1
|
Mariani JN, Mansky B, Madsen PM, Salinas D, Kesmen D, Huynh NPT, Kuypers NJ, Kesel ER, Bates J, Payne C, Chandler-Militello D, Benraiss A, Goldman SA. Repression of developmental transcription factor networks triggers aging-associated gene expression in human glial progenitor cells. Nat Commun 2024; 15:3873. [PMID: 38719882 PMCID: PMC11079006 DOI: 10.1038/s41467-024-48118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.
Collapse
Affiliation(s)
- John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Benjamin Mansky
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Pernille M Madsen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen, 2200, Denmark
| | - Dennis Salinas
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Deniz Kesmen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen, 2200, Denmark
| | - Nicholas J Kuypers
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Erin R Kesel
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Janna Bates
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Casey Payne
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen, 2200, Denmark.
| |
Collapse
|
2
|
Fernández-Moncada I, Rodrigues RS, Fundazuri UB, Bellocchio L, Marsicano G. Type-1 cannabinoid receptors and their ever-expanding roles in brain energy processes. J Neurochem 2024; 168:693-703. [PMID: 37515372 DOI: 10.1111/jnc.15922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The brain requires large quantities of energy to sustain its functions. At the same time, the brain is isolated from the rest of the body, forcing this organ to develop strategies to control and fulfill its own energy needs. Likely based on these constraints, several brain-specific mechanisms emerged during evolution. For example, metabolically specialized cells are present in the brain, where intercellular metabolic cycles are organized to separate workload and optimize the use of energy. To orchestrate these strategies across time and space, several signaling pathways control the metabolism of brain cells. One of such controlling systems is the endocannabinoid system, whose main signaling hub in the brain is the type-1 cannabinoid (CB1) receptor. CB1 receptors govern a plethora of different processes in the brain, including cognitive function, emotional responses, or feeding behaviors. Classically, the mechanisms of action of CB1 receptors on brain function had been explained by its direct targeting of neuronal synaptic function. However, new discoveries have challenged this view. In this review, we will present and discuss recent data about how a small fraction of CB1 receptors associated to mitochondrial membranes (mtCB1), are able to exert a powerful control on brain functions and behavior. mtCB1 receptors impair mitochondrial functions both in neurons and astrocytes. In the latter cells, this effect is linked to an impairment of astrocyte glycolytic function, resulting in specific behavioral outputs. Finally, we will discuss the potential implications of (mt)CB1 expression on oligodendrocytes and microglia metabolic functions, with the aim to encourage interdisciplinary approaches to better understand the role of (mt)CB1 receptors in brain function and behavior.
Collapse
Affiliation(s)
| | - Rui S Rodrigues
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Unai B Fundazuri
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Luigi Bellocchio
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | |
Collapse
|
3
|
Li H, Xu L, Jiang W, Qiu X, Xu H, Zhu F, Hu Y, Liang S, Cai C, Qiu W, Lu Z, Cui Y, Tang C. Pleiotrophin ameliorates age-induced adult hippocampal neurogenesis decline and cognitive dysfunction. Cell Rep 2023; 42:113022. [PMID: 37610873 DOI: 10.1016/j.celrep.2023.113022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/22/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Cognitive impairment has been associated with an age-related decline in adult hippocampal neurogenesis (AHN). The molecular basis of declining neurogenesis in the aging hippocampus remains to be elucidated. Here, we show that pleiotrophin (PTN) expression is decreased with aging in neural stem and progenitor cells (NSPCs). Mice lacking PTN exhibit impaired AHN accompanied by poor learning and memory. Mechanistically, we find that PTN engages with protein tyrosine phosphatase receptor type Z1 (PTPRZ1) to promote NSPC proliferation and differentiation by activating AKT signaling. PTN overexpression or pharmacological activation of AKT signaling in aging mice restores AHN and alleviates relevant memory deficits. Importantly, we also find that PTN overexpression improves impaired neurogenesis in senescence-accelerated mouse prone 8 (SAMP8) mice. We further confirm that PTN is required for enriched environment-induced increases in AHN. These results corroborate the significance of AHN in aging and reveal a possible therapeutic intervention by targeting PTN.
Collapse
Affiliation(s)
- Haoyang Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yu Hu
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Shuzhen Liang
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chengcheng Cai
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
4
|
Osorio MJ, Mariani JN, Zou L, Schanz SJ, Heffernan K, Cornwell A, Goldman SA. Glial progenitor cells of the adult human white and grey matter are contextually distinct. Glia 2023; 71:524-540. [PMID: 36334067 PMCID: PMC10100527 DOI: 10.1002/glia.24291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFβ signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.
Collapse
Affiliation(s)
- Maria Joana Osorio
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa Zou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Kate Heffernan
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Benraiss A, Mariani JN, Tate A, Madsen PM, Clark KM, Welle KA, Solly R, Capellano L, Bentley K, Chandler-Militello D, Goldman SA. A TCF7L2-responsive suppression of both homeostatic and compensatory remyelination in Huntington disease mice. Cell Rep 2022; 40:111291. [PMID: 36044851 DOI: 10.1016/j.celrep.2022.111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is characterized by defective oligodendroglial differentiation and white matter disease. Here, we investigate the role of oligodendrocyte progenitor cell (OPC) dysfunction in adult myelin maintenance in HD. We first note a progressive, age-related loss of myelin in both R6/2 and zQ175 HD mice compared with wild-type controls. Adult R6/2 mice then manifest a significant delay in remyelination following cuprizone demyelination. RNA-sequencing and proteomic analysis of callosal white matter and OPCs isolated from both R6/2 and zQ175 mice reveals a systematic downregulation of genes associated with oligodendrocyte differentiation and myelinogenesis. Gene co-expression and network analysis predicts repressed Tcf7l2 signaling as a major driver of this expression pattern. In vivo Tcf7l2 overexpression restores both myelin gene expression and remyelination in demyelinated R6/2 mice. These data causally link impaired TCF7L2-dependent transcription to the poor development and homeostatic retention of myelin in HD and provide a mechanism for its therapeutic restoration.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA.
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Ashley Tate
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Pernille M Madsen
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kathleen M Clark
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, URMC, Rochester, NY 14642, USA
| | - Renee Solly
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Laetitia Capellano
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Karen Bentley
- Department of Pathology and Laboratory Medicine, URMC, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark; Sana Biotechnology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Pantazopoulos H, Hossain NM, Chelini G, Durning P, Barbas H, Zikopoulos B, Berretta S. Chondroitin Sulphate Proteoglycan Axonal Coats in the Human Mediodorsal Thalamic Nucleus. Front Integr Neurosci 2022; 16:934764. [PMID: 35875507 PMCID: PMC9298528 DOI: 10.3389/fnint.2022.934764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans (CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including axon guidance, fasciculation, conductance, and myelination. Prior work suggested the possibility that these functions may, at least in part, be carried out by specialized CSPG structures surrounding axons, termed axonal coats. However, their existence remains controversial. We tested the hypothesis that NG2 and BCAN, known to be associated with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats and measure the percentage of myelinated axons associated with them. In a subset of donors (n = 3), we used electron microscopy to analyze the spatial relationship between axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show that a substantial percentage (∼64%) of large and medium myelinated axons in the human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with larger axons displaying greater association with axonal coats. These findings represent the first characterization of NG2 and BCAN axonal coats in the human brain. The large percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal guidance, fasciculation, conductance, and myelination suggest that these structures may contribute to several key axonal properties.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Psychiatry and Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | | | - Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
| | - Helen Barbas
- Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- *Correspondence: Sabina Berretta,
| |
Collapse
|
7
|
Molina-Holgado E, Esteban PF, Arevalo-Martin Á, Moreno-Luna R, Molina-Holgado F, Garcia-Ovejero D. Endocannabinoid signaling in oligodendroglia. Glia 2022; 71:91-102. [PMID: 35411970 DOI: 10.1002/glia.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Ángel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
8
|
Shaker MR, Kahtan A, Prasad R, Lee JH, Pietrogrande G, Leeson HC, Sun W, Wolvetang EJ, Slonchak A. Neural Epidermal Growth Factor-Like Like Protein 2 Is Expressed in Human Oligodendroglial Cell Types. Front Cell Dev Biol 2022; 10:803061. [PMID: 35265611 PMCID: PMC8899196 DOI: 10.3389/fcell.2022.803061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
Neural epidermal growth factor-like like 2 (NELL2) is a cytoplasmic and secreted glycosylated protein with six epidermal growth factor-like domains. In animal models, NELL2 is predominantly expressed in neural tissues where it regulates neuronal differentiation, polarization, and axon guidance, but little is known about the role of NELL2 in human brain development. In this study, we show that rostral neural stem cells (rNSC) derived from human-induced pluripotent stem cell (hiPSC) exhibit particularly strong NELL2 expression and that NELL2 protein is enriched at the apical side of neural rosettes in hiPSC-derived brain organoids. Following differentiation of human rostral NSC into neurons, NELL2 remains robustly expressed but changes its subcellular localization from >20 small cytoplasmic foci in NSC to one–five large peri-nuclear puncta per neuron. Unexpectedly, we discovered that in human brain organoids, NELL2 is readily detectable in the oligodendroglia and that the number of NELL2 puncta increases as oligodendrocytes mature. Artificial intelligence-based machine learning further predicts a strong association of NELL2 with multiple human white matter diseases, suggesting that NELL2 may possess yet unexplored roles in regulating oligodendrogenesis and/or myelination during human cortical development and maturation.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amna Kahtan
- St Cloud Technical & Community College, St Cloud, MN, United States
| | - Renuka Prasad
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Li H, Chen Y, Niu J, Yi C. New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases. J Biomed Res 2022; 36:343-352. [PMID: 35578762 PMCID: PMC9548433 DOI: 10.7555/jbr.36.20220016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oligodendrocyte lineage cells (OL-lineage cells) are a cell population that are crucial for mammalian central nervous system (CNS) myelination. OL-lineage cells go through developmental stages, initially differentiating into oligodendrocyte precursor cells (OPCs), before becoming immature oligodendrocytes, then mature oligodendrocytes (OLs). While the main function of cell lineage is in myelin formation, and increasing number of studies have turned to explore the immunological characteristics of these cells. Initially, these studies focused on discovering how OPCs and OLs are affected by the immune system, and then, how these immunological changes influence the myelination process. However, recent studies have uncovered another feature of OL-lineage cells in our immune systems. It would appear that OL-lineage cells also express immunological factors such as cytokines and chemokines in response to immune activation, and the expression of these factors changes under various pathologic conditions. Evidence suggests that OL-lineage cells actually modulate immune functions. Indeed, OL-lineage cells appear to play both "victim" and "agent" in the CNS which raises a number of questions. Here, we summarize immunologic changes in OL-lineage cells and their effects, as well as consider OL-lineage cell changes which influence immune cells under pathological conditions. We also describe some of the underlying mechanisms of these changes and their effects. Finally, we describe several studies which use OL-lineage cells as immunotherapeutic targets for demyelination diseases.
Collapse
Affiliation(s)
- Hui Li
- Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yang Chen
- Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
- Jianqin Niu, Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Gaotanyan Main street, Chongqing 400038, China. Tel: +86-13668016001, E-mail:
| | - Chenju Yi
- Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Chenju Yi, Research Centre, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Guangming (New) District, Shenzhen 518107, China. Tel: +86-13419189905, E-mail:
| |
Collapse
|
10
|
Luo JXX, Cui QL, Yaqubi M, Hall JA, Dudley R, Srour M, Addour N, Jamann H, Larochelle C, Blain M, Healy LM, Stratton JA, Sonnen JA, Kennedy TE, Antel JP. Human oligodendrocyte myelination potential; relation to age and differentiation. Ann Neurol 2021; 91:178-191. [PMID: 34952986 DOI: 10.1002/ana.26288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes. In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human oligodendrocyte lineage cells. METHODS We derived viable primary oligodendrocyte lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature oligodendrocytes (non-selected cells). RESULTS We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of oligodendrocyte progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ vs A2B5- cells and in pediatric A2B5+ vs adult A2B5+ cells. p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric oligodendrocytes to activating cell death responses to stress. INTERPRETATION Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult oligodendrocyte lineage cells and suggest potential targets for remyelination enhancing therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julia Xiao Xuan Luo
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University Health Centre and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Roy Dudley
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Nassima Addour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Hélène Jamann
- Department of Neurosciences, Centre de recherche du centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Centre de recherche du centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Joshua A Sonnen
- Department of Neuropathology, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal, QC, H3A 2B4, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
11
|
Benraiss A, Mariani JN, Osipovitch M, Cornwell A, Windrem MS, Villanueva CB, Chandler-Militello D, Goldman SA. Cell-intrinsic glial pathology is conserved across human and murine models of Huntington's disease. Cell Rep 2021; 36:109308. [PMID: 34233199 DOI: 10.1016/j.celrep.2021.109308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/22/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Glial pathology is a causal contributor to the striatal neuronal dysfunction of Huntington's disease (HD). We investigate mutant HTT-associated changes in gene expression by mouse and human striatal astrocytes, as well as in mouse microglia, to identify commonalities in glial pathobiology across species and models. Mouse striatal astrocytes are fluorescence-activated cell sorted (FACS) from R6/2 and zQ175 mice, which respectively express exon1-only or full-length mHTT, and human astrocytes are generated either from human embryonic stem cells (hESCs) expressing full-length mHTT or from fetal striatal astrocytes transduced with exon1-only mHTT. Comparison of differential gene expression across these conditions, all with respect to normal HTT controls, reveals cell-type-specific changes in transcription common to both species, yet with differences that distinguish glia expressing truncated mHTT versus full-length mHTT. These data indicate that the differential gene expression of glia expressing truncated mHTT may differ from that of cells expressing full-length mHTT, while identifying a conserved set of dysregulated pathways in HD glia.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mikhail Osipovitch
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen 2200, Denmark
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Carlos Benitez Villanueva
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen 2200, Denmark
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen 2200, Denmark; Neuroscience Center, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
12
|
Windrem MS, Schanz SJ, Zou L, Chandler-Militello D, Kuypers NJ, Nedergaard M, Lu Y, Mariani JN, Goldman SA. Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Rep 2021; 31:107658. [PMID: 32433967 DOI: 10.1016/j.celrep.2020.107658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neonatally transplanted human glial progenitor cells (hGPCs) can myelinate the brains of myelin-deficient shiverer mice, rescuing their phenotype and survival. Yet, it has been unclear whether implanted hGPCs are similarly able to remyelinate the diffusely demyelinated adult CNS. We, therefore, ask if hGPCs could remyelinate both congenitally hypomyelinated adult shiverers and normal adult mice after cuprizone demyelination. In adult shiverers, hGPCs broadly disperse and differentiate as myelinating oligodendrocytes after subcortical injection, improving both host callosal conduction and ambulation. Implanted hGPCs similarly remyelinate denuded axons after cuprizone demyelination, whether delivered before or after demyelination. RNA sequencing (RNA-seq) of hGPCs back from cuprizone-demyelinated brains reveals their transcriptional activation of oligodendrocyte differentiation programs, while distinguishing them from hGPCs not previously exposed to demyelination. These data indicate the ability of transplanted hGPCs to disperse throughout the adult CNS, to broadly myelinate regions of dysmyelination, and also to be recruited as myelinogenic oligodendrocytes later in life, upon demyelination-associated demand.
Collapse
Affiliation(s)
- Martha S Windrem
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa Zou
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas J Kuypers
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Lu
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
13
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
14
|
Overcoming the inhibitory microenvironment surrounding oligodendrocyte progenitor cells following experimental demyelination. Nat Commun 2021; 12:1923. [PMID: 33772011 PMCID: PMC7998003 DOI: 10.1038/s41467-021-22263-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatase, modulates the signaling microenvironment by editing the pattern of sulfation on heparan sulfate proteoglycans. We found that Sulf2 was increased in demyelinating lesions in multiple sclerosis and was actively secreted by human OPCs. In experimental demyelination, elevated OPC Sulf1/2 expression directly impaired progenitor recruitment and subsequent generation of oligodendrocytes thereby limiting remyelination. Sulf1/2 potentiates the inhibitory microenvironment by promoting BMP and WNT signaling in OPCs. Importantly, pharmacological sulfatase inhibition using PI-88 accelerated oligodendrocyte recruitment and remyelination by blocking OPC-expressed sulfatases. Our findings define an important inhibitory role of Sulf1/2 and highlight the potential for modulation of the heparanome in the treatment of chronic demyelinating disease. Demyelination results in impairments in oligodendrocyte progenitor cell recruitment. Here the authors identify sulfatase 1/2 as a potential modulator of myelination by modulating the microenvironment around oligodendrocyte progenitor cells.
Collapse
|
15
|
Heparanome-Mediated Rescue of Oligodendrocyte Progenitor Quiescence following Inflammatory Demyelination. J Neurosci 2021; 41:2245-2263. [PMID: 33472827 DOI: 10.1523/jneurosci.0580-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.
Collapse
|
16
|
Perera SN, Williams RM, Lyne R, Stubbs O, Buehler DP, Sauka-Spengler T, Noda M, Micklem G, Southard-Smith EM, Baker CVH. Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach. Glia 2020; 68:2550-2584. [PMID: 32857879 PMCID: PMC7116175 DOI: 10.1002/glia.23870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Olfactory ensheathing cells (OECs) are neural crest-derived glia that ensheath bundles of olfactory axons from their peripheral origins in the olfactory epithelium to their central targets in the olfactory bulb. We took an unbiased laser microdissection and differential RNA-seq approach, validated by in situ hybridization, to identify candidate molecular mechanisms underlying mouse OEC development and differences with the neural crest-derived Schwann cells developing on other peripheral nerves. We identified 25 novel markers for developing OECs in the olfactory mucosa and/or the olfactory nerve layer surrounding the olfactory bulb, of which 15 were OEC-specific (that is, not expressed by Schwann cells). One pan-OEC-specific gene, Ptprz1, encodes a receptor-like tyrosine phosphatase that blocks oligodendrocyte differentiation. Mutant analysis suggests Ptprz1 may also act as a brake on OEC differentiation, and that its loss disrupts olfactory axon targeting. Overall, our results provide new insights into OEC development and the diversification of neural crest-derived glia.
Collapse
Affiliation(s)
- Surangi N Perera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ruth M Williams
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Lyne
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Oliver Stubbs
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
de la Fuente AG, Queiroz RML, Ghosh T, McMurran CE, Cubillos JF, Bergles DE, Fitzgerald DC, Jones CA, Lilley KS, Glover CP, Franklin RJM. Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing. Mol Cell Proteomics 2020; 19:1281-1302. [PMID: 32434922 PMCID: PMC8015006 DOI: 10.1074/mcp.ra120.002102] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/06/2022] Open
Abstract
Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPCs) can differentiate into new myelin-forming oligodendrocytes in a regenerative process called remyelination. Although remyelination is very efficient in young adults, its efficiency declines progressively with ageing. Here we performed proteomic analysis of OPCs freshly isolated from the brains of neonate, young and aged female rats. Approximately 50% of the proteins are expressed at different levels in OPCs from neonates compared with their adult counterparts. The amount of myelin-associated proteins, and proteins associated with oxidative phosphorylation, inflammatory responses and actin cytoskeletal organization increased with age, whereas cholesterol-biosynthesis, transcription factors and cell cycle proteins decreased. Our experiments provide the first ageing OPC proteome, revealing the distinct features of OPCs at different ages. These studies provide new insights into why remyelination efficiency declines with ageing and potential roles for aged OPCs in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alerie G de la Fuente
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, United Kingdom; Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Granta Park, United Kingdom
| | - Tanay Ghosh
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Christopher E McMurran
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Juan F Cubillos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA; John Hopkins University, Kavli Neuroscience Discovery Institute, USA
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Clare A Jones
- John Hopkins University, Kavli Neuroscience Discovery Institute, USA
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, United Kingdom
| | - Colin P Glover
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Granta Park, United Kingdom; Oncology Early Clinical Projects, Oncology R &D, AstraZeneca, Melbourn Science Park, Melbourn, Hertfordshire, United Kingdom
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom.
| |
Collapse
|
18
|
Dysregulated Glial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Rep 2020; 27:3832-3843.e6. [PMID: 31242417 DOI: 10.1016/j.celrep.2019.05.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Astrocytic differentiation is developmentally impaired in patients with childhood-onset schizophrenia (SCZ). To determine why, we used genetic gain- and loss-of-function studies to establish the contributions of differentially expressed transcriptional regulators to the defective differentiation of glial progenitor cells (GPCs) produced from SCZ patient-derived induced pluripotent cells (iPSCs). Negative regulators of the bone morphogenetic protein (BMP) pathway were upregulated in SCZ GPCs, including BAMBI, FST, and GREM1, whose overexpression retained SCZ GPCs at the progenitor stage. SMAD4 knockdown (KD) suppressed the production of these BMP inhibitors by SCZ GPCs and rescued normal astrocytic differentiation. In addition, the BMP-regulated transcriptional repressor REST was upregulated in SCZ GPCs, and its KD similarly restored normal glial differentiation. REST KD also rescued potassium-transport-associated gene expression and K+ uptake, which were otherwise deficient in SCZ glia. These data suggest that the glial differentiation defect in childhood-onset SCZ, and its attendant disruption in K+ homeostasis, may be rescued by targeting BMP/SMAD4- and REST-dependent transcription.
Collapse
|
19
|
Wang J, Saraswat D, Sinha AK, Polanco J, Dietz K, O'Bara MA, Pol SU, Shayya HJ, Sim FJ. Paired Related Homeobox Protein 1 Regulates Quiescence in Human Oligodendrocyte Progenitors. Cell Rep 2019; 25:3435-3450.e6. [PMID: 30566868 DOI: 10.1016/j.celrep.2018.11.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/02/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023] Open
Abstract
Human oligodendrocyte progenitor cells (hOPCs) persist into adulthood as an abundant precursor population capable of division and differentiation. The transcriptional mechanisms that regulate hOPC homeostasis remain poorly defined. Herein, we identify paired related homeobox protein 1 (PRRX1) in primary PDGFαR+ hOPCs. We show that enforced PRRX1 expression results in reversible G1/0 arrest. While both PRRX1 splice variants reduce hOPC proliferation, only PRRX1a abrogates migration. hOPC engraftment into hypomyelinated shiverer/rag2 mouse brain is severely impaired by PRRX1a, characterized by reduced cell proliferation and migration. PRRX1 induces a gene expression signature characteristic of stem cell quiescence. Both IFN-γ and BMP signaling upregulate PRRX1 and induce quiescence. PRRX1 knockdown modulates IFN-γ-induced quiescence. In mouse brain, PRRX1 mRNA was detected in non-dividing OPCs and is upregulated in OPCs following demyelination. Together, these data identify PRRX1 as a regulator of quiescence in hOPCs and as a potential regulator of pathological quiescence.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Anjali K Sinha
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessie Polanco
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Karen Dietz
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Melanie A O'Bara
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Suyog U Pol
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Biomedical Engineering, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hani J Shayya
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
20
|
Sex Differences in the Effect of Alcohol Drinking on Myelinated Axons in the Anterior Cingulate Cortex of Adolescent Rats. Brain Sci 2019; 9:brainsci9070167. [PMID: 31315270 PMCID: PMC6680938 DOI: 10.3390/brainsci9070167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cognitive deficits associated with teenage drinking may be due to disrupted myelination of prefrontal circuits. To better understand how alcohol affects myelination, male and female Wistar rats (n = 7-9/sex/treatment) underwent two weeks of intermittent operant self-administration of sweetened alcohol or sweetened water early in adolescence (postnatal days 28-42) and we tested for macro- and microstructural changes to myelin. We previously reported data from the males of this study showing that alcohol drinking reduced myelinated fiber density in layers II-V of the anterior cingulate division of the medial prefrontal cortex (Cg1); herein, we show that myelinated fiber density was not significantly altered by alcohol in females. Alcohol drinking patterns were similar in both sexes, but males were in a pre-pubertal state for a larger proportion of the alcohol exposure period, which may have contributed to the differential effects on myelinated fiber density. To gain more insight into how alcohol impacts myelinated axons, brain sections from a subset of these animals (n = 6/sex/treatment) were used for microstructural analyses of the nodes of Ranvier. Confocal analysis of nodal domains, flanked by immunofluorescent-labeled contactin-associated protein (Caspr) clusters, indicated that alcohol drinking reduced nodal length-to-width ratios in layers II/III of the Cg1 in both sexes. Despite sex differences in the underlying cause (larger diameter axons after alcohol in males vs. shorter nodal lengths after alcohol in females), reduced nodal ratios could have important implications for the speed and integrity of neural transmission along these axons in both males and females. Alcohol-induced changes to myelinated axonal populations in the Cg1 may contribute to long-lasting changes in prefrontal function associated with early onset drinking.
Collapse
|
21
|
Tanga N, Kuboyama K, Kishimoto A, Kiyonari H, Shiraishi A, Suzuki R, Watanabe T, Fujikawa A, Noda M. The PTN-PTPRZ signal activates the AFAP1L2-dependent PI3K-AKT pathway for oligodendrocyte differentiation: Targeted inactivation of PTPRZ activity in mice. Glia 2019; 67:967-984. [PMID: 30667096 DOI: 10.1002/glia.23583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatase receptor type Z (PTPRZ) maintains oligodendrocyte precursor cells (OPCs) in an undifferentiated state. The inhibition of PTPase by its ligand pleiotrophin (PTN) promotes OPC differentiation; however, the substrate molecules of PTPRZ involved in the differentiation have not yet been elucidated in detail. We herein demonstrated that the tyrosine phosphorylation of AFAP1L2, paxillin, ERBB4, GIT1, p190RhoGAP, and NYAP2 was enhanced in OPC-like OL1 cells by a treatment with PTN. AFAP1L2, an adaptor protein involved in the PI3K-AKT pathway, exhibited the strongest response to PTN. PTPRZ dephosphorylated AFAP1L2 at tyrosine residues in vitro and in HEK293T cells. In OL1 cells, the knockdown of AFAP1L2 or application of a PI3K inhibitor suppressed cell differentiation as well as the PTN-induced phosphorylation of AKT and mTOR. We generated a knock-in mouse harboring a catalytically inactive Cys to Ser (CS) mutation in the PTPase domain. The phosphorylation levels of AFAP1L2, AKT, and mTOR were higher, and the expression of oligodendrocyte markers, including myelin basic protein (MBP) and myelin regulatory factor (MYRF), was stronger in CS knock-in brains than in wild-type brains on postnatal day 10; however, these differences mostly disappeared in the adult stage. Adult CS knock-in mice exhibited earlier remyelination after cuprizone-induced demyelination through the accelerated differentiation of OPCs. These phenotypes in CS knock-in mice were similar to those in Ptprz-deficient mice. Therefore, we conclude that the PTN-PTPRZ signal stimulates OPC differentiation partly by enhancing the tyrosine phosphorylation of AFAP1L2 in order to activate the PI3K-AKT pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cuprizone/toxicity
- Cytokines/metabolism
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/diagnostic imaging
- Disease Models, Animal
- HEK293 Cells
- Humans
- Immunoprecipitation
- In Situ Nick-End Labeling
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/metabolism
- Myelin Proteins/metabolism
- Oligodendroglia/physiology
- Proto-Oncogene Proteins c-akt
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
- Signal Detection, Psychological/drug effects
- Signal Detection, Psychological/physiology
- Signal Transduction/physiology
- Transfection
- X-Ray Microtomography
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Naomi Tanga
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Kazuya Kuboyama
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Ayako Kishimoto
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Aki Shiraishi
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ryoko Suzuki
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
22
|
Herradon G, Ramos-Alvarez MP, Gramage E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front Pharmacol 2019; 10:377. [PMID: 31031625 PMCID: PMC6474308 DOI: 10.3389/fphar.2019.00377] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M Pilar Ramos-Alvarez
- Departmento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
23
|
Esmonde-White C, Yaqubi M, Bilodeau PA, Cui QL, Pernin F, Larochelle C, Ghadiri M, Xu YKT, Kennedy TE, Hall J, Healy LM, Antel JP. Distinct Function-Related Molecular Profile of Adult Human A2B5-Positive Pre-Oligodendrocytes Versus Mature Oligodendrocytes. J Neuropathol Exp Neurol 2019; 78:468-479. [DOI: 10.1093/jnen/nlz026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | | | - Qiao Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | | | - Mahtab Ghadiri
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Yu Kang T Xu
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Timothy E Kennedy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Jeffery Hall
- Department of Neurosurgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| |
Collapse
|
24
|
Sanchez-Rodriguez MA, Gomez O, Esteban PF, Garcia-Ovejero D, Molina-Holgado E. The endocannabinoid 2-arachidonoylglycerol regulates oligodendrocyte progenitor cell migration. Biochem Pharmacol 2018; 157:180-188. [PMID: 30195734 DOI: 10.1016/j.bcp.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and β (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration. By contrast, increasing the levels of endogenous 2-AG by blocking its degradation (impairing monoacylglycerol lipase activity with JZL-184) significantly increased OPC migration, as did agonists of the CB1, CB2 or CB1/CB2 cannabinoid receptors. This latter effect was abolished by selective CB1 or CB2 antagonists, strongly suggesting that cannabinoid receptor activation specifically potentiates OPC chemotaxis and chemokinesis in response to PDGF/FGF. Furthermore, the chemoattractive activity of these cannabinoid receptor agonists on OPCs was even evident in the absence of PDGF/FGF. In cultured brain slices prepared from the corpus callosum of postnatal rat brains, DAGL or cannabinoid receptor inhibition substantially diminished the in situ migration of Sox10+ OPCs. Overall, these results reveal a novel function of endogenous 2-AG in PDGF and FGF induced OPC migration, highlighting the importance of the endocannabinoid system in regulating essential steps in oligodendrocyte development.
Collapse
Affiliation(s)
- Maria A Sanchez-Rodriguez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Oscar Gomez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
25
|
Abstract
Neuron-glia antigen 2-expressing glial cells (NG2 glia) serve as oligodendrocyte progenitors during development and adulthood. However, recent studies have shown that these cells represent not only a transitional stage along the oligodendroglial lineage, but also constitute a specific cell type endowed with typical properties and functions. Namely, NG2 glia (or subsets of NG2 glia) establish physical and functional interactions with neurons and other central nervous system (CNS) cell types, that allow them to constantly monitor the surrounding neuropil. In addition to operating as sensors, NG2 glia have features that are expected for active modulators of neuronal activity, including the expression and release of a battery of neuromodulatory and neuroprotective factors. Consistently, cell ablation strategies targeting NG2 glia demonstrate that, beyond their role in myelination, these cells contribute to CNS homeostasis and development. In this review, we summarize and discuss the advancements achieved over recent years toward the understanding of such functions, and propose novel approaches for further investigations aimed at elucidating the multifaceted roles of NG2 glia.
Collapse
|
26
|
Muscarinic Receptor M 3R Signaling Prevents Efficient Remyelination by Human and Mouse Oligodendrocyte Progenitor Cells. J Neurosci 2018; 38:6921-6932. [PMID: 29959237 DOI: 10.1523/jneurosci.1862-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 12/13/2022] Open
Abstract
Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.
Collapse
|
27
|
Pol SU, Polanco JJ, Seidman RA, O'Bara MA, Shayya HJ, Dietz KC, Sim FJ. Network-Based Genomic Analysis of Human Oligodendrocyte Progenitor Differentiation. Stem Cell Reports 2018; 9:710-723. [PMID: 28793249 PMCID: PMC5550273 DOI: 10.1016/j.stemcr.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Impaired human oligodendrocyte progenitor cell (hOPC) differentiation likely contributes to failed remyelination in multiple sclerosis. The characterization of molecular pathways that regulate hOPC differentiation will provide means to induce remyelination. In this study, we determined the gene expression profile of PDGFαR+ hOPCs during initial oligodendrocyte commitment. Weighted gene coexpression network analysis was used to define progenitor and differentiation-specific gene expression modules and functionally important hub genes. These modules were compared with rodent OPC and oligodendrocyte data to determine the extent of species conservation. These analyses identified G-protein β4 (GNB4), which was associated with hOPC commitment. Lentiviral GNB4 overexpression rapidly induced human oligodendrocyte differentiation. Following xenograft in hypomyelinating shiverer/rag2 mice, GNB4 overexpression augmented myelin synthesis and the ability of hOPCs to ensheath host axons, establishing GNB4 as functionally important in human myelination. As such, network analysis of hOPC gene expression accurately predicts genes that influence human oligodendrocyte differentiation in vivo. Transcriptional database of differentiating human oligodendrocyte progenitor cells WGCNA reveals coordinated gene networks in oligodendrocyte specification Dataset comparison identifies unique and shared cross-species gene networks G-protein β4 (GNB4) expression accelerates human oligodendrocyte differentiation
Collapse
Affiliation(s)
- Suyog U Pol
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Department of Biomedical Engineering, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Jessie J Polanco
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Richard A Seidman
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Melanie A O'Bara
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Hani J Shayya
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Karen C Dietz
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA.
| |
Collapse
|
28
|
Antel JP, Lin YH, Cui QL, Pernin F, Kennedy TE, Ludwin SK, Healy LM. Immunology of oligodendrocyte precursor cells in vivo and in vitro. J Neuroimmunol 2018; 331:28-35. [PMID: 29566973 DOI: 10.1016/j.jneuroim.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Abstract
Remyelination following myelin/oligodendrocyte injury in the central nervous system (CNS) is dependent on oligodendrocyte progenitor cells (OPCs) migrating into lesion sites, differentiating into myelinating oligodendrocytes (OLs), and ensheathing axons. Experimental models indicate that robust OPC-dependent remyelination can occur in the CNS; in contrast, histologic and imaging studies of lesions in the human disease multiple sclerosis (MS) indicate the variable extent of this response, which is particularly limited in more chronic MS lesions. Immune-mediated mechanisms can contribute either positively or negatively to the presence and functional responses of OPCs. This review addresses i) the molecular signature and functional properties of OPCs in the adult human brain; ii) the status (presence and function) of OPCs in MS lesions; iii) experimental models and in vitro data highlighting the contribution of adaptive and innate immune constituents to OPC injury and remyelination; and iv) effects of MS-directed immunotherapies on OPCs, either directly or indirectly via effects on specific immune constituents.
Collapse
Affiliation(s)
- Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Samuel K Ludwin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Luke M Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
van Bruggen D, Agirre E, Castelo-Branco G. Single-cell transcriptomic analysis of oligodendrocyte lineage cells. Curr Opin Neurobiol 2017; 47:168-175. [PMID: 29126015 DOI: 10.1016/j.conb.2017.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 11/16/2022]
Abstract
Oligodendrocytes (OLs) are glial cells in the central nervous system (CNS), which produce myelin, a lipid-rich membrane that insulates neuronal axons. The main function ascribed to OLs is to regulate the speed of electric pulse transmission, and as such OLs have been widely considered as a single and discrete population. Nevertheless, OLs and their precursor cells (OPCs) throughout the CNS have different morphologies and regional functional differences have been observed. Moreover, OLs have recently been involved in other functional processes such as metabolic coupling with axons. In this review, we focus on recent advances in single-cell transcriptomics suggesting that OLs are more heterogeneous than previously thought, with defined subpopulations and cell states that are associated with different stages of lineage progression and might also represent distinct functional states.
Collapse
Affiliation(s)
- David van Bruggen
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Azar S, Leventoux N, Ripoll C, Rigau V, Gozé C, Lorcy F, Bauchet L, Duffau H, Guichet PO, Rothhut B, Hugnot JP. Cellular and molecular characterization of IDH1-mutated diffuse low grade gliomas reveals tumor heterogeneity and absence of EGFR/PDGFRα activation. Glia 2017; 66:239-255. [PMID: 29027701 DOI: 10.1002/glia.23240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Diffuse low grade gliomas (DLGG, grade II gliomas) are slowly-growing brain tumors that often progress into high grade gliomas. Most tumors have a missense mutation for IDH1 combined with 1p19q codeletion in oligodendrogliomas or ATRX/TP53 mutations in astrocytomas. The phenotype of tumoral cells, their environment and the pathways activated in these tumors are still ill-defined and are mainly based on genomics and transcriptomics analysis. Here we used freshly-resected tumors to accurately characterize the tumoral cell population and their environment. In oligodendrogliomas, cells express the transcription factors MYT1, Nkx2.2, Olig1, Olig2, Sox8, four receptors (EGFR, PDGFRα, LIFR, PTPRZ1) but not the co-receptor NG2 known to be expressed by oligodendrocyte progenitor cells. A variable fraction of cells also express the more mature oligodendrocytic markers NOGO-A and MAG. DLGG cells are also stained for the young-neuron marker doublecortin (Dcx) which is also observed in oligodendrocytic cells in nontumoral human brain. In astrocytomas, MYT1, PDGFRα, PTPRZ1 were less expressed whereas Sox9 was prominent over Sox8. The phenotype of DLGG cells is overall maintained in culture. Phospho-array screening showed the absence of EGFR and PDGFRα phosphorylation in DLGG but revealed the strong activation of p44/42 MAPK/ERK which was present in a fraction of tumoral cells but also in nontumoral cells. These results provide evidence for the existence of close relationships between the cellular phenotype and the mutations found in DLGG. The slow proliferation of these tumors may be associated with the absence of activation of PDGFRα/EGFR receptors.
Collapse
Affiliation(s)
- S Azar
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France
| | - N Leventoux
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Pathology Department, Hôpital Gui de Chauliac, Montpellier, France
| | - C Ripoll
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France
| | - V Rigau
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Pathology Department, Hôpital Gui de Chauliac, Montpellier, France
| | - C Gozé
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Genetics Department, Hôpital Gui de Chauliac, Montpellier, France
| | - F Lorcy
- CHU Montpellier, Pathology Department, Hôpital Gui de Chauliac, Montpellier, France
| | - L Bauchet
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Surgery Department, Hôpital Gui de Chauliac, Montpellier, France
| | - H Duffau
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Surgery Department, Hôpital Gui de Chauliac, Montpellier, France
| | - P O Guichet
- LNEC Inserm U1084 1 rue Georges Bonnet 86022 Poitiers Cedex, France
| | - B Rothhut
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France
| | - J P Hugnot
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,University of Montpellier, Faculty of Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
31
|
Qin EY, Cooper DD, Abbott KL, Lennon J, Nagaraja S, Mackay A, Jones C, Vogel H, Jackson PK, Monje M. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma. Cell 2017; 170:845-859.e19. [PMID: 28823557 PMCID: PMC5587159 DOI: 10.1016/j.cell.2017.07.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
Abstract
The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP.
Collapse
Affiliation(s)
- Elizabeth Y Qin
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | | | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA
| | - James Lennon
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Alan Mackay
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Hannes Vogel
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
32
|
Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med 2017; 49:e361. [PMID: 28751784 PMCID: PMC5565952 DOI: 10.1038/emm.2017.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/27/2023] Open
Abstract
Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.
Collapse
|
33
|
Abstract
Diseases of glia, including astrocytes and oligodendrocytes, are among the most prevalent and disabling, yet least appreciated, conditions in neurology. In recent years, it has become clear that besides the overtly glial disorders of oligodendrocyte loss and myelin failure, such as the leukodystrophies and inflammatory demyelinations, a number of neurodegenerative and psychiatric disorders may also be causally linked to glial dysfunction and derive from astrocytic as well as oligodendrocytic pathology. The relative contribution of glial dysfunction to many of these disorders may be so great as to allow their treatment by the delivery of allogeneic glial progenitor cells, the precursors to both astroglia and myelin-producing oligodendrocytes. Given the development of new methods for producing and isolating these cells from pluripotent stem cells, both the myelin disorders and appropriate glial-based neurodegenerative conditions may now be compelling targets for cell-based therapy. As such, glial cell-based therapies may offer potential benefit to a broader range of diseases than ever before contemplated, including disorders such as Huntington's disease and the motor neuron degeneration of amyotrophic lateral sclerosis, which have traditionally been considered neuronal in nature.
Collapse
|
34
|
Dietz KC, Polanco JJ, Pol SU, Sim FJ. Targeting human oligodendrocyte progenitors for myelin repair. Exp Neurol 2016; 283:489-500. [PMID: 27001544 PMCID: PMC5666574 DOI: 10.1016/j.expneurol.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.
Collapse
Affiliation(s)
- Karen C Dietz
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| | - Jessie J Polanco
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| | - Suyog U Pol
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| | - Fraser J Sim
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
35
|
Kuboyama K, Fujikawa A, Suzuki R, Tanga N, Noda M. Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION. J Biol Chem 2016; 291:18117-28. [PMID: 27445335 DOI: 10.1074/jbc.m116.742536] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase receptor type Z (PTPRZ) is predominantly expressed in the developing brain as a CS proteoglycan. PTPRZ has long (PTPRZ-A) and short type (PTPRZ-B) receptor forms by alternative splicing. The extracellular CS moiety of PTPRZ is required for high-affinity binding to inhibitory ligands, such as pleiotrophin (PTN), midkine, and interleukin-34; however, its functional significance in regulating PTPRZ activity remains obscure. We herein found that protein expression of CS-modified PTPRZ-A began earlier, peaking at approximately postnatal days 5-10 (P5-P10), and then that of PTN peaked at P10 at the developmental stage corresponding to myelination onset in the mouse brain. Ptn-deficient mice consistently showed a later onset of the expression of myelin basic protein, a major component of the myelin sheath, than wild-type mice. Upon ligand application, PTPRZ-A/B in cultured oligodendrocyte precursor cells exhibited punctate localization on the cell surface instead of diffuse distribution, causing the inactivation of PTPRZ and oligodendrocyte differentiation. The same effect was observed with the removal of CS chains with chondroitinase ABC but not polyclonal antibodies against the extracellular domain of PTPRZ. These results indicate that the negatively charged CS moiety prevents PTPRZ from spontaneously clustering and that the positively charged ligand PTN induces PTPRZ clustering, potentially by neutralizing electrostatic repulsion between CS chains. Taken altogether, these data indicate that PTN-PTPRZ-A signaling controls the timing of oligodendrocyte precursor cell differentiation in vivo, in which the CS moiety of PTPRZ receptors maintains them in a monomeric active state until its ligand binding.
Collapse
Affiliation(s)
- Kazuya Kuboyama
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and
| | - Akihiro Fujikawa
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and
| | - Ryoko Suzuki
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and
| | - Naomi Tanga
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and the School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Masaharu Noda
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and the School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
36
|
Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J Steroid Biochem Mol Biol 2016; 160:43-52. [PMID: 26776441 PMCID: PMC5233753 DOI: 10.1016/j.jsbmb.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
Abstract
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury.
Collapse
Affiliation(s)
- Anna J Khalaj
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Jonathan Hasselmann
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Catherine Augello
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Spencer Moore
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States; Neuroscience Graduate Program, University of California, Riverside, United States.
| |
Collapse
|
37
|
Abstract
Oligodendrocytes produce myelin, an insulating sheath required for the saltatory conduction of electrical impulses along axons. Oligodendrocyte loss results in demyelination, which leads to impaired neurological function in a broad array of diseases ranging from pediatric leukodystrophies and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter. In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells. In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark Neuroscience Center, Rigshospitalet, Copenhagen 2100, Denmark
| | - Nicholas J Kuypers
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
38
|
Ruiz-López FJ, Blanquer M. Autologous bone marrow mononuclear cells as neuroprotective treatment of amyotrophic lateral sclerosis. Neural Regen Res 2016; 11:568-9. [PMID: 27212914 PMCID: PMC4870910 DOI: 10.4103/1673-5374.180730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Miguel Blanquer
- Hematopoietic Progenitors Transplant and Cell Therapy Unit, Virgen de la Arrixaca Hospital, Murcia University, IMIB, Murcia, Spain
| |
Collapse
|
39
|
Fujikawa A, Noda M. Role of pleiotrophin-protein tyrosine phosphatase receptor type Z signaling in myelination. Neural Regen Res 2016; 11:549-51. [PMID: 27212906 PMCID: PMC4870902 DOI: 10.4103/1673-5374.180761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan; School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
40
|
Osorio MJ, Goldman SA. Glial progenitor cell-based treatment of the childhood leukodystrophies. Exp Neurol 2016; 283:476-88. [PMID: 27170209 DOI: 10.1016/j.expneurol.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/19/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
Abstract
The childhood leukodystrophies comprise a group of hereditary disorders characterized by the absence, malformation or destruction of myelin. These disorders share common clinical, radiological and pathological features, despite their diverse molecular and genetic etiologies. Oligodendrocytes and astrocytes are the major affected cell populations, and are either structurally impaired or metabolically compromised through cell-intrinsic pathology, or are the victims of mis-accumulated toxic byproducts of metabolic derangement. In either case, glial cell replacement using implanted tissue or pluripotent stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group of non-lysosomal metabolic leukodystrophies, may all be appropriate candidates for glial progenitor cell-based treatment. Nonetheless, a variety of specific challenges remain before this therapeutic strategy can be applied to children. These include timely diagnosis, before irreparable neuronal injury has ensued; understanding the natural history of the targeted disease; defining the optimal cell phenotype for each disorder; achieving safe and scalable cellular compositions; designing age-appropriate controlled clinical trials; and for autologous therapy of genetic disorders, achieving the safe genetic editing of pluripotent stem cells. Yet these challenges notwithstanding, the promise of glial progenitor cell-based treatment of the childhood myelin disorders offers hope to the many victims of this otherwise largely untreatable class of disease.
Collapse
Affiliation(s)
- M Joana Osorio
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, United States; Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark.
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, United States; Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark.
| |
Collapse
|
41
|
Michelotti GA, Tucker A, Swiderska-Syn M, Machado MV, Choi SS, Kruger L, Soderblom E, Thompson JW, Mayer-Salman M, Himburg HA, Moylan CA, Guy CD, Garman KS, Premont RT, Chute JP, Diehl AM. Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches. Gut 2016; 65:683-92. [PMID: 25596181 PMCID: PMC4504836 DOI: 10.1136/gutjnl-2014-308176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. DESIGN PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. RESULTS Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. CONCLUSIONS PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches.
Collapse
Affiliation(s)
| | - Anikia Tucker
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | | | | | - Steve S Choi
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Leandi Kruger
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Erik Soderblom
- Proteomics Center, Duke University, Durham, North Carolina, USA
| | - J Will Thompson
- Proteomics Center, Duke University, Durham, North Carolina, USA
| | | | - Heather A Himburg
- Division of Hematology and Oncology, UCLA, Los Angeles, California, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Katherine S Garman
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Richard T Premont
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - John P Chute
- Division of Hematology and Oncology, UCLA, Los Angeles, California, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
42
|
Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways. Transl Psychiatry 2016; 6:e764. [PMID: 27023170 PMCID: PMC4872454 DOI: 10.1038/tp.2016.30] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 12/31/2022] Open
Abstract
Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein-protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10(-8) per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular biological pathways and functions.
Collapse
|
43
|
Cell Therapy for Pediatric Disorders of Glia. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, Shuga J, Liu SJ, Oldham MC, Diaz A, Lim DA, Leyrat AA, West JA, Kriegstein AR. Molecular identity of human outer radial glia during cortical development. Cell 2015; 163:55-67. [PMID: 26406371 DOI: 10.1016/j.cell.2015.09.004] [Citation(s) in RCA: 573] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/04/2015] [Accepted: 08/31/2015] [Indexed: 01/17/2023]
Abstract
Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiadong Chen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hanna Retallack
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carmen Sandoval-Espinosa
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cory R Nicholas
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joe Shuga
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Siyuan John Liu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aaron Diaz
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anne A Leyrat
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Jay A West
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Karus M, Ulc A, Ehrlich M, Czopka T, Hennen E, Fischer J, Mizhorova M, Qamar N, Brüstle O, Faissner A. Regulation of oligodendrocyte precursor maintenance by chondroitin sulphate glycosaminoglycans. Glia 2015; 64:270-86. [PMID: 26454153 DOI: 10.1002/glia.22928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/16/2015] [Indexed: 01/06/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) have been proven to inhibit morphological maturation of oligodendrocytes as well as their myelination capabilities. Yet, it remained unclear, whether CSPGs and/or their respective chondroitin sulfate glycosaminoglycan (CS-GAG) side chains also regulate the oligodendrocyte lineage progression. Here, we initially show that CS-GAGs detected by the monoclonal antibody 473HD are expressed by primary rat NG2-positive oligodendrocyte precursor cells (OPCs) and O4-positive immature oligodendrocytes. CS-GAGs become down-regulated with ongoing oligodendrocyte differentiation. Enzymatic removal of the CS-GAG chains by the bacterial enzyme Chondroitinase ABC (ChABC) promoted spontaneous differentiation of proliferating rat OPCs toward O4-positive immature oligodendrocytes. Upon forced differentiation, the enzymatic removal of the CS-GAGs accelerated oligodendrocyte differentiation toward both MBP-positive and membrane forming oligodendrocytes. These processes were attenuated on enriched CSPG fractions, mainly consisting of Phosphacan/RPTPβ/ζ and to less extent of Brevican and NG2. To qualify CS-GAGs as universal regulators of oligodendrocyte biology, we finally tested the effect of CS-GAG removal on OPCs from different sources such as mouse cortical oligospheres, mouse spinal cord neurospheres, and most importantly human-induced pluripotent stem cell-derived radial glia-like neural precursor cells. For all culture systems used, we observed a similar inhibitory effect of CS-GAGs on oligodendrocyte differentiation. In conclusion, this study clearly suggests an important fundamental principle for complex CS-GAGs to regulate the oligodendrocyte lineage progression. Moreover, the use of ChABC in order to promote oligodendrocyte differentiation toward myelin gene expressing cells might be an applicable therapeutic option to enhance white matter repair.
Collapse
Affiliation(s)
- Michael Karus
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany.,Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Annika Ulc
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Marc Ehrlich
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Tim Czopka
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Eva Hennen
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Julia Fischer
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Marija Mizhorova
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Naila Qamar
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
46
|
Abstract
Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors.
Collapse
|
47
|
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, although this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granular neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet, remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this review, we will review the biology of remyelination, including the cells and signals involved; describe when remyelination occurs and when and why it fails and the consequences of its failure; and discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642 University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
48
|
A Basal Tone of 2-Arachidonoylglycerol Contributes to Early Oligodendrocyte Progenitor Proliferation by Activating Phosphatidylinositol 3-Kinase (PI3K)/AKT and the Mammalian Target of Rapamycin (MTOR) Pathways. J Neuroimmune Pharmacol 2015; 10:309-17. [DOI: 10.1007/s11481-015-9609-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
|
49
|
Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol 2015; 269:169-87. [PMID: 25900055 DOI: 10.1016/j.expneurol.2015.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022]
Abstract
Chondroitin Sulfate Proteoglycans (CSPGs) are a major component of the extracellular matrix in the central nervous system (CNS) and play critical role in the development and pathophysiology of the brain and spinal cord. Developmentally, CSPGs provide guidance cues for growth cones and contribute to the formation of neuronal boundaries in the developing CNS. Their presence in perineuronal nets plays a crucial role in the maturation of synapses and closure of critical periods by limiting synaptic plasticity. Following injury to the CNS, CSPGs are dramatically upregulated by reactive glia which form a glial scar around the lesion site. Increased level of CSPGs is a hallmark of all CNS injuries and has been shown to limit axonal plasticity, regeneration, remyelination, and conduction after injury. Additionally, CSPGs create a non-permissive milieu for cell replacement activities by limiting cell migration, survival and differentiation. Mounting evidence is currently shedding light on the potential benefits of manipulating CSPGs in combination with other therapeutic strategies to promote spinal cord repair and regeneration. Moreover, the recent discovery of multiple receptors for CSPGs provides new therapeutic targets for targeted interventions in blocking the inhibitory properties of CSPGs following injury. Here, we will provide an in depth discussion on the impact of CSPGs in normal and pathological CNS. We will also review the recent preclinical therapies that have been developed to target CSPGs in the injured CNS.
Collapse
Affiliation(s)
- Scott M Dyck
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
50
|
Benraiss A, Toner MJ, Xu Q, Bruel-Jungerman E, Rogers EH, Wang F, Economides AN, Davidson BL, Kageyama R, Nedergaard M, Goldman SA. Sustained mobilization of endogenous neural progenitors delays disease progression in a transgenic model of Huntington's disease. Cell Stem Cell 2014; 12:787-99. [PMID: 23746982 DOI: 10.1016/j.stem.2013.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/23/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disease characterized in part by the loss of striatopallidal medium spiny projection neurons (MSNs). Expression of BDNF and noggin via intracerebroventricular (ICV) delivery in an adenoviral vector triggers the addition of new neurons to the neostriatum. In this study, we found that a single ICV injection of the adeno-associated viruses AAV4-BDNF and AAV4-noggin triggered the sustained recruitment of new MSNs in both wild-type and R6/2 mice, a model of HD. Mice treated with AAV4-BDNF/noggin or with BDNF and noggin proteins actively recruited subependymal progenitor cells to form new MSNs that matured and achieved circuit integration. Importantly, the AAV4-BDNF/noggin-treated R6/2 mice showed delayed deterioration of motor function and substantially increased survival. In addition, squirrel monkeys given ICV injections of adenoviral BDNF/noggin showed similar addition of striatal neurons. Induced neuronal addition may therefore represent a promising avenue for disease amelioration in HD.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|