1
|
Meinert H, Oehlschläger F, Cziegler C, Rockstroh J, Marzuoli I, Bisagni S, Lalk M, Bayer T, Iding H, Bornscheuer UT. Efficient Enzymatic Synthesis of Carbamates in Water Using Promiscuous Esterases/Acyltransferases. Angew Chem Int Ed Engl 2024; 63:e202405152. [PMID: 38739413 DOI: 10.1002/anie.202405152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Biocatalysis provides an attractive approach to facilitate synthetic reactions in aqueous media. Motivated by the discovery of promiscuous aminolysis activity of esterases, we exploited the esterase from Pyrobaculum calidifontis VA1 (PestE) for the synthesis of carbamates from different aliphatic, aromatic, and arylaliphatic amines and a set of carbonates such as dimethyl-, dibenzyl-, or diallyl carbonate. Thus, aniline and benzylamine derivatives, aliphatic and even secondary amines could be efficiently converted into the corresponding benzyloxycarbonyl (Cbz)- or allyloxycarbonyl (Alloc)-protected products in bulk water, with (isolated) yields of up to 99 %.
Collapse
Affiliation(s)
- Hannes Meinert
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Florian Oehlschläger
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Clemens Cziegler
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Jan Rockstroh
- Dept. of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Irene Marzuoli
- Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., Grenzacher Str. 124, 4070, Basel, Switzerland
| | - Serena Bisagni
- Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., Grenzacher Str. 124, 4070, Basel, Switzerland
| | - Michael Lalk
- Dept. of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Thomas Bayer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Hans Iding
- Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., Grenzacher Str. 124, 4070, Basel, Switzerland
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
2
|
Sato H, Hashimoto N, Watanabe Y, Ohtaka A. Regiospecificity of Immobilized Candida antarctica Lipase B (CAL-B) towards 2,3-Diacyl-1-O-alkyl Glyceryl Ether in Ethanol. J Oleo Sci 2024; 73:55-63. [PMID: 38171731 DOI: 10.5650/jos.ess23153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Highly pure 2,3-dioleoyl-1-O-alkyl glyceryl ether (DOGE), whose 1-position is a lipase-tolerant ether bond, was chemically synthesized and its detailed regioselectivity and acyl transfer were confirmed. During ethanolysis using immobilized Candida antarctica lipase B (CAL-B) with DOGE as the substrate, monooleoyl-1-O-alkyl glyceryl ethers (MOGEs) and a few 1-alkyl glyceryl ethers were formed upon consumption of the substrate. The structure of MOGE was confirmed using nuclear magnetic resonance spectroscopy and only the isomer of 2-MOGE was formed, indicating that CAL-B has complete α- regiospecificity. During ethanolysis, 3-MOGE was formed via acyl migration. These results indicate that the formation of 1-alkyl glyceryl ethers is not due to the imperfect regiospecificity of CAL-B, but rather due to ethanolysis of the formed 3-MOGE. The ethanolysis rate at the 3-α-position of DOGE was faster and the rate of acyl transfer was slightly slower for chain lengths greater than 14. These results show for the first time that both deacylation at the 3-position and acyl migration from the 2- to 3-position are affected by the structure of 1-position.
Collapse
Affiliation(s)
- Hirofumi Sato
- Osaka Research Institute of Industrial Science and Technology
| | | | - Yomi Watanabe
- Osaka Research Institute of Industrial Science and Technology
| | | |
Collapse
|
3
|
Abellanas-Perez P, Carballares D, Fernandez-Lafuente R, Rocha-Martin J. Glutaraldehyde modification of lipases immobilized on octyl agarose beads: Roles of the support enzyme loading and chemical amination of the enzyme on the final enzyme features. Int J Biol Macromol 2023; 248:125853. [PMID: 37460068 DOI: 10.1016/j.ijbiomac.2023.125853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl agarose at low loading and at a loading exceeding the maximum support capacity. Then, the enzymes have been treated with glutaraldehyde and inactivated at pH 7.0 in Tris-HCl, sodium phosphate and HEPES, giving different stabilities. Stabilization (depending on the buffer) of the highly loaded biocatalysts was found, very likely as a consequence of the detected intermolecular crosslinkings. This did not occur for the lowly loaded biocatalysts. Next, the enzymes were chemically aminated and then treated with glutaraldehyde. In the case of TLL, the intramolecular crosslinkings (visible by the apparent reduction of the protein size) increased enzyme stability of the lowly loaded biocatalysts, an effect that was further increased for the highly loaded biocatalysts due to intermolecular crosslinkings. Using CALB, the intramolecular crosslinkings were less intense, and the stabilization was lower, even though the intermolecular crosslinkings were quite intense for the highly loaded biocatalyst. The stabilization detected depended on the inactivation buffer. The interactions between enzyme loading and inactivating buffer on the effects of the chemical modifications suggest that the modification and inactivation studies must be performed under the target biocatalysts and conditions.
Collapse
Affiliation(s)
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid Spain.
| |
Collapse
|
4
|
Vicinanza S, Annunziata F, Pecora D, Pinto A, Tamborini L. Lipase-mediated flow synthesis of nature-inspired phenolic carbonates. RSC Adv 2023; 13:22901-22904. [PMID: 37520085 PMCID: PMC10375258 DOI: 10.1039/d3ra04735k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
A facile and convenient lipase-catalyzed flow approach for the chemoselective synthesis of tyrosol and hydroxytyrosol methyl carbonates has been developed in neat dimethylcarbonate. The products were obtained in quantitative yield with high catalyst productivity. The biocatalytic approach was then exploited for the preparation of value-added symmetrical tyrosol and hydroxytyrosol carbonates.
Collapse
Affiliation(s)
- Sara Vicinanza
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| | - Desirèe Pecora
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan Via Celoria 2 Milan 20133 Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| |
Collapse
|
5
|
Puskas JE, Shrikhande G, Molnar K. Synthesis and Characterization of Four-functional Fluoresceins. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Butyl-esters synthesis from palm fatty acid distillate catalyzed by immobilized lipases in solvent-free system – optimization using a simplified method (SER). Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
7
|
Souza PMP, Carballares D, Gonçalves LRB, Fernandez-Lafuente R, Rodrigues S. Immobilization of Lipase B from Candida antarctica in Octyl-Vinyl Sulfone Agarose: Effect of the Enzyme-Support Interactions on Enzyme Activity, Specificity, Structure and Inactivation Pathway. Int J Mol Sci 2022; 23:ijms232214268. [PMID: 36430745 PMCID: PMC9697615 DOI: 10.3390/ijms232214268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
Lipase B from Candida antarctica was immobilized on heterofunctional support octyl agarose activated with vinyl sulfone to prevent enzyme release under drastic conditions. Covalent attachment was established, but the blocking step using hexylamine, ethylenediamine or the amino acids glycine (Gly) and aspartic acid (Asp) altered the results. The activities were lower than those observed using the octyl biocatalyst, except when using ethylenediamine as blocking reagent and p-nitrophenol butyrate (pNPB) as substrate. The enzyme stability increased using these new biocatalysts at pH 7 and 9 using all blocking agents (much more significantly at pH 9), while it decreased at pH 5 except when using Gly as blocking agent. The stress inactivation of the biocatalysts decreased the enzyme activity versus three different substrates (pNPB, S-methyl mandelate and triacetin) in a relatively similar fashion. The tryptophane (Trp) fluorescence spectra were different for the biocatalysts, suggesting different enzyme conformations. However, the fluorescence spectra changes during the inactivation were not too different except for the biocatalyst blocked with Asp, suggesting that, except for this biocatalyst, the inactivation pathways may not be so different.
Collapse
Affiliation(s)
- Priscila M. P. Souza
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Food Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 858, Fortaleza CEP 60440-900, CE, Brazil
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
| | - Luciana R. B. Gonçalves
- Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (R.F.-L.); (S.R.)
| | - Sueli Rodrigues
- Food Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 858, Fortaleza CEP 60440-900, CE, Brazil
- Correspondence: (R.F.-L.); (S.R.)
| |
Collapse
|
8
|
Öten AM, Atak E, Taktak Karaca B, Fırtına S, Kutlu A. Discussing the roles of proline and glycine from the perspective of cold adaptation in lipases and cellulases. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ahmet Melih Öten
- Biology Education Center, Faculty of Science and Technology, Uppsala University, Uppsala, Sweden
| | - Evren Atak
- Bioinformatics and System Biology, Bioengineering Department, Gebze Technical University, Kocaeli, Turkey
| | - Banu Taktak Karaca
- Molecular Biology & Genetics Department, Faculty of Natural Science and Engineering, Atlas University, Istanbul, Turkey
| | - Sinem Fırtına
- Bioinformatics & Genetics, Faculty of Natural Science and Engineering, İstinye University, Istanbul, Turkey
| | - Aslı Kutlu
- Bioinformatics & Genetics, Faculty of Natural Science and Engineering, İstinye University, Istanbul, Turkey
| |
Collapse
|
9
|
Remonatto D, Fantatto RR, Pietro RCLR, Monti R, Oliveira JV, de Paula AV, Bassan JC. Enzymatic synthesis of geranyl acetate in batch and fed-batch reactors and evaluation of its larvicidal activity against Rhipicephalus (Boophilus) microplus. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Sánchez‐Muñoz GK, Ortega‐Rojas MA, Chavelas‐Hernández L, Razo‐Hernández RS, Valdéz‐Camacho JR, Escalante J. Solvent‐Free Lipase‐Catalyzed Transesterification of Alcohols with Methyl Esters Under Vacuum‐Assisted Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Grecia K. Sánchez‐Muñoz
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Leticia Chavelas‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Rodrigo S. Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jonathan R. Valdéz‐Camacho
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|
11
|
Guimarães JR, Carballares D, Rocha-Martin J, Tardioli PW, Fernandez-Lafuente R. Stabilization of immobilized lipases by treatment with metallic phosphate salts. Int J Biol Macromol 2022; 213:43-54. [DOI: 10.1016/j.ijbiomac.2022.05.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
|
12
|
Xie D, Chen Y, Yu J, Yang Z, Wang X, Wang X. Progress in enrichment of n-3 polyunsaturated fatty acid: a review. Crit Rev Food Sci Nutr 2022; 63:11310-11326. [PMID: 35699651 DOI: 10.1080/10408398.2022.2086852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
n-3 Polyunsaturated fatty acids (n-3 PUFA) has been widely used in foods, and pharmaceutical products due to its beneficial effects. The content of n-3 PUFA in natural oils is usually low, which decreases its added value. Thus, there is an increasing demand on the market for n-3 PUFA concentrates. This review firstly introduces the differences in bioavailability and oxidative stability between different types of PUFA concentrate (free fatty acid, ethyl ester and acylglycerol), and then provides a comprehensive discussion of different methods for enrichment of lipids with n-3 PUFA including physical-chemical methods and enzymatic methods. Lipases used for catalyzing esterification, transesterification and hydrolysis reactions play an important role in the production of highly enriched various types of n-3 PUFA concentrates. Lipase-catalyzed alcoholysis or hydrolysis reactions are the mostly employed method to prepare high-quality n-3 PUFA of structural acylglycerols. Although many important advantages offered by lipases in enrichment of n-3 PUFA, the high cost of enzyme limits its industrial-scale production. Further research should focus on looking for biological enzymes with extraordinary catalytic ability and clear selectivity. Other novel technologies such as protein engineering and immobilization may be needed to modify lipases to improve its selectivity, catalytic ability and reuse.
Collapse
Affiliation(s)
- Dan Xie
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, PR China
| | - Ye Chen
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Junwen Yu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, PR China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Zhuangzhuang Yang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
13
|
Sarmah N, Mehtab V, Bugata LSP, Tardio J, Bhargava S, Parthasarathy R, Chenna S. Machine learning aided experimental approach for evaluating the growth kinetics of Candida antarctica for lipase production. BIORESOURCE TECHNOLOGY 2022; 352:127087. [PMID: 35358675 DOI: 10.1016/j.biortech.2022.127087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
A hybrid machine learning (ML) aided experimental approach was proposed in this study to evaluate the growth kinetics of Candida antarctica for lipase production. Different ML models were trained and optimized to predict the growth curves at various substrate concentrations. Results on comparison demonstrate the superior performance of the Gradient boosting regression (GBR) model in growth curves prediction. GBR-based growth kinetics was found to be matching well with the results of the conventional experimental approach while significantly reducing the experimental effort, time, and resources by ∼ 50%. Further, the activity and enzyme kinetics of lipase produced in this study was investigated on hydrolysis of p-nitrophenyl butyrate resulting in a maximum lipase activity of 24.07 U at 44 h. The robustness and significance of developed kinetic models were ensured through detailed statistical analysis. The application of the proposed hybrid approach can be extended to any other microbial process.
Collapse
Affiliation(s)
- Nipon Sarmah
- Department of Process Engineering & Technology Transfer, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Vazida Mehtab
- Department of Process Engineering & Technology Transfer, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - James Tardio
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Rajarathinam Parthasarathy
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia; Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Sumana Chenna
- Department of Process Engineering & Technology Transfer, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol 2022; 199:51-60. [PMID: 34973984 DOI: 10.1016/j.ijbiomac.2021.12.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
The coimmobilization of lipases from Rhizomucor miehei (RML) and Candida antarctica (CALB) has been intended using agarose beads activated with divinyl sulfone. CALB could be immobilized on this support, while RML was not. However, RML was ionically exchanged on this support blocked with ethylendiamine. Therefore, both enzymes could be coimmobilized on the same particle, CALB covalently using the vinyl sulfone groups, and RML via anionic exchange on the aminated blocked support. However, immobilized RML was far less stable than immobilized CALB. To avoid the discarding of CALB (that maintained 90% of the initial activity after RML inactivation), a strategy was developed. Inactivated RML was desorbed from the support using ammonium sulfate and 1% Triton X-100 at pH 7.0. That way, 5 cycles of RML thermal inactivation, discharge of the inactivated enzyme and re-immobilization of a fresh sample of RML could be performed. In the last cycle, immobilized CALB activity was still over 90% of the initial one. Thus, the strategy permits that enzymes can be coimmobilized on vinyl sulfone supports even if one of them cannot be immobilized on it, and also permits the reuse of the most stable enzyme (if it is irreversibly attached to the support).
Collapse
|
15
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Coimmobilization of lipases exhibiting three very different stability ranges. Reuse of the active enzymes and selective discarding of the inactivated ones. Int J Biol Macromol 2022; 206:580-590. [PMID: 35218810 DOI: 10.1016/j.ijbiomac.2022.02.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
Lipase B from Candida antarctica (CALB) and lipases from Candida rugosa (CRL) and Rhizomucor miehei (RML) have been coimmobilized on octyl and octyl-Asp agarose beads. CALB was much more stable than CRL, that was significantly more stable than RML. This forces the user to discard immobilized CALB and CRL when only RML has been inactivated, or immobilized CALB when CRL have been inactivated. To solve this problem, a new strategy has been proposed using three different immobilization protocols. CALB was covalently immobilized on octyl-vinyl sulfone agarose and blocked with Asp. Then, CRL was immobilized via interfacial activation. After coating both immobilized enzymes with polyethylenimine, RML could be immobilized via ion exchange. That way, by incubating in ammonium sulfate solutions, inactivated RML could be released enabling the reuse of coimmobilized CRL and CALB to build a new combi-lipase. Incubating in triton and ammonium sulfate solutions, it was possible to release inactivated CRL and RML, enabling the reuse of immobilized CALB when CRL was inactivated. These cycles could be repeated for 3 full cycles, maintaining the activity of the active and immobilized enzymes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
16
|
Ramdass AC, Rampersad SN. Detection and diversity of the mannosylerythritol lipid (MEL) gene cluster and lipase A and B genes of Moesziomyces antarcticus isolated from terrestrial sites chronically contaminated with crude oil in Trinidad. BMC Microbiol 2022; 22:43. [PMID: 35120442 PMCID: PMC8815271 DOI: 10.1186/s12866-021-02419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.
Collapse
Affiliation(s)
- Amanda C. Ramdass
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| |
Collapse
|
17
|
Nagy F, Sánta-Bell E, Jipa M, Hornyánszky G, Szilágyi A, László K, Katona G, Paizs C, Poppe L, Balogh-Weiser D. Cross-Linked Enzyme-Adhered Nanoparticles (CLEANs) for Continuous-Flow Bioproduction. CHEMSUSCHEM 2022; 15:e202102284. [PMID: 34913608 DOI: 10.1002/cssc.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Nanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g., vinyl, propyl, phenyl, or octyl) functions resulted in functional NPs enabling cross-linking agents, such as glutardialdehyde or bisepoxides (glycerol diglycidyl ether, neopentylglycol diglycidyl ether, and poly(propylene glycol) diglycidyl ether), to bind and cross-link enzymes covalently and to form macroporous microparticles. These CLEANs were able to diminish several weaknesses of traditional cross-linked enzyme aggregates as biocatalysts, such as poor mechanical resistance, difficult recovery, and storage, strengthening their use for packed-bed enzyme reactors. Lipase B from Candida antarctica (CaLB) was selected as model enzyme for development of robust CLEANs, which were successfully tested for various industrially relevant applications including a kinetic resolution of a racemic alcohol and the production of various natural fragrance compounds under continuous-flow conditions.
Collapse
Affiliation(s)
- Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Monica Jipa
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gabriel Katona
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| |
Collapse
|
18
|
Applicability of mesoporous silica type SBA-15 as feasible support for the immobilization of Yarrowia lipolytica lipase and Candida antarctica lipase B. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
21
|
Ortega‐Rojas MA, Castillo E, Razo‐Hernández RS, Pastor N, Juaristi E, Escalante J. Effect of the Substituent and Amino Group Position on the Lipase‐Catalyzed Resolution of γ‐Amino Esters: A Molecular Docking Study Shedding Light on
Candida antarctica
lipase B Enantioselectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Edmundo Castillo
- Departamento de Ingeniería Celular y Biocatálisis Instituto de Biotecnología UNAM Apartado Postal 510–3 C.P. 62271 Cuernavaca Morelos México
| | - Rodrigo Said Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Nina Pastor
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Eusebio Juaristi
- Departamento de Química Centro de Investigación y de Estudios Avanzados Av. Instituto Politécnico Nacional No. 2508 07360 Ciudad de México México
- El Colegio Nacional Luis González Obregón 23, Centro Histórico 06020 Ciudad de México México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|
22
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
23
|
Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41: Stability and catalysis of transesterification of soybean oil and phytosterol. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Varga A, Csuka P, Sonesouphap O, Bánóczi G, Toşa MI, Katona G, Molnár Z, Bencze LC, Poppe L, Paizs C. A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Han Y, Zhang X, Zheng L. Engineering actively magnetic crosslinked inclusion bodies of Candida antarctica lipase B: An efficient and stable biocatalyst for enzyme-catalyzed reactions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Effect of Concentrated Salts Solutions on the Stability of Immobilized Enzymes: Influence of Inactivation Conditions and Immobilization Protocol. Molecules 2021; 26:molecules26040968. [PMID: 33673063 PMCID: PMC7918437 DOI: 10.3390/molecules26040968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
This paper aims to investigate the effects of some salts (NaCl, (NH4)2SO4 and Na2SO4) at pH 5.0, 7.0 and 9.0 on the stability of 13 different immobilized enzymes: five lipases, three proteases, two glycosidases, and one laccase, penicillin G acylase and catalase. The enzymes were immobilized to prevent their aggregation. Lipases were immobilized via interfacial activation on octyl agarose or on glutaraldehyde-amino agarose beads, proteases on glyoxyl agarose or glutaraldehyde-amino agarose beads. The use of high concentrations of salts usually has some effects on enzyme stability, but the intensity and nature of these effects depends on the inactivation pH, nature and concentration of the salt, enzyme and immobilization protocol. The same salt can be a stabilizing or a destabilizing agent for a specific enzyme depending on its concentration, inactivation pH and immobilization protocol. Using lipases, (NH4)2SO4 generally permits the highest stabilities (although this is not a universal rule), but using the other enzymes this salt is in many instances a destabilizing agent. At pH 9.0, it is more likely to find a salt destabilizing effect than at pH 7.0. Results confirm the difficulty of foreseeing the effect of high concentrations of salts in a specific immobilized enzyme.
Collapse
|
27
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Arana-Peña S, Rios NS, Carballares D, Gonçalves LR, Fernandez-Lafuente R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Solvent role in the lipase-catalysed esterification of cinnamic acid and derivatives. Optimisation of the biotransformation conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Anselmi S, Liu S, Kim SH, Barry SM, Moody TS, Castagnolo D. A mild and chemoselective CALB biocatalysed synthesis of sulfoxides exploiting the dual role of AcOEt as solvent and reagent. Org Biomol Chem 2021; 19:156-161. [PMID: 33179689 DOI: 10.1039/d0ob01966f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mild, chemoselective and sustainable biocatalysed synthesis of sulfoxides has been developed exploiting CALB and using AcOEt with a dual role of more environmentally friendly reaction solvent and enzyme substrate. A series of sulfoxides, including the drug omeprazole, have been synthesised in high yields and with excellent E-factors.
Collapse
Affiliation(s)
- Silvia Anselmi
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Shou H, He Z, Peng G, Su W, Yu J. Two approaches for the synthesis of levo-praziquantel. Org Biomol Chem 2021; 19:4507-4514. [PMID: 33908985 DOI: 10.1039/d1ob00453k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report herein the development of two pathways for the preparation of levo-praziquantel (R-PZQ), which involves three-/four-step processes of a mechanochemical (asymmetric) aza-Henry/acylation reaction, a hydrogenation reaction, (chiral resolution) and a solvent-free acylation-ring closing reaction. The key intermediate (R)-1-aminomethyl tetrahydroisoquinoline could be obtained either by chiral resolution with a rational reuse of the S-isomer or by mechanochemical enantioselective synthesis that refrained from using a bulky toxic solvent. The efficiency and scalability of both the developed routes were demonstrated and desired target product was obtained in a satisfactory yield with excellent enantiopurity (>99%), offering practical, concise and environmentally friendly alternatives to access R-PZQ.
Collapse
Affiliation(s)
- Haowen Shou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhaoting He
- Beijing Fukangren Bio-pharm Tech Co., Ltd, 102627, P. R. China
| | - Gang Peng
- Huadong Medicine Co., Ltd, Hangzhou 310011, P. R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
32
|
Saikia K, Rathankumar AK, Vaithyanathan VK, Cabana H, Vaidyanathan VK. Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5-Hydroxymethylfurfural. Int J Biol Macromol 2020; 170:583-592. [PMID: 33385453 DOI: 10.1016/j.ijbiomac.2020.12.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
The present work pronounces the three phase partitioning (TPP)-facilitated preparation of porous cross-linked Candida antarctica lipase B (CaLB) aggregates (pCLEAs) for 5-Hydroxymethylfurfural (HMF) esters synthesis. CLEAs and pCLEAs of CaLB were prepared with eupergit as the support under the optimized conditions of pH 8.0, eupergit/protein ratio of 3.0:1.0, 50 mM cross-linker concentration and 3.3 mg/mL BSA concentration in 4 h. The optimum starch concentration for pCLEAs was 0.20%, m/v. The maximum biocatalytic load was 650 U/g (CLEAs) and 721 U/g (pCLEAs), and the immobilized biocatalysts were stable over a pH range of 6.0-9.0 and temperature range of (40-60)°C. The BET surface area of CLEAs and pCLEAs were 21.3 and 29.1 m2/g, respectively, and the catalytic efficiency of pCLEAs was 2.2-fold higher than that of CLEAs. Subsequently, the pCLEAs of CaLB were utilized for the manufacturing of industrially significant HMF esters. Under the optimized transesterification conditions, HMF conversion with pCLEAs CaLB was 1.41- and 1.25-fold higher than with free and CLEAs CaLB, respectively. The pCLEAs were reused upto 8 consecutive transesterification cycles and the produced HMF esters reduced the surface tension of water from 72 mN/m to 32.6 mN/m, proving its potential application as surface-active compounds.
Collapse
Affiliation(s)
- Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Vasanth Kumar Vaithyanathan
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Hubert Cabana
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
33
|
Single Cell Oil (SCO)-Based Bioactive Compounds: I-Enzymatic Synthesis of Fatty Acid Amides Using SCOs as Acyl Group Donors and Their Biological Activities. Appl Biochem Biotechnol 2020; 193:822-845. [PMID: 33191449 DOI: 10.1007/s12010-020-03450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 01/06/2023]
Abstract
Fatty acid amides (FAAs) are of great interest due to their broad industrial applications. They can be synthesized enzymatically with many advantages over chemical synthesis. In this study, the fatty acid moieties of lipids of Cunninghamella echinulata ATHUM 4411, Umbelopsis isabellina ATHUM 2935, Nannochloropsis gaditana CCAP 849/5, olive oil, and an eicosapentaenoic acid (EPA) concentrate were converted into their fatty acid methyl esters and used in the FAA (i.e., ethylene diamine amides) enzymatic synthesis, using lipases as biocatalysts. The FAA synthesis, monitored using in situ NMR, FT-IR, and thin-layer chromatography, was catalyzed efficiently by the immobilized Candida rugosa lipase. The synthesized FAAs exhibited a significant antimicrobial activity, especially those containing oleic acid in high proportions (i.e., derived from olive oil and U. isabellina oil), against several human pathogenic microorganisms, insecticidal activity against yellow fever mosquito, especially those of C. echinulata containing gamma-linolenic acid, and anticancer properties against SKOV-3 ovarian cancer cell line, especially those containing EPA in their structures (i.e., EPA concentrate and N. gaditana oil). We conclude that FAAs can be efficiently synthesized using microbial oils of different fatty acid composition and used in specific biological applications.
Collapse
|
34
|
First biocatalytic Groebke-Blackburn-Bienaymé reaction to synthesize imidazo[1,2-a]pyridine derivatives using lipase enzyme. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts 2020. [DOI: 10.3390/catal10101207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lipases A and B from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TLL) or Rhizomucor miehei (RML), and the commercial and artificial phospholipase Lecitase ultra (LEU) may be co-immobilized on octyl agarose beads. However, LEU and RML became almost fully inactivated under conditions where CALA, CALB and TLL retained full activity. This means that, to have a five components co-immobilized combi-lipase, we should discard 3 fully active and immobilized enzymes when the other two enzymes are inactivated. To solve this situation, CALA, CALB and TLL have been co-immobilized on octyl-vinyl sulfone agarose beads, coated with polyethylenimine (PEI) and the least stable enzymes, RML and LEU have been co-immobilized over these immobilized enzymes. The coating with PEI is even favorable for the activity of the immobilized enzymes. It was checked that RML and LEU could be released from the enzyme-PEI coated biocatalyst, although this also produced some release of the PEI. That way, a protocol was developed to co-immobilize the five enzymes, in a way that the most stable could be reused after the inactivation of the least stable ones. After RML and LEU inactivation, the combi-biocatalysts were incubated in 0.5 M of ammonium sulfate to release the inactivated enzymes, incubated again with PEI and a new RML and LEU batch could be immobilized, maintaining the activity of the three most stable enzymes for at least five cycles of incubation at pH 7.0 and 60 °C for 3 h, incubation on ammonium sulfate, incubation in PEI and co-immobilization of new enzymes. The effect of the order of co-immobilization of the different enzymes on the co-immobilized biocatalyst activity was also investigated using different substrates, finding that when the most active enzyme versus one substrate was immobilized first (nearer to the surface of the particle), the activity was higher than when this enzyme was co-immobilized last (nearer to the particle core).
Collapse
|
36
|
Peffi Ferreira LF, Mazzi de Oliveira T, Toma SH, Toyama MM, Araki K, Avanzi LH. Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with lipase Candida antarctica A for biodiesel synthesis. RSC Adv 2020; 10:38490-38496. [PMID: 35517526 PMCID: PMC9057248 DOI: 10.1039/d0ra06215d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022] Open
Abstract
Biodiesel is an alternative biodegradable and non-toxic fuel, with a low emission profile and capable of reducing significantly the level of carcinogenic pollutants released into the atmosphere. A newly designed nano-biocatalyst prepared by conjugation of lipase A on superparamagnetic iron oxide nanoparticles (SPIONs) demonstrated high efficiency for production of biodiesel by the reaction of soybean oil with anhydrous methanol. The nanomaterial was characterized by FTIR, TGA and XRD, and its enzymatic activity compared with Lipozyme 435, a commercial gold standard from Novozyme™, which presented average enzymatic activity of 4559 ± 75 only twice as large as that of the SPION-CAL-A catalyst (2283 ± 249 PLU g-1), whereas Lipozyme TLIM showed a much lower activity of 588 ± 16 PLU g-1. These results were confirmed in the transesterification reaction for production of biodiesel where a yield of 11.4% was achieved with Lipozyme 435 and 4.6 ± 0.5% with the nano-biocatalyst. Such an improved performance associated with easy magnetic recovery and reuse make the material potentially interesting for production of biodiesel from used cooking oil, adding value to this abundant resource.
Collapse
Affiliation(s)
| | - Thayná Mazzi de Oliveira
- Chemical Engineering Department, FEI University Center São Bernardo do Campo SP, 09850-901 Brazil
| | | | | | - Koiti Araki
- Institute of Chemistry, University of São Paulo SP, 05508-000 Brazil
| | - Luis Humberto Avanzi
- Physics Department, FEI University Center São Bernardo do Campo SP, 09850-901 Brazil
| |
Collapse
|
37
|
Biomedical applications of microbial phenylalanine ammonia lyase: Current status and future prospects. Biochimie 2020; 177:142-152. [PMID: 32828824 DOI: 10.1016/j.biochi.2020.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Phenylalanine ammonia lyase (PAL) has recently emerged as an important therapeutic enzyme with several biomedical applications. The enzyme catabolizes l-phenylalanine to trans-cinnamate and ammonia. PAL is widely distributed in higher plants, some algae, ferns, and microorganisms, but absent in animals. Although microbial PAL has been extensively exploited in the past for producing industrially important metabolites, its high substrate specificity and catalytic efficacy lately spurred interest in its biomedical applications. PEG-PAL drug named Palynziq™, isolated from Anabaena variabilis has been recently approved for the treatment of adult phenylketonuria (PKU) patients. Further, it has exhibited high potency in regressing tumors and treating tyrosine related metabolic abnormalities like tyrosinemia. Several therapeutically valuable metabolites have been biosynthesized via its catalytic action including dietary supplements, antimicrobial peptides, aspartame, amino-acids, and their derivatives. This review focuses on all the prospective biomedical applications of PAL. It also provides an overview of the structure, production parameters, and various strategies to improve the therapeutic potential of this enzyme. Engineered PAL with improved pharmacodynamic and pharmacokinetic properties will further establish this enzyme as a highly efficient biological drug.
Collapse
|
38
|
Pinto GB, Mendes FML, Antunes AMDS. Technological Profile of Lipases in the Pharmaceutical Industry. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190913181530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In recent decades, enzymes have been the target of considerable research, development,
and innovation. This paper presents an up-to-date overview of the technological application of lipases
in the pharmaceutical industry. Lipases have been used in a variety of ways in the pharmaceutical
industry, both for obtaining bioactive molecules to overcome limitations in the formulation of medicines
and in drug design. This is possible from alternative technologies, such as immobilization and
the use of non-aqueous solvents that allow the use of lipases in commercial-scale processes. In addition,
other technologies have provided the emergence of differentiated and more specific lipases in
order to meet the perspectives of industrial processes. The research indicates that the following years
should be promising for the application of lipase in the industrial biocatalysis and in drug design.
Collapse
|
39
|
Kornecki JF, Carballares D, Morellon-Sterling R, Siar EH, Kashefi S, Chafiaa M, Arana-Peña S, Rios NS, Gonçalves LR, Fernandez-Lafuente R. Influence of phosphate anions on the stability of immobilized enzymes. Effect of enzyme nature, immobilization protocol and inactivation conditions. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts 2020. [DOI: 10.3390/catal10070744] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Four major enzymes commonly used in the market are lipases, proteases, amylases, and cellulases. For instance, in both academic and industrial levels, microbial lipases have been well studied for industrial and biotechnological applications compared to others. Immobilization is done to minimize the cost. The improvement of enzyme properties enables the reusability of enzymes and facilitates enzymes used in a continuous process. Immobilized enzymes are enzymes physically confined in a particularly defined region with retention to their catalytic activities. Immobilized enzymes can be used repeatedly compared to free enzymes, which are unable to catalyze reactions continuously in the system. Immobilization also provides a higher pH value and thermal stability for enzymes toward synthesis. The main parameter influencing the immobilization is the support used to immobilize the enzyme. The support should have a large surface area, high rigidity, suitable shape and particle size, reusability, and resistance to microbial attachment, which will enhance the stability of the enzyme. The diffusion of the substrate in the carrier is more favorable on hydrophobic supports instead of hydrophilic supports. The methods used for enzyme immobilization also play a crucial role in immobilization performance. The combination of immobilization methods will increase the binding force between enzymes and the support, thus reducing the leakage of the enzymes from the support. The adsorption of lipase on a hydrophobic support causes the interfacial activation of lipase during immobilization. The adsorption method also causes less or no change in enzyme conformation, especially on the active site of the enzyme. Thus, this method is the most used in the immobilization process for industrial applications.
Collapse
|
41
|
Lu C, Peng X, Lu D, Liu Z. Global and Kinetic Profiles of Substrate Diffusion in Candida antarctica Lipase B: Molecular Dynamics with the Markov-State Model. ACS OMEGA 2020; 5:9806-9812. [PMID: 32391467 PMCID: PMC7203684 DOI: 10.1021/acsomega.9b04432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Profiling substrate diffusion pathways with kinetic information, which accounts for the dynamic nature of enzyme-substrate interaction, can enable molecular reengineering of enzymes and process optimization of enzymatic catalysis. Candida antarctica lipase B (CALB) is extensively used for producing various chemicals because of its rich catalytic mechanisms, broad substrate spectrum, thermal stability, and tolerance to organic solvents. In this study, an all-atom molecular dynamics (MD) combined with Markov-state models (MSMs) implemented in pyEMMA was proposed to simulate diffusion pathways of 4-nitrophenyl ester (4NPE), a commonly used substrate, from the surface into the active site of CALB. Six important metastable conformations of CALB were identified in the diffusion process, including a closed state. An induced-fit mechanism incorporating multiple pathways with molecular information was proposed, which might find unprecedented applications for the rational design of lipase for green catalysis.
Collapse
Affiliation(s)
- Chenlin Lu
- Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Chemical Engineering, Ministry of Education, Beijing 100084, China
| | - Xue Peng
- Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Chemical Engineering, Ministry of Education, Beijing 100084, China
| | - Diannan Lu
- Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Chemical Engineering, Ministry of Education, Beijing 100084, China
| | - Zheng Liu
- Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts 2020. [DOI: 10.3390/catal10040414] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Residual oil from babassu (Orbignya sp.), a low-cost raw material, was used in the enzymatic esterification for biodiesel production, using lipase B from Candida antarctica (Novozym® 435) and ethanol. For the first time in the literature, residual babassu oil and Novozym® 435 are being investigated to obtain biodiesel. In this communication, response surface methodology (RSM) and a central composite design (CCD) were used to optimize the esterification and study the effects of four factors (molar ratio (1:1–1:16, free fatty acids (FFAs) /alcohol), temperature (30–50 °C), biocatalyst content (0.05–0.15 g) and reaction time (2–6 h)) in the conversion into fatty acid ethyl esters. Under optimized conditions (1:18 molar ratio (FFAs/alcohol), 0.14 g of Novozym® 435, 48 °C and 4 h), the conversion into ethyl esters was 96.8%. It was found that after 10 consecutive cycles of esterification under optimal conditions, Novozym® 435 showed a maximum loss of activity of 5.8%, suggesting a very small change in the support/enzyme ratio proved by Fourier Transform Infrared (FTIR) spectroscopy and insignificant changes in the surface of Novozym® 435 proved by scanning electron microscopy (SEM) after the 10 consecutive cycles of esterification.
Collapse
|
43
|
|
44
|
Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. Int J Biol Macromol 2020; 145:856-864. [DOI: 10.1016/j.ijbiomac.2019.10.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
|
45
|
|
46
|
|
47
|
Szelwicka A, Kolanowska A, Latos P, Jurczyk S, Boncel S, Chrobok A. Carbon nanotube/PTFE as a hybrid platform for lipase B from Candida antarctica in transformation of α-angelica lactone into alkyl levulinates. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00545b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly active biocatalyst based on a hybrid platform was designed for the conversion of α-angelica lactone to alkyl levulinates.
Collapse
Affiliation(s)
- Anna Szelwicka
- Department of Organic Chemical Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Anna Kolanowska
- Department of Organic Chemistry
- Bioorganic Chemistry and Biotechnology
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Piotr Latos
- Department of Organic Chemical Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Sebastian Jurczyk
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes
- 87-100 Toruń
- Poland
| | - Slawomir Boncel
- Department of Organic Chemistry
- Bioorganic Chemistry and Biotechnology
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Anna Chrobok
- Department of Organic Chemical Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| |
Collapse
|
48
|
Oliveira FL, Souza SP, Bassut J, Álvarez HM, Garcia‐Basabe Y, Alves de Souza ROM, Esteves PM, Gonçalves RSB. Enzyme‐Decorated Covalent Organic Frameworks as Nanoporous Platforms for Heterogeneous Biocatalysis. Chemistry 2019; 25:15863-15870. [DOI: 10.1002/chem.201903807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/30/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Felipe L. Oliveira
- Instituto de QuímicaUniversidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitária Rio de Janeiro RJ 21941-909 Brazil
| | - Stefania P. Souza
- Biocatalysis and Organic Synthesis Group, Chemistry InstituteUniversidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitária Rio de Janeiro RJ 21941-909 Brazil
| | - Jonathan Bassut
- Biocatalysis and Organic Synthesis Group, Chemistry InstituteUniversidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitária Rio de Janeiro RJ 21941-909 Brazil
| | - Heiddy M. Álvarez
- Departamento de Ciências ExatasUniversidade Estadual de Feira de Santana Av. Transnordestina S/N, Novo Horizonte, 252 Feira de Santana BA 44036-900 Brazil
| | - Yunier Garcia‐Basabe
- Instituto Latino-Americano de Ciências da Vida e da NaturezaUniversidade Federal da Integração Latino-Americana Av. Tancredo Neves, 6731 Foz do Iguaçu PR 85867-970 Brazil
| | - Rodrigo O. M. Alves de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry InstituteUniversidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitária Rio de Janeiro RJ 21941-909 Brazil
| | - Pierre M. Esteves
- Instituto de QuímicaUniversidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitária Rio de Janeiro RJ 21941-909 Brazil
| | - Raoni S. B. Gonçalves
- Instituto de QuímicaUniversidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitária Rio de Janeiro RJ 21941-909 Brazil
| |
Collapse
|
49
|
Santos YLDL, Chew-Fajardo YL, Brault G, Doucet N. Dissecting the evolvability landscape of the CalB active site toward aromatic substrates. Sci Rep 2019; 9:15588. [PMID: 31666622 PMCID: PMC6821916 DOI: 10.1038/s41598-019-51940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/07/2019] [Indexed: 01/17/2023] Open
Abstract
A key event in the directed evolution of enzymes is the systematic use of mutagenesis and selection, a process that can give rise to mutant libraries containing millions of protein variants. To this day, the functional analysis and identification of active variants among such high numbers of mutational possibilities is not a trivial task. Here, we describe a combinatorial semi-rational approach to partly overcome this challenge and help design smaller and smarter mutant libraries. By adapting a liquid medium transesterification assay in organic solvent conditions with a combination of virtual docking, iterative saturation mutagenesis, and residue interaction network (RIN) analysis, we engineered lipase B from P. antarctica (CalB) to improve enzyme recognition and activity against the bulky aromatic substrates and flavoring agents methyl cinnamate and methyl salicylate. Substrate-imprinted docking was used to target active-site positions involved in enzyme-substrate and enzyme-product complexes, in addition to identifying 'hot spots' most likely to yield active variants. This iterative semi-rational design strategy allowed selection of CalB variants exhibiting increased activity in just two rounds of site-saturation mutagenesis. Beneficial replacements were observed by screening only 0.308% of the theoretical library size, illustrating how semi-rational approaches with targeted diversity can quickly facilitate the discovery of improved activity variants relevant to a number of biotechnological applications.
Collapse
Affiliation(s)
- Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Ying Lian Chew-Fajardo
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Brault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
- PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
50
|
Khan NR, Rathod VK. Enzymatic synthesis of cetyl oleate in a solvent-free medium using microwave irradiation and physicochemical evaluation. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1664480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nishat R. Khan
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Virendra K. Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|