1
|
Bastioli G, Piccirillo S, Graciotti L, Carone M, Sprega G, Taoussi O, Preziuso A, Castaldo P. Calcium Deregulation in Neurodegeneration and Neuroinflammation in Parkinson's Disease: Role of Calcium-Storing Organelles and Sodium-Calcium Exchanger. Cells 2024; 13:1301. [PMID: 39120330 PMCID: PMC11311461 DOI: 10.3390/cells13151301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that lacks effective treatment strategies to halt or delay its progression. The homeostasis of Ca2+ ions is crucial for ensuring optimal cellular functions and survival, especially for neuronal cells. In the context of PD, the systems regulating cellular Ca2+ are compromised, leading to Ca2+-dependent synaptic dysfunction, impaired neuronal plasticity, and ultimately, neuronal loss. Recent research efforts directed toward understanding the pathology of PD have yielded significant insights, particularly highlighting the close relationship between Ca2+ dysregulation, neuroinflammation, and neurodegeneration. However, the precise mechanisms driving the selective loss of dopaminergic neurons in PD remain elusive. The disruption of Ca2+ homeostasis is a key factor, engaging various neurodegenerative and neuroinflammatory pathways and affecting intracellular organelles that store Ca2+. Specifically, impaired functioning of mitochondria, lysosomes, and the endoplasmic reticulum (ER) in Ca2+ metabolism is believed to contribute to the disease's pathophysiology. The Na+-Ca2+ exchanger (NCX) is considered an important key regulator of Ca2+ homeostasis in various cell types, including neurons, astrocytes, and microglia. Alterations in NCX activity are associated with neurodegenerative processes in different models of PD. In this review, we will explore the role of Ca2+ dysregulation and neuroinflammation as primary drivers of PD-related neurodegeneration, with an emphasis on the pivotal role of NCX in the pathology of PD. Consequently, NCXs and their interplay with intracellular organelles may emerge as potentially pivotal players in the mechanisms underlying PD neurodegeneration, providing a promising avenue for therapeutic intervention aimed at halting neurodegeneration.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Marianna Carone
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Giorgia Sprega
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Omayema Taoussi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| |
Collapse
|
2
|
Ge S, Zha L, Kimura Y, Shimomura Y, Komatsu M, Gon Y, Komukai S, Murata F, Maeda M, Kiyohara K, Sobue T, Kitamura T, Fukuda H. Statin use and risk of Parkinson's disease among older adults in Japan: a nested case-control study using the Longevity Improvement and Fair Evidence study. Brain Commun 2024; 6:fcae195. [PMID: 38894948 PMCID: PMC11184346 DOI: 10.1093/braincomms/fcae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The association between statin use and the risk of Parkinson's disease remains inconclusive, particularly in Japan's super-ageing society. This study aimed to investigate the potential association between statin use and the risk of Parkinson's disease among Japanese participants aged ≥65 years. We used data from the Longevity Improvement and Fair Evidence Study, which included medical and long-term care claim data from April 2014 to December 2020 across 17 municipalities. Using a nested case-control design, we matched one case to five controls based on age, sex, municipality and cohort entry year. A conditional logistic regression model was used to estimate the odds ratios with 95% confidence intervals. Among the 56 186 participants (9397 cases and 46 789 controls), 53.6% were women. The inverse association between statin use and Parkinson's disease risk was significant after adjusting for multiple variables (odds ratio: 0.61; 95% confidence interval: 0.56-0.66). Compared with non-users, the dose analysis revealed varying odds ratios: 1.30 (1.12-1.52) for 1-30 total standard daily doses, 0.77 (0.64-0.92) for 31-90 total standard daily doses, 0.62 (0.52-0.75) for 91-180 total standard daily doses and 0.30 (0.25-0.35) for >180 total standard daily doses. Statin use among older Japanese adults was associated with a decreased risk of Parkinson's disease. Notably, lower cumulative statin doses were associated with an elevated risk of Parkinson's disease, whereas higher cumulative doses exhibited protective effects against Parkinson's disease development.
Collapse
Affiliation(s)
- Sanyu Ge
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Ling Zha
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshimitsu Shimomura
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Masayo Komatsu
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sho Komukai
- Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Fumiko Murata
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-0054, Japan
| | - Megumi Maeda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-0054, Japan
| | - Kosuke Kiyohara
- Department of Food Science, Faculty of Home Economics, Otsuma Women’s University, Tokyo, 102-8357, Japan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-0054, Japan
| |
Collapse
|
3
|
Zheng X, Zhao Z, Zhao L. Investigating the Effect of an Anti-Inflammatory Drug in Determining NURR1 Expression and Thus Exploring the Progression of Parkinson's Disease. Physiol Res 2024; 73:139-155. [PMID: 38466012 PMCID: PMC11019624 DOI: 10.33549/physiolres.935168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 04/26/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.
Collapse
MESH Headings
- Animals
- Mice
- Parkinson Disease/metabolism
- Ibuprofen/pharmacology
- Ibuprofen/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Mice, Inbred C57BL
- Disease Models, Animal
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
Collapse
Affiliation(s)
- X Zheng
- Department of Divine Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | | | | |
Collapse
|
4
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
5
|
Sian-Hulsmann J, Riederer P. Virus-induced brain pathology and the neuroinflammation-inflammation continuum: the neurochemists view. J Neural Transm (Vienna) 2024:10.1007/s00702-023-02723-5. [PMID: 38261034 DOI: 10.1007/s00702-023-02723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/18/2023] [Indexed: 01/24/2024]
Abstract
Fascinatingly, an abundance of recent studies has subscribed to the importance of cytotoxic immune mechanisms that appear to increase the risk/trigger for many progressive neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis. Events associated with the neuroinflammatory cascades, such as ageing, immunologic dysfunction, and eventually disruption of the blood-brain barrier and the "cytokine storm", appear to be orchestrated mainly through the activation of microglial cells and communication with the neurons. The inflammatory processes prompt cellular protein dyshomeostasis. Parkinson's and Alzheimer's disease share a common feature marked by characteristic pathological hallmarks of abnormal neuronal protein accumulation. These Lewy bodies contain misfolded α-synuclein aggregates in PD or in the case of AD, they are Aβ deposits and tau-containing neurofibrillary tangles. Subsequently, these abnormal protein aggregates further elicit neurotoxic processes and events which contribute to the onset of neurodegeneration and to its progression including aggravation of neuroinflammation. However, there is a caveat for exclusively linking neuroinflammation with neurodegeneration, since it's highly unlikely that immune dysregulation is the only factor that contributes to the manifestation of many of these neurodegenerative disorders. It is unquestionably a complex interaction with other factors such as genetics, age, and environment. This endorses the "multiple hit hypothesis". Consequently, if the host has a genetic susceptibility coupled to an age-related weakened immune system, this makes them more susceptible to the virus/bacteria-related infection. This may trigger the onset of chronic cytotoxic neuroinflammatory processes leading to protein dyshomeostasis and accumulation, and finally, these events lead to neuronal destruction. Here, we differentiate "neuroinflammation" and "inflammation" with regard to the involvement of the blood-brain barrier, which seems to be intact in the case of neuroinflammation but defect in the case of inflammation. There is a neuroinflammation-inflammation continuum with regard to virus-induced brain affection. Therefore, we propose a staging of this process, which might be further developed by adding blood- and CSF parameters, their stage-dependent composition and stage-dependent severeness grade. If so, this might be suitable to optimise therapeutic strategies to fight brain neuroinflammation in its beginning and avoid inflammation at all.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | - Peter Riederer
- University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark, Winslows Vey 18, 5000, Odense, J.B, Denmark.
| |
Collapse
|
6
|
Lee MY, Kim M. Effects of Red ginseng on neuroinflammation in neurodegenerative diseases. J Ginseng Res 2024; 48:20-30. [PMID: 38223824 PMCID: PMC10785270 DOI: 10.1016/j.jgr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 01/16/2024] Open
Abstract
Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.
Collapse
Affiliation(s)
- Min Yeong Lee
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| |
Collapse
|
7
|
Yin S, Ma XY, Sun YF, Yin YQ, Long Y, Zhao CL, Ma JW, Li S, Hu Y, Li MT, Hu G, Zhou JW. RGS5 augments astrocyte activation and facilitates neuroinflammation via TNF signaling. J Neuroinflammation 2023; 20:203. [PMID: 37674228 PMCID: PMC10481574 DOI: 10.1186/s12974-023-02884-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xin-Yue Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ying-Feng Sun
- Center for Brain Disorders Research, Center of Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ying Long
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chun-Lai Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jun-Wei Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Sen Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yan Hu
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ming-Tao Li
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science, Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- Co-Innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Myrcene Salvages Rotenone-Induced Loss of Dopaminergic Neurons by Inhibiting Oxidative Stress, Inflammation, Apoptosis, and Autophagy. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020685. [PMID: 36677744 PMCID: PMC9863310 DOI: 10.3390/molecules28020685] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor deficits. The exact etiology of PD is currently unknown; however, the pathological hallmarks of PD include excessive production of reactive oxygen species, enhanced neuroinflammation, and overproduction of α-synuclein. Under normal physiological conditions, aggregated α-synuclein is degraded via the autophagy lysosomal pathway. However, impairment of the autophagy lysosomal pathway results in α-synuclein accumulation, thereby facilitating the pathogenesis of PD. Current medications only manage the symptoms, but are unable to delay, prevent, or cure the disease. Collectively, oxidative stress, inflammation, apoptosis, and autophagy play crucial roles in PD; therefore, there is an enormous interest in exploring novel bioactive agents of natural origin for their protective roles in PD. The present study evaluated the role of myrcene, a monoterpene, in preventing the loss of dopaminergic neurons in a rotenone (ROT)-induced rodent model of PD, and elucidated the underlying mechanisms. Myrcene was administered at a dose of 50 mg/kg, 30 min prior to the intraperitoneal injections of ROT (2.5 mg/kg). Administration of ROT caused a considerable loss of dopaminergic neurons, subsequent to a significant reduction in the antioxidant defense systems, increased lipid peroxidation, and activation of microglia and astrocytes, along with the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) and matrix metalloproteinase-9. Rotenone also resulted in impairment of the autophagy lysosomal pathway, as evidenced by increased expression of LC3, p62, and beclin-1 with decreased expression in the phosphorylation of mTOR protein. Collectively, these factors result in the loss of dopaminergic neurons. However, myrcene treatment has been observed to restore antioxidant defenses and attenuate the increase in concentrations of lipid peroxidation products, pro-inflammatory cytokines, diminished microglia, and astrocyte activation. Myrcene treatment also enhanced the phosphorylation of mTOR, reinstated neuronal homeostasis, restored autophagy-lysosomal degradation, and prevented the increased expression of α-synuclein following the rescue of dopaminergic neurons. Taken together, our study clearly revealed the mitigating effect of myrcene on dopaminergic neuronal loss, attributed to its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, and favorable modulation of autophagic flux. This study suggests that myrcene may be a potential candidate for therapeutic benefits in PD.
Collapse
|
9
|
Behl T, Rana T, Sehgal A, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Sachdeva M. Phytochemicals targeting nitric oxide signaling in neurodegenerative diseases. Nitric Oxide 2023; 130:1-11. [PMID: 36375788 DOI: 10.1016/j.niox.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Neurodegenerative diseases are a set of diseases in which slow and progressive neuronal loss occurs. Nitric oxide (NO) as a neurotransmitter performs key roles in the stimulation and blockade of various inflammatory processes. Although physiological NO is necessary for protection against a variety of pathogens, reactive oxygen species-mediated oxidative stress induces inflammatory cascades and apoptosis. Activation of glial cells particularly astrocytes and microglia induce overproduction of NO, resulting in neuroinflammation and neurodegenerative disorders. Hence, inhibiting the overproduction of NO is a beneficial therapeutic approach for numerous neuroinflammatory conditions. Several compounds have been explored for the management of neurodegenerative disorders, but they have minor symptomatic benefits and several adverse effects. Phytochemicals have currently gained more consideration owing to their ability to reduce the overproduction of NO in neurodegenerative disorders. Furthermore, phytochemicals are generally considered to be safe and beneficial. The mechanisms of NO generation and their implications in neurodegenerative disorders are explored in this review article, as well as several newly discovered phytochemicals that might have NO inhibitory activity. The current review could aid in the discovery of new anti-neuroinflammatory drugs that can suppress NO generation, particularly during neuroinflammatory and neurodegenerative conditions.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Monika Sachdeva
- Fatima College of Health Science, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Cisterna A, González-Vidal A, Ruiz D, Ortiz J, Gómez-Pascual A, Chen Z, Nalls M, Faghri F, Hardy J, Díez I, Maietta P, Álvarez S, Ryten M, Botía JA. PhenoExam: gene set analyses through integration of different phenotype databases. BMC Bioinformatics 2022; 23:567. [PMID: 36587217 PMCID: PMC9805686 DOI: 10.1186/s12859-022-05122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gene set enrichment analysis (detecting phenotypic terms that emerge as significant in a set of genes) plays an important role in bioinformatics focused on diseases of genetic basis. To facilitate phenotype-oriented gene set analysis, we developed PhenoExam, a freely available R package for tool developers and a web interface for users, which performs: (1) phenotype and disease enrichment analysis on a gene set; (2) measures statistically significant phenotype similarities between gene sets and (3) detects significant differential phenotypes or disease terms across different databases. RESULTS PhenoExam generates sensitive and accurate phenotype enrichment analyses. It is also effective in segregating gene sets or Mendelian diseases with very similar phenotypes. We tested the tool with two similar diseases (Parkinson and dystonia), to show phenotype-level similarities but also potentially interesting differences. Moreover, we used PhenoExam to validate computationally predicted new genes potentially associated with epilepsy. CONCLUSIONS We developed PhenoExam, a freely available R package and Web application, which performs phenotype enrichment and disease enrichment analysis on gene set G, measures statistically significant phenotype similarities between pairs of gene sets G and G' and detects statistically significant exclusive phenotypes or disease terms, across different databases. We proved with simulations and real cases that it is useful to distinguish between gene sets or diseases with very similar phenotypes. Github R package URL is https://github.com/alexcis95/PhenoExam . Shiny App URL is https://alejandrocisterna.shinyapps.io/phenoexamweb/ .
Collapse
Affiliation(s)
- Alejandro Cisterna
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Aurora González-Vidal
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Daniel Ruiz
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Jordi Ortiz
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Alicia Gómez-Pascual
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK
| | - Mike Nalls
- Data Tecnica International LLC, Glen Echo, MD, USA
- Laboratory of Neurogenetics, NIA/NIH, Bethesda, MD, USA
- Center for Alzheimer's and Related Dememtias, NIH, Bethesda, MD, USA
| | - Faraz Faghri
- Data Tecnica International LLC, Glen Echo, MD, USA
- Laboratory of Neurogenetics, NIA/NIH, Bethesda, MD, USA
- Center for Alzheimer's and Related Dememtias, NIH, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene Díez
- NIMGenetics Genómica y Medicina S.L, Madrid, Spain
| | | | - Sara Álvarez
- NIMGenetics Genómica y Medicina S.L, Madrid, Spain
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, WC1E 6BT, UK
| | - Juan A Botía
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain.
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK.
| |
Collapse
|
11
|
Li Y, Yang Y, Zhao A, Luo N, Niu M, Kang W, Xie A, Lu H, Chen L, Liu J. Parkinson's disease peripheral immune biomarker profile: a multicentre, cross-sectional and longitudinal study. J Neuroinflammation 2022; 19:116. [PMID: 35610646 PMCID: PMC9131564 DOI: 10.1186/s12974-022-02481-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Inflammations play crucial role in the pathogenesis of Parkinson's disease (PD), however, their possible value in the diagnosis or tracking of the progress of PD is still limited, because of discordant results in the literature and a lack of information regarding its reproducibility. Thus, overall longitudinal and cross-sectional studies are needed. This multicentre study was designed to investigate the association between multiple peripheral immune biomarkers and the development and progression of PD. METHODS This was a longitudinal and multicentre study. First, we measured the levels of five typical cytokines and five focused chemokines in 76 PD patients and 76 healthy controls (HCs) in a discovery cohort. Then, a validation cohort of 80 PD and 80 HC participants was recruited from four multicentre locations. In addition, a prospective follow-up of early-stage PD patients was performed with significant biomarkers. Finally, we performed further verification in an exploratory set of patients with idiopathic REM sleep behaviour disorder (iRBD). RESULTS In the discovery set, CXCL12, CX3CL1 and IL-8 levels were significantly higher in PD patients than in HCs (p < 0.05). The receiver-operating characteristic (ROC) curve for a combination of these three biomarkers produced a high area under the curve (AUC) of 0.89 (p < 0.001). Moreover, four biomarkers (the previous three and CCL15) were significantly associated with PD in the discovery and validation cohorts. Furthermore, in the prospective follow-up cohort, CX3CL1 levels were associated with motor progression after a mean interval of 43 months. In addition, CX3CL1 and IL-8 levels were higher in iRBD patients than in HCs. CONCLUSION We showed a correlation between a profile of four peripheral immune biomarkers and PD development and progression. Our findings may provide a basis whereby PD patients with abnormal inflammatory profiles can be identified and receive timely therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yan Yang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Aonan Zhao
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ningdi Luo
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Mengyue Niu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wenyan Kang
- Department of Neurology, Ruijin Hospital North Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Lei Chen
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Adhikari P, Shukla PK, Alharthi F, Rao R, Pradhan P. Photonic technique to study the effects of probiotics on chronic alcoholic brain cells by quantifying their molecular specific structural alterations via confocal imaging. JOURNAL OF BIOPHOTONICS 2022; 15:e202100247. [PMID: 34786860 DOI: 10.1002/jbio.202100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Molecular specific photonics localization method, the inverse participation ratio (IPR) technique, is a powerful procedure to probe the nano- to submicron scales structural alterations in cells/tissues in their abnormalities due to chronic alcoholism using confocal imaging. Chronic alcoholism introduces abnormalities in brain cells/tissue at the nanoscale level that results in behavioural and psychological disorders which are not well understood. On the other hand, probiotics such as Lactobacillus plantarum enhances brain functions in chronic alcoholism. Using the IPR technique, we probe the molecular specific spatial structural alterations in glial brain cells astrocytes and microglia, as well as in chromatins in the nuclei of cortex brain cells, with or without probiotic treatments in chronic alcoholism. The results show chronic alcoholism alone harms brain cells and the probiotic treatment in chronic alcoholism reverses alcoholic damage in the brain cells/tissues toward normalcy.
Collapse
Affiliation(s)
- Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi, USA
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Fatemah Alharthi
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi, USA
| | - Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
13
|
Weiss F, Labrador-Garrido A, Dzamko N, Halliday G. Immune responses in the Parkrtdinson's disease brain. Neurobiol Dis 2022; 168:105700. [DOI: 10.1016/j.nbd.2022.105700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
|
14
|
Liu Z, Chan RB, Cai Z, Liu X, Wu Y, Yu Z, Feng T, Yang Y, Zhang J. α-Synuclein-containing erythrocytic extracellular vesicles: essential contributors to hyperactivation of monocytes in Parkinson's disease. J Neuroinflammation 2022; 19:53. [PMID: 35193594 PMCID: PMC8862590 DOI: 10.1186/s12974-022-02413-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 01/06/2023] Open
Abstract
Background Immune system dysfunction, including higher levels of peripheral monocytes and inflammatory cytokines, is an important feature of Parkinson’s disease (PD) pathogenesis, although the mechanism underlying the process remains to be investigated. In the central nervous system, it is well-known that α-synuclein (α-syn), a key protein involved in PD, activates microglia potently, and it is also reported that α-syn exists in the peripheral system, especially in erythrocytes or red blood cells (RBC) at exceedingly high concentration. The current study focused on the possibility that RBC-derived α-syn mediates the sensitization of peripheral monocytes in PD patients. Methods The hyperactivation of monocytes was assessed quantitatively by measuring mRNA levels of typical inflammatory cytokines (including IL-1β, IL-6 and TNF-α) and protein levels of secreted inflammatory cytokines (including pro-inflammatory cytokines: IL-1β, IL-6, TNF-α, IL-8, IFN-γ, IL-2, and IL-12p70 and anti-inflammatory cytokines: IL-4, IL-10, and IL-13). Western blot, nanoparticle tracking analysis and electron microscopy were used to characterize RBC-derived extracellular vesicles (RBC-EVs). Inhibitors of endocytosis and leucine-rich repeat kinase 2 (LRRK2), another key protein involved in PD, were used to investigate how these two factors mediated the process of monocyte sensitization by RBC-EVs. Results Increased inflammatory sensitization of monocytes was observed in PD patients and PD model mice. We found that α-syn-containing RBC-EVs isolated from PD model mice or free form oligomeric α-syn induced the inflammatory sensitization of THP-1 cells, and demonstrated that endocytosis was a requirement for this pathophysiological pathway. Furthermore, the hyperactivation of THP-1 cells induced by RBC-EVs was associated with increased LRRK2 production and kinase activity. The phenomenon of inflammatory sensitization of human monocytes and increased LRRK2 were also observed by the treatment of RBC-EVs isolated from PD patients. Conclusions Our data provided new insight into how hyperactivation of monocytes occurs in PD patients, and identified the central role played by α-syn-containing RBC-EVs in this process. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02413-1.
Collapse
Affiliation(s)
- Zongran Liu
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | | | - Zhijian Cai
- School of Basic Medicine, Zhejiang University, Hangzhou, 310002, Zhejiang, China
| | - Xiaodan Liu
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | - Yufeng Wu
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Tao Feng
- Department of Neurology, TianTan Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Yang
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China.
| | - Jing Zhang
- Department of Pathology, Zhejiang University School of Medicine and First Affiliated Hospital, Hangzhou, 310002, Zhejiang, China. .,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, 310002, Zhejiang, China.
| |
Collapse
|
15
|
Rice O, Surian A, Chen Y. Modeling the blood-brain barrier for treatment of central nervous system (CNS) diseases. J Tissue Eng 2022; 13:20417314221095997. [PMID: 35586265 PMCID: PMC9109496 DOI: 10.1177/20417314221095997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) is the most specialized biological barrier in the body. This configuration of specialized cells protects the brain from invasion of molecules and particles through formation of tight junctions. To learn more about transport to the brain, in vitro modeling of the BBB is continuously advanced. The types of models and cells selected vary with the goal of each individual study, but the same validation methods, quantification of tight junctions, and permeability assays are often used. With Transwells and microfluidic devices, more information regarding formation of the BBB has been observed. Disease models have been developed to examine the effects on BBB integrity. The goal of modeling is not only to understand normal BBB physiology, but also to create treatments for diseases. This review will highlight several recent studies to show the diversity in model selection and the many applications of BBB models in in vitro research.
Collapse
Affiliation(s)
- Olivia Rice
- Department of Biomedical Engineering, University of
Connecticut, Storrs, CT, USA
| | - Allison Surian
- Department of Biomedical Engineering, University of
Connecticut, Storrs, CT, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of
Connecticut, Storrs, CT, USA
| |
Collapse
|
16
|
Li Q, Wang Z, Xing H, Wang Y, Guo Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson's disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1334-1344. [PMID: 33717653 PMCID: PMC7920810 DOI: 10.1016/j.omtn.2021.01.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disease after Alzheimer’s disease. The most important pathological feature of PD is the irreversible damage of dopamine neurons, which is related to autophagy and neuroinflammation in the substantia nigra. Previous studies found that the activation of NAcht Leucine-rich repeat Protein 3 (NLRP3) inflammasome/pyroptosis and cell division protein kinase 5 (CDK5)-mediated autophagy played an important role in PD. Bioinformatics analyses further predicted that microRNA (miR)-188-3p potentially targets NLRP3 and CDK5. Adipose-derived stem cell (ADSC)-derived exosomes were found to be excellent vectors for genetic therapy. We assessed the levels of injury, autophagy, and inflammasomes in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-induced PD mice models and neurotoxin 1-methyl-4-phenylpyridinium (MPP+)-induced cell models after treating them with miR-188-3p-enriched exosomes. miR-188-3p-enriched exosome treatment suppressed autophagy and pyroptosis, whereas increased proliferation via targeting CDK5 and NLRP3 in mice and MN9D cells. It was revealed that mir-188-3p could be a new therapeutic target for curing PD patients.
Collapse
Affiliation(s)
- Qiang Li
- The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Ma J, Gao J, Niu M, Zhang X, Wang J, Xie A. P2X4R Overexpression Upregulates Interleukin-6 and Exacerbates 6-OHDA-Induced Dopaminergic Degeneration in a Rat Model of PD. Front Aging Neurosci 2020; 12:580068. [PMID: 33328961 PMCID: PMC7671967 DOI: 10.3389/fnagi.2020.580068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) remains elusive. Current thinking suggests that the activation of microglia and the subsequent release of inflammatory factors, including interleukin-6 (IL-6), are involved in the pathogenesis of PD. P2X4 receptor (P2X4R) is a member of the P2X superfamily of ion channels activated by ATP. To study the possible effect of the ATP-P2X4R signal axis on IL-6 in PD, lentivirus carrying the P2X4R-overexpression gene or empty vector was injected into the substantia nigra (SN) of rats, followed by treatment of 6-hydroxydopamine (6-OHDA) or saline 1 week later. The research found the relative expression of P2X4R in the 6-OHDA-induced PD rat models was notably higher than that in the normal. And P2X4R overexpression could upregulate the expression of IL-6, reduce the amount of dopaminergic (DA) neurons in the SN of PD rats, suggesting that P2X4R may mediate the production of IL-6 to damage DA neurons in the SN. Our data revealed the important role of P2X4R in modulating IL-6, which leads to neuroinflammation involved in PD pathogenesis.
Collapse
Affiliation(s)
- Jiangnan Ma
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinzhao Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengyue Niu
- Department of Neurology, Ruijin Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Xiaona Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Abdel-Sattar E, Mahrous EA, Thabet MM, Elnaggar DMY, Youssef AM, Elhawary R, Zaitone SA, Celia Rodríguez-Pérez, Segura-Carretero A, Mekky RH. Methanolic extracts of a selected Egyptian Vicia faba cultivar mitigate the oxidative/inflammatory burden and afford neuroprotection in a mouse model of Parkinson's disease. Inflammopharmacology 2020; 29:221-235. [PMID: 33118083 DOI: 10.1007/s10787-020-00768-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/03/2020] [Indexed: 02/01/2023]
Abstract
Vicia faba L. is a legume from the family Fabaceae. Ancient Egyptians consumed fava beans thousands of years ago and they are still one of the most popular foods in Egypt. The current study examined the anti-Parkinson effect of 80% methanolic extracts of seeds or sprouts of the fava 'Sakha 3 'cultivar which has been selected based on the total phenol content among three cultivars tested. In addition, the extracts were characterized by reversed-phase high-performance liquid chromatography coupled with diode array detection and quadrupole-time-of-flight-mass spectrometry (RP-HPLC-DAD-QTOF-MS). Three doses (200, 400, and 600 mg/kg) of 80% methanol extracts of seeds or sprouts of the Sakha 3 cultivar were evaluated in rotenone-Parkinsonian mice from behavioral, biochemical, and histopathological aspects. The extract of fava sprouts (600 mg/kg dose) showed the most beneficial effect. It improved motor activity, enhanced striatal dopamine level, and decreased the striatal malondialdehyde, as well as the expression of the inflammatory markers, compared with the rotenone control group and groups receiving lower therapeutic doses of the extracts or L-Dopa. In addition, these findings were supported by a histopathological investigation which indicated that mice treated with the 600-mg/kg dose of the sprout extract showed a low number of degenerated neurons. The application of RP-HPLC-DAD-QTOF-MS and mass/mass spectroscopy enabled the metabolic profiling of the sprouts and seeds of the 'Sakha 3' cultivar. It is obvious that germination increased the amounts of phenolic acids, saponins, and aromatic amino acids, together with a dramatic increase in flavonoids. In conclusion, the 80% methanolic extract of sprouts of the fava "Sakha 3" cultivar may be a promising candidate for treating Parkinsonism if appropriate safety data are available.
Collapse
Affiliation(s)
- Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Engy A Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mareena M Thabet
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road Cairo, Badr City, 11829, Egypt
| | - Dina M Yousry Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road Cairo, Badr City, 11829, Egypt
| | - Amal M Youssef
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Reda Elhawary
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Celia Rodríguez-Pérez
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento S/N, 18016, Granada, Spain.,Department of Analytical Chemistry, Faculty of Sciences, University of Granada, AvenidaFuentenueva s/n, 18071, Granada, Spain
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento S/N, 18016, Granada, Spain.,Department of Analytical Chemistry, Faculty of Sciences, University of Granada, AvenidaFuentenueva s/n, 18071, Granada, Spain
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road Cairo, Badr City, 11829, Egypt.,Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento S/N, 18016, Granada, Spain
| |
Collapse
|
19
|
Belloli S, Morari M, Murtaj V, Valtorta S, Moresco RM, Gilardi MC. Translation Imaging in Parkinson's Disease: Focus on Neuroinflammation. Front Aging Neurosci 2020; 12:152. [PMID: 32581765 PMCID: PMC7289967 DOI: 10.3389/fnagi.2020.00152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow in vivo imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by in vivo studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[18F]fluoroglucose ([18F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of in vivo clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development.
Collapse
Affiliation(s)
- Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Valentina Murtaj
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvia Valtorta
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
20
|
Lambrecht V, Hanspach J, Hoffmann A, Seyler L, Mennecke A, Straub S, Marxreiter F, Bäuerle T, Laun FB, Winkler J. Quantitative susceptibility mapping depicts severe myelin deficit and iron deposition in a transgenic model of multiple system atrophy. Exp Neurol 2020; 329:113314. [PMID: 32302677 DOI: 10.1016/j.expneurol.2020.113314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Despite internationally established diagnostic criteria, multiple system atrophy (MSA) is frequently misdiagnosed, particularly at disease onset. While neuropathological changes such as demyelination and iron deposition are typically detected in MSA, these structural hallmarks were so far only demonstrated post-mortem. Here, we examine whether myelin deficit observed in a transgenic murine model of MSA can be visualized and quantified in vivo using specific magnetic resonance imaging (MRI) approaches. Reduced myelin content was measured histologically in prototypical white matter as well as mixed grey-white matter regions i.e. corpus callosum, anterior commissure, and striatum of transgenic mice overexpressing human α-synuclein under the control of the myelin basic protein promotor (MBP29-hα-syn mice). Correspondingly, in vivo quantitative susceptibility mapping (QSM) showed a strongly reduced susceptibility contrast in white matter regions and T2-weighted MR imaging revealed a significantly reduced grey-white matter contrast in MBP29-hα-syn mice. In addition, morphological analysis suggested a pronounced, white matter-specific deposition of iron in MBP29-hα-syn mice. Importantly, in vivo MRI results were matched by comprehensive structural characterization of myelin, iron, and axonal directionality. Taken together, our results provide strong evidence that QSM is a very sensitive tool measuring changes in myelin density in conjunction with iron deposition in MBP29-hα-syn mice. This multimodal neuroimaging approach may pave the way towards a novel non-invasive technique to detect crucial neuropathological changes specifically associated with MSA.
Collapse
Affiliation(s)
- Vera Lambrecht
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Lisa Seyler
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Preclinical imaging platform, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Sina Straub
- Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Preclinical imaging platform, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
21
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
22
|
Chen HL, Yamada K, Sakai K, Lu CH, Chen MH, Lin WC. Alteration of brain temperature and systemic inflammation in Parkinson's disease. Neurol Sci 2020; 41:1267-1276. [PMID: 31925613 PMCID: PMC7196953 DOI: 10.1007/s10072-019-04217-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
Objectives Parkinson’s disease (PD) is known to be related to various factors, including neuroinflammation, increased oxidative stress, and brain temperature alteration. We aimed to evaluate the correlation between these factors using diffusion-weighted imaging (DWI) thermometry and blood tests of systemic inflammation. Methods From July 2012 to Jun 2017, 103 patients with PD (44 men and 59 women; mean age, 60.43 ± 9.12 years) and 106 sex- and age-matched healthy volunteers (48 men and 58 women; mean age, 58.16 ± 8.45 years) retrospectively underwent magnetic resonance DWI thermometry to estimate brain intraventricular temperature (Tv). Subjects were divided into three subgroups in light of their ages. The tested inflammatory markers included plasma nuclear DNA, mitochondrial DNA, apoptotic leukocytes, and serum adhesion molecules. The correlations among the Tv values, clinical severity, and systemic inflammatory markers were then calculated. Results The PD patients did not show a natural trend of decline in Tv with age. Comparisons among the different age groups revealed that the younger PD subjects had significantly lower Tv values than the younger controls, but the older subjects had no significant group differences. Overall, the PD patients exhibited lower Tv values than the controls, as well as increased oxidative stress. The brain temperature showed positive correlations with inflammatory markers, including plasma nuclear DNA and L-selectin levels, in all the subjects. Conclusions Possible pathophysiological correlations between systemic inflammation and brain temperature were indicated by the results of this study, a finding which may aid us in investigating the underlying pathogenesis of PD. Electronic supplementary material The online version of this article (10.1007/s10072-019-04217-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| | - Kei Yamada
- Department of Radiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Koji Sakai
- Department of Radiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| |
Collapse
|
23
|
The relationship between obstructive sleep apnea and Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 2020; 41:1153-1162. [PMID: 31897944 DOI: 10.1007/s10072-019-04211-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep disorder in Parkinson's disease (PD). However, the relationship between OSA and PD is still inconsistent. Our study was aimed to evaluate the relationship between PD and OSA. METHODS Studies on OSA and PD were searched using PubMed, Embase, Web of Science, Cochrane library, and Chinese National Knowledge Infrastructure databases. Review Manager 5.3 software was used to calculate the pooled estimate effect. The inverse variance model was used to pool the mean difference (MD) or hazard ratios (HRs); the Mantel-Haenszel method was used to pool the odds ratio (OR). Heterogeneity among the studies was assessed using I2 statistic and Q test. RESULTS A total of 12 studies with 93,332 cases were deemed eligible and included in our meta-analysis. Overall, the occurrence of PD was more frequent in patients with OSA (HR 1.59, 95% CI, 1.36-1.85). The subgroup analysis demonstrated the risk similarly by sex. Male and female had HR of incident PD with OSA of 1.56 (95% CI, 1.30-1.87) and 1.60 (95% CI, 1.21-2.11), respectively. The incidence of OSA did not increase in PD patients (OR 0.89, 95% CI, 0.53-1.49). The MD of apnea-hypopnea index (AHI) in PD patients was also not statistically significant (P = 0.5). CONCLUSIONS The results indicate that OSA is one of independent risk factors of PD. However, OSA does not seem to be abnormally frequent in PD.
Collapse
|
24
|
Neuroprotective Effect of Optimized Yinxieling Formula in 6-OHDA-Induced Chronic Model of Parkinson's Disease through the Inflammation Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2529641. [PMID: 31929812 PMCID: PMC6942822 DOI: 10.1155/2019/2529641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.
Collapse
|
25
|
Liu CY, Wang X, Liu C, Zhang HL. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front Cell Neurosci 2019; 13:514. [PMID: 31803024 PMCID: PMC6877505 DOI: 10.3389/fncel.2019.00514] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that neuroinflammation is not just a consequence but a vital contributor to the development and progression of Parkinson’s disease (PD). Microglia in particular, may contribute to the induction and modulation of inflammation in PD. Upon stimulation, microglia convert into activated phenotypes, which exist along a dynamic continuum and bear different immune properties depending on the disease stage and severity. Activated microglia release various factors involved in neuroinflammation, such as cytokines, chemokines, growth factors, reactive oxygen species (ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Further, activated microglia interact with other cell types (e.g., neurons, astrocytes and mast cells) and are closely associated with α-synuclein (α-syn) pathophysiology and iron homeostasis disturbance. Taken together, microglial activation and microglia-mediated inflammatory responses play essential roles in the pathogenesis of PD and elucidation of the complexity and imbalance of microglial activation may shed light on novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
26
|
Picocci S, Bizzoca A, Corsi P, Magrone T, Jirillo E, Gennarini G. Modulation of Nerve Cell Differentiation: Role of Polyphenols and of Contactin Family Components. Front Cell Dev Biol 2019; 7:119. [PMID: 31380366 PMCID: PMC6656924 DOI: 10.3389/fcell.2019.00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
In this study the mechanisms are explored, which modulate expression and function of cell surface adhesive glycoproteins of the Immunoglobulin Supergene Family (IgSF), and in particular of its Contactin subset, during neuronal precursor developmental events. In this context, a specific topic concerns the significance of the expression profile of such molecules and their ability to modulate signaling pathways activated through nutraceuticals, in particular polyphenols, administration. Both in vitro and in vivo approaches are chosen. As for the former, by using as a model the human SH-SY5Y neuroblastoma line, the effects of grape seed polyphenols are evaluated on proliferation and commitment/differentiation events along the neuronal lineage. In SH-SY5Y cell cultures, polyphenols were found to counteract precursor proliferation while promoting their differentiation, as deduced by studying their developmental parameters through the expression of cell cycle and neuronal commitment/differentiation markers as well as by measuring neurite growth. In such cultures, Cyclin E expression and BrdU incorporation were downregulated, indicating reduced precursor proliferation while increased neuronal differentiation was inferred from upregulation of cell cycle exit (p27–Kip) and neuronal commitment (NeuN) markers as well as by measuring neurite length through morphometric analysis. The polyphenol effects on developmental parameters were also explored in vivo, in cerebellar cortex, by using as a model the TAG/F3 transgenic line, which undergoes delayed neural development as a consequence of Contactin1 adhesive glycoprotein upregulation and premature expression under control of the Contactin2 gene (Cntn-2) promoter. In this transgenic line, a Notch pathway activation is known to occur and polyphenol treatment was found to counteract such an effect, demonstrated through downregulation of the Hes-1 transcription factor. Polyphenols also downregulated the expression of adhesive glycoproteins of the Contactin family themselves, demonstrated for both Contactin1 and Contactin2, indicating the involvement of changes in the expression of the underlying genes in the observed phenotype. These data support the hypothesis that the complex control exerted by polyphenols on neural development involves modulation of expression and function of the genes encoding cell adhesion molecules of the Contactin family and of the associated signaling pathways, indicating potential mechanisms whereby such compounds may control neurogenesis.
Collapse
Affiliation(s)
- Sabrina Picocci
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Bizzoca
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Corsi
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Thea Magrone
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Gennarini
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Churchill MJ, Cantu MA, Kasanga EA, Moore C, Salvatore MF, Meshul CK. Glatiramer Acetate Reverses Motor Dysfunction and the Decrease in Tyrosine Hydroxylase Levels in a Mouse Model of Parkinson's Disease. Neuroscience 2019; 414:8-27. [PMID: 31220543 DOI: 10.1016/j.neuroscience.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and there are no effective treatments that either slow or reverse the degeneration of the dopamine (DA) pathway. Using a 4-week progressive MPTP (1-methyl-1,2,3,6-tetrahydropyridine) neurotoxin model of PD, which is characterized by neuroinflammation, loss of nigrostriatal DA, and motor dysfunction, as seen in patients with PD, we tested whether post-MPTP treatment with glatiramer acetate (GA), an immunomodulatory drug, could reverse these changes. GA restored the grip dysfunction and gait abnormalities that were evident in the MPTP treated group. The reversal of the motor dysfunction was attributable to the substantial recovery in tyrosine hydroxylase (TH) protein expression in the striatum. Within the substantia nigra pars compacta, surface cell count analysis showed a slight increase in TH+ cells following GA treatment in the MPTP group, which was not statistically different from the vehicle (VEH) group. This was associated with the recovery of BDNF (brain derived neurotrophic factor) protein levels and a reduction in the microglial marker, IBA1, protein expression within the midbrain. Alpha synuclein (syn-1) levels within the midbrain and striatum were decreased following MPTP, while GA facilitated recovery to VEH levels in the striatum in the MPTP group. Although DA tissue analysis revealed no significant increase in striatal DA or 3,4-Dihydroxyphenylacetic acid levels (DOPAC) in the MPTP group treated with GA, DA turnover (DOPAC/DA) recovered back to VEH levels following GA treatment. GA treatment effectively reversed clinical (motor dysfunction) and pathology (TH, IBA1, BDNF expression) of PD in a murine model.
Collapse
Affiliation(s)
| | - Mark A Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Science Center, Fort Worth, TX, USA
| | - Ella A Kasanga
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Science Center, Fort Worth, TX, USA
| | - Cindy Moore
- Research Services, VA Medical Center/Portland, OR
| | - Michael F Salvatore
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Science Center, Fort Worth, TX, USA
| | - Charles K Meshul
- Research Services, VA Medical Center/Portland, OR; Department of Behavioral Neuroscience, Oregon Heath & Science University, Portland OR 97239; Department of Pathology, Oregon Health & Science University, Portland OR 97239
| |
Collapse
|
28
|
Mondal S, Rangasamy SB, Roy A, Dasarathy S, Kordower JH, Pahan K. Low-Dose Maraviroc, an Antiretroviral Drug, Attenuates the Infiltration of T Cells into the Central Nervous System and Protects the Nigrostriatum in Hemiparkinsonian Monkeys. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3412-3422. [PMID: 31043478 PMCID: PMC6824976 DOI: 10.4049/jimmunol.1800587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder in humans. Despite intense investigation, no effective therapy is available to stop the progression of this disease. It is becoming clear that both innate and adaptive immune responses are active in PD. Accordingly, we have reported a marked increase in RANTES and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra (SN) and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated hemiparkinsonian monkeys. Because RANTES and eotaxin share a common receptor, CCR5, we examined the efficacy of maraviroc, an inhibitor of CCR5 and a Food and Drug Administration-approved drug against HIV infection, in hemiparkinsonian rhesus monkeys. First, we found glial limitans injury, loss of GFAP immunostaining, and infiltration of T cells across the endothelial monolayer in SN of hemiparkinsonian monkeys. However, oral administration of a low dose of maraviroc protected glia limitans partially, maintained the integrity of endothelial monolayer, reduced the infiltration of T cells, attenuated neuroinflammation, and decreased α-synucleinopathy in the SN. Accordingly, maraviroc treatment also protected both the nigrostriatal axis and neurotransmitters and improved motor functions in hemiparkinsonian monkeys. These results suggest that low-dose maraviroc and other CCR5 antagonists may be helpful for PD patients.
Collapse
Affiliation(s)
- Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Suresh B Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
29
|
Interleukin-18 promoter polymorphisms and idiopathic Parkinson disease: an Egyptian study. Acta Neurol Belg 2019; 119:219-224. [PMID: 29700781 DOI: 10.1007/s13760-018-0927-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Etiology of sporadic Parkinson's disease (PD) is largely unknown. The contribution of genetic factors to the pathogenesis of PD is supported by the demonstration of high concordance in twins, increased risk among relatives of PD patients and existence of familial cases. This study aimed to examine the relation between interleukin 18 (IL-18) gene promoter polymorphisms and idiopathic PD, and its impact on clinical presentation and disease severity. 30 idiopathic PD patients and 15 age- and sex-matched healthy subjects were included. Disease severity was assessed using Unified Parkinson's Disease Rating Scale (UPDRS). Genetic testing for IL-18 gene promoter -607C/A single nucleotide polymorphisms (SNP) was done using real-time polymerase chain reaction (PCR) technique. A raised risk of PD development was found in patients with A/C and C/C genotypes of the site -607C/A (odds ratios = 1.83 and 1.98, respectively). The distribution of the genotypes showed no significant relation to gender or predominant clinical presentation. The age at onset of disease was significantly lower in C/C and A/A genotypes compared to A/C genotype (p = 0.001 and 0.04, respectively). Patients with A/A genotype showed significantly higher mentation score of UPDRS compared to patients with A/C and C/C genotypes (p = 0.003 and p = 0.002, respectively). Polymorphisms of IL-18 gene promoter increase the risk of developing idiopathic PD. The polymorphisms may affect phenotypic expression rather than being a direct cause of idiopathic PD.
Collapse
|
30
|
Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 2019; 68:443-458. [PMID: 30927048 PMCID: PMC6517359 DOI: 10.1007/s00011-019-01231-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/24/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) family includes three transcription factors: PPARα, PPARβ/δ, and PPARγ. PPAR are nuclear receptors activated by oxidised and nitrated fatty acid derivatives as well as by cyclopentenone prostaglandins (PGA2 and 15d-PGJ2) during the inflammatory response. This results in the modulation of the pro-inflammatory response, preventing it from being excessively activated. Other activators of these receptors are nonsteroidal anti-inflammatory drug (NSAID) and fatty acids, especially polyunsaturated fatty acid (PUFA) (arachidonic acid, ALA, EPA, and DHA). The main function of PPAR during the inflammatory reaction is to promote the inactivation of NF-κB. Possible mechanisms of inactivation include direct binding and thus inactivation of p65 NF-κB or ubiquitination leading to proteolytic degradation of p65 NF-κB. PPAR also exert indirect effects on NF-κB. They promote the expression of antioxidant enzymes, such as catalase, superoxide dismutase, or heme oxygenase-1, resulting in a reduction in the concentration of reactive oxygen species (ROS), i.e., secondary transmitters in inflammatory reactions. PPAR also cause an increase in the expression of IκBα, SIRT1, and PTEN, which interferes with the activation and function of NF-κB in inflammatory reactions.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Molecular Biology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 Str., 40-752, Katowice, Poland. .,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland.
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland
| | - Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland
| |
Collapse
|
31
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Jin MM, Wang F, Qi D, Liu WW, Gu C, Mao CJ, Yang YP, Zhao Z, Hu LF, Liu CF. A Critical Role of Autophagy in Regulating Microglia Polarization in Neurodegeneration. Front Aging Neurosci 2018; 10:378. [PMID: 30515090 PMCID: PMC6256089 DOI: 10.3389/fnagi.2018.00378] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023] Open
Abstract
Neuroinflammation and autophagy dysfunction are closely related to the development of neurodegeneration such as Parkinson’s disease (PD). However, the role of autophagy in microglia polarization and neuroinflammation is poorly understood. TNF-α, which is highly toxic to dopaminergic neurons, is implicated as a major mediator of neuroinflammation in PD. In this study, we found that TNF-α resulted in an impairment of autophagic flux in microglia. Concomitantly, an increase of M1 marker (iNOS/NO, IL-1β, and IL-6) expression and reduction of M2 marker (Arginase1, Ym1/2, and IL-10) were observed in TNF-α challenged microglia. Upregulation of autophagy via serum deprivation or pharmacologic activators (rapamycin and resveratrol) promoted microglia polarization toward M2 phenotype, as evidenced by suppressed M1 and elevated M2 gene expression, while inhibition of autophagy with 3-MA or Atg5 siRNA consistently aggravated the M1 polarization induced by TNF-α. Moreover, Atg5 knockdown alone was sufficient to trigger microglia activation toward M1 status. More important, TNF-α stimulated microglia conditioned medium caused neurotoxicity when added to neuronal cells. The neurotoxicity was further aggravated when Atg5 knockdown in BV2 cells but alleviated when microglia pretreatment with rapamycin. Activation of AKT/mTOR signaling may contribute to the changes of autophagy and inflammation as the AKT specific inhibitor perifosine prevented the increase of LC3II (an autophagic marker) in TNF-α stimulated microglia. Taking together, our results demonstrate that TNF-α inhibits autophagy in microglia through AKT/mTOR signaling pathway, and autophagy enhancement can promote microglia polarization toward M2 phenotype and inflammation resolution.
Collapse
Affiliation(s)
- Meng-Meng Jin
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China.,Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Di Qi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wen-Wen Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chao Gu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya-Ping Yang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Zhao
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China.,Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
33
|
Saliba SW, Jauch H, Gargouri B, Keil A, Hurrle T, Volz N, Mohr F, van der Stelt M, Bräse S, Fiebich BL. Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells. J Neuroinflammation 2018; 15:322. [PMID: 30453998 PMCID: PMC6240959 DOI: 10.1186/s12974-018-1362-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neuroinflammation plays a vital role in Alzheimer's disease and other neurodegenerative conditions. Microglia are the resident mononuclear immune cells of the central nervous system, and they play essential roles in the maintenance of homeostasis and responses to neuroinflammation. The orphan G-protein-coupled receptor 55 (GPR55) has been reported to modulate inflammation and is expressed in immune cells such as monocytes and microglia. However, its effects on neuroinflammation, mainly on the production of members of the arachidonic acid pathway in activated microglia, have not been elucidated in detail. METHODS In this present study, a series of coumarin derivatives, that exhibit GPR55 antagonism properties, were designed. The effects of these compounds on members of the arachidonic acid cascade were studied in lipopolysaccharide (LPS)-treated primary rat microglia using Western blot, qPCR, and ELISA. RESULTS We demonstrate here that the various compounds with GPR55 antagonistic activities significantly inhibited the release of PGE2 in primary microglia. The inhibition of LPS-induced PGE2 release by the most potent candidate KIT 17 was partially dependent on reduced protein synthesis of mPGES-1 and COX-2. KIT 17 did not affect any key enzyme involved on the endocannabinoid system. We furthermore show that microglia expressed GPR55 and that a synthetic antagonist of the GPR receptor (ML193) demonstrated the same effect of the KIT 17 on the inhibition of PGE2. CONCLUSIONS Our results suggest that KIT 17 is acting as an inverse agonist on GPR55 independent of the endocannabinoid system. Targeting GPR55 might be a new therapeutic option to treat neurodegenerative diseases with a neuroinflammatory background such as Alzheimer's disease, Parkinson, and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Jauch
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brahim Gargouri
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albrecht Keil
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Hurrle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Volz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Florian Mohr
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, University Hospital Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
34
|
Zipeto D, Serena M, Mutascio S, Parolini F, Diani E, Guizzardi E, Muraro V, Lattuada E, Rizzardo S, Malena M, Lanzafame M, Malerba G, Romanelli MG, Tamburin S, Gibellini D. HIV-1-Associated Neurocognitive Disorders: Is HLA-C Binding Stability to β 2-Microglobulin a Missing Piece of the Pathogenetic Puzzle? Front Neurol 2018; 9:791. [PMID: 30298049 PMCID: PMC6160745 DOI: 10.3389/fneur.2018.00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
AIDS dementia complex (ADC) and HIV-associated neurocognitive disorders (HAND) are complications of HIV-1 infection. Viral infections are risk factors for the development of neurodegenerative disorders. Aging is associated with low-grade inflammation in the brain, i.e., the inflammaging. The molecular mechanisms linking immunosenescence, inflammaging and the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease, are largely unknown. ADC and HAND share some pathological features with AD and may offer some hints on the relationship between viral infections, neuroinflammation, and neurodegeneration. β2-microglobulin (β2m) is an important pro-aging factor that interferes with neurogenesis and worsens cognitive functions. Several studies published in the 80-90s reported high levels of β2m in the cerebrospinal fluid of patients with ADC. High levels of β2m have also been detected in AD. Inflammatory diseases in elderly people are associated with polymorphisms of the MHC-I locus encoding HLA molecules that, by associating with β2m, contribute to cellular immunity. We recently reported that HLA-C, no longer associated with β2m, is incorporated into HIV-1 virions, determining an increase in viral infectivity. We also documented the presence of HLA-C variants more or less stably linked to β2m. These observations led us to hypothesize that some variants of HLA-C, in the presence of viral infections, could determine a greater release and accumulation of β2m, which in turn, may be involved in triggering and/or sustaining neuroinflammation. ADC is the most severe form of HAND. To explore the role of HLA-C in ADC pathogenesis, we analyzed the frequency of HLA-C variants with unstable binding to β2m in a group of patients with ADC. We found a higher frequency of unstable HLA-C alleles in ADC patients, and none of them was harboring stable HLA-C alleles in homozygosis. Our data suggest that the role of HLA-C variants in ADC/HAND pathogenesis deserves further studies. If confirmed in a larger number of samples, this finding may have practical implication for a personalized medicine approach and for developing new therapies to prevent HAND. The exploration of HLA-C variants as risk factors for AD and other neurodegenerative disorders may be a promising field of study.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | | | | | | | - Marina Malena
- U.O.S. Infectious Diseases, AULSS 9 Scaligera, Verona, Italy
| | | | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
35
|
Jiang X, Ganesan P, Rengarajan T, Choi DK, Arulselvan P. Cellular phenotypes as inflammatory mediators in Parkinson's disease: Interventional targets and role of natural products. Biomed Pharmacother 2018; 106:1052-1062. [PMID: 30119171 DOI: 10.1016/j.biopha.2018.06.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
Pathogenesis of Parkinson's disease (PD) is undoubtedly a multifactorial phenomenon, with diverse etiological agents. Pro-inflammatory mediators act as a skew that directs disease progression during neurodegenerative diseases. Understanding the dynamics of inflammation and inflammatory mediators in preventing or reducing disease progression has recently gained much attention. Inflammatory neuro-degeneration is regulated via cytokines, chemokines, lipid mediators and immune cell subsets; however, individual cellular phenotypes in the Central Nervous System (CNS) acts in diverse ways whose persistent activation leads to unresolving inflammation often causing unfavorable outcomes in neurodegenerative disease like PD. Specifically, activation of cellular phenotypes like astrocytes, microglia, activation of peripheral immune cells requires different activation signals and agents like (cytokines, misfolded protein aggregates, infectious agents, pesticides like organophosphates, etc.,). However, what is unknown is how the different cellular phenotypes respond uniquely and the role of the factors they secrete alters the signal cascades in the complex neuron-microglial connections in the CNS. Hence, understanding the role of cellular phenotypes and the inflammatory mediators, the cross talk among the signals and their receptors can help us to identify the potential therapeutic target using natural products. In this review we have tried to put together the role of cellular phenotypes as a skew that favors PD progression and we have also discussed how the lack of experimental approaches and challenges that affects understanding the cellular targets that can be used against natural derivatives in alleviating PD pathophysiology. Together, this review will provide the better insights into the role of cellular phenotypes of neuroinflammation, inflammatory mediators and the orchestrating factors of inflammation and how they can be targeted in a more specific way that can be used in the clinical management of PD.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Neurology, Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, 3 Shajing St, Baoan Qu, Shenzhen Shi, Guangdong Sheng, 518104, China.
| | - Palanivel Ganesan
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Thamaraiselvan Rengarajan
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, 613403, India.
| | - Dong-Kug Choi
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Palanisamy Arulselvan
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, 613403, India; Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu, 637408, India.
| |
Collapse
|
36
|
Zhang Y, Feng S, Nie K, Li Y, Gao Y, Gan R, Wang L, Li B, Sun X, Wang L, Zhang Y. TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson's disease. Biochem Biophys Res Commun 2018; 499:797-802. [PMID: 29621548 DOI: 10.1016/j.bbrc.2018.03.226] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 11/19/2022]
Abstract
Neuroinflammation and overactivated microglia underlies the pathogenesis of Parkinson's disease (PD). Furthermore, microglia could polarize into classic inflammatory M1 and immunosuppressive M2 phenotype. Thus, inhibiting the overactivated inflammatory M1 microglia by promoting the transformation of microglia to the protective M2 phenotype provides potential therapy for PD, but the mechanism that modulates microglia polarization remains unknown. Triggering receptor expressed on myeloid cells-2 (TREM2) is a recently identified immune receptor expressed by the microglia in the brain. Emerging evidence indicates that TREM2 enhances the phagocytosis function of microglia and suppress inflammation. Based on these evidence, we hypothesized that TREM2 might play a protective role through regulating microglia polarization. Here, we employ a lentiviral strategy to overexpress or suppress TREM2 on microglia and found that TREM2 was essential for M2 microglia polarization. Knockdown of TREM2 in BV2 microglia inhibited M2 polarization and lead to exaggeration of M1 microglial inflammatory responses, whereas overexpression of TREM2 promoted M2 polarization and alleviated microglial inflammation. We also observed that the TREM2 level was higher in the midbrain of PD mice, which was accompanied by an elevated level of Arginase-1 and increased proinflammatory cytokines, suggesting that TREM2 is an important factor in switching the microglia phenotypes. Taken together, these findings indicate that TREM2 plays a crucial role in altering the proinflammatory M1 microglia to M2 phenotype and has beneficial effects in the immune pathogenesis of PD.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Neurology, The People's Hospital of Gaozhou, Guangdong, China
| | - Shujun Feng
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rong Gan
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bing Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
37
|
Niranjan R, Mishra KP, Thakur AK. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson’s Disease. Mol Neurobiol 2018; 55:8038-8050. [DOI: 10.1007/s12035-018-0950-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/22/2023]
|
38
|
Chen M, Chang YY, Huang S, Xiao LH, Zhou W, Zhang LY, Li C, Zhou RP, Tang J, Lin L, Du ZY, Zhang K. Aromatic-Turmerone Attenuates LPS-Induced Neuroinflammation and Consequent Memory Impairment by Targeting TLR4-Dependent Signaling Pathway. Mol Nutr Food Res 2018; 62. [PMID: 28849618 DOI: 10.1002/mnfr.201700281] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/26/2017] [Indexed: 01/06/2023]
Abstract
SCOPE Curcuma longa (turmeric) is a folk medicine in South and Southeast Asia, which has been widely used to alleviate chronic inflammation. Aromatic-turmerone is one of the main components abundant in turmeric essential oil. However, little information is available from controlled studies regarding its biological activities and underlying molecular mechanisms against chronic inflammation in the brain. In the current study, we employed a classical LPS model to study the effect and mechanism of aromatic-turmerone on neuroinflammation. METHODS AND RESULTS The effects of aromatic-turmerone were studied in LPS-treated mice and BV2 cells. The cognitive function assays, protein analyses, and histological examination were performed. Oral administration of aromatic-turmerone could reverse LPS-induced memory disturbance and normalize glucose intake and metabolism in the brains of mice. Moreover, aromatic-turmerone significantly limited brain damage, through inhibiting the activation of microglia and generation of inflammatory cytokines. Further study in vitro revealed that aromatic-turmerone targeted Toll-like receptor 4 mediated downstream signaling, and lowered the release of inflammatory mediators. CONCLUSION These observations indicate that aromatic-turmerone is effective in preventing brain damage caused by neuroinflammation and may be useful in the treatment of neuronal inflammatory diseases.
Collapse
Affiliation(s)
- Min Chen
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan-Yuan Chang
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shun Huang
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li-Hang Xiao
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Zhou
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lan-Yue Zhang
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Li
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ren-Ping Zhou
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jian Tang
- Infinitus (China) Company Ltd, Guangzhou, 510006, China
| | - Li Lin
- Allan Conney Biotechnology Company Ltd, Foshan, 528200, China
| | - Zhi-Yun Du
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kun Zhang
- Institute of Natural Medicinal Chemistry and Green Chemistry, College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.,Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
39
|
Molecular Imaging of Neuroinflammation in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:347-363. [DOI: 10.1016/bs.irn.2018.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Bhagyashree A, Manikkoth S, Sequeira M, Nayak R, Rao SN. Central dopaminergic system plays a role in the analgesic action of paracetamol: Preclinical evidence. Indian J Pharmacol 2017; 49:21-25. [PMID: 28458418 PMCID: PMC5351233 DOI: 10.4103/0253-7613.201029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Objective: Even after 100 years of discovery, the exact mechanisms for the analgesic action of paracetamol are under scanner. It was recently proposed that paracetamol may act through different mechanisms, especially altering the serotoninergic system. The main objective of this preclinical study was to verify the role of drugs modulating dopaminergic system (l-dopa, bromocriptine, olanzapine) on the analgesic effect of paracetamol. Materials and Methods: Thirty adult male albino mice were divided into five groups: distilled water (0.5 ml/25 g), paracetamol (200 mg/kg), levodopa (10 mg/kg) + paracetamol, bromocriptine (5 mg/kg) + paracetamol (200 mg/kg), and olanzapine (2 mg/kg) + paracetamol (200 mg/kg). All drugs were administered orally for 14 days. Eddy's hot plate and tail immersion tests were used to determine analgesic activity. Tests were conducted 1 h after the drug administration on the 14th day. After that, animals were sacrificed and brains were dissected out, to measure the levels of dopamine. Statistical comparisons among the groups were performed by one-way analysis of variance followed by Tukey-Kramer test. Results: Coadministration of l-dopa and bromocriptine with paracetamol increased the antinociceptive activity of paracetamol significantly, whereas coadministration of olanzapine with paracetamol decreased the analgesic activity of paracetamol in the Eddy's hot plate and tail immersion tests considerably. There was a significant increase (P < 0.001) in the levels of dopamine in the brains of mice, which received levodopa, bromocriptine, and paracetamol. However, it was opposite in the brains of animals which received olanzapine. Conclusion: The results suggest that analgesic action of paracetamol is influenced by dopaminergic system.
Collapse
Affiliation(s)
- A Bhagyashree
- Department of Pharmacology, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Shyamjith Manikkoth
- Department of Pharmacology, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Melinda Sequeira
- Department of Pharmacology, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Roopa Nayak
- Department of Pharmacology, Yenepoya Medical College, Mangalore, Karnataka, India
| | - S N Rao
- Department of Pharmacology, Yenepoya Medical College, Mangalore, Karnataka, India
| |
Collapse
|
41
|
Poly T, Islam M, Walther B, Yang HC, Nguyen PA, Huang CW, Shabbir SA, Li YC. Exploring the Association between Statin Use and the Risk of Parkinson’s Disease: A Meta-Analysis of Observational Studies. Neuroepidemiology 2017; 49:142-151. [DOI: 10.1159/000480401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022] Open
|
42
|
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2017; 96:379-390. [DOI: 10.1002/jnr.24185] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Neeraj Joshi
- Department of Biochemistry and Biophysics; Helen Diller Comprehensive Cancer Center; San Francisco California
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
43
|
Li X, Zhang Y, Wang Y, Xu J, Xin P, Meng Y, Wang Q, Kuang H. The Mechanisms of Traditional Chinese Medicine Underlying the Prevention and Treatment of Parkinson's Disease. Front Pharmacol 2017; 8:634. [PMID: 28970800 PMCID: PMC5609571 DOI: 10.3389/fphar.2017.00634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD), characterized with bradykinesia, static tremor, rigidity and disturbances in balance, is the second most common neurodegenerative disorder. Along with the largely aging population in the world, the incidence is increasing year by year, which imposes the negative impacts on patients, their families and the whole society. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and cure of PD due to its advantages of less side effects and multi-target effects. At present, the pathogenesis of PD is not yet fully discovered. This paper elaborates the mechanisms of TCM underlying the prevention and treatment of PD with regards to the inhibition of oxidative stress, the regulation of mitochondrial dysfunction, the reduction of toxic excitatory amino acids (EAA), the inhibition of neuroinflammation, the inhibition of neuronal apoptosis, and the inhibition of abnormal protein aggregation.
Collapse
Affiliation(s)
- Xiaoliang Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China.,Science of Chinese Materia Medica, Jiamusi College, Heilongjiang University of Chinese MedicineJiamusi, China
| | - YaNan Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Yu Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Jing Xu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Ping Xin
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - YongHai Meng
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Qiuhong Wang
- Science of Processing Chinese Materia Medica, College of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| |
Collapse
|
44
|
Wang S, Wang F, Yang H, Li R, Guo H, Hu L. Diosgenin glucoside provides neuroprotection by regulating microglial M1 polarization. Int Immunopharmacol 2017. [DOI: 10.1016/j.intimp.2017.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Torres-Odio S, Key J, Hoepken HH, Canet-Pons J, Valek L, Roller B, Walter M, Morales-Gordo B, Meierhofer D, Harter PN, Mittelbronn M, Tegeder I, Gispert S, Auburger G. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J Neuroinflammation 2017; 14:154. [PMID: 28768533 PMCID: PMC5541666 DOI: 10.1186/s12974-017-0928-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson’s disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. Methods Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. Results In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting “intracellular membrane-bounded organelles”. Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes—while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1−/− primary neurons in the first weeks after brain dissociation, (2) aged Pink1−/− midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1−/− embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients. Conclusions Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0928-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Hans-Hermann Hoepken
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Lucie Valek
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Bastian Roller
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Blas Morales-Gordo
- Department of Neurology, University Hospital San Cecilio, 18012, Granada, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Patrick N Harter
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, NORLUX Neuro-Oncology Laboratory, Luxembourg, Luxembourg
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017; 36:11-19. [PMID: 28235660 DOI: 10.1016/j.arr.2017.02.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023]
Abstract
A wide array of cell signaling mediators and their interactions play vital roles in neuroinflammation associated with ischemia, brain trauma, developmental disorders and age-related neurodegeneration. Along with neurons, microglia and astrocytes are also affected by the inflammatory cascade by releasing pro-inflammatory cytokines, chemokines and reactive oxygen species. The release of pro-inflammatory mediators in response to neural dysfunction may be helpful, neutral or even deleterious to normal cellular survival. Moreover, the important role of NF-κB factors in the central nervous system (CNS) through toll-like receptor (TLR) activation has been well established. This review demonstrates recent findings regarding therapeutic aspects of polyphenolic compounds for the treatment of neuroinflammation, with the aim of regulating TLR4. Polyphenols including flavonoids, phenolic acids, phenolic alcohols, stilbenes and lignans, can target TLR4 signaling pathways in multiple ways. Toll interacting protein expression could be modulated by epigallocatechin-3-gallate. Resveratrol may also exert neuroprotective effects via the TLR4/NF-κB/STAT signaling cascade. Its role in activation of cascade via interfering with TLR4 oligomerization upon receptor stimulation has also been reported. Curcumin, another polyphenol, can suppress overexpression of inflammatory mediators via inhibiting the TLR4-MAPK/NF-κB pathway. It can also reduce neuronal apoptosis via a mechanism concerning the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages. Despite a symphony of in vivo and in vitro studies, many molecular and pharmacological aspects of neuroinflammation remain unclear. It is proposed that natural compounds targeting TLR4 may serve as important pharmacophores for the development of potent drugs for the treatment of neurological disorders.
Collapse
|
47
|
Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood–Brain Barrier Pathology in Alzheimer's and Parkinson's Disease: Implications for Drug Therapy. Cell Transplant 2017; 16:285-99. [PMID: 17503739 DOI: 10.3727/000000007783464731] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The blood–brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.
Collapse
Affiliation(s)
- Brinda S Desai
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
48
|
Nisticò R, Salter E, Nicolas C, Feligioni M, Mango D, Bortolotto ZA, Gressens P, Collingridge GL, Peineau S. Synaptoimmunology - roles in health and disease. Mol Brain 2017. [PMID: 28637489 PMCID: PMC5480158 DOI: 10.1186/s13041-017-0308-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence suggests that the nervous and immune systems are intricately linked. Many proteins first identified in the immune system have since been detected at synapses, playing different roles in normal and pathological situations. In addition, novel immunological functions are emerging for proteins typically expressed at synapses. Under normal conditions, release of inflammatory mediators generally represents an adaptive and regulated response of the brain to immune signals. On the other hand, when immune challenge becomes prolonged and/or uncontrolled, the consequent inflammatory response leads to maladaptive synaptic plasticity and brain disorders. In this review, we will first provide a summary of the cell signaling pathways in neurons and immune cells. We will then examine how immunological mechanisms might influence synaptic function, and in particular synaptic plasticity, in the healthy and pathological CNS. A better understanding of neuro-immune system interactions in brain circuitries relevant to neuropsychiatric and neurological disorders should provide specific biomarkers to measure the status of the neuroimmunological response and help design novel neuroimmune-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy.
| | - Eric Salter
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Celine Nicolas
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Marco Feligioni
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Dalila Mango
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Stephane Peineau
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM-ERi 24 (GRAP), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
49
|
Abstract
It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy.,Fondazione San Raffaele, Ceglie Messapica, Italy
| |
Collapse
|
50
|
Subramaniam SR, Federoff HJ. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci 2017. [PMID: 28642697 PMCID: PMC5463358 DOI: 10.3389/fnagi.2017.00176] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.
Collapse
Affiliation(s)
| | - Howard J Federoff
- Department of Neurology, University of California, Irvine, Irvine, CAUnited States
| |
Collapse
|