1
|
Yu N, Zhao Y, Wang P, Zhang F, Wen C, Wang S. Changes in border-associated macrophages after stroke: Single-cell sequencing analysis. Neural Regen Res 2026; 21:346-356. [PMID: 39927762 PMCID: PMC12094533 DOI: 10.4103/nrr.nrr-d-24-01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202601000-00038/figure1/v/2025-06-09T151831Z/r/image-tiff Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus (GEO) database (GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the 'pySCENIC' tool. We found that, in response to hypoxia, border-associated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3 (Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function (The Affiliated Hospital of Qingdao University), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yang Zhao
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function (The Affiliated Hospital of Qingdao University), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peng Wang
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function (The Affiliated Hospital of Qingdao University), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fuqiang Zhang
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function (The Affiliated Hospital of Qingdao University), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cuili Wen
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function (The Affiliated Hospital of Qingdao University), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shilei Wang
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function (The Affiliated Hospital of Qingdao University), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Li C, Chen X, Zha W, Fang S, Shen J, Li L, Jiang H, Tian P. Impact of gut microbiota in chronic kidney disease: natural polyphenols as beneficial regulators. Ren Fail 2025; 47:2506810. [PMID: 40441674 PMCID: PMC12123969 DOI: 10.1080/0886022x.2025.2506810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/04/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) poses a severe health risk with high morbidity and mortality, profoundly affecting patient quality of life and survival. Despite advancements in research, the pathophysiology of CKD remains incompletely understood. Growing evidence links CKD with shifts in gut microbiota function and composition. Natural compounds, particularly polyphenols, have shown promise in CKD treatment due to their antioxidant and anti-inflammatory properties and their ability to modulate gut microbiota. This review discusses recent progress in uncovering the connections between gut microbiota and CKD, including microbiota changes across different kidney diseases. We also examine metabolite alterations,such as trimethylamine-N-oxide, tryptophan derivatives, branched-chain amino acids, short-chain fatty acids, and bile acids,which contribute to CKD progression. Further, we outline the mechanisms through which polyphenols exert therapeutic effects on CKD, focusing on signaling pathways like nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), phosphatidylin-ositol-3-kinase (PI3K)/protein kinase B (Akt), and toll like receptors (TLR), as well as their impact on gut microbiota. Lastly, we consider how dietary polyphenols could be harnessed as bioactive drugs to slow CKD progression. Future research should prioritize multi-omics approaches to identify patients who would benefit from polyphenolic interventions, enabling personalized treatment strategies to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Cheng Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Department of Nephrology, Jiujiang University affiliated Hospital, Jiu’jiang, Jiang’xi, China
| | - Xulong Chen
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Weiwei Zha
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Sitian Fang
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nan’chang, Jiangxi, China
| | - Jiangwen Shen
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Lin Li
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Hongli Jiang
- Department of Blood Purification, Kidney Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
| | - PuXun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an, Shaan’xi, China
| |
Collapse
|
3
|
Wang Y, Li Y, Gu Y, Ma W, Guan Y, Guo M, Shao Q, Ji X, Liu J. Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Neural Regen Res 2025; 20:2598-2610. [PMID: 38845216 PMCID: PMC11801306 DOI: 10.4103/nrr.nrr-d-23-01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 11/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00022/figure1/v/2024-11-05T132919Z/r/image-tiff Poststroke cognitive impairment is a major secondary effect of ischemic stroke in many patients; however, few options are available for the early diagnosis and treatment of this condition. The aims of this study were to (1) determine the specific relationship between hypoxic and α-synuclein during the occur of poststroke cognitive impairment and (2) assess whether the serum phosphorylated α-synuclein level can be used as a biomarker for poststroke cognitive impairment. We found that the phosphorylated α-synuclein level was significantly increased and showed pathological aggregation around the cerebral infarct area in a mouse model of ischemic stroke. In addition, neuronal α-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia, suggesting that hypoxia is the underlying cause of α-synuclein-mediated pathology in the brains of mice with ischemic stroke. Serum phosphorylated α-synuclein levels in patients with ischemic stroke were significantly lower than those in healthy subjects, and were positively correlated with cognition levels in patients with ischemic stroke. Furthermore, a decrease in serum high-density lipoprotein levels in stroke patients was significantly correlated with a decrease in phosphorylated α-synuclein levels. Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury, some of them exhibited decreased cognitive function and reduced phosphorylated α-synuclein levels. Taken together, our results suggest that serum phosphorylated α-synuclein is a potential biomarker for poststroke cognitive impairment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Clinical Laboratory, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Yuning Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Cai T. Hyperbaric oxygen therapy as an adjunt treatment for glioma and brain metastasis: a literature review. Med Gas Res 2025; 15:420-426. [PMID: 39923138 PMCID: PMC12054668 DOI: 10.4103/mgr.medgasres-d-24-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/10/2024] [Accepted: 12/06/2024] [Indexed: 02/10/2025] Open
Abstract
The incidence and mortality rates of malignant tumors are increasing annually, with gliomas and brain metastases linked to a poor prognosis. Hyperbaric oxygen therapy is a promising treatment modality for both gliomas and brain metastases. It can alleviate tumor hypoxia and enhance radiosensitivity. When combined with other treatments for gliomas, this therapy has the potential to enhance survival rates. This review addresses the progress in research on the use of hyperbaric oxygen therapy combined with radiotherapy. For brain metastases, the combination of hyperbaric oxygen therapy and stereotactic radiosurgery is both feasible and advantagenous. This combination not only offers protection against radiation-induced brain injury but also supports the recovery of neurological and motor functions. The incidence of adverse reactions to hyperbaric oxygen therapy is relatively low, and it is safe and manageable. Future efforts should be made to investigate the mechanisms by which hyperbaric oxygen therapy combined with radiotherapy treats gliomas and brain metastases, optimize protection of the combined treatment against brain injury, minimizing adverse reactions, conducting multidisciplinary research and clinical trials, and training healthcare providers to facilitate broader clinical application.
Collapse
Affiliation(s)
- Tengteng Cai
- Department of Radiotherapy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Jiao W, Yu J, Zhang Z, Wu D, Pan J, Yin T, Yong Q, Zhai Z, Zhou B, Wu Y, Li Y, Zhou N, Li X, Chen Y, Li Q, Ji T, Li T, Zhu Q, Yang Y, Qi X, Pan J, Zhu Z, Wang Y, Tao Y. The super-enhancer regulatory gene SH2D1A promotes the progression of T cell acute lymphoblastic leukemia by activating CHI3L2. Cell Signal 2025; 132:111810. [PMID: 40233919 DOI: 10.1016/j.cellsig.2025.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive leukemia subtype and a prevalent malignancy in children, with poor prognosis, high relapse rates, and drug resistance. Recent research has shown that super-enhancer-regulated genes play crucial roles in T-ALL progression. In this study, we identified SH2 domain containing 1 A (SH2D1A) as a gene regulated by super-enhancers, and is overexpressed, which correlates with unfavorable clinical outcomes in T-ALL. To investigate its role, we silenced SH2D1A expression in T-ALL cell models using RNA interference. This led to a significant reduction in cell proliferation, colony formation, and promoted apoptosis, as demonstrated by CCK-8 assays, soft agar colony formation, and flow cytometry analysis. In vivo, knockdown of SH2D1A significantly inhibited tumor growth and prolonged survival in mice bearing T-ALL. Mechanistically, we found that SH2D1A contributes to T-ALL progression by upregulating CHI3L2, a downstream effector that promotes cell proliferation and inhibits apoptosis. Using ChIP-Seq and RNA-seq technologies, we confirmed that SH2D1A regulates CHI3L2 expression through super-enhancer-mediated regulation in T-ALL cells. Our findings suggest that SH2D1A and CHI3L2 act as oncogenes in T-ALL, and may represent novel therapeutic targets. This research offers new insights into the molecular mechanisms of T-ALL and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wanyan Jiao
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Tongjin Yin
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Qijun Yong
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Zong Zhai
- Department of Hematology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, Hospital of Anhui Medical University, Suzhou 234000, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Nina Zhou
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yanling Chen
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Qian Li
- Department of Pediatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Tongting Ji
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Tiandan Li
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Qing Zhu
- Department of Pediatrics, The Third people's Hospital of Kunshan, Suzhou, China
| | - Ying Yang
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xin Qi
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Jingjing Pan
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Zhenhong Zhu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| |
Collapse
|
6
|
Cheng Z, Wang S, Hua X, Zhang L, Li B, Li H, Bai Y, Li Y, Hao J, Wang J, Zhao L, Gao D, Zhang L. Elucidating the mechanisms of Shenwu Capsule in improving the cognitive decline in aging based on the UPLC-Q-TOF-MS, network pharmacology, and experimental validation. J Pharm Biomed Anal 2025; 260:116818. [PMID: 40117864 DOI: 10.1016/j.jpba.2025.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Given the growing incidence of dementia-related disorders in the aging population, identifying effective treatments for age-related cognitive decline (ARCD) is crucial. Shenwu Capsule (SWC), shown to have therapeutic efficacy in phase III clinical trials for senile dementia, has unclear mechanisms and active ingredients. Aged mice were administered SWC orally for three months, and behavioral tests, including the Morris water maze, Y maze, and novel object recognition, assessed learning and memory. Neuronal damage was evaluated using histopathology, and the levels of Aβ and phosphorylated tau proteins were measured. UPLC-Q-TOF-MS identified 11 components of SWC capable of crossing the blood-brain barrier (BBB), and network pharmacology was employed to explore their potential mechanisms. Through various detection methods, including transmission electron microscopy, Western blotting, qRT-PCR, ELISA, and immunofluorescence, six key targets (AKT1, TNF, TP53, SRC, EGFR, BCL2) were elucidated. GO and KEGG pathway analyses revealed that the PI3K/Akt signaling pathway plays a crucial role in the pharmacological effects of SWC. SWC was found to suppress neuronal apoptosis by activating the PI3K/Akt/Bcl-2 signaling pathway, as demonstrated by changes in mRNA and protein levels. Histological analysis further showed that SWC treatment restored mitochondrial morphology in the hippocampus of aged mice. Molecular docking simulations confirmed strong binding affinities between the active components and key targets. Psoralidin, a component with strong molecular docking potential, was shown in vitro to activate the PI3K/Akt/Bcl-2 pathway, reduce ROS, decrease apoptosis, improve mitochondrial morphology, and stabilize mitochondrial membrane potential. These protective effects were blocked by the PI3K inhibitor LY294002. Overall, SWC ameliorates ARCD through modulation of the PI3K/Akt/Bcl-2 signaling pathway, with psoralidin identified as a potential active ingredient.
Collapse
Affiliation(s)
- Zizhao Cheng
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuesi Hua
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Boya Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Huiling Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yunya Bai
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yali Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jinping Hao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jianxiong Wang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lingyi Zhao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Dan Gao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
7
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 PMCID: PMC11691474 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
8
|
Ries JD, De Santis C, Dagne MB, Ouabicha K, Sood P, Heyn PC. The redundant landscape of meta-analyses: Evaluating exercise interventions for older adults with cognitive impairment. Ageing Res Rev 2025; 108:102754. [PMID: 40253011 DOI: 10.1016/j.arr.2025.102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Exercise to benefit cognition in older adults with cognitive impairment is well-studied. A recent proliferation of synthesis studies might be a positive contribution to the science; however, redundancy in research can be wasteful and detrimental to drawing confident conclusions about the evidence. This synthesis-based method study was designed to analyze: 1) the frequency and growth patterns of meta-analyses (MAs) and randomized controlled trials (RCTs) on this topic; and 2) the redundancy rate of the RCT studies included in MAs. METHODS This study was borne of a living systematic review, following standard synthesis methodology (PROSPERO registration, librarian-assisted search algorithms developed for multiple databases, searches updated regularly with most recent search in 2025). Frequency counts determined the number of RCTs and how many times they were included across the MAs. RESULTS Forty MAs were identified and included in the synthesis representing a total of 728 RCT studies. After reviewing RCT duplicates, 276 (37.9%) unique RCT studies comprised this body of evidence. Among these, 153 RCTs were cited in only one MA and 123 were cited in 2-19 different MAs. Thus, 452 (62.1%) of all RCTs used across the 40 MAs were redundant (i.e., represented in more than one MA). CONCLUSIONS This study found substantial redundancy in the RCTs used in MAs evaluating the cognitive impact of exercise for older adults with cognitive impairment. Replication is common practice in research but reliance on the same RCTs in multiple MAs creates an illusion of robustness when, in fact, the strength and diversity of the evidence may be more limited. Research redundancy is wasteful and may actually stagnate advancement of this science.
Collapse
Affiliation(s)
- Julie D Ries
- Center for Optimal Aging, Marymount University, Arlington, VA, USA; Physical Therapy Program, School of Health Sciences, College of Health and Education, Marymount University, USA.
| | - Claudia De Santis
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Epidemiology and Statistics Unit, Italy.
| | | | - Kaoutar Ouabicha
- Center for Optimal Aging, Marymount University, Arlington, VA, USA; University of Sidi Mohamed Ben Abdellah (USMBA) Department of Medicine, Fes, Morocco.
| | - Pallavi Sood
- Center for Optimal Aging, Marymount University, Arlington, VA, USA.
| | - Patricia C Heyn
- Center for Optimal Aging, Marymount University, Arlington, VA, USA.
| |
Collapse
|
9
|
Jin P, Bai X. Exploring the roles and clinical potential of exosome-derived non-coding RNAs in glioma. IBRO Neurosci Rep 2025; 18:323-337. [PMID: 40034544 PMCID: PMC11872630 DOI: 10.1016/j.ibneur.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Non-coding accounts for 98 %-99 % of the human genome and performs many essential regulatory functions in eukaryotes, involved in cancer development and development. Non-coding RNAs are abundantly enriched in exosomes, which play a biological role as vectors. Some biofunctional non-coding RNAs are specifically designed as exosomes for the treatment of cancers such as glioma. Glioma is one of the most common primary tumors within the skull and has varying degrees of malignancy and histologic subtypes of grades I-IV. Gliomas are characterized by high malignancy and an abundant blood supply due to rapid cell proliferation and vascularization, often with a poor prognosis. Exosomal non-coding RNAs can be involved in the tumorigenesis process of glioma from multiple directions, such as angiogenesis, tumor proliferation, metastatic invasion, immune evasion, apoptosis, and autophagy. Therefore, non-coding RNAs in exosomes are suitable as markers or therapeutic targets for early diagnosis of diseases and for predicting the prognosis of a variety of diseases. Regulating exosome production and the level of exosomal non-coding RNA expression may be a new approach to prevent or eliminate glioma. In this review, we review the origin and characteristics of exosomal non-coding RNAs, and introduce the functional studies of exosomal non-coding RNAs in glioma and their potential clinical applications, in order to broaden new ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Peng Jin
- Department of Neurosurgery, Hulunbuir People’s Hospital, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| | - Xue Bai
- Department of Intensive Care Unit, Hulunbuir People’s Hospital, No. 20, Shengli Street, Hailar District, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| |
Collapse
|
10
|
Yang Z, Ling J, Sun W, Pan C, Chen T, Dong C, Zhou X, Zhang J, Zheng J, Ma X. Artificial intelligence-assisted magnetic resonance lymphography for evaluation of micro- and macro-sentinel lymph node metastasis in breast cancer. Mater Today Bio 2025; 32:101692. [PMID: 40225140 PMCID: PMC11986559 DOI: 10.1016/j.mtbio.2025.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Contrast-enhanced magnetic resonance lymphography (CE-MRL) plays a crucial role in preoperative diagnostic for evaluating tumor metastatic sentinel lymph node (T-SLN), by integrating detailed lymphatic information about lymphatic anatomy and drainage function from MR images. However, the clinical gadolinium-based contrast agents for identifying T-SLN is seriously limited, owing to their small molecular structure and rapid diffusion into the bloodstream. Herein, we propose a novel albumin-modified manganese-based nanoprobes enhanced MRL method for accurately assessing micro- and macro-T-SLN. Specifically, the inherent concentration gradient of albumin between blood and interstitial fluid aids in the movement of nanoprobes into the lymphatic system. The micro-T-SLN exhibits a notably higher MR signal due to the formation of new lymphatic vessels and increased lymphatic flow, allowing for a greater influx of nanoprobes. In contrast, the macro-T-SLN shows a lower MR signal as a result of tumor cell proliferation and damage to the lymphatic vessels. Additionally, a highly accurate and sensitive machine learning model has been developed to guide the identification of micro- and macro-T-SLN by analyzing manganese-enhanced MR images. In conclusion, our research presents a novel comprehensive assessment framework utilizing albumin-modified manganese-based nanoprobes for a highly sensitive evaluation of micro- and macro-T-SLN in breast cancer.
Collapse
Affiliation(s)
- Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Jianer Ling
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Wei Sun
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Chunshu Pan
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chen Dong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojun Zhou
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Xuehua Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
11
|
Zheng Y, Wang T, Zhang J, Wei S, Wu Z, Li J, Shi B, Sun Z, Xu W, Zhu J. Plant-Derived Nanovesicles: A Promising Frontier in Tissue Repair and Antiaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40402864 DOI: 10.1021/acs.jafc.5c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
In recent years, mammal-derived extracellular vesicles (EVs) have been widely used in studies on tissue repair and antiaging. Their therapeutic potential lies in mediating intercellular communication through the transfer of various bioactive molecules. As research on nanovesicles progresses, plant-derived nanovesicles (PDNVs) have attracted growing attention as a promising alternative. As an emerging cross-species regulatory "natural force", PDNVs have attracted considerable interest due to their excellent biocompatibility, low immunogenicity, and remarkable therapeutic effects in tissue injury and aging-related diseases. In this review, we examine the bioactive components, drug delivery potential, and functional mechanisms of PDNVs, and we summarize recent advances in their applications for tissue repair and antiaging. In addition, we systematically discuss the major challenges and limitations hindering the clinical translation and industrialization of PDNVs, and we propose five strategic approaches along with future research directions. This review aims to promote further investigation of PDNVs in regenerative medicine and enhance their potential for clinical application.
Collapse
Affiliation(s)
- Yuzhou Zheng
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Tangrong Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Sen Wei
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zhijing Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Beihao Shi
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jian Zhu
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| |
Collapse
|
12
|
Chen Z, Zhang S, Jiang C, Jiang L, Chen H, Huang J, Liu J, Yang G, Luo X, Chi H, Fu J. Integrating multi-omics data to identify the role of Aggrephagy-related genes in tumor microenvironment and key tumorigenesis factors of GB from the perspective of single-cell sequencing. Discov Oncol 2025; 16:777. [PMID: 40377747 PMCID: PMC12084465 DOI: 10.1007/s12672-025-02431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/18/2025] [Indexed: 05/18/2025] Open
Abstract
This study presents a pioneering exploration into the role of aggrephagy-related genes (ARGs) in glioblastoma (GB), a kind of malignant tumor which is highly invasive and resistant to a series of therapy. Utilizing single-cell sequencing to dissect their influence on the tumor microenvironment (TME) and tumorigenesis. By applying non-negative matrix factorization for dimensionality reduction and clustering of single-cell data, distinct cellular subtypes within the TME influenced by ARGs were identified, uncovering their functions and interactions. The investigation extends to validating the prognostic significance of ARGs and their potential in predicting immunotherapy outcomes. Molecular docking analysis of key ARGs further highlights TUBA1C and UBB as promising therapeutic targets, offering novel insights into GB's complex biology and suggesting a targeted approach for therapy, which is characterized by some crucial pathways in our analysis, including PI3k-akt and TGF-beta pathways. This comprehensive single-cell level examination not only advances our understanding of aggrephagy's role in GB but also proposes new avenues for prognosis and treatment strategies, emphasizing the critical impact of ARGs on the TME and GB progression.
Collapse
Affiliation(s)
- Zipei Chen
- Department of Oncology, Dazhou Central Hospital, Dazhou, 635000, China
- Department of Clinical, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Shengke Zhang
- Department of Clinical, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chenglu Jiang
- Department of Clinical, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Department of Clinical, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Haiqing Chen
- Department of Clinical, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinbang Huang
- Department of Clinical, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jie Liu
- Department of Oncology, Dazhou Central Hospital, Dazhou, 635000, China
| | - Guanhu Yang
- Research Department, Swiss University of Traditional Chinese Medicine, 5330, Bad Zurzach, Switzerland
- Department of Specialty Medicine, Ohio University, Athens, OH, 45701, USA
| | - Xiufang Luo
- Geriatric Department, Dazhou Central Hospital, Dazhou, 635000, China.
| | - Hao Chi
- Department of Clinical, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
| | - Jiangping Fu
- Department of Oncology, Dazhou Central Hospital, Dazhou, 635000, China.
| |
Collapse
|
13
|
Wang D, Yao H, Wang L, Lu B, Liu W, Li J, Gong Y, Cai Y, Li Y, Cai X, Zhang R. Gut-brain axis and vascular dementia: a review on mechanisms and Chinese herbal medicine therapeutics. Front Microbiol 2025; 16:1564928. [PMID: 40438206 PMCID: PMC12116591 DOI: 10.3389/fmicb.2025.1564928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Vascular dementia (VD), the second most prevalent form of dementia among the elderly population, is a cerebrovascular disorder characterized primarily by cognitive impairment. Emerging evidence has revealed that intestinal flora dysbiosis may be implicated not only in gastrointestinal (GI) pathologies but also in central nervous system (CNS) disorders, including VD. The gut-brain axis (GBA) serves as a critical bidirectional pathway through which intestinal flora influences brain physiology and function. Notably, accumulating studies have demonstrated the therapeutic potential of Chinese herbal medicine (CHM) in VD management via modulation of gut microbial composition. This review synthesizes current understanding of the VD- intestinal flora relationship mediated by the GBA, while systematically evaluating evidence for CHM interventions that ameliorate VD through intestinal flora regulation. These insights may offer novel perspectives and methodological approaches for both fundamental research and clinical management of VD.
Collapse
Affiliation(s)
- Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Huiying Yao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Luoqi Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Bowen Lu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Jinghan Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yujin Gong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuhao Cai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuehan Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Rui Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
- Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
14
|
Li M, Su N. Analysis of Warm Acupuncture Combined with Rehabilitation Training for Lower Limb Motor Dysfunction in Cerebral Infarction Patients. NeuroRehabilitation 2025:10538135251339348. [PMID: 40368354 DOI: 10.1177/10538135251339348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
ObjectiveTo evaluate the efficacy of warm acupuncture combined with rehabilitation training on lower-limb motor dysfunction in cerebral infarction (CI) patients.MethodsSixty CI patients with lower-limb motor dysfunction (Feb 2019 to Apr 2021) were enrolled. The control group received rehabilitation training, while the study group received warm acupuncture plus rehabilitation. The outcomes, including Functional Independence Measure (FIM), 10-meter maximum walking speed (MWS), Berg-balance scale (BBS), Barthel index, and Holden walking ability rating scale, were compared.ResultsThe study group showed significantly better results than the control group. After treatment, the study group's FIM and BBS scores were higher at 1-, 4-, and 6-week follow-ups. MWS scores of the study group improved significantly, while the control group showed less improvement. The Holden walking ability rating scale was also more favorable for the study group.ConclusionWarm acupuncture combined with rehabilitation training significantly improves lower-limb motor dysfunction in CI patients, demonstrating superior outcomes compared to rehabilitation alone.
Collapse
Affiliation(s)
- Man Li
- Shanxi University of Chinese Medicine, Jinzhong, 030002, Shanxi Provicne, China
| | - Nan Su
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215003, Jiangsu Province, China
| |
Collapse
|
15
|
Kell DB, Pretorius E, Zhao H. A Direct Relationship Between 'Blood Stasis' and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals (Basel) 2025; 18:712. [PMID: 40430532 PMCID: PMC12114700 DOI: 10.3390/ph18050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
'Blood stasis' (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (). Similar concepts exist in Traditional Korean Medicine ('Eohyul') and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large variety of inflammatory diseases, though an exact equivalent in Western systems medicine is yet to be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many chronic, inflammatory diseases are comparatively resistant to fibrinolysis, and thus have the ability to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also used by Virchow). First, the diseases known to be associated with microclots are all associated with blood stasis. Secondly, by blocking red blood cell transport, fibrinaloid microclots provide a simple mechanistic explanation for the physical slowing down ('stasis') of blood flow. Thirdly, Chinese herbal medicine formulae proposed to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to lower the levels of fibrinaloid microclots, plausibly in part by blocking catalysis of the polymerization of fibrinogen into an amyloid form. We rehearse some of the known actions of the constituent herbs of Xue Fu Zhu Yu and specific bioactive molecules that they contain. Consequently, such herbal formulations (and some of their components), which are comparatively little known to Western science and medicine, would seem to offer the opportunity to provide novel, safe, and useful treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic Encephalopathy/Chronic Fatigue Syndrome, long COVID, and even ischemic stroke.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
| | - Huihui Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100026, China;
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 100026, China
| |
Collapse
|
16
|
Zhao Z, Dong Y, Zhao Z, Xiahou Z, Sun C. Single-cell atlas of endothelial cells in atherosclerosis: identifying C1 CXCL12+ ECs as key proliferative drivers for immunological precision therapeutics in atherosclerosis. Front Immunol 2025; 16:1569988. [PMID: 40421026 PMCID: PMC12104226 DOI: 10.3389/fimmu.2025.1569988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Background Atherosclerosis (AS) is a chronic inflammatory disease characterized by endothelial dysfunction, monocyte infiltration, smooth muscle proliferation, and extracellular matrix accumulation. Endothelial cell (EC) dysfunction plays a pivotal role in the initiation and progression of AS. Despite progress in traditional research methods, the complexity of cellular heterogeneity within the disease remains poorly understood, necessitating a more refined approach for uncovering disease mechanisms. Methods In this study, we employed single-cell RNA sequencing (scRNA-seq) to map the endothelial cell landscape in AS comprehensively. By analyzing cellular heterogeneity, differentiation trajectories, and functional states, we identified critical endothelial subpopulations and their roles in the progression of AS. Functional enrichment and differentiation analyses were conducted, and the findings were validated through in vitro experiments. Results The single-cell analysis revealed distinct EC subpopulations with unique contributions to AS progression. Among these, C1 CXCL12+ ECs emerged as a key subpopulation associated with endothelial differentiation, vascular remodeling, and inflammation. These cells demonstrated high proliferative potential and were enriched in pathways related to endothelial migration and repair. Through CCK-8, Transwell assay, EdU staining and angiogenesis ability, we found that knockdown of FOXM1 in C1 CXCL12+ ECs resulted in decreased proliferation, migration and invasion. Thus, it affects the progression of AS. Conclusion This study provides a detailed single-cell atlas of endothelial cells in AS, identifying critical subpopulations, regulatory pathways, and key factors driving disease progression. The application of single-cell technologies paves the way for advancing our understanding of cardiovascular diseases and offers significant potential for developing personalized therapeutic strategies in immunology and precision medicine.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujiang Dong
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Cong Sun
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Hao J, Wang M, Wu Q, Song T, Hao Y, Chang L, Hou Y, Jia Z. Deciphering the molecular mechanisms of QLQX capsules in heart failure: A multi-omics perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156828. [PMID: 40378592 DOI: 10.1016/j.phymed.2025.156828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
PURPOSE This study investigates the therapeutic mechanisms of Qiliqiangxin (QLQX) capsules in treating Heart Failure with Preserved Ejection Fraction (HFpEF). The study aims to understand how QLQX impacts cardiac function and underlying molecular pathways. METHODS HFpEF was induced in a rat model through unilateral nephrectomy, DOCA pellet implantation, and a high-salt diet. Cardiac function was assessed via M-mode imaging and Doppler flow measurements, focusing on key parameters like ejection fraction and diastolic function. A network pharmacology approach identified active QLQX components and potential targets, followed by comprehensive multi-omics analyses-including transcriptomics, proteomics, and metabolomics-to uncover the molecular mechanisms modulated by QLQX. Quantitative RT-PCR was employed to measure mRNA levels of key cardiac markers, providing further insights into QLQX's impact on cardiac remodeling. RESULTS QLQX treatment significantly improved cardiac function, with notable enhancements in ejection fraction and left ventricular diastolic function. Network pharmacology revealed 530 potential targets of QLQX, with 38 overlapping HFpEF targets. Key pathways identified include cGMP-PKG, adrenergic signaling, and calcium signaling. Transcriptomic analysis showed significant gene expression changes related to inflammation, energy metabolism, and myocardial remodeling, which were reversed by QLQX. Proteomic analysis identified 401 differentially expressed proteins, enriched in pathways such as cGMP-PKG and NF-κB signaling. Metabolomic profiling highlighted the role of lipid metabolism and adrenergic signaling in HFpEF, which were normalized by QLQX. In vivo validation confirmed the involvement of the cGMP-PKG pathway, with increased serum NO and cGMP levels, improved endothelial function, and reduced pro-fibrotic markers following QLQX treatment. CONCLUSION QLQX exerts multifaceted therapeutic effects on HFpEF by modulating gene expression, protein function, and metabolic pathways, particularly through the cGMP-PKG signaling pathway. These findings support QLQX as a promising therapeutic intervention for HFpEF, offering improvements in cardiac function and reversing pathological changes at multiple molecular levels.
Collapse
Affiliation(s)
- Jiameng Hao
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| | - Mingye Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Qiulan Wu
- Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, No.238, South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Yuanyuan Hao
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, No.238, South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Liping Chang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China; Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China; Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei, China.
| | - Zhenhua Jia
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, No.238, South of Tianshan Street, Shijiazhuang 050035, Hebei, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei, China; Hebei Yiling Hospital, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
18
|
Petrica L, Gadalean F, Vlad A, Muntean DM, Vlad D, Dumitrascu V, Bob F, Milas O, Suteanu-Simulescu A, Glavan M, Ursoniu S, Balint-Marcu L, Mogos-Stefan M, Ienciu S, Cretu OM, Popescu R, Gluhovschi C, Iancu L, Jianu DC. Stromal Cell-Derived Factor-1, P-Selectin, and Advanced Oxidation Protein Products with Mitochondrial Dysfunction Concurrently Impact Cerebral Vessels in Patients with Normoalbuminuric Diabetic Kidney Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2025; 26:4481. [PMID: 40429625 PMCID: PMC12111185 DOI: 10.3390/ijms26104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Diabetic kidney disease (DKD) displays a high prevalence of cardiovascular and cerebrovascular disease. Both the kidney and the brain share common pathogenic mechanisms, such as inflammation, endothelial dysfunction, oxidative stress, and mitochondrial dysfunction. The aim of this study was to establish a potential association of cerebral vessel remodeling and its related functional impairment with biomarkers of inflammation, oxidative stress, and mitochondrial dysfunction in the early stages of DKD in type 2 diabetes mellitus (DM) patients. A cohort of 184 patients and 39 healthy controls was assessed concerning serum and urinary stromal cell-derived factor-1 (SDF-1), P-selectin, advanced oxidation protein products (AOPPs), urinary synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), and N-acetyl-β-(D)-glucosaminidase (NAG). The quantification of the mitochondrial DNA copy number (mtDNA-CN) and nuclear DNA (nDNA) in urine and peripheral blood was conducted using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Using TaqMan tests, the beta-2 microglobulin nuclear gene (B2M) and the cytochrome b (CYTB) gene, which encodes subunit 2 of NADH dehydrogenase (ND2), were evaluated. The MtDNA-CN is the ratio of mitochondrial DNA to nuclear DNA copies, ascertained through the examination of the CYTB/B2M and ND2/B2M ratios. The intima-media thickness (IMT) measurements of the common carotid arteries (CCAs), along with the pulsatility index (PI) and resistivity index (RI) of the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), were obtained through cerebral Doppler ultrasonography (US). Additionally, the breath-holding index (BHI) was also measured by cerebral Doppler US. PI-ICAs, PI-MCAs, CCAs-IMT, RI-MCAs, and RI-ICAs demonstrated direct relationships with SDF-1, P-selectin, AOPPs, urine mtDNA, podocalyxin, synaptopodin, NAG, and KIM-1 while showing indirect correlations with serum mtDNA and the eGFR. In contrast, the BHI had negative correlations with SDF-1, P-selectin, AOPPs, urine mtDNA, synaptopodin, podocalyxin, KIM-1, and NAG while showing direct associations with serum mtDNA and the eGFR. In conclusion, a causative association exists among SDF-1, P-selectin, and AOPPs, as well as mitochondrial dysfunction, in early diabetic kidney disease (DKD) and significant cerebrovascular alterations in patients with type 2 diabetes mellitus and normoalbuminuric DKD, with no neurological symptoms.
Collapse
Affiliation(s)
- Ligia Petrica
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Florica Gadalean
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Division of Diabetes, Nutrition, and Metabolic Diseases, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Danina Mirela Muntean
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Division of Pathophysiology, Department of Functional Sciences III, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Daliborca Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Division of Pharmacology, Department of Biochemistry and Pharmacology IV, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Division of Pharmacology, Department of Biochemistry and Pharmacology IV, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Flaviu Bob
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Oana Milas
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Mihaela Glavan
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Division of Public Health and History of Medicine, Department of Functional Sciences III, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Balint-Marcu
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Maria Mogos-Stefan
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Silvia Ienciu
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Octavian Marius Cretu
- Division of Surgical Semiology I, Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Emergency Clinical Municipal Hospital Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Division of Cell and Molecular Biology II, Department of Microscopic Morphology II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Cristina Gluhovschi
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
| | - Lavinia Iancu
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.-M.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.V.); (D.M.M.); (D.V.); (V.D.); (S.U.); (R.P.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Division of Neurology I, Department of Neurosciences VIII, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
19
|
Zhao Z, Zhao Z, Lin Z, Fan L, Xiahou Z, Dong Y, Bao W. Decoding multiple myeloma: single-cell insights into tumor heterogeneity, immune dynamics, and disease progression. Front Immunol 2025; 16:1584350. [PMID: 40406148 PMCID: PMC12095158 DOI: 10.3389/fimmu.2025.1584350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/18/2025] [Indexed: 05/26/2025] Open
Abstract
Background Multiple myeloma (MM) is a biologically heterogeneous malignancy of clonal plasma cells, often progressing from MGUS or smoldering MM. It causes anemia, bone lesions, and immune dysfunction due to abnormal plasma cell expansion in the bone marrow. Neuroinflammatory and neurotrophic factors may influence MM progression by affecting immune cells and the bone marrow niche. Growing evidence points to a role for neuroimmune regulation in tumor immunity. Despite therapeutic progress, disease heterogeneity and resistance highlight the need for new strategies targeting the tumor microenvironment and neuroimmune axis. Methods This investigation exploited single-cell RNA sequencing (scRNA-seq) to analyze MM and high-risk smoldering multiple myeloma (SMMh) samples, identifying 11 distinct cell types. We examined their transcriptional signatures, stemness, proliferative properties, and metabolic pathways, with particular attention to neuroimmune interactions in the tumor microenvironment. Using trajectory inference tools such as CytoTRACE, Monocle2, and Slingshot, we traced the differentiation paths of MM cell subpopulations and identified key signaling pathways that may influence immune responses and tumor progression. Results The analysis identified four distinct subpopulations of myeloma cells, with the C0 IGLC3+ myeloma cells representing the least differentiated and most proliferative subset. These cells played a critical role in MM progression and may contribute to immune evasion mechanisms. Additionally, receptor-ligand interactions within the tumor microenvironment were identified, which may be influenced by neuroinflammatory and neurotrophic factors. These findings suggest that the nervous system and immune modulation significantly affect tumor biology, highlighting potential therapeutic targets that could be exploited to overcome resistance to conventional therapies. Conclusion This single-cell analysis provided new insights into the cellular diversity and differentiation trajectories in MM, offering a deeper understanding of the complex neuroimmune interactions that drive tumor progression and resistance. By incorporating the role of neuroinflammation and immune modulation, our study suggested novel therapeutic strategies targeting the neuroimmune axis in oncology, ultimately contributing to the development of more effective, personalized treatment approaches for MM.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhiheng Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Fan
- Department of Hematology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yujiang Dong
- The Second Affiliated Hospital of Shandong University of Chinese Medicine, Department of Cardiovascular Disease, Jinan, China
| | - Weiying Bao
- Department of Hematology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Jiang F, Cai M, Peng Y, Li S, Wang Z, Pan Q, Wang C, Chen L, Lin Y. A correlational study of plasma galectin-3 as a potential predictive marker of postoperative delirium in patients with acute aortic dissection. Sci Rep 2025; 15:16022. [PMID: 40341412 PMCID: PMC12062433 DOI: 10.1038/s41598-025-98858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 04/15/2025] [Indexed: 05/10/2025] Open
Abstract
This study aimed to demonstrate whether plasma galectin-3 could predict the development of postoperative delirium (POD) in patients with acute aortic dissection (AAD). Prospective, observational study. Cardiac surgery intensive care unit. Consecutive patients who were diagnosed with AAD and operated at the Cardiac Medical Center of Fujian Province between December 2020 and December 2022. Patients were classiffed into two groups according to the Confusion Assessment Method for the Intensive Care Unit: POD group and NON-POD group. Each patient's plasma was tested before emergency surgery. Baseline demographic data and preoperative, intraoperative, and postoperative clinical data were collected. The short-term clinical outcomes were followed up daily. The rate of POD was calculated. The risk factors for POD were analyzed through univariate analysis and multivariate logistic regression. Receiver operating characteristic (ROC) curves were used to assess the ability of plasma galectin-3 to predict POD. A total of 309 study subjects were included in this study, and the rate of POD was 38.8%. Patients with AAD were categorized into the POD and NON-POD cohorts postoperatively based on their CAM-ICU scores. There was no statistically significant difference in the baseline characteristics between the two groups (P > 0.05). However, patients in the POD group had significantly elevated plasma galectin-3 levels (P < 0.001). The ROC curves showed that plasma galectin-3 had a sensitivity of 72.5% and a specificity of 70.9% as a potential biomarker for the diagnosis of POD. The critical value of plasma galectin-3 for diagnosing POD was 9.18 ng/mL. Plasma galectin-3 levels remained an independent predictor of POD after controlling for different variables (P < 0.001). Elevated plasma galectin-3 levels are associated with an increased risk of POD. Plasma galectin-3 may be a prospective biomarker for predicting POD.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, No. 6, Xuefu South Road, Shangjie Town, Minhou County, 350108, Fuzhou, China
- Department of Nursing, Union Hospital, Fujian Medical University, 29 Xinquan Road, Gulou District, 350001, Fuzhou, China
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meiling Cai
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, No. 6, Xuefu South Road, Shangjie Town, Minhou County, 350108, Fuzhou, China
- Department of Nursing, Union Hospital, Fujian Medical University, 29 Xinquan Road, Gulou District, 350001, Fuzhou, China
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanchun Peng
- Department of Nursing, Union Hospital, Fujian Medical University, 29 Xinquan Road, Gulou District, 350001, Fuzhou, China
| | - Sailan Li
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, No. 6, Xuefu South Road, Shangjie Town, Minhou County, 350108, Fuzhou, China
| | - Zhenzhen Wang
- Department of Nursing, Union Hospital, Fujian Medical University, 29 Xinquan Road, Gulou District, 350001, Fuzhou, China
| | - Qiong Pan
- Department of Nursing, Union Hospital, Fujian Medical University, 29 Xinquan Road, Gulou District, 350001, Fuzhou, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, No. 6, Xuefu South Road, Shangjie Town, Minhou County, 350108, Fuzhou, China.
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yanjuan Lin
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, No. 6, Xuefu South Road, Shangjie Town, Minhou County, 350108, Fuzhou, China.
- Department of Nursing, Union Hospital, Fujian Medical University, 29 Xinquan Road, Gulou District, 350001, Fuzhou, China.
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
21
|
Liu Y, Zhai Y, Ma L, Wang Z, Wang J, Hu B, Tang Y. Colchicine alleviates ischemic white matter lesions and cognitive deficits by inhibiting microglia inflammation via the TAK1/MAPK/NF-κB signaling pathway. Behav Brain Res 2025; 490:115619. [PMID: 40334945 DOI: 10.1016/j.bbr.2025.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
White matter lesions (WMLs) caused by chronic cerebral hypoperfusion (CCH) are closely related to the activation of microglia. Inhibition of microglia overactivation is considered as a protective strategy for WMLs. Based on its anti-inflammatory properties and clinical benefits, colchicine has become a hot spot in the drug treatment and research of vascular diseases. However, its role in vascular cognitive impairment (VCI) remains unclear. In this study, BCAS model was established to induce CCH, simulate subcortical white matter lesions, and examine the effect of colchicine on WMLs after BCAS. The basic parameters of body weight and blood pressure were monitored. Behavioral evaluation included the Open Field test, Y maze and Morris Water Maze to evaluate the motor ability and cognitive level of mice respectively. The cerebral blood flow was detected by Laser Speckle Imaging (LSI). Transmission Electron Microscopy, LFB staining, corpus callosum MBP and MAG western blot levels, and mouse brain T2-weighted imaging were used to detect demyelination and white matter changes. The expression of IBA1 was determined by immunohistochemistry and western blot, and the correlation between IBA1 staining and behavioral parameters was analyzed. The expression of brain inflammatory factors was detected by Elisa. It was found that colchicine may alleviates VCI through MAPK/NF-κB pathway by means of network pharmacology enrichment analysis from the perspective of inflammation, and the classical inflammatory proteins TAK1, p38, JNK, and p65 of this pathway were subsequently detected in in vivo and in vitro models. The anti-inflammatory spectrum of colchicine, including IL-1β, IL-6, COX2, CD86 and anti-inflammatory effects, were extensively evaluated by RT-qPCR, western blot, wound healing and transwell tests on BV2 microglia stimulated by low concentration of LPS in vitro. This study shows that colchicine can improve the cognitive impairment of BCAS mice, and the specific mechanism is to regulate the inflammation of microglia by inhibiting the classical inflammatory pathway of TAK1/MAPK/NF-κB, thereby reducing WMLs and improving the cognitive impairment behavior.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yun Zhai
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Ma
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin City, Jilin, China
| | - Zhi Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bifeng Hu
- Department of Neurology, Army Characteristic Medical Center of PLA, Da Ping Hospital, Chongqing, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
22
|
Situ Y, Zhang P, Zhang C, Jiang A, Zhang N, Zhu L, Mou W, Liu Z, Wong HZH, Zhang J, Cheng Q, Lin A, Luo P. The metabolic dialogue between intratumoural microbes and cancer: implications for immunotherapy. EBioMedicine 2025; 115:105708. [PMID: 40267755 PMCID: PMC12052696 DOI: 10.1016/j.ebiom.2025.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
The tumour microenvironment (TME) exerts a profound influence on cancer progression and treatment outcomes. Recent investigations have elucidated the crucial role of intratumoural microbiota and their metabolites in shaping the TME and modulating anti-tumour immunity. This review critically assesses the influence of intratumoural microbial metabolites on the TME and cancer immunotherapy. We systematically analyse how microbial-derived glucose, amino acid, and lipid metabolites modulate immune cell function, cytokine secretion, and tumour growth. The roles of specific metabolites, including lactate, short-chain fatty acids, bile acids, and tryptophan derivatives, are comprehensively examined in regulating immune responses and tumour progression. Furthermore, we investigate the potential of these metabolites to augment the efficacy of cancer immunotherapies, with particular emphasis on immune checkpoint inhibitors. By delineating the mechanisms through which microbial metabolites influence the TME, this review provides insights into novel microbiome-based therapeutic strategies, thereby highlighting a promising frontier in personalised cancer medicine.
Collapse
Affiliation(s)
- Yingheng Situ
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hank Z H Wong
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China.
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
23
|
Hu F, Peng J, Wang W, Shen L, Jia M. Comparing the impact of various exercise modalities on old adults with Alzheimer's disease: A Bayesian network meta-analysis. Complement Ther Clin Pract 2025; 59:101968. [PMID: 40086298 DOI: 10.1016/j.ctcp.2025.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND PURPOSE The global prevalence of Alzheimer's disease (AD) in the elderly is rising, and exercise is increasingly used as a non-pharmacological intervention. However, the most effective exercise modality for improving quality of life, alleviating depression, and reducing neuropsychiatric symptoms in AD patients remains unclear. This study aims to identify the optimal exercise modality for addressing these symptoms through a network meta-analysis. METHODS As of November 2024, we conducted a comprehensive search across six databases: PubMed, Embase, Web of Science, the Cochrane Central Register of Controlled Trials, CINAHL, and PsycINFO. This study included only randomized controlled trials (RCTs), with study durations ranging from 2 to 24 weeks, primarily set in clinical or community environments. Following the PRISMA-NMA guidelines, we conducted statistical analysis using the "gemtc" package in R and assessed evidence quality via the CINeMA online platform. RESULTS A network meta-analysis of 29 RCTs with 1507 participants showed that for global cognition, Aerobic exercise (AE) [MD = 2.83, 95 % CI (0.66, 4.85)] ranked first with 79.5 % probability; for quality of daily life, Resistance Training (RT) [SMD = 0.96, 95 % CI (-0.14, 2.07)] ranked first with 83.7 %; for depression, Physical Activity Program (PAP) [SMD = -3.76, 95 % CI (-7.06, -0.47)] ranked first with 96.0 %; and for neuropsychiatric inventory outcomes, AE [SMD = -2.35, 95 % CI (-5.95, 1.06)] ranked first with 71.1 %. CONCLUSIONS Based on the findings from retrospective studies, aerobic exercise may be an effective intervention for improving overall cognition and quality of life in individuals aged 60 and above with Alzheimer's disease.
Collapse
Affiliation(s)
- Fengting Hu
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Jin Peng
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Weiran Wang
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Lin Shen
- Faculty for Physical Education, Zhejiang Yuexiu University, Shaoxing, Zhejiang, China.
| | - Mingyuan Jia
- Department of Physical Education, Dong-A University, Busan, South Korea.
| |
Collapse
|
24
|
Liu X, Mei L, Wang J, Liu X, Yang Y, Wu Z, Ji Y. Cutting-edge insights into the mechanistic understanding of plant-derived exosome-like nanoparticles: Implications for intestinal homeostasis. Food Res Int 2025; 208:116186. [PMID: 40263791 DOI: 10.1016/j.foodres.2025.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Plant-derived exosome-like nanoparticles (PDELNs) are extracted from plants such as ginger, garlic, broccoli, and others, attracting attention for their therapeutic potential due to their availability and capacity for large-scale production. Their unique physicochemical properties position PDELNs as ideal candidates for targeted gut delivery, improving intestinal health by modulating mucosal immunity, gut microbiota, and intestinal barrier integrity, all essential for maintaining intestinal homeostasis. PDELNs regulate intestinal barrier function through their bioactive components (e.g. microRNAs, lipids, and proteins). These vesicles enhance the expression of tight junction proteins and stimulate mucin production. Additionally, they promote intestinal stem cell proliferation and increase the secretion of antimicrobial peptides. PDELNs also modulate inflammatory cytokine levels and immune cell activity, fostering a balanced immune response. Further, they support the growth of beneficial gut microbiota and their metabolites, while suppressing the proliferation of pathogenic bacteria. This review summarizes recent advancements in understanding the roles of PDELNs in regulating intestinal homeostasis, focusing on their impact on mucosal immunity, intestinal barrier function, and gut microbiota composition, along with underlying molecular mechanisms and therapeutic implications. Overall, PDELNs show promise as a novel approach for treating and preventing intestinal diseases, paving the way for effective gut health interventions.
Collapse
Affiliation(s)
- Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing, 100192, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Wang W, Dai Y, Cheng C, Wang R, Ma J, Jing Q. Development and functional evaluation of curcumin-loaded zein-gum Arabic-flaxseed gum complex nanoparticles for anti-fatigue applications. Int J Biol Macromol 2025; 310:142998. [PMID: 40216129 DOI: 10.1016/j.ijbiomac.2025.142998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
In this study, zein-gum Arabic (GA)-flaxseed gum (FG) nanoparticles (ZGF) were prepared using the anti-solvent and electrostatic deposition methods to overcome the hydrophobicity and instability of curcumin (CUR). Additionally, the optimal mass ratio of GA to FG (4:1) and CUR to zein (1:40) was determined. Additionally, the initial concentration of the polysaccharide (0.04 %) was determined and the ZGF nanoparticles encapsulated with CUR (CUR-ZGF) were optimized. The formed CUR-ZGF nanoparticles were spherical, with a particle size of 188 nm and an embedding rate of 96.8 %. Furthermore, the CUR-ZGF nanoparticles showed excellent pH, thermal, storage, and salt stability. The encapsulate CUR exhibited antioxidant capacity and controlled release rate in the gastrointestinal digestive system in vitro. Animal experiments showed CUR-ZGF nanoparticles significantly enhanced exercise capacity and anti-fatigue effects. High-dose CUR-ZGF nanoparticles doubled exhaustion running time versus the model group, improving exercise endurance. Fatigue-related biochemical parameters (serum urea nitrogen, serum lactate, and creatine kinase) were significantly reduced, indicating rapid fatigue elimination. Meanwhile, significantly increased lactate dehydrogenase and fasting glucose levels suggested efficient energy replenishment to mitigate fatigue damage. These results indicate CUR-ZGF nanoparticles may be a promising natural anti-fatigue healthcare product in the future.
Collapse
Affiliation(s)
- Weichen Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Yu Dai
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China; Qiongqing Institute, Harbin Institute of Technology, 618 Liangjiang Road, Longxing Town, Qiongqing 401120, PR China.
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China.
| | - Jiapei Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Qiuju Jing
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, 666 Haping Road, Xiangfang District, Harbin 150069, PR China
| |
Collapse
|
26
|
Zhang W, Yi C, Song Z, Yu B, Jiang X, Guo L, Huang S, Xia T, Huang F, Yan Y, Li H, Dai Y. Reshaping the gut microbiota: Tangliping decoction and its core blood-absorbed component quercetin improve diabetic cognitive impairment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156560. [PMID: 40058319 DOI: 10.1016/j.phymed.2025.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cognitive decline, which can result in diabetic cognitive impairment (DCI). Recent studies have indicated that gut microbiota plays a significant role in the development of DCI. Tangliping Decoction (TLP), a traditional Chinese medicine compound, contains various active ingredients that have been shown to regulate the microecology of gut microbiota and potentially improve DCI. However, it remains unclear whether TLP can improve DCI by modulating gut microbiota, as well as which specific component is primarily responsible for these effects. PURPOSE Assess the impact of TLP on alleviating DCI and investigate the contribution of quercetin (QR), the core blood-absorbed component of TLP, in this process. and investigate the underlying mechanisms through which TLP and QR enhance DCI by modulating gut microbiota composition. STUDY DESIGN AND METHODS Initially, experiments such as morris water maze (MWM), morphological analysis, and 16S ribosomal RNA (16S rRNA) gene amplicon sequencing from DCI mice, were performed to validate the pharmacological efficacy of TLP in mitigating DCI. The results indicated that TLP possesses the capacity to modulate the composition and quantity of gut microbiota and safeguard the integrity of the gut barrier and brain barrier. Secondly, high performance liquid chromatography coupled with high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with network pharmacology methods were used to screen for blood-absorbed components, suggesting that QR may be a potential core blood-absorbed component of TLP in the treatment of DCI. Subsequently, the pharmacological efficacy of QR in ameliorating DCI was confirmed, and the characteristics of gut microbiota as well as the permeability of the gut and brain barrier, were assessed. Finally, fecal microbiota transplantation (FMT) experiments were conducted, wherein fecal matter from TLP and QR-treated mice (donor mice) was transplanted into pseudo-sterile DCI mice with antibiotic-induced depletion of gut microbiota. This approach aimed to elucidate the specific mechanisms by which TLP and QR improve DCI through the modulation of the structure, composition, and abundance of gut microbiota. RESULTS TLP and QR have the potential to enhance learning and memory capabilities in DCI mice, as well as reduce homeostasis model assessment insulin resistance (HOMA-IR) and restore homeostasis model assessment-β function (HOMA- β), leading to increased fasting insulin (FIN) levels and decreased fasting blood glucose (FBG) levels. Simultaneously, the administration of FMT from donor mice to pseudo-sterile DCI mice has been shown to alter the composition and abundance of gut microbiota, leading to amelioration of pathological damage in the colon and hippocampal tissues. Ultimately, FMT utilizing fecal suspensions from donor mice treated with TLP and QR improved cognitive function in pseudo-sterile DCI mice, restore gut microbiota dysbiosis, and maintained the integrity of the gut and brain barriers. CONCLUSION The results of this study indicate that TLP and its core component, QR, which is absorbed into the bloodstream, improve DCI through a gut microbiota-dependent mechanism, providing further evidence for gut microbiota as a therapeutic target for DCI treatment.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Song
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, Chifeng, Inner Mongolia, China
| | - Bin Yu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Wu H, Liu J, Zhang XH, Jin S, Li P, Liu H, Zhao L, Wang J, Zhao S, Tian HD, Lai JR, Hao Y, Liu GR, Hou K, Yan M, Liu SL, Pang D. The combination of flaxseed lignans and PD-1/ PD-L1 inhibitor inhibits breast cancer growth via modulating gut microbiome and host immunity. Drug Resist Updat 2025; 80:101222. [PMID: 40048957 DOI: 10.1016/j.drup.2025.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Patients with breast cancer (BC) who benefit from the PD-1/PD-L1 inhibitor (PDi) is limited, necessitating novel strategies to improve immunotherapy efficacy of BC. Here we aimed to investigate the inhibitory effects of flaxseed lignans (FL) on the biological behaviors of BC and evaluate the roles of FL in enhancing the anticancer effects of PDi. METHODS HPLC was used to detect the content of enterolactone (ENL), the bacterial transformation product of FL. Transcript sequencing was performed and identified CD38 as a downstream target gene of ENL. CD38-overexpressing cells were constructed and cell proliferation, colony formation, wound healing and transwell assays were used to assess the function of ENL/CD38 axis on BC cells in vitro. Multiplexed immunohistochemistry (mIHC) and CyTOF were used to detect the changes of the tumor immune microenvironment (TIM). 16S rDNA sequencing was used to explore the changes of gut microbiota in mice. A series of in vivo experiments were conducted to investigate the anticancer effects and mechanisms of FL and PDi. RESULTS FL was converted to ENL by gut microbiota and FL administration inhibited the progression of BC. ENL inhibited the malignant behaviors of BC by downregulating CD38, a key gene associated with immunosuppression and PD-1/PD-L1 blockade resistance. The mIHC assay revealed that FL administration enhanced CD3+, CD4+ and CD8+ cells and reduced F4/80+ cells in TIM. CyTOF confirmed the regulatory effects of FL and FL in combination with PDi (FLcPDi) on TIM. In addition, 16S rDNA analysis demonstrated that FLcPDi treatment significantly elevated the abundance of Akkermansia and, importantly, Akkermansia administration enhanced the response to PDi in mice treated with antibiotics. CONCLUSIONS The FL/ENL/CD38 axis inhibited BC progression. FL enhanced the anticancer effects of PDi by modulating gut microbiota and host immunity.
Collapse
Affiliation(s)
- Hao Wu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jiena Liu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xing-Hua Zhang
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Shengye Jin
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Li
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Huidi Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Liuying Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianyu Wang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shilu Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Da Tian
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Jin-Ru Lai
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Gui-Rong Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China; Longhu People's Hospital, Shantou, China.
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Da Pang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
28
|
Jia H, Bian Y, Yuan J, Zhang Y, Zhang S. The Potential Role of C4 MYH11+ Fibroblasts and the MDK-SDC2 Ligand-Receptor Pair in Lung Adenocarcinoma: Implications for Prognosis and Therapeutic Strategies. Transl Oncol 2025; 55:102364. [PMID: 40121996 PMCID: PMC11982484 DOI: 10.1016/j.tranon.2025.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) posed a significant threat to global human health. This study employed single-cell RNA sequencing (scRNA-seq) to analyze transcriptomic data from nine LUAD patients at different stages of tumor infiltration, aiming to elucidate the tumor microenvironment and key biological processes of LUAD. METHODS In this study, we processed the scRNA-seq data using the Seurat package and sequentially applied principal component analysis followed by the Harmony package to effectively correct for batch effects, identifying 105,725 high-quality cells. Through cell clustering and gene expression profiling, we identified critical cell subpopulations and gene expression patterns in LUAD patients. RESULTS Our analysis revealed that the C4 MYH11+ Fibroblasts subtype was primarily involved in biological processes related to muscle function. Further investigations uncovered the MDK-SDC2 ligand-receptor pair as a critical regulator of tumor cell invasion, proliferation, and migration, driving LUAD progression. Additionally, we developed a gene-based prognostic model that effectively predicted patient survival, providing valuable clinical insights. CONCLUSION This study provided a comprehensive atlas of the LUAD tumor microenvironment, highlighted the role of the C4 MYH11+ Fibroblasts in tumor progression. It also proposed the MDK-SDC2 ligand-receptor pair as a novel mechanism, addressing a significant gap in this area of research. And presented a gene-based prognostic model as a novel perspective for research into immunotherapy and drug sensitivity in LUAD.
Collapse
Affiliation(s)
- Hongling Jia
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.; The first clinical medical college of Shandong university of Traditional Chinese Medicine, Jinan, China
| | - Yanjie Bian
- Xinxiang Medical University, Xinxiang, China
| | - Jie Yuan
- Sijing Town Community Healthcare Center, Shanghai, China
| | - Yi Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China..
| | - Shengyi Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China..
| |
Collapse
|
29
|
Wang S, Li X, Bi Y, Yan C, Chen Y. The impact of inflammation and iron metabolism on gene expression alterations in ischemic stroke: a bioinformatics approach. Sci Rep 2025; 15:15233. [PMID: 40307317 PMCID: PMC12044060 DOI: 10.1038/s41598-025-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/28/2025] [Indexed: 05/02/2025] Open
Abstract
This study explores the differential expression of inflammation and iron metabolism-related genes (IIMRDEGs) in Ischemic Stroke (IS), a major contributor to global morbidity and mortality. Using the Gene Expression Omnibus (GEO) query tool, we integrated gene expression datasets GSE22255 and GSE16561. We identified 56 differentially expressed genes (DEGs), including 42 that were upregulated and 14 downregulated, according to criteria of |logFC| > 0.5 and p < 0.05. An intersection with known IIMRDEGs revealed 16 genes with significant relevance to IS, such as SLC22A4 and DUSP1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these genes are mainly involved in leukocyte chemotaxis and responses to bacterial molecules, in addition to IL-17 and TNF signaling pathways. A protein-protein interaction (PPI) network of 12 IIMRDEGs identified 8 hub genes, including IL7R and ADM, which exhibited significant expression differences (p < 0.001) and potential diagnostic utility with AUC values between 0.7 and 0.9 in ROC curve analysis. Furthermore, immune infiltration analysis showed notable differences in 7 immune cell types between IS and control samples. Our findings advance the understanding of ischemic stroke mechanisms and present potential biomarkers for improving diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Shengwu Wang
- Department of Neurology, Zigong Fourth People's Hospital, Zigong, Sichuan, PR China.
| | - Xuemei Li
- Department of Vascular Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, PR China
| | - Youcai Bi
- Department of Neurology, Zigong Fourth People's Hospital, Zigong, Sichuan, PR China
| | - Chao Yan
- Department of Neurology, Zigong Fourth People's Hospital, Zigong, Sichuan, PR China
| | - Yunbo Chen
- Department of Neurology, Zigong Fourth People's Hospital, Zigong, Sichuan, PR China.
| |
Collapse
|
30
|
Wu G, Chen Y, Chen C, Liu J, Wu Q, Zhang Y, Chen R, Xiao J, Su Y, Shi H, Yu C, Wang M, Ouyang Y, Jiang A, Chen Z, Ye X, Shen C, Reheman A, Li X, Liu M, Shen J. Role and mechanisms of exercise therapy in enhancing drug treatment for glioma: a review. Front Immunol 2025; 16:1576283. [PMID: 40370453 PMCID: PMC12075166 DOI: 10.3389/fimmu.2025.1576283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Gliomas, particularly glioblastoma (GBM), are among the most aggressive and challenging brain tumors to treat. Although current therapies such as chemotherapy, radiotherapy, and targeted treatments have extended patient survival to some extent, their efficacy remains limited and is often accompanied by severe side effects. In recent years, exercise therapy has gained increasing attention as an adjunctive treatment in clinical and research settings. Exercise not only improves patients' physical function and cognitive abilities but may also enhance the efficacy of conventional drug treatments by modulating the immune system, suppressing inflammatory responses, and improving blood-brain barrier permeability. This review summarizes the potential mechanisms of exercise in glioma treatment, including enhancing immune surveillance through activation of natural killer (NK) cells and T cells, and increasing drug penetration by improving blood-brain barrier function. Additionally, studies suggest that exercise can synergize with chemotherapy and immunotherapy, improving treatment outcomes while reducing drug-related side effects. Although the application of exercise therapy in glioma patients is still in the exploratory phase, existing evidence indicates its significant clinical value as an adjunctive approach, with the potential to become a new standard in glioma treatment in the future.
Collapse
Affiliation(s)
- Guanghui Wu
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
| | - Yisheng Chen
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Neurosurgery and Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianling Liu
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Qiaowu Wu
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Yazhen Zhang
- School of Physical Education, Ningde Normal University, Ningde, Fujian, China
| | - Runqiong Chen
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Jianzhong Xiao
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Yusheng Su
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Chunsheng Yu
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Miao Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Airong Jiang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Zhengzhou Chen
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Xiao Ye
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Chengwan Shen
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Xianjun Li
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Ming Liu
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
| | - Jiancheng Shen
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
| |
Collapse
|
31
|
Sah NK, Arora S, Sahu RC, Kumar D, Agrawal AK. Plant-based exosome-like extracellular vesicles as encapsulation vehicles for enhanced bioavailability and breast cancer therapy: recent advances and challenges. Med Oncol 2025; 42:184. [PMID: 40293531 DOI: 10.1007/s12032-025-02720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Breast cancer remains a common and challenging disease globally among women, prompting the need for innovative and effective therapeutic approaches. Plant-based exosomes (PBEXOs) offer a promising avenue for breast cancer treatment. Derived from plant sources, these EXOs exhibit unique properties, including biocompatibility, non-immunogenicity, and inherent bioactive compounds that make them suitable for medical applications. PBEXOs have shown potential in targeting cancer cells due to their ability to transport therapeutic substances directly to tumor sites, enhancing medication effectiveness and reducing systemic adverse effects. Their natural composition allows for modifications that improve stability, targeting capabilities, and drug-loading efficiency. The advanced isolation ensures the retention of their functional properties, which is crucial for their therapeutic applications. Characterization of these EXOs further supports their potential use in oncology. In preclinical studies, PBEXOs have been successfully loaded with various chemotherapeutic drugs, demonstrating significant anti-cancer activity. Recent studies highlight the progression of PBEXOs from experimental models to potential clinical applications, with some formulations receiving regulatory attention. However, challenges such as scalability, regulatory compliance, and a comprehensive understanding of their mechanisms remain. Addressing these issues could pave the way for PBEXOs to become a standard component in the arsenal against breast cancer, offering hope for more effective and targeted therapies.
Collapse
Affiliation(s)
- Niraj Kumar Sah
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Sanchit Arora
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Rohan Chand Sahu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
32
|
Gong Q, Hu J, Pu C, Zhao Z, Guo Y. Taxus chinensis-Derived Nanovesicles Alleviate Mouse Colitis by Inhibiting Inflammatory Cytokines and Restoring Gut Microbiota. J Inflamm Res 2025; 18:5611-5625. [PMID: 40303007 PMCID: PMC12039931 DOI: 10.2147/jir.s513823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background Recent research has increasingly focused on plant-derived products as potential alternatives to chemotherapeutic agents, aiming to reduce side effects. Among these, plant-derived nanovesicles (NVs) have garnered significant attention for their potential in treating colitis. Methods In this study, we extracted NVs from the leaves (LNVs) and stems (SNVs) of Taxus, a well-known natural anti-cancer plant. The targeting ability of these NVs was evaluated in the mouse colon using an IVIS imaging system. Additionally, we assessed the therapeutic effects of these plant-derived NVs on ulcerative colitis in a mouse model. Results Our findings reveal that the NVs exhibit an ideal vesicle size of 150.0 nm and contain a rich array of lipids, functional proteins, and bioactive small molecules. In vitro anti-inflammatory experiments demonstrated that both LNVs and SNVs enhanced cell viability and reduced levels of pro-inflammatory cytokines. Importantly, neither LNVs nor SNVs induced significant cytotoxicity. In vivo, oral administration of LNVs and SNVs ameliorated colitis-related symptoms in mice and accelerated colitis resolution by suppressing the TLR4/MyD88/NF-κB pathway and reducing levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Furthermore, 16S rDNA sequencing data suggested that LNVs play a crucial role in regulating gut microbiota. Conclusion Collectively, our findings suggest that plant-derived NVs from Taxus represent a promising novel natural nanomedicine for use as an anti-inflammatory agent in the treatment of colonic diseases.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Junqing Hu
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, People’s Republic of China
- The Center for Obesity and Metabolic Health, Department of General Surgery, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Zihao Zhao
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, People’s Republic of China
| |
Collapse
|
33
|
Han J, Zhang X, Kang L, Guan J. Extracellular vesicles as therapeutic modulators of neuroinflammation in Alzheimer's disease: a focus on signaling mechanisms. J Neuroinflammation 2025; 22:120. [PMID: 40281600 PMCID: PMC12023694 DOI: 10.1186/s12974-025-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles, which contribute significantly to neuroinflammation, a central driver of disease pathogenesis. The activation of microglia and astrocytes, coupled with the complex interactions between Aβ and tau pathologies and the innate immune response, leads to a cascade of inflammatory events. This process triggers the release of pro-inflammatory cytokines and chemokines, exacerbating neuronal damage and fostering a cycle of chronic inflammation that accelerates neurodegeneration. Key signaling pathways, such as nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), are involved in regulating the production of these inflammatory mediators, offering potential therapeutic targets for AD. Recently, extracellular vesicles (EVs) have emerged as a promising tool for AD therapy, due to their ability to cross the blood-brain barrier (BBB) and deliver therapeutic agents. Despite challenges in standardizing EV-based therapies and ensuring their safety, EVs offer a novel approach to modulating neuroinflammation and promoting neuroregeneration. This review aims to highlight the intricate relationship between neuroinflammation, signaling pathways, and the emerging role of EV-based therapeutics in advancing AD treatment strategies.
Collapse
Affiliation(s)
- Jingnan Han
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| | - Jian Guan
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| |
Collapse
|
34
|
Yu Y, Yang X, Deng J, Yin Y, Wu Y, Yu R. Association of the gut microbiome with diabetic nephropathy and the mediated effect of metabolites: friend or enemy? Int Urol Nephrol 2025:10.1007/s11255-025-04519-w. [PMID: 40257664 DOI: 10.1007/s11255-025-04519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE The effects of gut microbiome and its metabolites on diabetic nephropathy (DN) have been inadequately elucidated. The aim of this study is to assess the causal effect of gut microbiome on DN and the mediated effect of metabolites by a two-step Mendelian randomization (MR). METHODS Datasets of gut microbiome, metabolites, and DN were acquired in genome-wide association studies and screened for single nucleotide polymorphisms according to the underlying assumptions of MR. Subsequently, inverse variance weighted was used as the primary method for MR analysis to assess the causal effect of gut microbiome on DN and the mediated effect of metabolites. Finally, MR-Egger intercept, Cochran's Q test, and leave-one-out sensitivity analysis were used to assess the horizontal pleiotropy, heterogeneity, and robustness of the results, respectively. RESULTS The MR analysis demonstrated that Parabacteroides merdae increased the genetic susceptibility to DN by reducing acetylcarnitine (C2) to propionylcarnitine (C3) ratio (mediated proportion 8.95%, mediated effect 0.024) and alpha-ketobutyrate to 3-methyl-2-oxovalerate ratio (mediated proportion 19.90%, mediated effect 0.053). MR Egger showed that these results lack horizontal pleiotropy (p ≥ 0.05). Cochran's Q and sensitivity analysis suggested these results had no heterogeneity (p ≥ 0.05) and were robust. CONCLUSION Our findings revealed the pathway by which Parabacteroides merdae increased the genetic susceptibility to DN by regulating acetylcarnitine (C2) to propionylcarnitine (C3) ratio and alpha-ketobutyrate to 3-methyl-2-oxovalerate ratio. It provides new genetic insights for understanding the pathogenesis of DN and related drug research.
Collapse
Affiliation(s)
- Yunfeng Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Juan Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yongjun Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
35
|
Wang L, Yang H, Cao L, Yang Y, Ding R. Integrative genomic pan-cancer analysis reveals the prognostic significance of DEFB1 in tumors. Discov Oncol 2025; 16:552. [PMID: 40244529 PMCID: PMC12006651 DOI: 10.1007/s12672-025-02340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Defensin beta 1 (DEFB1) is a key immune response gene, but its role in cancer remains unclear. This study aims to explore DEFB1 expression, genetic alterations, immune infiltration, and prognostic significance across various cancer types. METHODS We analyzed DEFB1 expression and its association with cancer prognosis using data from public platforms, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA). Additionally, we examined DEFB1 genetic alterations, immune cell infiltration, and its molecular partners using various bioinformatics tools. RESULTS DEFB1 expression was highest in salivary glands, kidneys, and pancreas. In cancers, DEFB1 was upregulated in cholangiocarcinoma, kidney chromophobe, and melanoma, but downregulated in breast, colon, and rectal cancers. High DEFB1 expression was linked to poorer overall survival in lung adenocarcinoma and pancreatic adenocarcinoma, but better survival in head and neck squamous cell carcinoma. Genetic analysis revealed alterations in liver and gastric cancers. Immune infiltration analysis showed a correlation between DEFB1 and cancer-associated fibroblasts in liver cancer, while neutrophil infiltration was linked to bladder carcinoma, diffuse large B-cell lymphoma, and lung squamous cell carcinoma. Key genes associated with DEFB1 included KLK1, BSND, and CLCNKB. DISCUSSION This study highlights DEFB1's potential as a prognostic biomarker and its influence on the tumor immune microenvironment across different cancers. These findings suggest DEFB1 could be a target for future cancer therapies, although further studies are needed to validate these results.
Collapse
Affiliation(s)
- Li Wang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Hongyu Yang
- Department of Rheumatology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yang Yang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Ran Ding
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
36
|
Pang RK, Zheng JY, Xu HY, Zhao YQ, Su S, Le K, Cai YF, Zhang SJ, Li XX. Microglia specific Csf1r haploinsufficiency induces depressive-like behaviors by promoting NLRP6/caspase-1 signaling in mice. Brain Behav Immun 2025; 128:383-399. [PMID: 40252935 DOI: 10.1016/j.bbi.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/18/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025] Open
Abstract
Depression is an early clinical manifestation of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), although the underlying molecular mechanisms remain poorly elucidated. The objective of this study was to investigate the mechanisms underpinning depressive behavior in the context of ALSP, utilizing microglial-specific Csf1r haploinsufficient mice. Our findings indicate that these mice exhibited depressive-like behaviors, as well as microglial hyper-ramification and aberrant synaptic pruning capacity. Blockade of CSF1R signaling with PLX3397 resulted in significant amelioration of depressive symptoms and restoration of normal microglial morphology and function. RNA sequencing analysis of microglia isolated from the medial prefrontal cortex (mPFC) of the brain indicated that NLRPs signaling pathways may play a significant role in the observed alterations in microglial Csf1r haploinsufficient mice. Notably, NLRP6, rather than NLRP3, was found to be upregulated, and the expression of caspase-1 exhibited colocalization with the microglial marker Iba1. Pharmacological inhibition of caspase-1 using VX-765 improved depressive-like behaviors, as well as microglial function. Taken together, our findings delineate a causal relationship between microglial Csf1r haploinsufficiency-induced activation of the NLRP6/caspase-1 signaling pathway and the manifestation of depressive-like behaviors in ALSP mice.
Collapse
Affiliation(s)
- Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hao-You Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuan-Qi Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shan Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, 11 yuk choi Rd, Hong Kong SAR, China
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Xiao-Xiao Li
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077 Hong Kong SAR, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
37
|
Chen M, Bie L. Intratumoral microbiota for hepatocellular carcinoma: from preclinical mechanisms to clinical cancer treatment. Cancer Cell Int 2025; 25:152. [PMID: 40247312 PMCID: PMC12007317 DOI: 10.1186/s12935-025-03745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Intratumoral microbiota has been found to be a crucial component of hepatocellular carcinoma (HCC). Due to insufficient recognition, technical limitations, and low biomass of intratumoral microbiota, it is poorly understood. Intratumoral microbiota exhibit significant diversity in HCC tissues. It is involved in the development of HCC through several mechanisms, such as remodeling the immunosuppressive microenvironment, metabolic reprogramming, and genetic alterations. Moreover, intratumoral microbiota is associated with the metastasis of HCC cells. Herein, we reviewed the history of intratumoral microbiota, applied biotechnology to depict the signatures of intratumoral microbiota, investigated the potential sources of intratumoral microbiota, and assessed their functions, mechanisms, and heterogeneity. Furthermore, in this review, we summarized the development of therapeutics that can be used in the treatment of HCC and proposed future perspectives for research in this field.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Wuhan, 430030, Hubei, China
| |
Collapse
|
38
|
Parambath SK, Krishna N, Krishnamurthy RG. Environmental enrichment: a neurostimulatory approach to aging and ischemic stroke recovery and rehabilitation. Biogerontology 2025; 26:92. [PMID: 40237879 DOI: 10.1007/s10522-025-10232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Environmental enrichment (EE) represents a robust experimental framework exploring the intricate interplay between genes and the environment in shaping brain development and function. EE is recognized as a non-invasive intervention, easily translatable to elderly human cohorts, and extrapolated from research on animal aging models. Age is the most important risk factor for ischemic stroke. Research indicates that EE, characterized by increased sensory, cognitive, and social stimulation, leads to structural changes in the brain, such as enhanced dendritic complexity and synaptic density, particularly in the hippocampus and cortex. Tailored EE interventions for elderly stroke survivors include cognitively stimulating activities and participation in social groups. These interventions enhance cognitive function and support recovery by promoting neural repair. Additionally, EE helps to mitigate sensory deficits commonly observed in older adults, ultimately improving mental performance and quality of life. EE has shown promise in preventing relapse, enhancing attention, reducing anxiety, forestalling age-related DNA methylation alterations, and amplifying neurogenesis through heightened neural progenitor cell (NPC) populations. Aligning preclinical studies with clinical trials can enhance neurorehabilitation conditions for stroke patients, thereby optimizing the environments in which they recover. This can be achieved through the concerted efforts of multidisciplinary teams working collaboratively. This review explores how EE specifically impacts the aging brain and ischemic stroke, a major age-related neurological disorder with global health implications. The potential of enviro-mimetics and relevant clinical studies on EE's effects on ischemic stroke survivors are discussed. This review enhances our understanding of the effects of EE on aging and ischemic stroke, motivating further research aimed at refining strategies for stroke management and recovery.
Collapse
Affiliation(s)
| | - Navami Krishna
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | | |
Collapse
|
39
|
Liu H, Sun Z, Zeng H, Han J, Hu M, Mao D, Tian X, Li R. Meta-analysis of the effects of multi-component exercise on cognitive function in older adults with cognitive impairment. Front Aging Neurosci 2025; 17:1551877. [PMID: 40297493 PMCID: PMC12034652 DOI: 10.3389/fnagi.2025.1551877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Exercise has been widely recognized as an effective regimen in mitigating cognitive decline. However, the effect of multi-component exercise (i.e., combination of two or more types of exercise) on cognitive function and its subdomains in older adults remains unclear. This meta-analysis aimed to explore the effects of multi-component exercise on cognitive functions in elderly individuals with cognitive impairment and identify optimal prevention and treatment strategies. A systematic search was conducted on PubMed, EBSCOhost, Web of Science, and Embase to identify relevant randomized controlled trials assessing the effect of multi-component exercise on cognitive function in the elderly. Thirteen studies with 1,776 participants were included in the analysis using Revman 5.4 software. The results showed that multi-component exercise had a significant effect on mitigating cognitive function decline in the elderly, with a pooled effect size of SMD = 0.31 (95% CI: 0.08, 0.55; p = 0.009). The results of subgroup analysis showed that interventions with ≥3 days/week, 12-24 weeks duration, and ≤ 40 min/session were significantly superior to other frequencies, durations, and lengths, with all p-values <0.05. Additionally, multi-component exercise had the most pronounced effects on executive function, visual memory, and verbal memory in patients with mild cognitive impairment (MCI). In conclusion, multi-component exercise can delay the decline in cognitive function in the elderly, and the intervention effects are modulated by various variables. Optimal intervention effects were observed with an exercise frequency of three or more times per week, a duration of 12 to 24 weeks, and a time per session of 40 min or less, particularly for improving executive function, visual memory, and verbal memory in patients with MCI.
Collapse
Affiliation(s)
- Hualei Liu
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
| | - Zhiyuan Sun
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
- Qufu Normal University, Jining, Shandong, China
| | - Haiqing Zeng
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
| | - Jincheng Han
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
| | - Mengqi Hu
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
| | - Dewei Mao
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
- The Chinese University of Hong Kong, Shenzhen, China
| | - Xuewen Tian
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
| | - Ran Li
- Shandong Sports Science Research Institute, Shandong Sports University, Jinan, Shandong, China
| |
Collapse
|
40
|
Fraile-Ramos J, Dogoh F, Ogiator M, Oghagbon EK, Giménez-Llort L. Cognitive impairment and blood biomarkers of renal dysfunction in high-risk Nigerian population, with special attention to women and diabetes. BMC Neurol 2025; 25:158. [PMID: 40217181 PMCID: PMC11987182 DOI: 10.1186/s12883-025-04173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Sub-Saharan Africans and Afro-Americans face 2-to-8 times higher risk of dementia compared to Caucasians, with Nigerian people being the highest population-at-risk. Adding to this challenge, their unique lipid profile increases their susceptibility to type 2 diabetes mellitus (DM-2), which further raises the risk of cognitive impairment (CI) by 1.5 times. Recently, we demonstrated a strong Diabetes/Dementia tandem in Nigerians, with increased cognitive vulnerability in illiterate, short-height, and diabetic Nigerian women in the eye of the storm. The combination of factors within this population makes it the optimal scenario to understand the relationship between CI and DM-2. METHODS Here, we further studied the blood biochemical analysis of our Makurdi cohort and searched for correlations with standard anthropometric measures, educational level, cognitive status (as assessed with MMSE, 6-CIT) and DM-2. RESULTS CI was prevalent across all groups, with higher incidence in DM-2 subjects and a marked sexual dimorphism. Thus, women exhibited a greater risk, especially those with low educational attainment. In the search for potential blood-based biomarkers for cognitive function, we identified those related to renal function. In particular, elevated uric acid and urea levels were associated with poorer cognitive performance, highlighting a potential kidney-brain axis connection. CONCLUSION Renal function blood metabolites in this Nigerian cohort have been identified as possible kidney-brain axis biomarkers of CI. Moreover, illiteracy, female sex, and DM-2 pose them a compounded risk of developing CI. These findings advocate that targeted interventions addressing educational disparities and metabolic health could be proposed to mitigate cognitive decline in these vulnerable sub-groups. The integration of these factors provides a comprehensive understanding of CI incidence in Nigeria's population, offering new avenues for diagnosis, prevention, and treatment strategies. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Juan Fraile-Ramos
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Avinguda Can Domènec, s/n, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Carrer de la Vinya, s/n, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Faeren Dogoh
- Department of Chemical Pathology, Benue State University Teaching Hospital, Gboko Road, Makurdi, 970101, Nigeria
| | - Monday Ogiator
- Department of Internal Medicine, Benue State University Teaching Hospital, Gboko Road, Makurdi, 970101, Nigeria
| | - Efosa Kenneth Oghagbon
- Department of Chemical Pathology, Benue State University Teaching Hospital, Gboko Road, Makurdi, 970101, Nigeria.
- Department of Chemical Pathology, Faculty of Basic & Allied Medical Sciences, College of Health Sciences, Benue State University, Gboko Road, Makurdi, 970101, Nigeria.
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Avinguda Can Domènec, s/n, Cerdanyola del Vallès, Barcelona, 08193, Spain.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Carrer de la Vinya, s/n, Cerdanyola del Vallès, Barcelona, 08193, Spain.
| |
Collapse
|
41
|
Wei T, Qin Y, Lin X, Wang X, Chen S, Chen X, Yan N, Wei X, Zhang Z, Wei B. Mapping the future: bibliometric insights into ferroptosis and diabetic nephropathy. Front Physiol 2025; 16:1516466. [PMID: 40276370 PMCID: PMC12018346 DOI: 10.3389/fphys.2025.1516466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Background Diabetic nephropathy (DN), a leading cause of end-stage renal disease, exerts a substantial burden on healthcare systems globally. Emerging evidence highlights ferroptosis - an iron-dependent form of cell death driven by lipid peroxidation and glutathione depletion - as a critical contributor to DN progression via oxidative stress, tubular injury, and glomerular dysfunction. Despite increasing research interest, a comprehensive synthesis of research trends and mechanistic insights is lacking. Objective This study integrated bibliometric analysis with a mechanistic review to map the evolving ferroptosis landscape in DN, identify research hotspots, and propose future directions for therapeutic development. Methods In total, 86 publications (2018-2023) were retrieved from the Web of Science Core Collection and analyzed using CiteSpace and VOSviewer. Co-occurrence networks, citation trends, and keyword bursts were examined to delineate global contributions, collaborative networks, and emerging themes. Results Annual publication numbers surged 12-fold after 2020, with China contributing the highest proportion (60.4%), and led by institutions such as Zhengzhou University. The United States of America and Germany showed high centrality in collaborative networks. Key research themes included glutathione peroxidase 4 (GPX4)-mediated antioxidant defenses, acyl-CoA synthetase long-chain family member 4 (ACSL4)-mediated lipid remodeling, and iron dysregulation. Frontiers in Endocrinology (nine articles) and Free Radical Biology and Medicine (highest citation count: 171) emerged as pivotal publication platforms. Mechanistic analyses identified three ferroptosis defense axes (GPX4, FSP1/CoQ10, and GCH1/BH4) and cell type-specific vulnerabilities in tubular, podocyte, and endothelial cells. Preclinical agents, including ginkgolide B (GB) and dapagliflozin, effectively restored iron homeostasis and attenuated oxidative damage. Conclusion Ferroptosis is a promising therapeutic target for DN, yet its clinical translation remains in its infancy. Future efforts should prioritize large-scale clinical trials, single-cell mechanistic profiling, and interdisciplinary integration to bridge molecular insights with precision therapies. This study provides a roadmap for advancing ferroptosis-targeted interventions for DN, emphasizing global collaborations and biomarker-driven strategies.
Collapse
Affiliation(s)
- Tangwen Wei
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, China
| | - Yang Qin
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohui Lin
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiujuan Wang
- School of Laboratory Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Suyi Chen
- Department of Academic Affairs, Guilin Medical University, Guilin, Guangxi, China
| | - Xia Chen
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang, China
| | - Xinyi Wei
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhichang Zhang
- Department of Computer Science, College of Intelligent Medicine, China Medical University, Shenyang, China
| | - Bing Wei
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
42
|
Liu R, Jia L, Yu L, Lai D, Li Q, Zhang B, Guo E, Xu K, Luo Q. Interaction between post-tumor inflammation and vascular smooth muscle cell dysfunction in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1560717. [PMID: 40276499 PMCID: PMC12018406 DOI: 10.3389/fimmu.2025.1560717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background Sepsis-induced cardiomyopathy (SIC) presents a critical complication in cancer patients, contributing notably to heart failure and elevated mortality rates. While its clinical relevance is well-documented, the intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and cardiac dysfunction remain inadequately explored. This study aims to elucidate the interaction between post-tumor inflammation, intratumor heterogeneity, and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic potential of exercise training and specific pharmacological interventions. Methods Transcriptomic data from NCBI and GEO databases were analyzed to identify differentially expressed genes (DEGs) associated with SIC. Weighted gene co-expression network analysis (WGCNA), gene ontology (GO), and KEGG pathway enrichment analyses were utilized to elucidate the biological significance of these genes. Molecular docking and dynamics simulations were used to investigate drug-target interactions, and immune infiltration and gene mutation analyses were carried out by means of platforms like TIMER 2.0 and DepMap to comprehend the influence of DVL1 on immune responsiveness. Results Through the utilization of the datasets, we discovered the core gene DVL1 that exhibited remarkable up-regulated expression both in SIC and in diverse kinds of cancers, which were associated with poor prognosis and inflammatory responses. Molecular docking revealed that Digoxin could bind to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC was identified by means of WGCNA, and the immune infiltration analysis demonstrated the distinctive immune cell patterns associated with DVL1 expression and the impact of DVL1 on immunotherapeutic resistance. Conclusions DVL1 is a core regulator of SIC and other cancers and, therefore, can serve as a therapeutic target. The present study suggests that targeted pharmacological therapies to enhance response to exercise regimens may be a novel therapeutic tool to reduce the inflammatory response during sepsis, particularly in cancer patients. The identified drugs, Digoxin, require further in vivo and clinical studies to confirm their effects on SIC and their potential efforts to improve outcomes in immunotherapy-resistant cancer patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lina Jia
- Hebei Medical University, Shijiazhuang, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Detian Lai
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qingzhu Li
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kailiang Xu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
43
|
Cao X, Yao F, Liu W, Wang Y, Zhang Z, Zhang C, Dong Z, Zhang B, He R, Sun X. Vaccinium myrtillus L. ameliorates diabetic nephropathy via modulating metabolites and gut microbiota in rats. Front Pharmacol 2025; 16:1541947. [PMID: 40264677 PMCID: PMC12011793 DOI: 10.3389/fphar.2025.1541947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Diabetic nephropathy (DN), one of the serious complications in the diabetes, has a high mortality in the diabetic patients. Bilberry (Vaccinium myrtillus L.) have received much attention for their health benefits in alleviating metabolic diseases, which are rich in anthocyanins. However, the anti-DN ability of bilberry has not been fully studied. The aim of this study was to investigate the effect and mechanism of Vaccinium myrtillus L. extract (VCE) on diabetic nephropathy in vivo and in vitro. Methods Streptozocin (STZ) combined with high fat induced DN model was established in rats. Biochemical indicators, histopathology, 16s third generation sequencing and serum metabolomics were used to evaluate the effects of VCE on DN. Subsequently, a cell model of advanced glycation end products (AGEs) induced podocyte injury was established to verify which compounds in VCE played the main anti-diabetic nephropathy function and the mechanism of action. Finally, in vitro experiments were conducted to verify the effect of characteristic metabolites screened by serum metabolomics on improving diabetic nephropathy. Results Insulin resistance index, lipid metabolism, oxidative stress and inflammatory response indexes of DN rats were significantly improved after 8 weeks of VCE treatment. In addition, intake of VCE modulates gut microbiota composition and reverses the abundance of Lactobacillus, Bifidobacterium and Ruminococcus. Supplementation with VCE altered serum metabolite levels, including uridine and phenylacetylglycine. Pretreatment with VCE and its anthocyanins inhibited the expression of LDH, IL-6 and TNF-α, reduced the levels of p38-MAPK, IĸBα, IKKβ, and NF-κB in podocyte cells. In addition, pretreatment with serum metabolite uridine also reduced the expression of LDH and mitochondrial ROS, and inhibited cell apoptosis. Conclusion Our findings suggest that the improvement of gut microbiota and metabolic function were related to the anti-DN potential of VCE, and the underlying mechanism may be related to the inhibition of MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xinxin Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yufang Wang
- Innovation Research and Development Center, BY HEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Zhen Zhang
- Innovation Research and Development Center, BY HEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Chongyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ruikun He
- Innovation Research and Development Center, BY HEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Yilmaz Y. Green Tea Mitigates the Hallmarks of Aging and Age-Related Multisystem Deterioration. Aging Dis 2025:AD.2025.0398. [PMID: 40249928 DOI: 10.14336/ad.2025.0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Aging is characterized by progressive multisystem deterioration driven by molecular and cellular mechanisms encapsulated in the twelve hallmarks of aging. Green tea (GT), derived from Camellia sinensis, has garnered significant scientific interest due to its rich polyphenolic composition, particularly epigallocatechin-3-gallate, and its pleiotropic health benefits. In this narrative review, we explored the multifaceted mechanisms through which GT may mitigate the aging hallmarks. Evidence from in vitro, animal, and human studies has shown that GT polyphenols can enhance DNA repair pathways, preserve telomere length, modulate epigenetic aging markers, improve proteostasis and autophagic flux, regulate nutrient-sensing networks, and rejuvenate mitochondrial function. Additionally, GT exhibits anti-inflammatory properties and may restore a physiological gut microbiota composition. Beyond molecular and cellular effects, GT consumption in humans has been associated with improved cognitive function, cardiovascular health, muscle preservation, and metabolic regulation in aging populations. Collectively, these findings highlight GT's potential as a naturally occurring geroscience intervention capable of addressing the interconnected network of aging processes more comprehensively than single-target pharmaceuticals. Future research should focus on optimizing dosing regimens, exploring synergies with other anti-aging strategies, and investigating personalized responses to GT interventions.
Collapse
|
45
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
46
|
Xing F, Liu Y, Tian F, Hou X, Lian Q, Hu Y, Xing L, Gao J, Fan X. BMP2 expression in oral squamous cell carcinoma and its effects on SCC9 cell biological behavior. Sci Rep 2025; 15:11584. [PMID: 40185978 PMCID: PMC11971369 DOI: 10.1038/s41598-025-96274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
This study examined bone morphogenetic protein 2 (BMP2) expression in oral squamous cell carcinoma (OSCC) and its effects on the biological behavior of OSCC cells, along with potential underlying mechanisms. BMP2 expression in OSCC was analyzed using mRNA data from The Cancer Genome Atlas and Genomics Expression Omnibus Database (GEO). SCC9 cells were transfected in vitro with small interfering RNA targeting BMP2 (si-BMP2), a negative control sequence (si-NC), BMP2 plasmid, or empty plasmid (vector). After transfection, Cell Counting Kit-8 assays, colony formation, scratch wound healing, Transwell, flow cytometry, quantitative reverse transcription polymerase chain reaction, and Western blot analyses were conducted to assess changes in SCC9 cell behavior in response to altered BMP2 expression and to explore relevant signaling pathways.BMP2 upregulation promoted SCC9 cell proliferation, migration, and invasion; inhibited apoptosis; and activated the Smad1/5 and p38 signaling pathways. Conversely, BMP2 downregulation inhibited SCC9 cell proliferation, migration, and invasion; promoted apoptosis; and suppressed the Smad1/5 and p38 pathways. BMP2 is highly expressed in OSCC and may drive its progression through the BMP/Smad and p38 mitogen-activated protein kinase signaling pathways, indicating potential prognostic value and promise as a therapeutic target for small-molecule OSCC treatments.
Collapse
Affiliation(s)
- Fuao Xing
- North China University of Science and Technology, Tangshan, 063000, HeBei, China
- Affiliated Kailuan General Hospital of North China University of Science and Technology, 57 Xinhua East Road, Tangshan, 063000, HeBei, China
| | - Yimin Liu
- North China University of Science and Technology, Tangshan, 063000, HeBei, China
| | - Faming Tian
- North China University of Science and Technology, Tangshan, 063000, HeBei, China
| | - Xiaoli Hou
- North China University of Science and Technology, Tangshan, 063000, HeBei, China
| | - Qiangqiang Lian
- North China University of Science and Technology, Tangshan, 063000, HeBei, China
| | - Yunpeng Hu
- Second Hospital of Tangshan, Tangshan, 063000, HeBei, China
| | - Lei Xing
- Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, HeBei, China
| | - JingYuan Gao
- Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, HeBei, China
| | - Xinhao Fan
- North China University of Science and Technology, Tangshan, 063000, HeBei, China.
- Affiliated Kailuan General Hospital of North China University of Science and Technology, 57 Xinhua East Road, Tangshan, 063000, HeBei, China.
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| |
Collapse
|
47
|
Song SL, Yu WB, Cai XM, Ma J, Zou LL, Gao LL, Li SM. Mapping the scientific research on exercise therapy for Alzheimer's disease: a scientometric study of hotspots and emerging trends. Front Aging Neurosci 2025; 17:1536515. [PMID: 40248333 PMCID: PMC12003296 DOI: 10.3389/fnagi.2025.1536515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia globally, placing a substantial economic burden on patients and society. Exercise serves as an adjuvant therapy for AD with a low incidence of related adverse events. As a non-pharmacological intervention, it has demonstrated significant potential in the therapy of AD. Objective This study examines the key hotspots and emerging trends in exercise therapy for AD, offering valuable insights for researchers engaged in future research in this field. Methods The Web of Science Core Collection database was utilized to search for literature on exercise therapy for AD from January 1, 2000, to November 1, 2024, with 1,372 relevant articles being identified. And CiteSpace 6.2.R4 and VOSviewer were used to evaluate the bibliometric indicators. Results Since 2000, the number of publications in the field of exercise therapy for AD has been increasing. In addition to the well-known areas of research, such as the impact of exercise on cognitive function, the combination of exercise and medication therapy, the effects of exercise on specific symptoms, and the exercise with music therapy, the field may also focus on more novel topics. These include the integration of the design and implementation of exercise interventions, exercise and dendritic spines, and exercise and neurophysiological mechanisms. Furthermore, an analysis of emerging keywords reveals that the current main research direction is exploring the specific physiological mechanisms through which exercise affects AD. This includes three emerging trends: the impact of exercise on cognitive impairment in AD patients, the effects of exercise on brain-derived neurotrophic factor (BDNF) and Amyloid beta, and the influence of exercise on Stress and neuroinflammation. Conclusion The research results indicate that interventions using exercise to alleviate the negative symptoms of AD, as well as combining exercise with medication for therapy, are gaining increasing attention from researchers. Meanwhile, novel topics such as exercise and music therapy, the design and implementation of exercise interventions, and neurophysiological mechanisms should also attract scholarly interest. Additionally, exploring the physiological mechanisms behind exercise therapy for AD could be a key focus for future research.
Collapse
Affiliation(s)
- Shi Long Song
- Department of Neurology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, Shandong, China
- Teaching Center of Fundamental Courses, Ocean University of China, Qingdao, Shandong, China
| | - Wen Bing Yu
- Teaching Center of Fundamental Courses, Ocean University of China, Qingdao, Shandong, China
| | - Xin Min Cai
- Qingdao Hong Kong East Road Primary School, Qingdao, Shandong, China
| | - Jie Ma
- Teaching Center of Fundamental Courses, Ocean University of China, Qingdao, Shandong, China
| | - Lu Lu Zou
- Teaching Center of Fundamental Courses, Ocean University of China, Qingdao, Shandong, China
| | - Li Li Gao
- Department of Neurology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, Shandong, China
| | - Shi Ming Li
- Teaching Center of Fundamental Courses, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
48
|
Zuo X, Wang X, Xie J, Jia Y. Emodin alleviates the damage to lens epithelial cells in diabetic cataract by repressing the p53-mediated ferroptosis pathway. Int Ophthalmol 2025; 45:141. [PMID: 40175804 DOI: 10.1007/s10792-025-03513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Diabetic cataract (DC) is an ocular complication caused by diabetes. Currently, the main treatments for DC include pharmacological therapy and surgical intervention. The core objective of this study is to elucidate the specific mechanism of action of emodin in the treatment of DC, thereby providing potential targets for the treatment of DC. METHODS CCK-8 kit was used to detect the effect of emodin on the activity of lens epithelial cells (LECs). The impact of emodin on the expression of inflammatory factors and apoptosis in high glucose-induced LECs were evaluated by utilizing ELISA and flow cytometry. Then, commercial kits were performed to detect the regulatory effects of emodin on oxidative stress and ferroptosis in high glucose LECs. The potential mechanism of emodin in combating DC by inhibiting ferroptosis was analyzed by network pharmacology methods, and protein binding activity to emodin was measured by molecular docking. Besides, western blot (WB) assay was used to detect the effect of emodin on p53. RESULTS Firstly, the results of CCK-8 showed that emodin could effectively alleviate the decrease of LECs cell activity and Lactate dehydrogenase (LDH) release induced by high glucose. Emodin suppressed high glucose-induced apoptosis of LECs, reduced the release of inflammatory factors, and alleviated oxidative stress and ferroptosis. GO and KEGG analyses confirmed the involvement of oxidative stress (OS), inflammatory response, and ferroptosis in the process of emodin treatment for DC. Molecular docking studies showed that emodin stably bound to proteins such as TP53, TNF, IL-6, and IL-1β. Additionally, WB results indicated that emodin alleviated high glucose-induced ferroptosis by binding to p53. CONCLUSION Collectively, these data suggest that emodin alleviates damage to LECs by interfering with the p53-mediated ferroptosis pathway, thereby attenuating DC disease, which offered new directions for the development of new drugs.
Collapse
Affiliation(s)
- Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China.
| | - Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China
| | - Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China
| | - Yuhong Jia
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China
| |
Collapse
|
49
|
Shih-Wei C, Chen B, Mao Y, Xu Q, Chen Y. Polygala fallax Hemsl. ameliorated high glucose-induced podocyte injury by modulating mitochondrial mPTP opening through the SIRT1/PGC-1α pathway. Arch Physiol Biochem 2025; 131:135-146. [PMID: 39221837 DOI: 10.1080/13813455.2024.2392298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the effects and molecular mechanism of PF on high glucose (HG)-induced podocyte injury. Results found that PF increased proliferation activity, decreased apoptosis, LDH, and caspase-3 levels, and increased nephrin and podocin expression in HG-induced cells. Similarly, PF improved HG-induced mitochondrial damage, decreased Ca2+ and ROS content, alleviated oxidative stress, inhibited mPTP opening, increased mitochondrial membrane potential, and decreased the expressions of Drp1, Bak, Bax, and Cytc in cytoplasm, increased the expressions of SIRT1, PGC-1α, HSP70, HK2, and Cytc in mitochondria of podocytes. The use of mPTP agonist/blocker and SIRT1 inhibitor confirmed that PF alleviates HG-induced podocyte injury by regulating mitochondrial mPTP opening through SIRT1/PGC-1α. In addition, PF affected HK2-VDAC1 protein binding to regulate mPTP opening via the SIRT1/PGC-1α pathway. In conclusion, PF-regulated HK2-VDAC1 protein binding affected mitochondrial mPTP opening and improved HG-induced podocyte injury through the SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Chao Shih-Wei
- Department of Traditional Chinese Medicine, Guilin Hospital of the Second Xiangya Hospital Central South University, Guilin, China
| | - Bo Chen
- Guangxi Key Laboratory of Basic Research in Sphingolipid Metabolism Related Disease, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Yanqing Mao
- Outpatient Department, Guilin Hospital of the Second Xiangya Hospital Central South University, Guilin, China
| | - Qin Xu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yige Chen
- Ministry of Science and Education, Guilin Hospital of the Second Xiangya Hospital Central, Guilin, China
| |
Collapse
|
50
|
Han H, Du A, Li J, Han H, Feng P, Zhu Y, Li X, Tian G, Yu H, Zhang B, Liu W, Yuan G. Transitioning from molecular methods to therapeutic methods: An in‑depth analysis of glioblastoma (Review). Oncol Rep 2025; 53:48. [PMID: 40017136 PMCID: PMC11894601 DOI: 10.3892/or.2025.8881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumour, characterised by high heterogeneity, aggressiveness and resistance to conventional therapies, leading to poor prognosis for patients. In recent years, with the rapid development of molecular biology and genomics technologies, significant progress has been made in understanding the molecular mechanisms of GBM. This has revealed a complex molecular network involving aberrant key signalling pathways, epigenetic alterations, interactions in the tumour microenvironment and regulation of non‑coding RNAs. Based on these molecular features, novel therapeutic strategies such as targeted therapies, immunotherapy and gene therapy are rapidly evolving and hold promise for improving the outcome of GBM. This review systematically summarises the advances in molecular mechanisms and therapeutic approaches for GBM. It aims to provide new perspectives for the precise diagnosis and personalised treatment of GBM, and to ultimately improve the prognosis of patients.
Collapse
Affiliation(s)
- Hongxi Han
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Aichao Du
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jinwen Li
- College of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Hongyan Han
- Department of Neurology, Tianshui First People's Hospital, Tianshui, Gansu 741000, P.R. China
| | - Peng Feng
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yufeng Zhu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xinlong Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Haijia Yu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Weiguo Liu
- Lanzhou University of Basic Medical Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|