensional features extracted by the network, so as to screen out more representative features, which can reduce the computational complexity of the network and save the training time of the model while ensuring high precision. Moreover, dropout is applied to accelerate network training and address the over-fitting problem. Experiments reveal that the 1D-CNN-GRU-ATTN model has more effectiveness and a better generalization ability compared with traditional algorithms. The accuracy of the proposed method in this paper reaches 99.33% in a public dataset and 97.98% in a private dataset, respectively.
Collapse
Affiliation(s)
- Zhuozheng Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; (Z.M.); (W.L.)
| | - Zhuo Ma
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; (Z.M.); (W.L.)
| | - Wei Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; (Z.M.); (W.L.)
| | - Zhefeng An
- Advising Center for Student Development, Beijing University of Technology, Beijing 100124, China;
| | - Fubiao Huang
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing 100068, China;
| |
Collapse
|
22
|
A Real Time Arabic Sign Language Alphabets (ArSLA) Recognition Model Using Deep Learning Architecture. COMPUTERS 2022. [DOI: 10.3390/computers11050078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Currently, treating sign language issues and producing high quality solutions has attracted researchers and practitioners’ attention due to the considerable prevalence of hearing disabilities around the world. The literature shows that Arabic Sign Language (ArSL) is one of the most popular sign languages due to its rate of use. ArSL is categorized into two groups: The first group is ArSL, where words are represented by signs, i.e., pictures. The second group is ArSl alphabetic (ArSLA), where each Arabic letter is represented by a sign. This paper introduces a real time ArSLA recognition model using deep learning architecture. As a methodology, the proceeding steps were followed. First, a trusted scientific ArSLA dataset was located. Second, the best deep learning architectures were chosen by investigating related works. Third, an experiment was conducted to test the previously selected deep learning architectures. Fourth, the deep learning architecture was selected based on extracted results. Finally, a real time recognition system was developed. The results of the experiment show that the AlexNet architecture is the best due to its high accuracy rate. The model was developed based on AlexNet architecture and successfully tested at real time with a 94.81% accuracy rate.
Collapse
|
23
|
Shoeibi A, Ghassemi N, Khodatars M, Moridian P, Alizadehsani R, Zare A, Khosravi A, Subasi A, Rajendra Acharya U, Gorriz JM. Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103417] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Week-Wise Student Performance Early Prediction in Virtual Learning Environment Using a Deep Explainable Artificial Intelligence. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early prediction of students’ learning performance and analysis of student behavior in a virtual learning environment (VLE) are crucial to minimize the high failure rate in online courses during the COVID-19 pandemic. Nevertheless, traditional machine learning models fail to predict student performance in the early weeks due to the lack of students’ activities’ data in a week-wise timely manner (i.e., spatiotemporal feature issues). Furthermore, the imbalanced data distribution in the VLE impacts the prediction model performance. Thus, there are severe challenges in handling spatiotemporal features, imbalanced data sets, and a lack of explainability for enhancing the confidence of the prediction system. Therefore, an intelligent framework for explainable student performance prediction (ESPP) is proposed in this study in order to provide the interpretability of the prediction results. First, this framework utilized a time-series weekly student activity data set and dealt with the VLE imbalanced data distribution using a hybrid data sampling method. Then, a combination of convolutional neural network (CNN) and long short-term memory (LSTM) was employed to extract the spatiotemporal features and develop the early prediction deep learning (DL) model. Finally, the DL model was explained by visualizing and analyzing typical predictions, students’ activities’ maps, and feature importance. The numerical results of cross-validation showed that the proposed new DL model (i.e., the combined CNN-LSTM and ConvLSTM), in the early prediction cases, performed better than the baseline models of LSTM, support vector machine (SVM), and logistic regression (LR) models.
Collapse
|
25
|
Cherian R, Kanaga EG. Theoretical and Methodological Analysis of EEG based Seizure Detection and Prediction: An Exhaustive Review. J Neurosci Methods 2022; 369:109483. [DOI: 10.1016/j.jneumeth.2022.109483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
26
|
Xue W, Zhou T, Cai J. Horizontal progressive and longitudinal leapfrogging fuzzy classification with feature activity adjustment. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Automatic Diagnosis of Epileptic Seizures in EEG Signals Using Fractal Dimension Features and Convolutional Autoencoder Method. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposes a new method for epileptic seizure detection in electroencephalography (EEG) signals using nonlinear features based on fractal dimension (FD) and a deep learning (DL) model. Firstly, Bonn and Freiburg datasets were used to perform experiments. The Bonn dataset consists of binary and multi-class classification problems, and the Freiburg dataset consists of two-class EEG classification problems. In the preprocessing step, all datasets were prepossessed using a Butterworth band pass filter with 0.5–60 Hz cut-off frequency. Then, the EEG signals of the datasets were segmented into different time windows. In this section, dual-tree complex wavelet transform (DT-CWT) was used to decompose the EEG signals into the different sub-bands. In the following section, in order to feature extraction, various FD techniques were used, including Higuchi (HFD), Katz (KFD), Petrosian (PFD), Hurst exponent (HE), detrended fluctuation analysis (DFA), Sevcik, box counting (BC), multiresolution box-counting (MBC), Margaos-Sun (MSFD), multifractal DFA (MF-DFA), and recurrence quantification analysis (RQA). In the next step, the minimum redundancy maximum relevance (mRMR) technique was used for feature selection. Finally, the k-nearest neighbors (KNN), support vector machine (SVM), and convolutional autoencoder (CNN-AE) were used for the classification step. In the classification step, the K-fold cross-validation with k = 10 was employed to demonstrate the effectiveness of the classifier methods. The experiment results show that the proposed CNN-AE method achieved an accuracy of 99.736% and 99.176% for the Bonn and Freiburg datasets, respectively.
Collapse
|
28
|
Islam MM, Shamsuddin R. Machine learning to promote health management through lifestyle changes for hypertension patients. ARRAY 2021. [DOI: 10.1016/j.array.2021.100090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Patient-specific method of sleep electroencephalography using wavelet packet transform and Bi-LSTM for epileptic seizure prediction. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Chakrabarti S, Swetapadma A, Pattnaik PK. A channel independent generalized seizure detection method for pediatric epileptic seizures. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106335. [PMID: 34390934 DOI: 10.1016/j.cmpb.2021.106335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy the disorder of the central nervous system has its worldwide presence in roughly 50 million people as estimated by the World Health Organization. Electroencephalogram (EEG) is one of the most common and non-invasive ways of analyzing and studying the subtle changes in neuronal activity of the brain during an epileptic seizure attack. These changes can be analyzed for developing an automated system that would assert the chances of an impending seizure. As changeable nature of seizure affects the patients from having a normal life, hence progress in developing new methods will improve the quality of life and also provide assistance in the medical sector. Objective of the proposed method is to avoid EEG channel selection and use all input EEG channel features to design a generalized epileptic seizure detection framework. METHOD In this work, a long short-term memory network has been proposed that is not complex and has the capability of effectively detecting epileptic seizures from both non-invasive and invasive electroencephalogram recordings. The proposed framework is simple and effective and designed in such capacity that raw electroencephalogram signals can be used to detect seizures. Also, a generalized approach has been followed that is channel independent such that EEG signals belonging to any hemisphere of the brain can be detected effectively by the proposed architecture. RESULTS The automated seizure detection system achieved high seizure detection sensitivity of 99.9%, and a low false-positive rate of 0.003 per hour for the Children's Hospital Boston-Massachusetts Institute of Technology dataset. While for the Sleep-Wake-Epilepsy-Center of the University Department of Neurology at the Inselspital Bern dataset, the sensitivity is 99.4% and false-positive rate of 0.006 per hour. Convergence analysis of the proposed model provides a significant amount of reliability and correctness in the efficient detection of epileptic seizures. CONCLUSION Assessment of the proposed framework on non-invasive as well as invasive EEG signals showed that the framework worked well for different type of EEG recordings as different metrics gave satisfactory results. As the framework is simple and did not require any additional parameter optimization techniques, it reduced the processing overheads without affecting the accuracy. Hence, it can be used as an efficient method for monitoring epileptic seizures.
Collapse
Affiliation(s)
- Satarupa Chakrabarti
- School of Computer Engineering, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Aleena Swetapadma
- School of Computer Engineering, KIIT University, Bhubaneswar, Odisha 751024, India.
| | | |
Collapse
|
31
|
Shoeibi A, Khodatars M, Ghassemi N, Jafari M, Moridian P, Alizadehsani R, Panahiazar M, Khozeimeh F, Zare A, Hosseini-Nejad H, Khosravi A, Atiya AF, Aminshahidi D, Hussain S, Rouhani M, Nahavandi S, Acharya UR. Epileptic Seizures Detection Using Deep Learning Techniques: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5780. [PMID: 34072232 PMCID: PMC8199071 DOI: 10.3390/ijerph18115780] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
A variety of screening approaches have been proposed to diagnose epileptic seizures, using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities. Artificial intelligence encompasses a variety of areas, and one of its branches is deep learning (DL). Before the rise of DL, conventional machine learning algorithms involving feature extraction were performed. This limited their performance to the ability of those handcrafting the features. However, in DL, the extraction of features and classification are entirely automated. The advent of these techniques in many areas of medicine, such as in the diagnosis of epileptic seizures, has made significant advances. In this study, a comprehensive overview of works focused on automated epileptic seizure detection using DL techniques and neuroimaging modalities is presented. Various methods proposed to diagnose epileptic seizures automatically using EEG and MRI modalities are described. In addition, rehabilitation systems developed for epileptic seizures using DL have been analyzed, and a summary is provided. The rehabilitation tools include cloud computing techniques and hardware required for implementation of DL algorithms. The important challenges in accurate detection of automated epileptic seizures using DL with EEG and MRI modalities are discussed. The advantages and limitations in employing DL-based techniques for epileptic seizures diagnosis are presented. Finally, the most promising DL models proposed and possible future works on automated epileptic seizure detection are delineated.
Collapse
Affiliation(s)
- Afshin Shoeibi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran 1631714191, Iran;
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | | | - Navid Ghassemi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran 1631714191, Iran;
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan 3513119111, Iran;
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, School of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad 6518115743, Iran;
| | - Hossein Hosseini-Nejad
- Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran 1631714191, Iran;
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Amir F. Atiya
- Department of Computer Engineering, Faculty of Engineering, Cairo University, Cairo 12613, Egypt;
| | - Diba Aminshahidi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Sadiq Hussain
- System Administrator at Dibrugarh University, Assam 786004, India;
| | - Modjtaba Rouhani
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Udyavara Rajendra Acharya
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Bioinformatics and Medical Engineering, Taichung City 41354, Taiwan
| |
Collapse
|
32
|
Saminu S, Xu G, Shuai Z, Abd El Kader I, Jabire AH, Ahmed YK, Karaye IA, Ahmad IS. A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal. Brain Sci 2021; 11:668. [PMID: 34065473 PMCID: PMC8160878 DOI: 10.3390/brainsci11050668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023] Open
Abstract
The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.
Collapse
Affiliation(s)
- Sani Saminu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
- Biomedical Engineering Department, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria;
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Zhang Shuai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Isselmou Abd El Kader
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Adamu Halilu Jabire
- Department of Electrical and Electronics Engineering, Taraba State University, Jalingo 660242, Nigeria;
| | - Yusuf Kola Ahmed
- Biomedical Engineering Department, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria;
| | - Ibrahim Abdullahi Karaye
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Isah Salim Ahmad
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| |
Collapse
|
33
|
Liu X, Richardson AG. Edge deep learning for neural implants: a case study of seizure detection and prediction. J Neural Eng 2021; 18. [PMID: 33794507 DOI: 10.1088/1741-2552/abf473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.Implanted devices providing real-time neural activity classification and control are increasingly used to treat neurological disorders, such as epilepsy and Parkinson's disease. Classification performance is critical to identifying brain states appropriate for the therapeutic action (e.g. neural stimulation). However, advanced algorithms that have shown promise in offline studies, in particular deep learning (DL) methods, have not been deployed on resource-restrained neural implants. Here, we designed and optimized three DL models or edge deployment and evaluated their inference performance in a case study of seizure detection.Approach.A deep neural network (DNN), a convolutional neural network (CNN), and a long short-term memory (LSTM) network were designed and trained with TensorFlow to classify ictal, preictal, and interictal phases from the CHB-MIT scalp EEG database. A sliding window based weighted majority voting algorithm was developed to detect seizure events based on each DL model's classification results. After iterative model compression and coefficient quantization, the algorithms were deployed on a general-purpose, off-the-shelf microcontroller for real-time testing. Inference sensitivity, false positive rate (FPR), execution time, memory size, and power consumption were quantified.Main results.For seizure event detection, the sensitivity and FPR for the DNN, CNN, and LSTM models were 87.36%/0.169 h-1, 96.70%/0.102 h-1, and 97.61%/0.071 h-1, respectively. Predicting seizures for early warnings was also feasible. The LSTM model achieved the best overall performance at the expense of the highest power. The DNN model achieved the shortest execution time. The CNN model showed advantages in balanced performance and power with minimum memory requirement. The implemented model compression and quantization achieved a significant saving of power and memory with an accuracy degradation of less than 0.5%.Significance.Inference with embedded DL models achieved performance comparable to many prior implementations that had no time or computational resource limitations. Generic microcontrollers can provide the required memory and computational resources, while model designs can be migrated to application-specific integrated circuits for further optimization and power saving. The results suggest that edge DL inference is a feasible option for future neural implants to improve classification performance and therapeutic outcomes.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew G Richardson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
34
|
Optimisation of deep neural networks for identification of epileptic abnormalities from electroencephalogram signals. Heliyon 2020; 6:e05694. [PMID: 33364484 PMCID: PMC7753124 DOI: 10.1016/j.heliyon.2020.e05694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
An electroencephalogram (EEG) measures and records the electrical activity of the brain. It provides valuable information that can be used to identify epileptic abnormalities. However, the visual identification of such abnormalities from EEG signals by expert neurologists is time consuming. Therefore, several researchers have proposed using deep neural networks (DNNs) to automate the identification of these abnormalities. Their studies have examined the use of different numbers of layers, different numbers of parameters, and various operation types arranged in different architectures. This paper presents the shallowest 11-layer DNN architecture capable of classifying three classes of EEG signals: normal, preictal, and seizure. When the proposed architecture was applied to the standard University of Bonn EEG signal dataset, it achieved accuracy, specificity, and sensitivity values of 99.43%, 99.57%, and 99.10%, respectively. It not only had a better performance than the state of the art DNN architectures, but also had shallower layers with fewer parameters. This allowed it to more quickly identify epileptic abnormalities. Experiments were also conducted where the length of the EEG signals was reduced to 65% (2,662 samples with a period of 15.26 s), which in turn minimised the total parameters of the proposed architecture so that it was comparable to the smallest state-of-the-art architecture and decreased the lag time for identification. Even in these experiments, it was capable of producing equal performance measures, with the execution time reduced to only 69% of that when employing the full length of EEG signals.
Collapse
|
35
|
Abiyev R, Arslan M, Bush Idoko J, Sekeroglu B, Ilhan A. Identification of Epileptic EEG Signals Using Convolutional Neural Networks. APPLIED SCIENCES 2020; 10:4089. [DOI: 10.3390/app10124089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epilepsy is one of the chronic neurological disorders that is characterized by a sudden burst of excess electricity in the brain. This abnormality appears as a seizure, the detection of which is an important research topic. An important tool used to study brain activity features, neurological disorders and particularly epileptic seizures, is known as electroencephalography (EEG). The visual inspection of epileptic abnormalities in EEG signals by neurologists is time-consuming. Different scientific approaches have been used to accurately detect epileptic seizures from EEG signals, and most of those approaches have obtained good performance. In this study, deep learning based on convolutional neural networks (CNN) was considered to increase the performance of the identification system of epileptic seizures. We applied a cross-validation technique in the design phase of the system. For efficiency, comparative results between other machine-learning approaches and deep CNNs have been obtained. The experiments were performed using standard datasets. The results obtained indicate the efficiency of using CNN in the detection of epilepsy.
Collapse
Affiliation(s)
- Rahib Abiyev
- Applied Artificial Intelligence Research Centre, Department of Computer Engineering, Near East University, North Cyprus, 10 Mersin, Turkey
| | - Murat Arslan
- Applied Artificial Intelligence Research Centre, Department of Computer Engineering, Near East University, North Cyprus, 10 Mersin, Turkey
| | - John Bush Idoko
- Applied Artificial Intelligence Research Centre, Department of Computer Engineering, Near East University, North Cyprus, 10 Mersin, Turkey
| | - Boran Sekeroglu
- Department of Information Systems Engineering, Near East University, North Cyprus, 10 Mersin, Turkey
| | - Ahmet Ilhan
- Applied Artificial Intelligence Research Centre, Department of Computer Engineering, Near East University, North Cyprus, 10 Mersin, Turkey
| |
Collapse
|