1
|
Li S, Sun H, Lu Q, Qiao J, Luo Y, Chu Z, Liu D, Zhou L, Liu P. Bionic ECM scaffolds for directional articular hyaline cartilage regeneration and long-term homeostasis maintenance. BIOMATERIALS ADVANCES 2025; 173:214292. [PMID: 40157112 DOI: 10.1016/j.bioadv.2025.214292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Cartilage defects play a key role in osteoarthritis, causing functional impairment as the disease progresses. Microfracture surgery is commonly used to treat articular cartilage defects, providing early pain relief and functional improvement. However, the blood clot formed during the procedure differs from the natural cartilage microenvironment, hindering hyaline cartilage formation and promoting fibrocartilage, which limits long-term outcomes. This study proposes combining a bionic flexible extracellular matrix (ECM) scaffold with microfracture surgery as a treatment for cartilage defects. By filling the microfracture site with the scaffold and thermosensitive agarose gel, we can anchor BMSCs leaking from the bone marrow while creating a 3D microenvironment that regulates stem cell differentiation. Our results show that the scaffold's mechanical strength is comparable to that of hyaline cartilage, offering excellent biomimetic properties and biocompatibility. In vitro, BMSCs migrating into the scaffold exhibited a survival rate of nearly 90 % by day 2, significantly higher than the 25 % survival rate in the control agarose gel group, with cells observed anchoring around the scaffold. In vivo, stem cells anchored to the scaffold successfully differentiated into articular hyaline cartilage, driven by the combined effects of the scaffold's physical structure and its contained cytokines. The generated hyaline cartilage maintains homeostasis over time, reducing the risk of fibrocartilage formation. This strategy addresses a key limitation of microfracture surgery, where regenerated cartilage is often fibrocartilage, offering a promising new approach for cartilage repair.
Collapse
Affiliation(s)
- Shihao Li
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Houyi Sun
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qunshan Lu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Junran Qiao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yange Luo
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Ziyue Chu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Dehua Liu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Libo Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Peilai Liu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
2
|
Yao F, Bao Y, Meng Q, Chen Y, Zhao L, Wang P, Zhou B. Periprosthetic osteolysis: Mechanisms and potential treatment strategies. Cell Signal 2025; 131:111758. [PMID: 40132773 DOI: 10.1016/j.cellsig.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Periprosthetic osteolysis is a common bone-related disorder that often occurs after total hip arthroplasty. The implants can cause damage to bone and bone-related cells due to mechanical stress and micromotions, resulting in the generation of a large number of wear particles. These wear particles trigger inflammation and oxidative stress in the surrounding tissues, disrupting the delicate balance maintained by osteoblasts and osteoclasts, ultimately leading to bone loss around the implant. Clinical investigations have demonstrated that Epimedium prenylflavonoids, miR-19a-3p, stem cell-derived exosomes, and certain non-PPO category pharmaceuticals have regulatory effects on bone homeostasis through distinct molecular pathways. Notably, this phenomenon reflects inherent biological rationality rather than stochastic occurrence. Extensive research has revealed that multiple natural compounds, non-coding RNAs, exosomes, and non-PPO therapeutics not only exert modulatory influences on critical pathophysiological processes including inflammatory cascades, oxidative stress responses, and tissue regeneration mechanisms, but also effectively regulate bone-related cellular functions to inhibit PPO progression. Therefore, this review comprehensively and systematically summarizes the main pathogenic mechanisms of periprosthetic osteolysis. Furthermore, it delves deeper into the research progress on the applications of currently reported natural products, ncRNAs, exosomes, and non-PPO medications in the treatment of periprosthetic osteolysis. Based on this, we hope that this paper can provide new perspectives and references for the future development of drugs targeting periprosthetic osteolysis.
Collapse
Affiliation(s)
- Fang Yao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yue Bao
- Department of Nursing, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qian Meng
- Outpatient Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanrong Chen
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Luxi Zhao
- Department of Anesthesiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Pingmei Wang
- Department of Orthopaedics, The People's Hospital of Shimen County, Shimen 415399, China
| | - Bin Zhou
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
3
|
Shinohara I, Morita M, Chow SKH, Murayama M, Sususki Y, Gao Q, Goodman SB. Pathophysiology of the Effects of Oxidative Stress on the Skeletal System. J Orthop Res 2025; 43:1059-1072. [PMID: 40143581 DOI: 10.1002/jor.26075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Reactive oxygen species (ROS) are molecules that are generated primarily during energy production in cells. ROS are involved in critical biological functions such as signal transduction; when the production of ROS is imbalanced, excessive ROS causes oxidative stress, and subsequent cellular damage. Oxidative stress is linked to numerous pathological disorders in major organs including the skeletal system. In an aging society, understanding the role of ROS in skeletal health is critical to developing preventative and therapeutic interventions. Oxidative stress causes defects in cellular differentiation, apoptosis, mitochondrial dysfunction, and inflammation. The effects of oxidative stress on the skeletal system have been implicated in the development of osteoporosis, knee osteoarthritis, and osteonecrosis by inhibiting bone remodeling, increasing osteoclast activity, and decreasing osteoblast function. ROS are also involved in many signaling pathways that regulate immune defense, cell proliferation, and inflammation. This underscores the importance of maintaining a balance between ROS and antioxidants to prevent oxidative stress and related diseases. Targeting ROS and oxidative stress mechanisms may offer new treatments for diseases affecting the skeletal system and other organs, potentially improving health outcomes, and extending healthy lifespans. This review highlights the significant impact of oxidative stress on skeletal health and explores potential preventative and therapeutic strategies to mitigate the adverse effects of ROS.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yosuke Sususki
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Zhang S, Wang H, Meng Q, Lee WYW, Li Z, Sun S. Recent advances in osteonecrosis of the femoral head: a focus on mesenchymal stem cells and adipocytes. J Transl Med 2025; 23:592. [PMID: 40426076 DOI: 10.1186/s12967-025-06564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating orthopedic disease characterized by femoral head collapse and destruction of bone and articular cartilage, resulting in severe joint pain and loss of hip mobility. Bone marrow mesenchymal stem cells (BMSCs) exhibit multilineage differentiation potential, including osteoblasts, adipocytes, fibroblasts, chondrocytes, and neurocytes. The imbalance between osteogenesis and adipogenesis in BMSCs plays a critical role in ONFH pathogenesis. Factors such as alcohol consumption and glucocorticoid exposure promote adipogenic differentiation while inhibiting osteogenic differentiation, leading to excessive adipocyte accumulation, reduced bone formation, and vascular impairment. We highlight the molecular mechanisms underlying ONFH with a particular focus on the role of BMSCs and further discuss the involvement of adipocytes. Moreover, we suggest that the use of adipose-derived mesenchymal stem cells (ADMSCs) is a viable approach for stem cell therapy and may have immense potential in ONFH. Several signaling pathways, including the Wnt, TGFβ/BMP, and PI3K/AKT pathways, along with various RNAs and other regulators, govern the osteogenesis and adipogenesis of BMSCs. These signaling pathways target essential transcription factors, such as Runx2 for osteogenesis and PPARγ and C/EBPs for adipogenesis. Adipocytes and their secreted adipokines, including leptin and adiponectin, strongly influence ONFH progression. Emerging therapies involving ADMSCs show potential for promoting bone regeneration and neovascularization. Our review provides a comprehensive overview of the current understanding of ONFH mechanisms by focusing on mesenchymal stem cells and adipocytes and suggests future research directions for therapeutic interventions.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Haojue Wang
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Qi Meng
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
5
|
Tang Y, Leng J, Luo Y, Luo F. Focusing on ferroptosis in alveolar bone loss during periodontitis: From mechanisms to therapies. Int Immunopharmacol 2025; 156:114683. [PMID: 40252463 DOI: 10.1016/j.intimp.2025.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Periodontitis is an oral immunoinflammatory disease induced by bacterial infection. During periodontitis, the aggravating destruction of the alveolar bone can result in tooth movement and even tooth loss. Current conventional treatments for periodontitis primarily focus on infection control, but their effectiveness in halting and restoring alveolar bone destruction is limited. To identify additional therapeutic targets, researchers have been dedicated to investigating other pathological mechanisms underlying alveolar bone loss during periodontitis. Recently, findings indicate that ferroptosis plays a role in the development of periodontitis. Ferroptosis is a nonapoptotic type of cell death marked by iron accumulation and lipid peroxidation. Recent investigations have revealed the complex interplay of ferroptosis and inflammation. The positive feedback loop between ferroptosis and inflammation may significantly contribute to the exacerbation of alveolar bone loss. In light of the advancements in research within this field in recent years, this review intends to thoroughly summarize the processes by which ferroptosis aggravates alveolar bone loss during periodontitis, along with relevant ferroptosis-targeted therapeutic agents. By highlighting the latest advancements in this area, we hope this review will inspire researchers to develop novel therapeutic strategies for more effective inflammation control and regeneration of alveolar bone.
Collapse
Affiliation(s)
- Yuting Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyan Leng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of General Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Zhou Y, Yang L, Yuan D, Wu Z, Xu S, Ye C. Optimal parameters and Biomechanical analysis of the lightbulb technique for osteonecrosis of the femoral head: a finite element analysis. BMC Musculoskelet Disord 2025; 26:516. [PMID: 40420068 DOI: 10.1186/s12891-025-08763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND The lightbulb technique (LBT) is a common surgical procedure for treating peri-collapse osteonecrosis of the femoral head (ONFH). However, the drilling parameters and biomechanics of the technique have not been analyzed. The aim of this study was to optimize the biomechanical stability of the LBT by finite element (FE) analysis to guide intraoperative and postoperative schemes. METHODS FE models were established based on computed tomography images of a healthy adult, including three different degrees of necrotic lesion (60°, 100°, 115°), drilling locations (points C and L) and diameters (1.0 cm, 1.5 cm). The stress of the drilling entrance area, superior and inferior edges of the femoral neck, and bone flap was evaluated under three different loads at 0.5 times body weight (0.5 BW, standing on two feet), 2.75 BW (standing on one foot), and 4 BW (walking with the middle foot on the ground). RESULTS The stress of the superior and inferior edges of femoral neck, entrance, and bone flap increased as drilling diameter increased. The maximum Von Mises stress of proximal femur does not exceed its yield strength with diameter of 1.0 cm, except for diameter of 1.5 cm. The stress of entrance area and bone flap cortex at point L were higher than those at point C with same diameter. Moreover, the stress of femoral neck and entrance area decreased as the range of lesions increased, except for bone flap cortex. Furthermore, the maximum Von Mises stress of proximal femur did not exceed its yield strength with patients standing on one or both feet and walking process (4BW) with drilling diameter of 1.0 cm at points C or L after surgery, except for diameter of 1.5 cm. Meanwhile, the angles reaching to the coronal plane and transverse plane of weight-bearing area through point L with diameter of 1.0 cm were smaller than those through point C. CONCLUSIONS The optimal parameters of LBT can be selected with a diameter of 1.0 cm at point L. Patients can load partial weight to stimulate the healing of the necrotic area after surgery, but avoid beyond middle foot weight during walking.
Collapse
Affiliation(s)
- Yuhu Zhou
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Long Yang
- Department of Orthopedic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Daizhu Yuan
- Department of Orthopedic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Zhanyu Wu
- Department of Orthopedic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Shunen Xu
- Department of Orthopedic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Chuan Ye
- Department of Orthopedic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China.
- China Orthopaedic Regenerative Medicine Group (CORMed), Chinese Medical Doctor Association, Hangzhou, 310000, China.
| |
Collapse
|
7
|
Fu Y, Okawa H, Vinaikosol N, Mori S, Limraksasin P, Nattasit P, Tahara Y, Egusa H. Shaking culture attenuates circadian rhythms in induced pluripotent stem cells during osteogenic differentiation through the TEAD-Fbxl3-CRY axis. Cell Death Discov 2025; 11:252. [PMID: 40413171 PMCID: PMC12103599 DOI: 10.1038/s41420-025-02533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
Circadian rhythms, which synchronize cellular and organismal activities with the Earth's 24-hour light-dark cycle, are controlled by clock genes. These genes not only regulate metabolic and physiological processes but also influence osteogenesis. Despite extensive research on the genetic control of circadian rhythms, little is known about the mechanisms by which mechanical factors in the extracellular environment affect these rhythms during the osteogenic differentiation of induced pluripotent stem cells (iPSCs). Shaking culture, which promotes the formation of three-dimensional organoid-like constructs from iPSC embryoid bodies (iPSC-EBs), introduces distinct biomechanical forces compared with static adherent culture. This raises the question of how these forces affect the circadian gene expression during osteogenic differentiation. In this study, we investigated the effects of shaking cultures on the circadian rhythm of key clock genes (Clock, Bmal1, and Npas2) in iPSC-EBs. In the adherent culture, iPSC-EBs displayed rhythmic oscillations of the clock genes, which were attenuated in the shaking culture. RNA-seq analysis revealed that the yes-associated protein (YAP)-transcriptional enhanced associate domain (TEAD) transcriptional cascade was activated in the shaking culture. Further investigations using assay for transposase-accessible chromatin with sequencing and chromatin immunoprecipitation assays identified Fbxl3 as a direct target of this transcriptional cascade. Fbxl3 upregulation in the shaking culture enhanced the degradation of CRY proteins, which are essential components of the circadian feedback loop, thereby suppressing clock gene oscillations. In addition, treatment with verteporfin, a YAP-TEAD inhibitor, restored circadian gene oscillations and increased the expression of osteogenic markers in shaking culture. These findings highlight a novel mechanistic link between biomechanical cues and circadian regulation and offer potential insights for optimizing tissue engineering strategies in regenerative medicine.
Collapse
Affiliation(s)
- Yunyu Fu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| | - Naruephorn Vinaikosol
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Satomi Mori
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Praphawi Nattasit
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Yu Tahara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| |
Collapse
|
8
|
Zhao B, Sun Q, Wang Z, Feng Z, Wang S. Elevated levels of β C-terminal telopeptide of type 1 collagen and N-terminal mid-fragment of osteocalcin in patients with non-traumatic osteonecrosis of the femoral head. J Orthop Surg Res 2025; 20:495. [PMID: 40399905 PMCID: PMC12093745 DOI: 10.1186/s13018-025-05897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
OBJECTIVE To investigate the role of serum β C-terminal telopeptide of type 1 collagen (β-CTx) and N-terminal mid-fragment of osteocalcin (N-MID) concentration in non-traumatic osteonecrosis of the femoral head (NONFH). MATERIALS AND METHODS In this retrospective case-control study, serum β-CTx and N-MID levels were measured in 64 NONFH patients and 64 healthy controls. Propensity score matching (PSM) was used to balance the baseline characteristics of the two groups. The study was conducted at Linyi People's Hospital between January 2023 and February 2024. The primary outcomes included the differences in serum β-CTx and N-MID levels between the two groups, their correlations with clinical parameters, and their diagnostic performance for NONFH. RESULTS The serum concentration of β-CTx and N-MID was significantly higher in NONFH patients compared to healthy controls (β-CTx: 0.70 ± 0.30 ng/ml vs. 0.36 ± 0.16 ng/ml, P < 0.001; N-MID: 21.35 ± 8.24 ng/ml vs. 13.27 ± 3.87 ng/ml, P < 0.001). No significant differences were observed in serum β-CTx and N-MID levels among different etiological subgroups or ARCO stages. Pearson analysis revealed a positive correlation between serum β-CTx and N-MID levels, as well as β-CTx and pain duration. The ROC curve analysis showed that β-CTx had an AUC of 0.876 (95% CI 0.815-0.938) with a cut-off value of 0.505 ng/ml, sensitivity of 90.63%, and specificity of 76.56%. N-MID had an AUC of 0.860 (95% CI 0.797-0.924) with a cut-off value of 17.050 ng/ml, sensitivity of 84.38%, and specificity of 78.13%. CONCLUSION Serum β-CTx and N-MID levels are significantly elevated in patients with NONFH and may serve as potential biomarkers for the diagnosis of NONFH. Further studies with larger sample sizes are needed to validate these findings and explore their clinical applications.
Collapse
Affiliation(s)
- Baoxiang Zhao
- Department of Orthopedics, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Qin Sun
- Department of Orthopedics, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong Province, 266042, China
| | - Zhiqun Wang
- Department of Laboratory Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong Province, 266042, China
| | - Zhi Feng
- Department of Orthopedics, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Shiying Wang
- Department of Orthopedics, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
9
|
Yu G, Chen K, Xu B, Cao Q. Mitochondrial SLC25A10 promotes prostate cancer progression by inhibiting ferritinophagy. Cell Death Discov 2025; 11:242. [PMID: 40393974 DOI: 10.1038/s41420-025-02528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/25/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in men worldwide and remains a major cause of cancer-related mortality. Despite advances in early diagnosis and treatment, a significant proportion of patients eventually progress to advanced or treatment-resistant disease, highlighting the urgent need for novel therapeutic targets and strategies. In this study, we systematically analyzed transcriptomic data from The Cancer Genome Atlas (TCGA) and performed Venn analysis to identify genes associated with PCa progression. Among the intersecting candidates, SLC25A10, a mitochondrial carrier protein, emerged as a potential key regulator of ferroptosis. Further expression analyses revealed that SLC25A10 is significantly upregulated in PCa tissues and correlates with poor prognosis. Functional gain- and loss-of-function experiments demonstrated that SLC25A10 promotes tumor cell proliferation, migration, and invasion, while exacerbating mitochondrial dysfunction and impairing autophagic flux. Mechanistically, mass spectrometry and co-immunoprecipitation (Co-IP) assays confirmed a direct interaction between SLC25A10 and P62, implicating this interaction in the suppression of autophagy and the promotion of ferroptotic vulnerability. Moreover, disruption of the SLC25A10/p62/KEAP1/Nrf2 signaling axis reactivated autophagy and inhibited PCa cell growth. Collectively, our findings uncover a novel oncogenic role of SLC25A10 in PCa and suggest that targeting the SLC25A10-mediated regulatory network may offer a promising therapeutic avenue for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200011, Shanghai, P. R. China
| | - Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei, P. R. China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200011, Shanghai, P. R. China.
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei, P. R. China.
| |
Collapse
|
10
|
Chen Y, Jiang H, Zhu H, He J, Chen L. Theranostics of osteoarthritis: Applications and prospects of precision targeting nanotechnology. Int J Pharm 2025; 676:125548. [PMID: 40216040 DOI: 10.1016/j.ijpharm.2025.125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/22/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Osteoarthritis (OA), a complex degenerative joint disease driven by cartilage degeneration, synovial inflammation, and subchondral bone remodeling, lacks effective disease-modifying therapies. Precision-targeted nanotechnology has emerged as a breakthrough strategy, offering enhanced drug delivery, reduced toxicity, and synergistic diagnostic-therapeutic capabilities. This review summarizes OA pathogenesis, focusing on dysregulated immune networks and self-perpetuating synovial microenvironmental interactions. We discuss advanced nanomedicine approaches, which leverage OA-specific pathological cues for localized treatment. Innovations in cytokine modulation, photothermal therapy, and integrated theranostics (photoacoustic/fluorescence imaging) are highlighted as transformative tools for real-time diagnosis and personalized intervention. Despite progress, challenges such as biocompatibility optimization, clinical translation barriers, OA heterogeneity necessitate further development of multifunctional nanocarriers and rationaldesigns. This work underscores the potential of nanotechnology to advance OA therapeutics, bridging preclinical innovation with clinical applicability in pharmaceutical sciences.
Collapse
Affiliation(s)
- Yujing Chen
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyan He
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Zhang H, Tang S, Kong L, Tang L, Liu Q, Yu B. Association between sleep duration and hip fracture risk among the older adults: a cross-sectional study based on the NHANES. BMC Musculoskelet Disord 2025; 26:478. [PMID: 40375242 PMCID: PMC12079939 DOI: 10.1186/s12891-025-08721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND There has been sharp increase in the incidence of hip fractures (HFs) with the increasing aging globally. However, it remains ambiguous regarding the association between HF risk and sleep duration. This study intended to explore the association between sleep duration and HF risk among the older adults. METHODS The study assessed a cohort of 7,540 participants aged at least 60 years old using data from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010, as well as from 2013 to 2014. Two distinct groups of HF and non-HF were constructed on the basis of their history of HFs. Based on the self-reported sleep duration through a structured questionnaire, multivariate logistic regression analyses were conducted to examine the relationship between sleep duration and HF risk. In addition, restricted cubic splines (RCS) were used to assess linearity. The receiver operating characteristic (ROC) curve was used to explore the threshold of sleep duration for HF risk. RESULTS HFs were found in 129 patients among the 7,540 participants over 60 years of age with mean age of 70.17 ± 7.1 years. Significant differences in sleep duration were observed between the HF and non-HF groups (7.73 ± 1.68 h vs. 7.11 ± 1.42 h; p = 0.006). The multivariate analysis was adjusted for sociodemographic, behavioral lifestyle, and comorbidities. A 1-h increase in sleep duration was associated with higher odds of having prior hip fractures in unadjusted models [odds ratio (OR) = 1.36; 1.11, 1.67; p = 0.004], minimally adjusted models (OR = 1.23; 1.03, 1.48; p = 0.025), second adjusted models (OR = 1.22; 1.02,1.45; p = 0.026) and fully adjusted models (OR = 1.22; 1.03,1.45; p = 0.026). The relationship remained consistent across all four models, indicating the correlation of a longer sleep duration with an elevated HF risk. RCS analysis revealed a statistically linear relationship between sleep duration and HF risk (p-nonlinear = 0.244, p-overall < 0.01). In addition, the identified threshold of sleep duration linked to HF risk was determined to be 7.5 h among the older adults (AUC = 0.611). CONCLUSION This study suggests an linear association between sleep duration and the risk of HFs. Further research is needed to validate these findings and more clearly identify the clinical relevance of this potential relationship.
Collapse
Affiliation(s)
- Hengbo Zhang
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR, China
| | - Sijing Tang
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR, China
| | - Lingkai Kong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR, China
| | - Lu Tang
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR, China
| | - Qiaolan Liu
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR, China.
| | - Bo Yu
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR, China.
| |
Collapse
|
12
|
Yan T, Cheng J, Liu H, Wang Y, Zhang C, Huang D, Liu J, Wang Z. Multifunctional Janus Hydrogels: Surface Design Strategies for Next-Generation Clinical Solutions. Gels 2025; 11:343. [PMID: 40422363 DOI: 10.3390/gels11050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/28/2025] Open
Abstract
Janus hydrogels, distinguished by their dual-sided structure with distinct physical and chemical properties, have garnered significant attention in the medical field, particularly for applications in drug delivery, tissue engineering, and wound healing. Their ability to simultaneously perform multiple functions, such as targeted drug release and biomimetic tissue interaction, positions them as a promising platform for advanced therapeutic strategies. The growing interest in these hydrogels is primarily driven by their multifunctionality and capacity to address complex biological needs. This review delves into the design, fabrication methods, and applications of Janus hydrogels in medicine, focusing on their potential to overcome the limitations of conventional therapies and providing a comprehensive overview of their role in contemporary biomedical applications.
Collapse
Affiliation(s)
- Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Haoming Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Raut R, Chakraborty A, Neogi T, Albro M, Snyder B, Schaer T, Zhang C, Grinstaff M, Bais M. Constructing a cross-tissue human knee single-cell atlas identified osteoarthritis reduces regenerative tissue stem cells while increasing inflammatory pain macrophages. RESEARCH SQUARE 2025:rs.3.rs-6247502. [PMID: 40386432 PMCID: PMC12083644 DOI: 10.21203/rs.3.rs-6247502/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Osteoarthritis (OA) affects the entire knee joint; however, cross-tissue molecular mechanisms are poorly understood due to a lack of comprehensive, integrated analysis. We constructed the first comprehensive single-cell RNA sequencing knee OA atlas from articular cartilage, meniscus, synovium, and subchondral bone which showed active communication between them. Healthy synovium and meniscus contain the largest populations of tissue stem cells (TSCs) and immune cells that are altered in OA. The regenerative TSCs expressing SDF1, SOX9, CD146, PDGFRB, and CD105 decrease during OA, whereas osteogenic TSCs expressing osteogenic differentiation-related factor NT5E (CD73) are increased. In OA, the balance between regenerative and osteogenic TSCs shifts in the OA state with an increased number of osteogenic TSCs. We also report an increased level of quadruple-positive inflammatory (IL1B-IL6-NOS2-TNF) and pain marker (P2RX7) specific macrophages in OA. Fibroblasts are enriched in OA-synovium and may contribute to fibrosis. Importantly, OA cartilage contains unique MMP13-producing detrimental chondrocytes along with RUNX2-producing chondrocytes that worsen OA pathophysiology. This atlas provides a novel avenue for potential therapeutic applications in human knee OA and other musculoskeletal diseases and injuries, targeting synovium and meniscus to intervene in OA-specific molecular and cellular alterations.
Collapse
Affiliation(s)
| | | | | | | | - Brian Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Thomas Schaer
- University of Pennsylvania School of Veterinary Medicine
| | - Chao Zhang
- Department of Medicine Section of Computational Biomedicine, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118
| | | | | |
Collapse
|
14
|
Nietsch K, Yendluri A, Corvi JJ, Chiang JJ, Hahn AK, Namiri NK, Megafu MN, Moucha CS, Einhorn TA, Parisien RL, Investigation Performed By The Scientific Collaborative For Orthopaedic Research And Education (SCORE) Group. Variability in the classification, management, and outcome reporting for avascular necrosis of the femoral head: A systematic review. J Orthop 2025; 63:148-156. [PMID: 40248052 PMCID: PMC12002628 DOI: 10.1016/j.jor.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction There is no universally-utilized classification system for avascular necrosis of the femoral head (AVNFH), a debilitating condition that arises due to impaired blood supply resulting in cortical collapse. AVNFH may require early intervention to prevent irreversible damage leading to total hip arthroplasty. The purpose of this study is to assess the variability in classification, management, and outcomes reported in randomized controlled trials (RCTs) related to AVNFH. Methods PubMed, Embase, and Medline were queried for RCTs on the treatment of AVNFH (2010-2023). The number of patients, number of femoral heads, minimum follow-up, AVNFH classification system, treatment interventions, and outcome measures were extracted. Variability in classification, management approach, and reporting of outcomes was evaluated. Results A total of 30 RCTs met inclusion criteria, encompassing 1891 total patients. The mean number of patients in each study was 63 (SD = 41), with a mean minimum follow-up of 30 months (SD = 17). The Association Research Circulation Osseous classification system was utilized in 63 % (n = 19) of studies, Ficat and Arlet in 20 % (n = 6) of studies, Steinberg in 10 % (n = 3), Mitchell in 3 % (n = 1), and the China-Japan Friendship Hospital classifications in 3 % (n = 1). There were 61 treatment interventions, stratified into nine categories. Radiographic imaging was most commonly used to evaluate patients at follow-up. Conclusion There are a variety of classification systems, treatments, and outcome measures utilized in the literature to categorize and quantify AVNFH. The utilization of a universally-accepted classification system and standardized outcome reporting may help to ensure reproducibility and accuracy given a continued lack of consensus.
Collapse
Affiliation(s)
- Katrina Nietsch
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA
| | - Avanish Yendluri
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA
| | - John J. Corvi
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA
| | - Joshua J. Chiang
- Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, USA
| | | | - Nikan K. Namiri
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA
| | | | - Calin S. Moucha
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA
| | - Thomas A. Einhorn
- Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Boston, MA, USA
| | - Robert L. Parisien
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA
| | - Investigation Performed By The Scientific Collaborative For Orthopaedic Research And Education (SCORE) Group
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA
- Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, USA
- University of Connecticut, 263 Farmington Ave, Farmington, CT, USA
- Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Boston, MA, USA
| |
Collapse
|
15
|
Xiao W, Yike W, Gongwen L, Youjia X. Ferroptosis-mediated immune responses in osteoporosis. J Orthop Translat 2025; 52:116-125. [PMID: 40271049 PMCID: PMC12017889 DOI: 10.1016/j.jot.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
Osteoporosis is a common systemic metabolic disease, characterized by decreased bone mass and susceptibility to fragility fractures, often associated with aging, menopause, genetics, and immunity. Ferroptosis plays an underestimated yet crucial role in the further impact of immune function changes on osteoporosis. Cell ferroptosis can induce alterations in immune function, subsequently influencing bone metabolism. In this context, this review summarizes several mechanisms of ferroptosis and introduces the latest insights on how ferroptosis regulates immune responses, exploring the interactions between ferroptosis and other mechanisms such as oxidative stress, inflammation, etc. This review elucidates potential treatment strategies for osteoporosis, emphasizing the promising potential of ferroptosis as an emerging target in the treatment of osteoporosis. In conclusion, preparations related to ferroptosis exhibit substantial clinical promise for enhancing bone mass restoration. The translational potential of this article: This review elucidates a nuanced conversation between the immune system and osteoporosis, with ferroptosis serving as the connecting link. These findings underscore the potential of ferroptosis inhibition as a therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wang Yike
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Gongwen
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xu Youjia
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
17
|
Wang Y, Hu X, Wang J, Zhang Y, Guo P, Lv Y, Ma G, Wei W, Wang S. Versatile PLGA-Based Drug Delivery Systems for Tumor Immunotherapy. SMALL METHODS 2025; 9:e2401623. [PMID: 39924767 DOI: 10.1002/smtd.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Indexed: 02/11/2025]
Abstract
Tumor immunotherapy, which utilizes the immune system to fight cancer, represents a revolutionary method for cancer treatment. Poly (lactic-co-glycolic acid) (PLGA) copolymer has emerged as a promising material for tumor immunotherapy due to its biocompatibility, biodegradability, and versatility in drug delivery. By tuning the size, shape, and surface properties of PLGA-based systems, researchers have improved their ability to align with the requirements for diverse tumor immunotherapy modalities. In this review, the basic properties of the PLGA materials are first introduced and further the principal forms of the PLGA systems for controlled release are summarized and delivery applications are targeted. In addition, recent advances in the use of PLGA delivery systems are highlighted to enhance antitumor immune responses in terms of tumor vaccines, immunogenic cell death-mediated immune responses, tumor microenvironment modulation, and combination immunotherapies. Finally, prospects for the future research and clinical translation of PLGA materials are proposed.
Collapse
Affiliation(s)
- Yishu Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoming Hu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghui Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yu Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilin Guo
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Lv
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Wang Y, Zheng G, Li X, Shi Y, Tian F, Zhang X, Li L. A dual-function hyaluronic acid-encapsulated nanoplatform enables triple GSH depletion for apoptosis-ferroptosis synergistic oncotherapy. Int J Biol Macromol 2025; 308:142650. [PMID: 40158576 DOI: 10.1016/j.ijbiomac.2025.142650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Ferroptosis has emerged as an alternative strategy to eradicate apoptosis-resistant tumor cells. However, the hypoxia and redox homeostasis in tumor microenvironment (TME) hinder effective ferroptosis induction. Herein, we report a multifunctional MnO2-nanoclusters-decorated Cu2+-doped mussel-inspired mesoporous polydopamine (CM) nanoplatform, which is further engineered by co-loading sorafenib (SRF) and indocyanine green (ICG) with the help of a cargo-loading and targeting-capable hyaluronic acid (HA) shell to obtain CMMSIH. Once accumulating in tumors, the MnO2 nanoclusters catalyze glutathione (GSH) oxidation and H2O2 decomposition to deplete intracellular GSH and alleviate hypoxia. The released SRF and exposed CM core are further devoted to inhibiting de novo GSH synthesis and scavenging endogenous GSH, respectively. This triple-modal GSH depletion inactivates intracellular glutathione peroxidase 4 (GPX4), thereby amplifying the potential for ferroptosis. Besides, the Cu2+-mediated fenton-like reaction and ICG-based photodynamic process generate abundant reactive oxygen species (ROS), further amplified by photothermal effect and MnO2-supplied oxygen of CMMSIH. This design synergistically achieves GPX4 inactivation, hypoxia alleviation and ROS accumulation, thus disrupting intracellular redox homeostasis and ultimately triggering the ferroptotic and apoptotic death of tumor cells. In vivo studies demonstrate that CMMSIH nanoplatform inhibits tumor growth without systemic toxicity, offering a promising multimodal strategy to overcome the limitations of TME.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Guocai Zheng
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xinyang Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yang Shi
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fang Tian
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xia Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lingling Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
19
|
Fazeli MA, Amiri M, Rostaminasab G, Akbaripour V, Mikaeili A, Othman M, Rezakhani L. Application of decellularized tissues in ear regeneration. J Tissue Viability 2025; 34:100870. [PMID: 39970482 DOI: 10.1016/j.jtv.2025.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
More than 5 % of people worldwide suffer from hearing disorders. Ototoxic drugs, aging, exposure to loud sounds, rupture, subperichondrial hematoma, perichondritis, burns and frostbite and infections are the main causes of hearing loss, some of which can destroy the cartilage and lead to deformation. On the other hand, disorders of the external ear are diverse and can range from dangerous neoplasms to defects that are not acceptable from a cosmetic standpoint. These issues include injuries, blockages, dermatoses, and infections, and any or all of them may be bothersome to the busy doctor. Using an implant or hearing aid is one of the treatment strategies for deafness. However, these medical devices are not useful for every eligible patient. With the right therapy, many of these issues are not life-threatening and can be treated with confidence in a positive outcome. As medical research and treatment have advanced dramatically in the past ten years, tissue engineering (TE) has emerged as a promising method to regenerate damaged tissue, raising the prospect of a permanent cure for deafness. Decellularization is now seen as a promising development for regenerative medicine, and an increasing number of applications are being found for acellular matrices. Studies on decellularization show that natural scaffolds made from decellularized tissues can serve as a suitable platform while preserving the main components, and the preparation of such scaffolds will be an important part of future bioscience research. It can have wide applications in regenerative medicine and TE. This review intends to give an overview of the status of research and alternative scaffolds in inner and outer ear regenerative medicine from both a preclinical and clinical perspective for ear disorders in order to show how ongoing TE research has the potential to advance and enhance novel disease treatments.
Collapse
Affiliation(s)
- Manouchehr Avatef Fazeli
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Amiri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Akbaripour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Othman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Yu F, Zhao X, Jiang T, Ouyang N, Li P, Yang W, Zhao Z. Enhancing Osteogenesis through Bio-Inspired Recombinant Coral Protein Galaxin by Targeting Mitochondrial Metabolism and ATP Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412867. [PMID: 40056046 PMCID: PMC12061279 DOI: 10.1002/advs.202412867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Indexed: 03/17/2025]
Abstract
Bio-inspired coral-derived scaffolds have been adopted for bone regeneration. However, these confront challenges such as the limited osteoinductive properties, environmental concerns, and ambiguous calcification mechanisms in coral proteins. In this study, the role of the recombinant coral protein galaxin in promoting osteogenesis is investigated. The observations reveal that recombinant galaxin regulates the mitochondrial metabolism in mouse pre-osteoblasts by interacting with the β subunit of ATP synthase. This ultimately promotes osteogenesis of pre-osteoblasts. Furthermore, galaxin is integrated with gelatin methacryloyl (GelMA) and assess the osteogenic potential of the resulting galaxin-GelMA composites in mouse mandibular defects. The observations emphasize the distinctive role of galaxin in regulating mitochondrial functionality and osteogenesis. Additionally, these provide prospective insights for further applications of bio-inspired recombinant coral proteins in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xing Zhao
- Department of NephrologyKidney Research InstituteWest China Hospital of Sichuan UniversityChengdu610041China
- Institute of Biomedical EngineeringCollege of MedicineSouthwest Jiaotong UniversityChengdu610031China
| | - Ting Jiang
- Department of Pediatric DentistryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Ningjuan Ouyang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Peilin Li
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Wei Yang
- College of Polymer Science and EngineeringMed‐X Center for MaterialsSichuan UniversityChengdu610065China
| | - Zhihe Zhao
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
21
|
Adibhosseini MS, Vasheghani-Farahani E, Hashemi-Najafabadi S, Jafarzadeh-Holagh S, Pouri H. Composite cryogel of gelatin/nanofibrillated cellulose/partially demineralized chitin with potential for bone tissue engineering. Int J Biol Macromol 2025; 307:142019. [PMID: 40090655 DOI: 10.1016/j.ijbiomac.2025.142019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Fabrication of macroporous scaffolds with favorable mechanical and biological properties based on natural polysaccharides embedding inorganic components has emerged as a promising alternative for bone regeneration. We hypothesized that partially demineralized chitin containing natural calcium phosphate with suitable mechanical strength as the inorganic component is more favorable for this purpose than commonly used nano-hydroxyapatite (nHA). Therefore, a macroporous cryogel scaffold composed of gelatin (G), nanofibrillated cellulose (NFC), and partially demineralized chitin (PDCh), chemically crosslinked with oxidized dextran (ODex), was developed in this study. The scaffold exhibited suitable aqueous solvent absorption, with a controlled degradation and proper calcium phosphate concentration and a 50-500 μm pore size distribution that promoted cell growth and osteogenesis. Incorporating PDCh provided a high surface-to-volume ratio and significantly enhanced the scaffold's mechanical properties with a compressive strength of 315.4 kPa, suitable for cancellous bone regeneration. Moreover, the presence of natural calcium phosphate in PDCh led to superior biocompatibility and bone differentiation in human mesenchymal stem cells (hMSCs), as evidenced by an increase in calcium deposition, higher alkaline phosphatase (ALP) activity, and an increase in collagen-type 1 and osteocalcin gene expression compared to scaffold containing nHA. These results demonstrated the promising potential of gelatin/nanofibrillated cellulose/PDCh cryogel scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Sadat Adibhosseini
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | | | - Samira Jafarzadeh-Holagh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
22
|
Shi X, Askari Rizvi SF, Yang Y, Liu G. Emerging nanomedicines for macrophage-mediated cancer therapy. Biomaterials 2025; 316:123028. [PMID: 39693782 DOI: 10.1016/j.biomaterials.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Tumor-associated macrophages (TAMs) contribute to tumor progression by promoting angiogenesis, remodeling the tumor extracellular matrix, inducing tumor invasion and metastasis, as well as immune evasion. Due to the high plasticity of TAMs, they can polarize into different phenotypes with distinct functions, which are primarily categorized as the pro-inflammatory, anti-tumor M1 type, and the anti-inflammatory, pro-tumor M2 type. Notably, anti-tumor macrophages not only directly phagocytize tumor cells, but also present tumor-specific antigens and activate adaptive immunity. Therefore, targeted regulation of TAMs to unleash their potential anti-tumor capabilities is crucial for improving the efficacy of cancer immunotherapy. Nanomedicine serves as a promising vehicle and can inherently interact with TAMs, hence, emerging as a new paradigm in cancer immunotherapy. Due to their controllable structures and properties, nanomedicines offer a plethora of advantages over conventional drugs, thus enhancing the balance between efficacy and toxicity. In this review, we provide an overview of the hallmarks of TAMs and discuss nanomedicines for targeting TAMs with a focus on inhibiting recruitment, depleting and reprogramming TAMs, enhancing phagocytosis, engineering macrophages, as well as targeting TAMs for tumor imaging. We also discuss the challenges and clinical potentials of nanomedicines for targeting TAMs, aiming to advance the exploitation of nanomedicine for cancer immunotherapy.
Collapse
Affiliation(s)
- Xueying Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China; Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Punjab, Pakistan
| | - Yinxian Yang
- School of Pharmaceutical Sciences, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
23
|
Zermeno-Salinas JL, Henderson AP, Aziz KT. Atraumatic Scaphoid Avascular Necrosis After Repeated Steroid Injections. Orthopedics 2025; 48:188-191. [PMID: 40239050 DOI: 10.3928/01477447-20250409-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Atraumatic avascular necrosis of the scaphoid is an extremely rare pathology. We present a case of avascular necrosis of the scaphoid following repeat local glucocorticoid injections. A 70-year-old, right-handed woman presented to our clinic with 2 years of atraumatic, progressively worsening left wrist pain and loss of range of motion. Imaging demonstrated fragmentation and avascular necrosis of the scaphoid. The patient underwent uncomplicated scaphoid excision, pisiform excision, and intercarpal arthrodesis, with a good functional outcome. This case highlights both the risk of repeated intra-articular steroid injections and the importance of obtaining serial radiographs when providing intra-articular steroid injections. [Orthopedics. 2025;48(3):188-191.].
Collapse
|
24
|
Khanal V, Carroll M, Carter J, Zhong Y, Chikkamagaluru S, Sato A, Allen R, Wankhade U, Dole N. Lipocalin-2 Regulates Osteocyte Ferroptosis and Osteocyte-Osteoblast Crosstalk via Wnt Signaling to Control Bone Formation. RESEARCH SQUARE 2025:rs.3.rs-6430607. [PMID: 40343339 PMCID: PMC12060985 DOI: 10.21203/rs.3.rs-6430607/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Osteoporosis is a multifactorial disease, and emerging evidence suggests that iron overload contributes to its progression. Here, we identify Lipocalin-2 (LCN2), a cytokine secreted by bone cells with endocrine effects on other tissues, as a local regulator of osteocyte iron metabolism and a mediator of skeletal deterioration. Our findings reveal that LCN2 promotes iron accumulation, mitochondrial dysfunction, and ferroptosis in osteocytes in a process dependent on LCN2 receptor SLC22A17. Genetic ablation of Lcn2 (Dmp1-Cre; Lcn2 fl/fl ) in osteocytes mitigates their ferroptotic vulnerability by preserving mitochondrial integrity and limiting iron overload. Remarkably, LCN2 deletion enhances osteocyte dendricity and lacunocanalicular network, supporting their function in bone remodeling. Mechanistically, we demonstrate that Lcn2 ablation in osteocytes decreases DKK1 and SOST expression in bone, leading to increased Wnt/β-catenin signaling and osteoblast-driven bone formation. Using in vitro and in vivo approaches, we establish the LCN2-SLC22A17 axis as a key pathway linking iron homeostasis, osteocyte dysfunction, and skeletal remodeling. These findings provide insight into a previously unrecognized mechanism underlying iron-driven bone loss and suggest that targeting LCN2 could offer therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Ying Zhong
- University of Arkansas for Medical Sciences
| | | | - Amy Sato
- University of Arkansas for Medical Sciences
| | - Ryan Allen
- University of Arkansas for Medical Sciences
| | | | - Neha Dole
- University of Arkansas for Medical Sciences
| |
Collapse
|
25
|
Li J, Geng Z, Yin L, Huang J, Niu M, Zhang K, Song X, Wang Y, Zuo L, Hu J. Engeletin Targets Mitochondrial Dysfunction to Attenuate Oxidative Stress and Experimental Colitis in Intestinal Epithelial Cells Through AMPK/SIRT1/PGC-1α Signaling. Antioxidants (Basel) 2025; 14:524. [PMID: 40427406 DOI: 10.3390/antiox14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is characterized by chronic intestinal inflammation and epithelial barrier disruption. Emerging evidence highlights mitochondrial dysfunction as a pivotal contributor to IBD pathogenesis, where impaired mitochondrial homeostasis in intestinal epithelial cells (IECs) disrupts redox balance, exacerbates oxidative stress, and triggers apoptosis, further compromising barrier integrity. This study investigated the therapeutic effects of Engeletin (Eng), a dihydroflavonoid from Smilax glabra Roxb., in dextran sulfate sodium (DSS)-induced colitis mice and colonic organoid models. Eng administration (10, 20, 40 mg/kg) significantly alleviated colitis symptoms, including weight loss, disease activity index (DAI) scores, and colon shortening, while restoring intestinal barrier integrity through the upregulation of tight junction proteins (ZO-1, claudin-1) and goblet cell preservation. Eng suppressed NF-κB-mediated inflammation and activated the Nrf2 antioxidant pathway, as well as reduced oxidative stress markers (MDA, CAT, GSH, and SOD). It attenuated epithelial apoptosis by balancing pro- and anti-apoptotic proteins (Bax/Bcl2, c-caspase3) and ameliorated mitochondrial dysfunction via enhanced ATP production, mtDNA levels, and complex I/IV activity. Mechanistically, Eng activated the AMPK/SIRT1/PGC-1α axis, and pharmacological inhibition of PGC-1α abolished its mitochondrial protective and anti-apoptotic effects. These findings demonstrate that Eng alleviates colitis by targeting mitochondrial homeostasis and oxidative stress through AMPK/SIRT1/PGC-1α signaling, offering a multitargeted strategy for IBD therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Lixia Yin
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
| | - Ju Huang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
| | - Minzhu Niu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
| | - Keni Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu 233004, China
| |
Collapse
|
26
|
Kong H, He Q, Han J, Zhang XA. Nanomaterial-Based Drug Delivery Systems Targeting Functional Cells for Osteoarthritis Treatment: Mechanisms, Challenges and Future Prospects. Int J Nanomedicine 2025; 20:5291-5320. [PMID: 40303574 PMCID: PMC12039932 DOI: 10.2147/ijn.s518935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Osteoarthritis (OA) represents a chronic joint disease characterized by articular cartilage degeneration, synovial inflammation, and subchondral bone erosions. Functional cells in OA mainly include macrophages, synoviocytes, chondrocytes, and mesenchymal stem cells. These cells can secrete cytokines and non-coding RNAs and exosomes and interact with each other to coregulate the progression of OA. Some nanomaterial-based drug delivery systems (DDSs) surface ligands can alleviate OA by targeting receptors on the surface of functional cells. Meanwhile, other nanomaterial-based DDSs, whose surfaces are masked by the cell membranes or extracellular vesicles of these functional cells, treat OA by targeting and attacking the diseased site. When ligand-modified nanomaterials target specific functional cells to treat OA, the functional cells are attacked. Functional cells become attackers, similar to arrows, when their cell membranes or extracellular vesicles are modified into nanomaterials to deliver drugs for OA treatment. An increasing number of studies have been conducted on nanomaterial-based DDS-targeted functional cells for the treatment of OA, but none has summarized the corresponding research progress and mechanism of action. In this review, the related references on the treatment of osteoarthritis with nanomaterial-based DDSs targeting functional cells have been included, and how a variety of functional cells can be engineered into nanomaterial-based DDSs serving as targets or arrows to treat OA has been summarised for the first time, providing a new idea and method for the targeted treatment of OA.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shanghai University of Sport, Shanghai, People’s Republic of China
- College of Exercise and Health, Shenyang Sport University, Shenyang, People’s Republic of China
| | - Qijun He
- College of Exercise and Health, Shenyang Sport University, Shenyang, People’s Republic of China
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, People’s Republic of China
| | - Xin-An Zhang
- College of Exercise and Health, Shanghai University of Sport, Shanghai, People’s Republic of China
- College of Exercise and Health, Shenyang Sport University, Shenyang, People’s Republic of China
| |
Collapse
|
27
|
Huang C, Zhong G, Xiao J, Wang X, Huang W, Chen L, Zhang Y, Cheng S. An Injectable Kartogenin-Incorporated Hydrogel Supports Mesenchymal Stem Cells for Cartilage Tissue Engineering. Bioengineering (Basel) 2025; 12:434. [PMID: 40428053 DOI: 10.3390/bioengineering12050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Cartilage defects and injuries often lead to osteoarthritis, posing significant challenges for cartilage repair. Traditional treatments have limited efficacy, necessitating innovative therapeutic strategies. This study aimed to develop an injectable hydrogel-based tissue engineering construct to enhance cartilage regeneration by combining mesenchymal stem cells (MSCs) and the small molecule drug kartogenin (KGN). METHODS An injectable hydrogel was synthesized by crosslinking carboxymethyl chitosan (CMC) with aldehyde-modified cellulose nanocrystals (DACNCs). KGN was incorporated into the hydrogel during crosslinking to achieve sustained drug release. Three hydrogels with varying CMC/DACNC molar ratios (MR = 0.11, 0.22, and 0.33) were developed and characterized for their structural, mechanical, and biocompatible properties. The hydrogel with the optimal ratio (MR = 0.33) was further evaluated for its ability to support MSC viability and differentiation in vitro. Additionally, signaling pathways (TGF-β, FOXO, and PI3K-AKT) were investigated to elucidate the underlying mechanisms. In vivo efficacy was assessed using a rabbit femoral trochlear cartilage defect model. RESULTS The hydrogel with a higher CMC/DACNC molar ratio (MR = 0.33) exhibited increased compressive modulus, a reduced swelling rate, and superior biocompatibility, effectively promoting MSC differentiation in vitro. Signaling pathway analysis revealed activation of the TGF-β, FOXO, and PI3K-AKT pathways, suggesting enhanced chondrogenic potential. In vivo experiments demonstrated that the KGN-MSC-encapsulated hydrogel significantly improved cartilage repair. CONCLUSIONS The injectable CMC/DACNC hydrogel, combined with KGN and MSCs, synergistically enhanced cartilage regeneration both in vitro and in vivo. This study highlights the potential of this hydrogel as a promising scaffold for cartilage tissue engineering, offering a novel therapeutic approach for cartilage defects and injuries.
Collapse
Affiliation(s)
- Chongquan Huang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Guoqing Zhong
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Jin Xiao
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaolan Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Weijuan Huang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Zhou J, Wang G, Zhou Y, Lin X, Zhao Z, Xue Y, An Y, Shao H, Wang Y, Hou S, Wang L, Fan Y. Bioinspired Lipid Nanoparticles with Prolonged Cartilage Retention Boost Regeneration in Early Osteoarthritis and Large Cartilage Defects. ACS NANO 2025; 19:13654-13672. [PMID: 40184476 DOI: 10.1021/acsnano.4c13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Osteoarthritis (OA) leads to the progressive degeneration of articular cartilage, yet there is currently no effective treatment available for both the early and late stages of osteoarthritis. Cartilage regeneration requires the action and prolonged retention of multiple drugs at injured sites to recruit endogenous cells and facilitate cartilage formation. Here, we propose a cartilage-binding-peptide-modified lipid nanoparticle as a drug carrier to achieve sustained release of protein (TGF-β3) and small molecular drugs (KGN) for one month. Through systematic screening of multiple peptides targeting collagen II or chondrocytes, we identify a decorin-derived-peptide-modified lipid nanoparticle with precise targeting and prolonged retention capability in cartilage. Improved nanoparticle stability, high drug loading, and sustainable dual-drug release are achieved through interbilayer cross-linking of adjacent lipid bilayers within multilamellar vesicles. In a surgical model of rat OA, the nanoparticle loading with TGF-β3 and KGN protects injured cartilage from degeneration progression. For severe cartilage injury (full-thickness defects) in a rabbit model, the nanoparticle facilitates the regeneration of high-quality hyaline-like cartilage, which is a rare achievement in full-thickness cartilage regeneration through nanoparticle-based drug delivery. This work presents a strategy for the rational design of bioinspired cartilage-binding peptide-modified lipid-based drug carriers to promote hyaline-like cartilage regeneration.
Collapse
Affiliation(s)
- Jin Zhou
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Guanhuier Wang
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Yue Zhou
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
| | - Zhenmin Zhao
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Yumeng Xue
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yang An
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Hui Shao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lizhen Wang
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
29
|
Ma RX, Lin BH, Feng SX, Bu YT, Chen ZH, Huang YX, Li EL, Weng SJ, Yang L. Evaluation of proanthocyanidins in treating Type 2 diabetic osteoporosis via SIRT6/Nrf2/GPX4 pathways. FASEB J 2025; 39:e70487. [PMID: 40178920 DOI: 10.1096/fj.202403032r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
This study investigates the therapeutic potential of proanthocyanidins (PAC) in addressing Type 2 diabetic osteoporosis (T2DOP) by activating the SIRT6/Nrf2/GPX4 signaling pathways. T2DOP is characterized by compromised bone structure and heightened oxidative stress, where ferroptosis plays a pivotal role. Utilizing a T2DOP mouse model and MC3T3-E1 cells under high glucose conditions, we evaluated the impact of PAC on bone health and iron homeostasis. Our results, obtained through micro-CT, histological staining, Western blot, and immunofluorescence analyses, revealed reductions in bone density and decreased GPX4 expression in T2DOP conditions, indicating ferroptosis and oxidative stress. However, PAC treatment improved trabecular bone structure, reduced bone marrow adipocytes, decreased oxidative stress, and enhanced expression of key osteogenic proteins. These findings highlight PAC's potential in mitigating T2DOP through the SIRT6/Nrf2/GPX4 pathways, offering promising therapeutic insights for managing diabetic osteoporosis.
Collapse
Affiliation(s)
- Run-Xun Ma
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Bing-Hao Lin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Si-Xiang Feng
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yi-Tian Bu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zi-Hao Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yi-Xun Huang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - En-Li Li
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - She-Ji Weng
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Lei Yang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|
30
|
Dalle Carbonare L, Cominacini M, Trabetti E, Bombieri C, Pessoa J, Romanelli MG, Valenti MT. The bone microenvironment: new insights into the role of stem cells and cell communication in bone regeneration. Stem Cell Res Ther 2025; 16:169. [PMID: 40221779 PMCID: PMC11993959 DOI: 10.1186/s13287-025-04288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in bone formation and remodeling. Intrinsic genetic factors and extrinsic environmental cues regulate their differentiation into osteoblasts. Within the bone microenvironment, a complex network of biochemical and biomechanical signals orchestrates bone homeostasis and regeneration. In addition, the crosstalk among MSCs, immune cells, and neighboring cells-mediated by extracellular vesicles and non-coding RNAs (such as circular RNAs and micro RNAs) -profoundly influences osteogenic differentiation and bone remodeling. Recent studies have explored specific signaling pathways that contribute to effective bone regeneration, highlighting the potential of manipulating the bone microenvironment to enhance MSC functionality. The integration of advanced biomaterials, gene editing techniques, and controlled delivery systems is paving the way for more targeted and efficient regenerative therapies. Furthermore, artificial intelligence could improve bone tissue engineering, optimize biomaterial design, and enable personalized treatment strategies. This review explores the latest advancements in bone regeneration, emphasizing the intricate interplay among stem cells, immune cells, and signaling molecules. By providing a comprehensive overview of these mechanisms and their clinical implications, we aim to shed light on future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - M Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - E Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - C Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - J Pessoa
- Department of Medical Sciences and Institute of Biomedicine-Ibimed, University of Aveiro, 3810 - 193, Aveiro, Portugal
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - M T Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy.
| |
Collapse
|
31
|
Gu H, Yu W, Feng P, Zeng C, Cao Q, Chen F, Wang Z, Shen H, Wu Y, Wang S. Circular RNA circSTX12 regulates osteo-adipogenic balance and proliferation of BMSCs in senile osteoporosis. Cell Mol Life Sci 2025; 82:149. [PMID: 40192802 PMCID: PMC11977094 DOI: 10.1007/s00018-025-05684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/03/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Increased adipogenic differentiation and decreased osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) along with slow self-renewal are pivotal causes for decreased bone formation in senile osteoporosis. Circular RNAs (circRNAs) play important roles in cell proliferation and differentiation, and are closely related to osteoporosis. Whether circRNAs orchestrate the adipo-osteogenic balance and the proliferation of BMSCs in osteoporosis remains unclear. We found in this study that circSTX12 was abnormally upregulated in bone sections from osteoporosis patients and in BMSCs from aged mice, as well as in later-generation human BMSCs in culture. Knockdown of circSTX12 in BMSCs resulted in enhanced osteogenesis, decreased adipogenesis, and increased proliferation capacity; circSTX12 overexpression had the opposite effect. RNA pull-down and mass spectrometry revealed the interactions between circSTX12 with CBL and LMO7. At the molecular level, circSTX12 regulated cell fate in BMSCs by competitively binding to CBL, reducing the ubiquitination-mediated degradation of MST1 and thereby activating the Hippo pathway, a key regulator of adipo-osteogenic balance. Knockdown of circSTX12 promoted the nuclear localization of YAP. In addition, our findings suggest that LMO7 mediates circSTX12-induced BMSCs proliferation by regulating the transcription of CCNA2, CCNH, and CCND1. In vivo, injection of antisense oligonucleotides (ASOs) to knockdown circSTX12 promoted bone formation in aged mice. Our results provide evidence for circSTX12 as a regulator of adipo-osteogenic differentiation and proliferation of BMSCs through binding to CBL and LMO7, respectively. Targeting circSTX12 may be a novel approach for osteoporosis treatment.
Collapse
Affiliation(s)
- Huimin Gu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Wenhui Yu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Pei Feng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Qian Cao
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| |
Collapse
|
32
|
Li P, Xu TY, Yu AX, Liang JL, Zhou YS, Sun HZ, Dai YL, Liu J, Yu P. The Role of Ferroptosis in Osteoporosis and Advances in Chinese Herbal Interventions. BIOLOGY 2025; 14:367. [PMID: 40282232 PMCID: PMC12025301 DOI: 10.3390/biology14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
OP, a systemic bone disorder marked by reduced bone mass and heightened fracture risk, poses a significant global health burden, particularly among aging populations. Current treatments, including bisphosphonates and calcium supplementation, are limited by adverse effects and incomplete efficacy. Emerging research highlights ferroptosis-an iron-dependent cell death driven by lipid peroxidation-as a critical contributor to OP pathogenesis, characterized by dysregulated iron metabolism, oxidative stress, and lipid peroxide accumulation, which disrupt bone remodeling by impairing osteoblast function and enhancing osteoclast activity. This review elucidates the mechanistic interplay between ferroptosis and OP subtypes (diabetic osteoporosis (DOP), glucocorticoid-induced (GIOP), and postmenopausal osteoporosis (PMOP)) and evaluates the efficacy of Chinese herbal interventions in mitigating ferroptosis-driven bone loss. Key findings reveal that excess iron exacerbates lipid peroxidation via the Fenton reaction, while glutathione peroxidase 4 (GPX4) inactivation and system Xc- inhibition amplify oxidative damage. In DIOP, hyperglycemia-induced ROS and advanced glycation end products suppress osteogenesis, countered by melatonin and naringenin via nuclear factor -related factor 2 (Nrf2)/GPX4 activation. GIOP involves dexamethasone-mediated GPX4 downregulation, mitigated by exosomes and melatonin through phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. PMOP driven by estrogen deficiency-induced iron overload is alleviated by aconitine and icariin (ICA) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Chinese herbs, including active compounds (quercetin, gastrodin, ICA, etc.) and formulations (Bugu Shengsui Capsule, Erxian Decoction (EXD), etc.), regulate iron metabolism, enhance antioxidant defenses (Nrf2/heme oxygenase 1(HO-1)), and inhibit lipid peroxidation, effectively restoring bone homeostasis. These findings underscore ferroptosis as a pivotal mechanism in OP progression and highlight the therapeutic promise of Chinese herbs in bridging traditional medicine with modern mechanistic insights. Future research should prioritize elucidating precise molecular targets, optimizing formulations, and validating clinical efficacy to address current therapeutic gaps.
Collapse
Affiliation(s)
- Pan Li
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Tian-Yang Xu
- Innovation Practice Center, Changchun University of Chinese Medicine, Jilin 130117, China;
| | - Ao-Xue Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Jing-Ling Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Ya-Shuang Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Huai-Zhu Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Yu-Lin Dai
- Ginseng Scientific Research Institute, Jilin 130117, China;
| | - Jia Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Peng Yu
- Innovation and Entrepreneurship College, Changchun University of Chinese Medicine, Jilin 130117, China
| |
Collapse
|
33
|
Cheng Q, Guo Q, Zhang X, Zhu Y, Liu C, Wang H, Zhu C, Ni L, Li B, Yang H. An "EVs-in-ECM" mimicking system orchestrates transcription and translation of RUNX1 for in-situ cartilage regeneration. Mater Today Bio 2025; 31:101569. [PMID: 40040797 PMCID: PMC11876752 DOI: 10.1016/j.mtbio.2025.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
The self-repair ability of articular cartilage is limited, which is one of the most difficult diseases to treat clinically. Kartogenin (KGN) induces chondrogenesis by regulating RUNX1 mRNA translation and the small molecule compound TD-198946 (TD) promotes chondrogenic differentiation of mesenchymal stem cells (MSCs) through increasing the transcription of RUNX1 mRNA. GelMA hydrogel and liposomes are respectively similar to the extracellular matrix (ECM) and extracellular vesicles (EVs). So, we developed an "EVs-in-ECM" mimicking system by incorporating GelMA and KGN/TD-loaded liposomes to investigate the repair effects of cartilage defect. First, western-blot, RNA fluorescence in situ hybridization (FISH), cellular immuno-fluorescence, co-immuno-precipitation (CO-IP), and qRT-PCR techniques showed that KGN regulated RUNX1 mRNA expression, and then promote chondrogenic differentiation of MSCs. Second, the role of RUNX1 was amplified by orchestrating RUNX1 transcription and translation through TD-198946 (TD) and KGN respectively, and the synergistic effects of TD and KGN on chondrogenesis of MSCs in vitro were discovered. Finally, an "EVs-in-ECM" mimicking system was designed for in situ cartilage repair. When GelMA loaded with KGN and TD liposomes, the hydrogel (KGN + TD@ GelMA) showed biological functions by the continuously controlled release of KGN and TD while maintaining its porous structure and mechanical strength, which enhanced the chondrogenesis of MSCs in one system. The repair performance of "EVs-in-ECM" in vivo was assessed using the articular osteochondral defect model of rat. The implantation of KGN + TD@ GelMA hydrogels effectively exerted favorable osteochondral repair effects showing structures similar to the native tissue, and prevented chondrocyte hypertrophy. The study indicate that the "EVs-in-ECM" mimicking system can act as a highly efficient and potent scaffold for osteochondral defect regeneration.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Orthopaedic Department, Xuzhou Central Hospital, No. 199, The Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoyu Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yuanchen Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Chengyuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Li Ni
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
34
|
Yuan Z, Chen Y, Xin Y, Zhang Y, Dong Z, Wang J, Wang X, Yang G, Li S. Key role of the CSE/transsulfuration pathway in macrophage phenotypic change under iron overload. J Trace Elem Med Biol 2025; 88:127611. [PMID: 39914135 DOI: 10.1016/j.jtemb.2025.127611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 01/31/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Iron homeostasis has a significant impact on the phenotypic transformation of macrophages and is implicated in various diseases. In this study, we evaluated the effect of cystathionine-gamma-lyase (CSE)/transsulfuration pathway in iron-overload induced macrophage phenotype change. METHODS The biochemical parameters, such as qRT-PCR, western blot, fluorescence staining, were assessed both in vitro and in vivo. RESULTS Iron overload disrupts iron metabolism and alters the expression of genes involved in iron transport, resulting in the polarization of macrophages towards the M1 phenotype and an alternating activation state of M2. Meanwhile, excessive iron led to an increase in lipid peroxidation levels and disrupted cysteine metabolism. By utilizing erastin to inhibit SLC7A11 activity and block exogenous cysteine uptake, we were able to observe the exacerbation of the proinflammatory state in macrophages under conditions of cysteine deprivation. The CSE/transsulfuration pathway, serves as the primary route for endogenous cysteine synthesis. In the presence of iron overload, the expression of CSE was upregulated and further enhanced by cysteine deprivation. Deletion of CSE in CSE-knockout mice exacerbated the inflammatory transition of iron-overloaded macrophages by impacting cysteine metabolism and ferritinophagy. CONCLUSION The CSE/transsulfuration pathway regulated macrophage phenotype change under iron-overload, which may offer novel insights into potential therapeutic strategies for iron overload-related disorders.
Collapse
Affiliation(s)
- Zhaoji Yuan
- Metabolism and Disease Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250062, China
| | - Yuxuan Chen
- Department of Cell Biology, Shandong University, Jinan, Shandong 250012, China
| | - Yijun Xin
- Metabolism and Disease Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250062, China
| | - Yong Zhang
- Metabolism and Disease Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Zihao Dong
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jianxu Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangdong Wang
- Department of Cell Biology, Shandong University, Jinan, Shandong 250012, China
| | - Guang Yang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Siying Li
- Metabolism and Disease Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250062, China.
| |
Collapse
|
35
|
Zhang H, Hua S, He C, Yin M, Qin J, Liu H, Zhou H, Wu S, Yu X, Jiang H, Wang Y, Qian Y. Application of 4D-Printed Magnetoresponsive FOGS Hydrogel Scaffolds in Auricular Cartilage Regeneration. Adv Healthc Mater 2025; 14:e2404488. [PMID: 39955711 DOI: 10.1002/adhm.202404488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/01/2025] [Indexed: 02/17/2025]
Abstract
3D-printed hydrogel scaffolds are widely utilized in auricular cartilage tissue engineering. However, issues such as graft-related inflammation, poor mechanical properties, and the lack of external modulation of 3D-printed scaffolds in vivo have raised significant concerns. To address these challenges, a "fried egg" structure is designed, consisting of chitosan-coated ferroferric oxide magnetic nanoparticles (Fe3O4@CS MNPs), which are uniformly incorporated into hydrogel. Through 4D printing technology, magnetoresponsive hydrogel scaffolds are constructed to overcome the aforementioned limitations. The results demonstrated that, compared to 3D printing, 4D-printed magnetic hydrogel scaffolds significantly enhanced cartilage tissue regeneration in both in vitro and in vivo environments when subjected to an external magnetic field (MF). Furthermore, the mechanical strength of regenerated cartilage approached to that of natural cartilage. The chitosan coating on the surface of MNPs exhibited anti-inflammatory and antibacterial properties, promoting M2 polarization of macrophages and suppressing graft-related inflammation and bacteria. Transcriptomic analysis confirmed that MNPs modulate macrophage immunity by activating JAK2/STAT3 signaling pathway. Taken together, a magnetoresponsive multifunctional scaffold is designed that can be externally controlled by magnetic fields to promote ear cartilage tissue regeneration. The regenerated cartilage exhibits excellent biocompatibility, anti-inflammatory, antibacterial properties, and mechanical performance, providing new insights for auricular cartilage tissue engineering.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Shan Hua
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Chenlong He
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Ming Yin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Huawei Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Han Zhou
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Shengming Wu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xingge Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, P. R. China
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Yilong Wang
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yuxin Qian
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| |
Collapse
|
36
|
Hong R, Chen B, Wu H, Ding J. Crocin facilitates osteogenesis and angiogenesis by moderating oxidative stress and ferroptosis via Nrf2/GPX4 pathway. Tissue Cell 2025; 93:102675. [PMID: 39874918 DOI: 10.1016/j.tice.2024.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/11/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025]
Abstract
Bone formation is a complex multi-factor process of bone defect healing. Oxidative stress (OS) is predisposed to induce regulatory cell death (RCD), such as ferroptosis. At present, the antioxidant effects of Crocin on erastin induced oxidative damage were studied. The activity of bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) was detected by CCK-8 and EdU staining. The production of reactive oxygen species (ROS), MDA, SOD and GSH were evaluated. Western blotting assay was used to detect ferroptosis-related proteins. The osteogenic function of BMSCs was determined by alkaline phosphatase (ALP) activity, ALP staining and alizarin red S (ARS) staining. Western blotting and RT-PCR assays were used to detect the expression of osteogenic proteins and genes. Angiogenesis of HUVECs was evaluated by tube formation, RT-PCR, scratch test and Transwell assay. The results showed that Crocin can promote the osteogenic function of BMSCs and angiogenesis of HUVECs. In addition, Crocin protects cells from erastin-induced oxidative injury and inhibits ferroptosis via the Nrf2/GPX4 pathway. These findings suggest that Crocin can promote bone defect healing by regulating OS and inhibiting ferroptosis through the Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Ruilong Hong
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Jiangsu 221009, China
| | - Bo Chen
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Jiangsu 221009, China
| | - Hao Wu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Jiangsu 221009, China
| | - Junwen Ding
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Jiangsu 221009, China.
| |
Collapse
|
37
|
Cheng EY, Mirzaei A. Differential risk of autoimmune disorders in non-traumatic osteonecrosis: clue to pathogenesis. Expert Rev Clin Immunol 2025; 21:413-424. [PMID: 40035487 DOI: 10.1080/1744666x.2025.2475982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Non-traumatic osteonecrosis is a frequent complication in patients with autoimmune disorders, though its prevalence varies markedly depending upon the type of disorder. Understanding the causes of this difference can help uncover the underlying pathophysiology of osteonecrosis and guide the development of effective preventive and therapeutic strategies. AREAS COVERED In this perspective study, we reviewed available databases, including PubMed, Cochrane Library, Scopus, and Web of Science, to explore why the risk of osteonecrosis varies among different autoimmune disorders. Is this variation primarily due to the disease's pathophysiology, the use of medications such as corticosteroids, or a combination of both? If both factors are involved, what is the extent of each contribution in this context? EXPERT OPINION Non-traumatic osteonecrosis is often induced by an interaction between disease pathophysiology and corticosteroid use. In patients with different autoimmune disorders but an identical history of corticosteroid use, the risk of osteonecrosis is influenced by how the underlying pathophysiology compromises bone health. In autoimmune disorders with multiple adverse effects on bone, such as SLE (systemic lupus erythematosus), there is a much higher risk of osteonecrosis compared to disorders with minimal impact on bone health, such as celiac disease and MS (multiple sclerosis).
Collapse
Affiliation(s)
- Edward Y Cheng
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Alireza Mirzaei
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
38
|
Tao M, Cui Y, Sun S, Zhang Y, Ge J, Yin W, Li P, Wang Y. Versatile application of magnesium-related bone implants in the treatment of bone defects. Mater Today Bio 2025; 31:101635. [PMID: 40124334 PMCID: PMC11930110 DOI: 10.1016/j.mtbio.2025.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Magnesium-related bone implants have garnered significant attention in the treatment of bone defects. The applications of magnesium in promoting bone repair mainly include degradable magnesium-based scaffolds owing to its special physical properties and composite materials modified by magnesium ions because of its biological activity. Although numerous studies have confirmed the unique application advantages and efficacy of magnesium in promoting bone repair, some obvious shortcomings persist, including the rapid degradation of magnesium-based scaffolds. In this review, the deficiencies of magnesium and its alloys in the construction of orthopedic implants and their key influencing factors were summarized; furthermore, some advanced improvement schemes were summarized and analyzed. Additionally, the application strategies of magnesium-modified bone implants are summarized and discussed. Lastly, this review incorporates the latest research and discoveries on magnesium in orthopedic science, comprehensively exploring the mechanism of magnesium's role in the complex microenvironment of bone defects from multiple dimensions. This paper provides a comprehensive summary and analysis of cutting-edge concepts in the design and development of magnesium-based bone implants, considering various perspectives such as the physical properties and biological functions of magnesium.
Collapse
Affiliation(s)
- Mijia Tao
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yutao Cui
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Shicai Sun
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, PR China
| | - Yan Zhang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianli Ge
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Wen Yin
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Peng Li
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yanbing Wang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|
39
|
Ge B, Xie Q, Wu D, Xu J, Jiao H, Zhao D, Li J. Hydrogels as drug delivery platforms for orthopedic diseases treatment: A review. Int J Biol Macromol 2025; 304:140902. [PMID: 39947563 DOI: 10.1016/j.ijbiomac.2025.140902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
The skeletal system serves as a crucial support structure for the human body, any damage or disease to bones can result in prolonged pain, impaired mobility, and other negative outcomes. For the treatment of bone diseases, with the in-depth study of the therapeutic mechanism, various small molecule drugs, cells, cytokines, growth factors, bioactive ions, collectively referred to as "drugs" in this context, are increasingly investigated for their potential application in surgical procedures, defect repair, or treatment of diseased bone regions. However, various challenges, including, low stability, the necessity for precise dosage control, are encountered in the administration of drugs. Consequently, the advancement of drug delivery platforms is crucial to safeguard drug efficacy and address the requirement for dosage regulation. Given the attributes of current drug delivery platforms, hydrogels exhibit favorable biocompatibility and offer the ability to easily regulate drug loading and release. As a carrier with diverse properties, abundant varieties, optimal performance, hydrogels present a promising solution in drug delivery. This paper aims to analyze the potential of hydrogel as a delivery platform for treating orthopedics diseases by reviewing the characteristics of hydrogel delivery systems, mechanisms of drug binding, current research findings, and projecting future developments in this field.
Collapse
Affiliation(s)
- Bing Ge
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Qinwen Xie
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Di Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jianfeng Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haolin Jiao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| |
Collapse
|
40
|
Zhang WH, Xiang WY, Yi L, Fang R. The status and hotspot analysis of research on extracellular vesicles and osteoarthritis: a bibliometric analysis. Front Pharmacol 2025; 16:1484437. [PMID: 40230694 PMCID: PMC11994722 DOI: 10.3389/fphar.2025.1484437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Background Degenerative joint disease, known as osteoarthritis (OA), is characterized by pain, swelling, and decreased mobility. The illness has a major negative influence on patients' quality of life and is common around the world, especially among older people. Nevertheless, there are insufficient possibilities for early diagnosis and therapy. Extracellular vesicles, or EVs, control the immune response, tissue healing, and cellular communication. Methods This work offers a bibliometric representation of the areas of focus and correlations between extracellular vesicles and osteoarthritis. We searched for osteoarthritis and extracellular vesicles in publications in the Web of Science Core Collection (WoSCC) database. Bibliometrics, an R package, CiteSpace 6.1. R2, and VOSviewer 1.6.17 were used to perform bibliometric analyses of concentration fields, trends, and relevant factors. Results 944 papers from 59 nations were published; the countries that contributed the most to the field were China, the USA, and Italy. Professors Laura and Enrico are the top contributors. Sichuan University, Istituto Ortopedico Galeazzi, and Shanghai Jiao Tong University are the top three universities. The International Journal of Molecular Sciences is an excellent publication. Exosome, expression, knee osteoarthritis, extracellular vesicle, mesenchymal stem cell, osteoarthritis, and inflammation are the most often occurring keywords. Conclusion These results suggest areas of interest and focus for future research on EVs and OA. This trend suggests that the volume of literature on OA and EVs will continue to rise, with more research being published in the future. This study helps scholars understand current research hotspots in the field and may inspire future research.
Collapse
Affiliation(s)
- Wen Hao Zhang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
| | - Wen Yuan Xiang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Yi
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Fang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
41
|
Moradi S, Nouri M, Moradi MT, Khodarahmi R, Zarrabi M, Khazaie H. The mutual impacts of stem cells and sleep: opportunities for improved stem cell therapy. Stem Cell Res Ther 2025; 16:157. [PMID: 40158131 PMCID: PMC11954214 DOI: 10.1186/s13287-025-04235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Sleep is an indispensable physiological function regulated by circadian rhythms, which influence the biological pathways and overall health of the body. Sleep is crucial for the maintenance and restoration of bodily systems, and disturbances can lead to various sleep disorders, which can impair both mental and physical health. Treatment options for these disorders encompass lifestyle modifications, psychotherapy, medications, and therapies such as light therapy and surgery. Not only sleep deprivation has a significant impact on essential organs, but it also influences various types of stem cells in the body. In this review, we explore the connection between sleep and various types of stem cells, highlighting how circadian rhythms regulate stem cell activities that are vital for tissue regeneration and homeostasis. Disruptions in sleep can hinder stem cell self-renewal, homing, proliferation, function, and differentiation, thereby affecting tissue regeneration and overall health. We also discuss how transplantation of stem cells and their products may help improve sleep disorders, how sleep quality affects stem cell behavior, and the implications for stem cell therapies. Notably, while certain stem cell transplantations can disrupt sleep, enhancing sleep quality may improve the efficacy of these therapies. Finally, stem cells can be utilized to model sleep disorders, offering valuable insights into their underlying mechanisms.
Collapse
Affiliation(s)
- Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Masoumeh Nouri
- R&D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Zarrabi
- R&D Department, Royan Stem Cell Technology Co, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
43
|
Xu W, Zhou S, Bai D, Wang P, Xu G, Yuan H, Li B, Xiao J. Modified Standard Total en bloc Spondylectomy for Solitary Thoracic or Lumbar Spinal Metastasis: A 1-Stage Posterior Approach Under Direct Visualization. J Bone Joint Surg Am 2025; 107:628-638. [PMID: 39303022 DOI: 10.2106/jbjs.24.00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Solitary spinal metastasis (SM) is one of the indications for total en bloc spondylectomy (TES). Conventional TES carries the risk of damage to the great vessels anterior to the vertebral column, mainly because of a lack of visualization of the anterior structures. In this study, we devised a modified standard TES technique to achieve direct visualization in a 1-stage posterior approach. METHODS Included in this study were patients ≥18 years old with solitary thoracic or lumbar SM who underwent the modified standard TES at our institution between January 2017 and October 2022. Patient data were retrospectively sourced from medical records, and patients had a minimum of 3 months of postoperative follow-up. RESULTS This study involved 71 East Asian patients (median age, 57 years; 34 males), comprising 38 patients with thoracic SM and 33 with lumbar SM. Lung cancer was the most common tumor histology. Fourteen patients (19.7%) experienced intraoperative complications; pleural rupture was the predominant complication, and there were no cases of injury to the spinal cord or great vessels. The median operative time was 305 minutes (range, 203 to 660 minutes). The median intraoperative blood loss was 1,000 mL (range, 400 to 4,000 mL). The median perioperative blood transfusion was 4 units (range, 0 to 12 units), and the median hospitalization duration was 17 days (range, 14 to 29 days). Additionally, 27 patients (38.0%) had acute (perioperative) complications. Seven patients were lost to follow-up. Significant clinical improvement was achieved 3 months postoperatively. Postoperative early and late complications were observed in 5 patients. Of the 64 patients with completed follow-up, 47 (73.4%) had negative surgical margins, and none received postoperative radiation therapy. Revision surgery for local tumor recurrence was performed in 4.7% of patients. The median follow-up was 31.5 months (range, 3 to 81 months). CONCLUSIONS Our modified standard TES was demonstrated to be a safe and effective surgical technique for solitary thoracolumbar SM. LEVEL OF EVIDENCE Therapeutic Level IV . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Wei Xu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
| | - Shangbin Zhou
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
- Naval Medical Center, Naval Military Medical University, Shanghai, People's Republic of China
| | - Danyang Bai
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
| | - Pengru Wang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
| | - Gan Xu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
| | - Hao Yuan
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
| | - Bo Li
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Ohori-Morita Y, Ashry A, Niibe K, Egusa H. Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids. Stem Cells Transl Med 2025; 14:szae093. [PMID: 39737878 PMCID: PMC11954588 DOI: 10.1093/stcltm/szae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 01/01/2025] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment. Methods for 3D cultivation of MSCs can be classified into 2 main forms: static suspension culture and dynamic suspension culture. Numerous studies have reported the beneficial influence of these methods on MSCs, which is displayed by increased differentiation, angiogenic, immunomodulatory, and anti-apoptotic effects, and stemness of MSC spheroids. Particularly, recent studies highlighted the benefits of dynamic suspension cultures of the MSC spheroids in terms of faster and more compact spheroid formation and the long-term maintenance of stemness properties. However, only a few studies have compared the behavior of MSC spheroids formed using static and dynamic suspension cultures, considering the significant differences between their culture conditions. This review summarizes the differences between static and dynamic suspension culture methods and discusses the biological outcomes of MSC spheroids reported in the literature. In particular, we highlight the advantages of the dynamic suspension culture of MSC spheroids and contemplate its future applications for various diseases.
Collapse
Affiliation(s)
- Yumi Ohori-Morita
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Amal Ashry
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
45
|
Zhao ZM, Ding JM, Li Y, Wang DC, Kuang MJ. Human umbilical cord mesenchymal stem cell-derived exosomes promote osteogenesis in glucocorticoid-induced osteoporosis through PI3K/AKT signaling pathway-mediated ferroptosis inhibition. Stem Cells Transl Med 2025; 14:szae096. [PMID: 40257841 PMCID: PMC12010878 DOI: 10.1093/stcltm/szae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/30/2024] [Indexed: 04/23/2025] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP), the most common cause of secondary osteoporosis, is characterized by significant bone loss, decreased bone quality, and increased fracture risk. The current treatments for GIOP have several drawbacks. Exosomes are vital for cellular processes. However, very few studies have focused on using human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) for GIOP treatment. In vitro and in vivo dexamethasone was used to evaluate the therapeutic effects of hUCMSC-EXOs on GIOP. CCK-8 and EdU assays were used to evaluate cell viability and proliferation, respectively. We conducted an alkaline phosphatase activity assay, alizarin red staining, Western blotting, and real-time PCR to detect the effect on osteogenesis. TMT-labeled quantitative proteomic and bioinformatic analyses were performed. Furthermore, we performed Western blotting, immunofluorescence, reactive oxygen species assays, and lipid peroxidation assays to investigate the regulatory mechanism by which hUCMSC-EXOs affect cell proliferation and osteogenic differentiation. The in vivo effects of hUCMSC-EXOs were evaluated using micro-CT, hematoxylin, and eosin staining, and immunohistochemical staining. We found that hUCMSC-EXOs reversed the inhibitory effects of glucocorticoids on human bone marrow stromal cell (hBMSC) proliferation and osteogenic differentiation and demonstrated that hUCMSC-EXOs reversed GIOP via the PI3K/AKT signaling pathway, inhibiting lipid peroxidation in vitro and in vivo. HUCMSC-EXOs promote hBMSC osteogenesis through the PI3K/AKT signaling pathway, inhibit ferroptosis, and have therapeutic potential for GIOP in mice.
Collapse
Affiliation(s)
- Zhi-Meng Zhao
- Department of Orthopedics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People’s Republic of China
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People’s Republic of China
| | - Jia-Ming Ding
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People’s Republic of China
| | - Yu Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People’s Republic of China
| | - Da-Chuan Wang
- Department of Spine Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, People’s Republic of China
| | - Ming-Jie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People’s Republic of China
| |
Collapse
|
46
|
Rewthamrongsris P, Phothichailert S, Chokechanachaisakul U, Janjarussakul P, Kornsuthisopon C, Samaranayake L, Osathanon T. Simvastatin modulates osteogenic differentiation in Stem Cells isolated from Apical Papilla. BMC Oral Health 2025; 25:398. [PMID: 40102842 PMCID: PMC11917056 DOI: 10.1186/s12903-025-05721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Simvastatin modulates numerous stem cell functions, including stemness maintenance and differentiation. The present study aimed to explore the effect of simvastatin on the osteogenic differentiation of Stem Cells isolated from Apical Papilla (SCAPs) in vitro. METHODS Cells were isolated from apical papilla, and mesenchymal stem cell features were characterised. Cells were treated with various concentrations of simvastatin (100-1,000 nM). The mRNA expression profile of simvastatin-treated SCAPs was examined using RNA sequencing technique. The osteogenic differentiation abilities were assessed. Alkaline phosphatase activity was determined. The mineralisation was visualised using Alizarin Red S and Von Kossa staining. The osteogenic marker gene expression was determined using a quantitative polymerase chain reaction. RESULTS RNA sequencing data demonstrated that simvastatin upregulated genes enriched in those pathways involving osteogenic differentiation, including the TGF-β signalling pathway, FoxO signalling pathway, and MAPK signalling pathway, while the downregulated genes were involved in pathways related to cell proliferation and apoptosis, for example, DNA replication, cell cycle, and p53 signalling pathway. Simvastatin promoted mineral deposition in a dose-dependent manner, corresponding with the upregulation of osteogenic marker genes namely OSX, DMP1, DSPP, and OCN. Pretreatment with TGF-β receptor inhibitor, SB431542, resulted in a moderately attenuated effect on simvastatin-induced mineralisation and osteogenic marker gene expression. CONCLUSIONS Simvastatin enhances osteogenic differentiation in SCAPs, potentially via TGF-β signalling, implicating its potential role as an adjunctive molecule in dental pulp healing and regeneration in vital pulp treatment approaches.
Collapse
Affiliation(s)
- Paak Rewthamrongsris
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suphalak Phothichailert
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Prim Janjarussakul
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman Samaranayake
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
47
|
Michel JM, Godwin JS, Kerr NR, Childs TE, Booth FW, Mobley CB, Hughes DC, Roberts MD. Skeletal muscle atrophy induced by aging and disuse atrophy are strongly associated with the upregulation of the endoplasmic stress protein CHOP in rats. Mol Biol Rep 2025; 52:322. [PMID: 40100290 PMCID: PMC11919930 DOI: 10.1007/s11033-025-10415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND While canonical anabolic and proteolytic pathways have been well examined in the context of skeletal muscle proteostasis, the roles of endoplasmic reticulum stress (ERS) and the induced unfolded protein response (UPR) are underappreciated. Thus, we aimed to determine whether aging and/or disuse atrophy in rats altered skeletal muscle ERS/UPR markers. METHODS AND RESULTS Soleus (SOL) and plantaris (PLT) muscles of 3-month-old (mo), 6 mo, 12 mo, 18 mo, and 24 mo rats (9-10 per group, 48 in total) were analyzed for UPR proteins with further analysis performed on the protein CHOP. The gastrocnemius muscles of 4 mo rats that had undergone hindlimb immobilization (HLI, n = 12) or sham casting (CTL, n = 12) were analyzed for similar targets as well as more extensive CHOP-related targets. CHOP protein was greater in the PLT and SOL of 18 and 24 mo rats versus other age groups (P < 0.05). Moreover, negative correlations existed between CHOP expression and normalized PLT (R=-0.702, P < 0.001) and SOL (R=-0.658, P < 0.001) muscle weights in all rats analyzed at different ages. CHOP protein expression was also greater in the gastrocnemius of HLI versus CTL rats (P < 0.001), and a negative correlation existed between CHOP protein expression and normalized muscle weights in these rats (R=-0.814, P < 0.001). Nuclear CHOP protein levels (P < 0.010) and genes transcriptionally regulated by CHOP were also greater in HLI versus CTL rats (P < 0.001) implicating transcriptional activity of CHOP is elevated during disuse atrophy. CONCLUSIONS CHOP is operative during aging- and disuse-induced skeletal muscle atrophy in rodents, and more research is needed to determine if CHOP is a key mechanistic driver of these processes.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA.
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA.
- School of Kinesiology Director, Nutrabolt Applied and Molecular Physiology Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA.
| |
Collapse
|
48
|
Chen X, Wang J, Zhen C, Zhang G, Yang Z, Xu Y, Shang P. Hepcidin knockout exacerbates hindlimb unloading-induced bone loss in mice through inhibiting osteoblastic differentiation. BMC Musculoskelet Disord 2025; 26:276. [PMID: 40102891 PMCID: PMC11917043 DOI: 10.1186/s12891-025-08515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND An oligopeptide hepcidin is encoded by the human HAMP gene (Hamp in mice). Its deficiency can result in iron overload, while excess may lead to iron deficiency. Hepcidin knockout mice exhibited iron accumulation in multiple tissues, accompanied by degeneration of bone microarchitecture and reduced biomechanical properties. Astronauts who are exposed to weightlessness during prolonged spaceflight experience bone loss. After space missions, an interrelation exists between iron stores and bone mineral density (BMD). Bone loss in mice due to unloading is linked to iron excess and involves hepcidin. The potential role of hepcidin in unloading-induced bone loss remains unclear. METHODS Our study conducted relevant experiments using hepcidin knockout mice and their primary osteoblasts as the research subjects. We used the hindlimb unloading (HLU) model and the random positioning machine (RPM) system to simulate weightlessness in vivo and in vitro. RESULTS HLU mice exhibited reduced hepcidin levels in the serum and liver. Hepcidin knockout further diminished BMD and bone mineral content (BMC) in the femurs of HLU mice. Similarly, the bone volume fraction (BV/TV) and connectivity density (Conn.Dn) followed this downward trend, whereas trabecular separation (Tb.Sp) showed an inverse pattern. Moreover, hepcidin knockout decreased the ultimate load and elastic modulus in the tibias of HLU mice. Hepcidin knockout decreased PINP levels in the serum, a commonly used marker for bone formation, alongside elevated iron levels in the serum, liver, and bone of HLU mice. We also found higher serum MDA and SOD levels in these mice. In vitro, experimental data indicated that hepcidin knockout suppresses the osteoblastic differentiation capacity under RPM conditions. Additionally, this condition upregulates SOST protein levels and downregulates LRP6 and β-catenin protein levels in osteoblasts. CONCLUSION Hepcidin knockout exacerbates bone loss in HLU mice, most likely due to reduced osteoblastic activity.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
49
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
50
|
Wang B, Lu Z, Gao G, Mikaeiliagah E, Wang L, Yu Q, Wang Z, Hu G, Chen S, Zhang X, Pei M. Distinct role of perlecan in mesenchymal tissue regeneration via genetic and epigenetic modification. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2025; 508:161103. [PMID: 40124846 PMCID: PMC11928145 DOI: 10.1016/j.cej.2025.161103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Perlecan (HSPG2), a key component of basement membrane proteins, plays a crucial role in tissue development and regeneration. However, its direct impact on mesenchymal tissue differentiation, mediated through both genetic modification (gain- and loss-of-function mutations) and epigenetic changes (matrix microenvironment alterations), remains underexplored. In this study, we utilized CRISPR/Cas9 to achieve knockout (KO) and overexpression (OE) of HSPG2 in human fetal nucleus pulposus stem/progenitor cells (NPSCs) and adult infrapatellar fat pad-derived stem cells (IPFSCs) to investigate perlecan's influence on mesenchymal differentiation. We also assessed the effects of decellularized extracellular matrix (dECM) derived from fetal NPSCs with modified HSPG2 expression on the proliferation and differentiation of adult NPSCs. Our findings demonstrate that HSPG2-KO enhance chondrogenic differentiation, while HSPG2-OE suppressed adipogenic differentiation in both fetal NPSCs and adult IPFSCs. Notably, dECM from HSPG2-OE fetal NPSCs significantly promoted chondrogenic differentiation in adult NPSCs, suggesting potential applications for perlecan in developing advanced biomaterials for cartilage regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Department of Orthopaedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Zhihua Lu
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Medical School, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Gongming Gao
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Elmira Mikaeiliagah
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Qingqing Yu
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhuo Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Department of Orthopaedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Bioinformatics Core, West Virginia University, Morgantown, WV, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiaobing Zhang
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Peking Union Medical College, Tianjin, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|