1
|
Scherpelz KP, Yoda RA, Jayadev S, Davis MY, Hincks JC, Liachko NF, Bragg RM, Cochoit A, MacDonald CL, Keene CD, Bird TD, Latimer CS. Hereditary spastic paraplegia with thin corpus callosum and SPG11 mutation: A neuropathological evaluation. Neuropathology 2024. [PMID: 39391989 DOI: 10.1111/neup.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Hereditary spastic paraplegia (HSP) with thin corpus callosum can be due to a variety of genetic causes, the most common of which are biallelic variants in SPG11 (HSP11). Only six cases of neuropathologic examination of HSP11 have been reported. Here we present neuropathological findings in another case of HSP11 with novel mutation (homozygous c.6439_6442del) and clinical features of three additional cases of HSP11. These four cases of HSP11 had similar disease courses with prominent lower extremity weakness and spasticity but varied cognitive symptoms and brain magnetic resonance imaging (MRI) findings. Neuropathological examination of one case included ex vivo MRI of the cerebrum, histologic and immunohistochemical evaluation, and Western blot for SPG11. The case was notable for a small cerebrum with decreased volume of cortex, white matter, and deep gray nuclei. The corpus callosum was thin, and the substantia nigra showed marked pallor. Microscopically, the cortex had normal lamination and mild loss of neurons with mild gliosis, the corpus callosum was thin with limited gliosis, and the substantia nigra had marked decrease in neurons and pigment, with minimal gliosis. In contrast, the basal ganglia, thalamus, and spinal cord (anterior horns, corticospinal, and spinocerebellar tracts) had prominent neuron loss and gliosis. Myelin-laden macrophages were found in multiple sites but were most common in the corpus callosum. No hyperphosphorylated tau or TDP-43 aggregates, Lewy bodies, or amyloid β plaques were found. Compared to control, SPG11 was absent in HSP11 brain and markers of autophagy were elevated by Western blot. Comparison with prior reports of HSP with thin corpus callosum and HSP11 demonstrates a disease with a broad range of structural changes of the brain, including features of abnormal development and degeneration.
Collapse
Affiliation(s)
- Kathryn P Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Rebecca A Yoda
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Joshua C Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Robert M Bragg
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Alexa Cochoit
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Christine L MacDonald
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Caitlin S Latimer
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Fortier M, Cauhapé M, Buono S, Becker J, Menuet A, Branchu J, Ricca I, Mero S, Dorgham K, El Hachimi KH, Dobrenis K, Colsch B, Samaroo D, Devaux M, Durr A, Stevanin G, Santorelli FM, Colombo S, Cowling B, Darios F. Decreasing ganglioside synthesis delays motor and cognitive symptom onset in Spg11 knockout mice. Neurobiol Dis 2024; 199:106564. [PMID: 38876323 DOI: 10.1016/j.nbd.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.
Collapse
Affiliation(s)
- Manon Fortier
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Suzie Buono
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Becker
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Alexia Menuet
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Branchu
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Serena Mero
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Dominic Samaroo
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Morgan Devaux
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
| | | | - Sophie Colombo
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Belinda Cowling
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Frédéric Darios
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
3
|
Brock V, Wissocq A, Geoffre N, Marks C, Canel V, Huin V, Smirnov VM. Late-onset Kjellin syndrome: Diagnosis of SPG11 on fundus examination. Eur J Ophthalmol 2024; 34:NP44-NP46. [PMID: 38613257 DOI: 10.1177/11206721241247418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
INTRODUCTION Spastic paraplegia (SPG) is a heterogenous group of neurodegenerative disorders, that may include ocular involvement. Here we report the clinical data of a patient with late-onset Kjellin syndrome, a peculiar form of hereditary SPG with macular dystrophy. MATERIALS AND METHODS Clinical, functional and multimodal retinal imaging data were collected. Genetic testing was performed by Whole Exome Sequencing (WES). RESULTS A 52-year-old female patient with SPG of unknown origin was referred for a progressive visual acuity loss. Multimodal fundus imaging revealed a peculiar macular dystrophy. Given the specific association of macular dystrophy and SPG, a Kjellin syndrome was suspected and genetic testing performed. WES revealed biallelic pathogenic variants in SPG11, co-segregating with disease in the family. CONCLUSION Careful ophthalmological examination prompted the diagnosis and guided molecular testing. This case underlines the importance of a neuro-ophthalmologic assessment in patients with SPG.
Collapse
Affiliation(s)
- Vincent Brock
- Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
| | - Anna Wissocq
- Service de Toxicologie et Génopathies, CHU de Lille, Lille, France
| | - Nicolas Geoffre
- Service de Toxicologie et Génopathies, CHU de Lille, Lille, France
| | - Caroline Marks
- Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
| | - Vincent Canel
- Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
| | - Vincent Huin
- Service de Toxicologie et Génopathies, CHU de Lille, Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog (JPARC) - Lille Neurosciences & Cognition, Lille, France
| | - Vasily M Smirnov
- Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog (JPARC) - Lille Neurosciences & Cognition, Lille, France
| |
Collapse
|
4
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
5
|
Krumm L, Pozner T, Zagha N, Coras R, Arnold P, Tsaktanis T, Scherpelz K, Davis MY, Kaindl J, Stolzer I, Süß P, Khundadze M, Hübner CA, Riemenschneider MJ, Baets J, Günther C, Jayadev S, Rothhammer V, Krach F, Winkler J, Winner B, Regensburger M. Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. Acta Neuropathol 2024; 147:28. [PMID: 38305941 PMCID: PMC10837238 DOI: 10.1007/s00401-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.
Collapse
Affiliation(s)
- Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Naime Zagha
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathryn Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Süß
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany
| | - Suman Jayadev
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany.
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
6
|
Pedroso JL, Vale TC, Freitas JLD, Araújo FMM, Meira AT, Neto PB, França MC, Tumas V, Teive HAG, Barsottini OGP. Movement disorders in hereditary spastic paraplegias. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1000-1007. [PMID: 38035585 PMCID: PMC10689114 DOI: 10.1055/s-0043-1777005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hereditary or familial spastic paraplegias (SPG) comprise a group of genetically and phenotypically heterogeneous diseases characterized by progressive degeneration of the corticospinal tracts. The complicated forms evolve with other various neurological signs and symptoms, including movement disorders and ataxia. OBJECTIVE To summarize the clinical descriptions of SPG that manifest with movement disorders or ataxias to assist the clinician in the task of diagnosing these diseases. METHODS We conducted a narrative review of the literature, including case reports, case series, review articles and observational studies published in English until December 2022. RESULTS Juvenile or early-onset parkinsonism with variable levodopa-responsiveness have been reported, mainly in SPG7 and SPG11. Dystonia can be observed in patients with SPG7, SPG11, SPG22, SPG26, SPG35, SPG48, SPG49, SPG58, SPG64 and SPG76. Tremor is not a frequent finding in patients with SPG, but it is described in different types of SPG, including SPG7, SPG9, SPG11, SPG15, and SPG76. Myoclonus is rarely described in SPG, affecting patients with SPG4, SPG7, SPG35, SPG48, and SPOAN (spastic paraplegia, optic atrophy, and neuropathy). SPG4, SPG6, SPG10, SPG27, SPG30 and SPG31 may rarely present with ataxia with cerebellar atrophy. And autosomal recessive SPG such as SPG7 and SPG11 can also present with ataxia. CONCLUSION Patients with SPG may present with different forms of movement disorders such as parkinsonism, dystonia, tremor, myoclonus and ataxia. The specific movement disorder in the clinical manifestation of a patient with SPG may be a clinical clue for the diagnosis.
Collapse
Affiliation(s)
- Jose Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil.
| | - Thiago Cardoso Vale
- Universidade Federal de Juiz de Fora, Hospital Universitário, Departamento de Clínica Médica, Serviço de Neurologia, Juiz de Fora MG, Brazil.
| | | | - Filipe Miranda Milagres Araújo
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências Comportamental, Ribeirão Preto SP, Brazil.
| | - Alex Tiburtino Meira
- Universidade Federal da Paraíba, Departamento de Medicina Interna, Serviço de Neurologia, João Pessoa PB, Brazil.
| | - Pedro Braga Neto
- Universidade Federal do Ceará, Departamento de Medicina Clínica, Divisão de Neurologia, Fortaleza CE, Brazil.
- Universidade Estadual do Ceará, Centro de Ciências da Saúde, Fortaleza CE, Brazil.
| | - Marcondes C. França
- Universidade Estadual de Campinas, Departamento de Neurologia, Campinas SP, Brazil.
| | - Vitor Tumas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências Comportamental, Ribeirão Preto SP, Brazil.
| | | | | |
Collapse
|
7
|
Aloisio S, Satolli S, Bellini G, Lopriore P. Parkinsonism in complex neurogenetic disorders: lessons from hereditary dementias, adult-onset ataxias and spastic paraplegias. Neurol Sci 2023; 44:3379-3388. [PMID: 37648940 PMCID: PMC10495519 DOI: 10.1007/s10072-023-07044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Parkinsonism is a syndrome characterized by bradykinesia in combination with either rest tremor, rigidity, or both. These features are the cardinal manifestations of Parkinson's disease, the most common cause of parkinsonism, and atypical parkinsonian disorders. However, parkinsonism can be a manifestation of complex neurological and neurodegenerative genetically determined disorders, which have a vast and heterogeneous motor and non-motor phenotypic features. Hereditary dementias, adult-onset ataxias and spastic paraplegias represent only few of this vast group of neurogenetic diseases. This review will provide an overview of parkinsonism's clinical features within adult-onset neurogenetic diseases which a neurologist could face with. Understanding parkinsonism and its characteristics in the context of the aforementioned neurological conditions may provide insights into pathophysiological mechanisms and have important clinical implications, including diagnostic and therapeutic aspects.
Collapse
Affiliation(s)
- Simone Aloisio
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Satolli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gabriele Bellini
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy.
| |
Collapse
|
8
|
Ebrahimi-Fakhari D, Saffari A, Pearl PL. Childhood-onset hereditary spastic paraplegia and its treatable mimics. Mol Genet Metab 2022; 137:436-444. [PMID: 34183250 PMCID: PMC8843241 DOI: 10.1016/j.ymgme.2021.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Early-onset forms of hereditary spastic paraplegia and inborn errors of metabolism that present with spastic diplegia are among the most common "mimics" of cerebral palsy. Early detection of these heterogenous genetic disorders can inform genetic counseling, anticipatory guidance, and improve outcomes, particularly where specific treatments exist. The diagnosis relies on clinical pattern recognition, biochemical testing, neuroimaging, and increasingly next-generation sequencing-based molecular testing. In this short review, we summarize the clinical and molecular understanding of: 1) childhood-onset and complex forms of hereditary spastic paraplegia (SPG5, SPG7, SPG11, SPG15, SPG35, SPG47, SPG48, SPG50, SPG51, SPG52) and, 2) the most common inborn errors of metabolism that present with phenotypes that resemble hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
| | - Afshin Saffari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Mulkerrin G, França MC, Lope J, Tan EL, Bede P. Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers. Expert Rev Mol Diagn 2022; 22:745-760. [PMID: 36042576 DOI: 10.1080/14737159.2022.2118048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION : Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts which helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED : Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION : A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically unconfirmed or admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation, and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of innovative methodological approaches have also be identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicentre initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.
Collapse
Affiliation(s)
| | - Marcondes C França
- Department of Neurology, The State University of Campinas, São Paulo, Brazil
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland.,Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
10
|
Utz KS, Kohl Z, Marterstock DC, Doerfler A, Winkler J, Schmidt M, Regensburger M. Neuropsychology and MRI correlates of neurodegeneration in SPG11 hereditary spastic paraplegia. Orphanet J Rare Dis 2022; 17:301. [PMID: 35906604 PMCID: PMC9336101 DOI: 10.1186/s13023-022-02451-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background SPG11-linked hereditary spastic paraplegia is characterized by multisystem neurodegeneration leading to a complex clinical and yet incurable phenotype of progressive spasticity and weakness. Severe cognitive symptoms are present in the majority of SPG11 patients, but a systematic and multidimensional analysis of the neuropsychological phenotype in a larger cohort is lacking. While thinning of the corpus callosum is a well-known structural hallmark observed in SPG11 patients, the neuroanatomical pattern of cortical degeneration is less understood. We here aimed to integrate neuropsychological and brain morphometric measures in SPG11. Methods We examined the neuropsychological profile in 16 SPG11 patients using a defined neuropsychological testing battery. Long-term follow up testing was performed in 7 patients. Cortical and subcortical degeneration was analyzed using an approved, artificial intelligence based magnetic resonance imaging brain morphometry, comparing patients to established reference values and to matched controls. Results In SPG11 patients, verbal fluency and memory as well as frontal-executive functions were severely impaired. Later disease stages were associated with a global pattern of impairments. Interestingly, reaction times correlated significantly with disease progression. Brain morphometry showed a significant reduction of cortical and subcortical parenchymal volume following a rostro-caudal gradient in SPG11. Whereas performance in memory tasks correlated with white matter damage, verbal fluency measures showed strong associations with frontal and parietal cortical volumes.
Conclusions The present data will help define neuropsychological and imaging read out parameters in early as well as in advanced clinical stages for future interventional trials in SPG11. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02451-1.
Collapse
Affiliation(s)
- Kathrin S Utz
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, FAU, Schwabachanlage 6, 91054, Erlangen, Germany.,Center for Rare Diseases (ZSEER), University Hospital Erlangen, Erlangen, Germany.,Department of Neurology, University of Regensburg, Regensburg, Germany
| | | | - Arnd Doerfler
- Department of Neuroradiology, FAU, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU, Schwabachanlage 6, 91054, Erlangen, Germany.,Center for Rare Diseases (ZSEER), University Hospital Erlangen, Erlangen, Germany
| | | | - Martin Regensburger
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Department of Molecular Neurology, FAU, Schwabachanlage 6, 91054, Erlangen, Germany. .,Center for Rare Diseases (ZSEER), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
11
|
Doleckova K, Roth J, Stellmachova J, Gescheidt T, Sigut V, Houska P, Jech R, Zech M, Vyhnalek M, Vyhnalkova E, Seeman P, Meszarosova AU. SPG11: clinical and genetic features of seven Czech patients and literature review. Neurol Res 2022; 44:379-389. [DOI: 10.1080/01616412.2021.1975224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristyna Doleckova
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Julia Stellmachova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czechia
| | - Tomas Gescheidt
- Department of Neurology, St. Anne´s University Hospital, Brno, Czechia
| | | | - Pavel Houska
- Department of Neurology, Strakonice Hospital, Strakonice, Czechia
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Emilie Vyhnalkova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Pavel Seeman
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Anna Uhrova Meszarosova
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| |
Collapse
|
12
|
Daida K, Nishioka Y, Li Y, Yoshino H, Funayama M, Hattori N, Nishioka K. A complex form of hereditary spastic paraplegia harboring a novel variant, p.W1515*, in the SPG11 gene. eNeurologicalSci 2022; 26:100391. [PMID: 35036589 PMCID: PMC8749458 DOI: 10.1016/j.ensci.2021.100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022] Open
Abstract
Individuals with hereditary spastic paraplegia (HSP) are known to present with a variety of symptoms, including intellectual disability, cognitive decline, parkinsonism, and epilepsy. We report here our experience of treating a family with consanguinity, including three patients with HSP-related symptoms. We performed whole-exome sequencing and identified a novel pathogenic nonsense variant, c.4544G > A, p.W1515*, in the SPG11 gene. Proband and her affected sister showed the same course of gait disturbance due to spastic paraplegia from childhood and progressive cognitive decline from early adulthood. Brain MRI depicted a thinning of the corpus callosum, severe atrophic changes in the frontotemporal lobes, and ears of the lynx sign. Patients with SPG11 variants clinically present with distinctive symptoms. HSP type 11 is a rare clinical and genetic heterogeneous disorder. We present three cases in a family with a complex form of HSP type 11. We identified a novel nonsense variant, c.4544G > A, p.W1515*, in SPG11. Brain MRI is an important tool to help with the diagnosis of HSP type 11.
Collapse
Affiliation(s)
- Kensuke Daida
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yosuke Nishioka
- Nishioka Memorial Central Clinic, 375 Hasama, Isobecho, Shima-shi, Mie 517-0214, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
13
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
14
|
Güner F, Pozner T, Krach F, Prots I, Loskarn S, Schlötzer-Schrehardt U, Winkler J, Winner B, Regensburger M. Axon-Specific Mitochondrial Pathology in SPG11 Alpha Motor Neurons. Front Neurosci 2021; 15:680572. [PMID: 34326717 PMCID: PMC8314181 DOI: 10.3389/fnins.2021.680572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants in SPG11 are the most frequent cause of autosomal recessive complicated hereditary spastic paraplegia (HSP). In addition to spastic paraplegia caused by corticospinal degeneration, most patients are significantly affected by progressive weakness and muscle wasting due to alpha motor neuron (MN) degeneration. Mitochondria play a crucial role in neuronal health, and mitochondrial deficits were reported in other types of HSPs. To investigate whether mitochondrial pathology is present in SPG11, we differentiated MNs from induced pluripotent stem cells derived from SPG11 patients and controls. MN derived from human embryonic stem cells and an isogenic SPG11 knockout line were also included in the study. Morphological analysis of mitochondria in the MN soma versus neurites revealed specific alterations of mitochondrial morphology within SPG11 neurites, but not within the soma. In addition, impaired mitochondrial membrane potential was indicative of mitochondrial dysfunction. Moreover, we reveal neuritic aggregates further supporting neurite pathology in SPG11. Correspondingly, using a microfluidic-based MN culture system, we demonstrate that axonal mitochondrial transport was significantly impaired in SPG11. Overall, our data demonstrate that alterations in morphology, function, and transport of mitochondria are an important feature of axonal dysfunction in SPG11 MNs.
Collapse
Affiliation(s)
- Fabian Güner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Loskarn
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Dosi C, Pasquariello R, Ticci C, Astrea G, Trovato R, Rubegni A, Tessa A, Cioni G, Santorelli FM, Battini R. Neuroimaging patterns in paediatric onset hereditary spastic paraplegias. J Neurol Sci 2021; 425:117441. [PMID: 33866115 DOI: 10.1016/j.jns.2021.117441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs with a notable phenotypic variation and an autosomal recessive (AR), autosomal dominant (AD), and X-linked inheritance pattern. The recent clinical use of next generation sequencing methods has facilitated the diagnostic approach to HSPs, but the diagnosis remains quite challenging considering its wide clinical and genetic heterogeneity. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool in helping to exclude mimicking disorders and to guide genetic testing. The aim of this study is to investigate the presence of possible patterns of morphostructural MRI findings that may provide relevant clues for a specific genetic HSP subtype. In our cohort, for example, white matter abnormalities were the most common finding followed by the thinning of the corpus callosum, which, interestingly, presented different thinning characteristics depending on the HSP subtype.
Collapse
Affiliation(s)
- Claudia Dosi
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Giovanni Cioni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy
| | | | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy.
| |
Collapse
|
16
|
Navas-Sánchez FJ, Fernández-Pena A, Martín de Blas D, Alemán-Gómez Y, Marcos-Vidal L, Guzmán-de-Villoria JA, Fernández-García P, Romero J, Catalina I, Lillo L, Muñoz-Blanco JL, Ordoñez-Ugalde A, Quintáns B, Pardo J, Sobrido MJ, Carmona S, Grandas F, Desco M. Thalamic atrophy in patients with pure hereditary spastic paraplegia type 4. J Neurol 2021; 268:2429-2440. [PMID: 33507371 DOI: 10.1007/s00415-020-10387-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023]
Abstract
SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive spasticity and weakness of the lower limbs caused by degeneration of the corticospinal tract. In other neurodegenerative motor disorders, the thalamus and basal ganglia are affected, with a considerable impact on disease progression. However, only a few works have studied these brain structures in HSP, mainly in complex forms of this disease. Our research aims to detect potential alterations in the volume and shape of the thalamus and various basal ganglia structures by comparing 12 patients with pure HSP and 18 healthy controls. We used two neuroimaging procedures: automated segmentation of the subcortical structures (thalamus, hippocampus, caudate nucleus, globus pallidus, and putamen) in native space and shape analysis of the structures. We found a significant reduction in thalamic volume bilaterally, as well as an inward deformation, mainly in the sensory-motor thalamic regions in patients with pure HSP and a mutation in SPG4. We also observed a significant negative correlation between the shape of the thalamus and clinical scores (the Spastic Paraplegia Rating Scale score and disease duration). Moreover, we found a 'Group × Age' interaction that was closely related to the severity of the disease. No differences in volume or in shape were found in the remaining subcortical structures studied. Our results suggest that changes in structure of the thalamus could be an imaging biomarker of disease progression in pHSP.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | | | | | - Yasser Alemán-Gómez
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Luís Marcos-Vidal
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Juan A Guzmán-de-Villoria
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Julia Romero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Catalina
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Lillo
- Hospital Ruber Internacional, Servicio de Neurología, Madrid, Spain.,Hospital Universitario Fundación Alcorcón, Servicio de Neurología Alcorcón, Madrid, Spain
| | - José L Muñoz-Blanco
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Ordoñez-Ugalde
- Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular, Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador.,Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - Beatriz Quintáns
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), Madrid, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Julio Pardo
- Departamento de Neurología, Hospital Clínico Universitario de Santiago de Compostela, A Coruña, Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Hospital Clínico Universitario de A Coruña, SERGAS, Santiago de Compostela, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Francisco Grandas
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
17
|
Pozner T, Regensburger M, Engelhorn T, Winkler J, Winner B. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain 2020; 143:2369-2379. [PMID: 32355960 PMCID: PMC7447516 DOI: 10.1093/brain/awaa099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of rare motor neuron disorders characterized by progressive weakness and spasticity of the lower limbs. HSP type 11 (SPG11-HSP) is linked to pathogenic variants in the SPG11 gene and it represents the most frequent form of complex autosomal recessive HSP. The majority of SPG11-HSP patients exhibit additional neurological symptoms such as cognitive decline, thin corpus callosum, and peripheral neuropathy. Yet, the mechanisms of SPG11-linked spectrum diseases are largely unknown. Recent findings indicate that spatacsin, the 280 kDa protein encoded by SPG11, may impact the autophagy-lysosomal machinery. In this update, we summarize the current knowledge of SPG11-HSP. In addition to clinical symptoms and differential diagnosis, our work aims to link the different clinical manifestations with the respective structural abnormalities and cellular in vitro phenotypes. Moreover, we describe the impact of localization and function of spatacsin in different neuronal systems. Ultimately, we propose a model in which spatacsin bridges between neurodevelopmental and neurodegenerative phenotypes of SPG11-linked disorders.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen (ZSEER), FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Lallemant-Dudek P, Durr A. Clinical and genetic update of hereditary spastic paraparesis. Rev Neurol (Paris) 2020; 177:550-556. [PMID: 32807405 DOI: 10.1016/j.neurol.2020.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Hereditary spastic paraparesis is a group of inherited neurological diseases characterized by underlying wide genetic heterogeneity. It should be suspected if there is a positive familial history, a common genetic alteration (i.e. SPG4, the most overall frequent form), or association with other signs, such as cerebellar ataxia (i.e. SPG7), early cognitive impairment or even cognitive deficit (i.e. SPG11), or peripheral neuropathy (i.e. SACS). The natural history is known for certain genetic subgroups, with genotype-phenotype correlations partially explaining childhood or late onset. However, the search for genetic modifying factors, in addition to the causal pathogenic variant or environmental influencers, is still needed. Novel approaches to provide etiological treatment are in the pipeline for SPG11. Symptomatic treatments are available but would benefit from randomized controlled trials.
Collapse
Affiliation(s)
- P Lallemant-Dudek
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.
| | - A Durr
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
19
|
Khani M, Shamshiri H, Fatehi F, Rohani M, Haghi Ashtiani B, Akhoundi FH, Alavi A, Moazzeni H, Taheri H, Ghani MT, Javanparast L, Hashemi SS, Haji-Seyed-Javadi R, Heidari M, Nafissi S, Elahi E. Description of combined ARHSP/JALS phenotype in some patients with SPG11 mutations. Mol Genet Genomic Med 2020; 8:e1240. [PMID: 32383541 PMCID: PMC7336765 DOI: 10.1002/mgg3.1240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background SPG11 mutations can cause autosomal recessive hereditary spastic paraplegia (ARHSP) and juvenile amyotrophic lateral sclerosis (JALS). Because these diseases share some clinical presentations and both can be caused by SPG11 mutations, it was considered that definitive diagnosis may not be straight forward. Methods The DNAs of referred ARHSP and JALS patients were exome sequenced. Clinical data of patients with SPG11 mutations were gathered by interviews and neurological examinations including electrodiagnosis (EDX) and magnetic resonance imaging (MRI). Results Eight probands with SPG11 mutations were identified. Two mutations are novel. Among seven Iranian probands, six carried the p.Glu1026Argfs*4‐causing mutation. All eight patients had features known to be present in both ARHSP and JALS. Additionally and surprisingly, presence of both thin corpus callosum (TCC) on MRI and motor neuronopathy were also observed in seven patients. These presentations are, respectively, key suggestive features of ARHSP and JALS. Conclusion We suggest that rather than ARHSP or JALS, combined ARHSP/JALS is the appropriate description of seven patients studied. Criteria for ARHSP, JALS, and combined ARHSP/JALS designations among patients with SPG11 mutations are suggested. The importance of performing both EDX and MRI is emphasized. Initial screening for p.Glu1026Argfs*4 may facilitate SPG11 screenings in Iranian patients.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hosein Shamshiri
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Haji Akhoundi
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hanieh Taheri
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mina Tolou Ghani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Leila Javanparast
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyyed Saleh Hashemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Matineh Heidari
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Meszarosova AU, Seeman P, Jencik J, Drabova J, Cibochova R, Stellmachova J, Safka Brozkova D. Two types of recessive hereditary spastic paraplegia in Roma patients in compound heterozygous state; no ethnically prevalent variant found. Neurosci Lett 2020; 721:134800. [PMID: 32007496 DOI: 10.1016/j.neulet.2020.134800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Hereditary spastic paraplegia (HSP or SPG) is a group of rare upper motor neuron diseases. As some ethnically-specific, disease-causing homozygous variants were described in the Czech Roma population, we hypotesised that some prevalent HSP-causing variant could exist in this population. Eight Czech Roma patients were found in a large group of Czech patients with suspected HSP and were tested using gene panel massively parallel sequencing (MPS). Two of the eight were diagnosed with SPG11 and SPG77, respectively. The SPG77 patient manifests a pure HSP phenotype, which is unusual for this SPG type. Both patients are compound heterozygotes for two different variants in the SPG11 (c.1603-1G>A and del ex. 16-18) and FARS2 (c.1082C>T and del ex.1-2) genes respectively; the three variants are novel. In order to find a potential ethnically-specific, disease-causing variant for HSP, we tested the heterozygote frequency of these variants among 130 anonymised DNA samples of Czech Roma individuals without clinical signs of HSP (HPS-negative). A novel deletion of ex.16-18 in the SPG11 gene was found in a heterozygous state in one individual in the HSP-negative group. Haplotype analysis showed that this individual and the patient with SPG11 shared the same haplotype. This supports the assumption that the identified SPG11 deletion could be a founder mutation in the Czech Roma population. In some Roma patients the disease may also be caused by two different biallelic pathogenic mutations.
Collapse
Affiliation(s)
- Anna Uhrova Meszarosova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic.
| | - Pavel Seeman
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Jencik
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jana Drabova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Renata Cibochova
- Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Julia Stellmachova
- Department of Medical Genetics, Palacky University Hospital, Olomouc, Czech Republic
| | - Dana Safka Brozkova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
21
|
Pérez-Brangulí F, Buchsbaum IY, Pozner T, Regensburger M, Fan W, Schray A, Börstler T, Mishra H, Gräf D, Kohl Z, Winkler J, Berninger B, Cappello S, Winner B. Human SPG11 cerebral organoids reveal cortical neurogenesis impairment. Hum Mol Genet 2020; 28:961-971. [PMID: 30476097 PMCID: PMC6400051 DOI: 10.1093/hmg/ddy397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/23/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Spastic paraplegia gene 11(SPG11)-linked hereditary spastic paraplegia is a complex monogenic neurodegenerative disease that in addition to spastic paraplegia is characterized by childhood onset cognitive impairment, thin corpus callosum and enlarged ventricles. We have previously shown impaired proliferation of SPG11 neural progenitor cells (NPCs). For the delineation of potential defect in SPG11 brain development we employ 2D culture systems and 3D human brain organoids derived from SPG11 patients’ iPSC and controls. We reveal that an increased rate of asymmetric divisions of NPCs leads to proliferation defect, causing premature neurogenesis. Correspondingly, SPG11 organoids appeared smaller than controls and had larger ventricles as well as thinner germinal wall. Premature neurogenesis and organoid size were rescued by GSK3 inhibititors including the Food and Drug Administration-approved tideglusib. These findings shed light on the neurodevelopmental mechanisms underlying disease pathology.
Collapse
Affiliation(s)
- Francesc Pérez-Brangulí
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabel Y Buchsbaum
- Max-Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Planegg/Martinsried, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenqiang Fan
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annika Schray
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tom Börstler
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Himanshu Mishra
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniela Gräf
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benedikt Berninger
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | | | - Beate Winner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Darios F, Mochel F, Stevanin G. Lipids in the Physiopathology of Hereditary Spastic Paraplegias. Front Neurosci 2020; 14:74. [PMID: 32180696 PMCID: PMC7059351 DOI: 10.3389/fnins.2020.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases sharing spasticity in lower limbs as common symptom. There is a large clinical variability in the presentation of patients, partly underlined by the large genetic heterogeneity, with more than 60 genes responsible for HSP. Despite this large heterogeneity, the proteins with known function are supposed to be involved in a limited number of cellular compartments such as shaping of the endoplasmic reticulum or endolysosomal function. Yet, it is difficult to understand why alteration of such different cellular compartments can lead to degeneration of the axons of cortical motor neurons. A common feature that has emerged over the last decade is the alteration of lipid metabolism in this group of pathologies. This was first revealed by the identification of mutations in genes encoding proteins that have or are supposed to have enzymatic activities on lipid substrates. However, it also appears that mutations in genes affecting endoplasmic reticulum, mitochondria, or endolysosome function can lead to changes in lipid distribution or metabolism. The aim of this review is to discuss the role of lipid metabolism alterations in the physiopathology of HSP, to evaluate how such alterations contribute to neurodegenerative phenotypes, and to understand how this knowledge can help develop therapeutic strategy for HSP.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Equipe de Neurogénétique, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
23
|
Sayad A, Akbari MT, Hesami O, Ghafouri-Fard S, Taheri M. Identification of a Mutation in SPG11 in an Iranian Patient with Spastic Paraplegia and Ears of the Lynx Sign. J Mol Neurosci 2020; 70:959-961. [PMID: 32040826 DOI: 10.1007/s12031-020-01501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
Hereditary spastic paraplegia (HSP) includes a number of inherited disorders which are characterized by stiffness in the lower extremities and progressive gait disturbance. Mutations in terms of spastic gait genes (SPGs) are responsible for occurrence of different types of HPS with autosomal recessive, X-linked recessive, and autosomal dominant modes of inheritance. In the current case report, we identified a mutation in SPG11 gene in a female patient with progressive stiffness of lower extremities and atrophy of corpus callosum and the "lynx ear" sign in brain MRI. Whole exome sequencing (WES) revealed a homozygote frameshift deletion variant in SPG11 gene (NM001160227: exon 28: c.4746delT, p.N1583Tfs*23). This variant is a null variant classified as a pathogenic variant (PVS1) according to ACMG standards and guidelines. The frequency of this variant in 1000G, ExAC, and Iranome databases was 0. This study shows the role of WES in the identification of disease-causing mutations in a disease such as HSP which can be caused by diverse mutations in several genes.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Hesami
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Chen X, Liu J, Wei QQ, Ou RW, Cao B, Yuan X, Hou Y, Zhang L, Shang H. Chinese families with autosomal recessive hereditary spastic paraplegia caused by mutations in SPG11. BMC Neurol 2020; 20:2. [PMID: 31900114 PMCID: PMC6941247 DOI: 10.1186/s12883-019-1593-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
Background Spastic paraplegia type 11 (SPG11) mutations are the most frequent cause of autosomal recessive hereditary spastic paraplegia (ARHSP). We are aiming to identify the causative mutations in SPG11 among families referred to our center with ARHSP in a Chinese population. Methods Targeted next-generation sequencing was performed on the patients to identify disease-causing mutations. Variants were analyzed according to their predicted pathogenicity and their relevance to the clinical phenotypes. The segregation in the family members was validated by Sanger sequencing. Results A total of 12 mutations in SPG11 gene from 9 index cases were identified, including 6 frameshift mutations, 3 missense mutations, 1 nonsense mutation, 1 splicing mutation, and 1 intron deletion mutation. In 6 of these patients, the mutations were homozygous, and the other 3 patients carried two compound heterozygous mutations. Six mutations were novel; 2 were classified as pathogenic, 1 were considered as likely pathogenic, and the other 3 were variants of unknown significance. Additionally, 1 missense heterozygous variant we found was also carried by amyotrophic lateral sclerosis (ALS) patient. Clinically and electrophysiologically, some of our ARHSP patients partially shared various features of autosomal-recessive juvenile amyotrophic lateral sclerosis (ARJALS), including combination of both UMN and LMN degeneration. Conclusions The results contribute to extending of the SPG11 gene mutation spectrum and emphasizing a putative link between ARHSP and ARJALS.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Jiao Liu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Qian-Qian Wei
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Ru Wei Ou
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Xiaoqin Yuan
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
Inhibition of Lysosome Membrane Recycling Causes Accumulation of Gangliosides that Contribute to Neurodegeneration. Cell Rep 2019; 23:3813-3826. [PMID: 29949766 PMCID: PMC6045775 DOI: 10.1016/j.celrep.2018.05.098] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
Lysosome membrane recycling occurs at the end of the autophagic pathway and requires proteins that are mostly encoded by genes mutated in neurodegenerative diseases. However, its implication in neuronal death is still unclear. Here, we show that spatacsin, which is required for lysosome recycling and whose loss of function leads to hereditary spastic paraplegia 11 (SPG11), promotes clearance of gangliosides from lysosomes in mouse and human SPG11 models. We demonstrate that spatacsin acts downstream of clathrin and recruits dynamin to allow lysosome membrane recycling and clearance of gangliosides from lysosomes. Gangliosides contributed to the accumulation of autophagy markers in lysosomes and to neuronal death. In contrast, decreasing ganglioside synthesis prevented neurodegeneration and improved motor phenotype in a SPG11 zebrafish model. Our work reveals how inhibition of lysosome membrane recycling leads to the deleterious accumulation of gangliosides, linking lysosome recycling to neurodegeneration. Loss of spatacsin promotes accumulation of simple gangliosides in lysosomes Inhibition of lysosome membrane recycling leads to accumulation of gangliosides Gangliosides promote accumulation of autophagy markers in lysosomes Gangliosides contribute to neurodegeneration when lysosome recycling is compromised
Collapse
|
26
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
da Graça FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, França MC. Neuroimaging in Hereditary Spastic Paraplegias: Current Use and Future Perspectives. Front Neurol 2019; 9:1117. [PMID: 30713518 PMCID: PMC6346681 DOI: 10.3389/fneur.2018.01117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a large group of genetic diseases characterized by progressive degeneration of the long tracts of the spinal cord, namely the corticospinal tracts and dorsal columns. Genotypic and phenotypic heterogeneity is a hallmark of this group of diseases, which makes proper diagnosis and management often challenging. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool to assist in the exclusion of mimicking disorders and in the detailed phenotypic characterization. Some neuroradiological signs have been reported in specific subtypes of HSP and are therefore helpful to guide genetic testing/interpretation. In addition, advanced MRI techniques enable detection of subtle structural abnormalities not visible on routine scans in the spinal cord and brain of subjects with HSP. In particular, quantitative spinal cord morphometry and diffusion tensor imaging look promising tools to uncover the pathophysiology and to track progression of these diseases. In the current review article, we discuss the current use and future perspectives of MRI in the context of HSP.
Collapse
Affiliation(s)
- Felipe Franco da Graça
- Department of Neurology and Neuroimaging Laboratory, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Marcondes C França
- Department of Neurology and Neuroimaging Laboratory, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
28
|
Pascual B, de Bot ST, Daniels MR, França MC, Toro C, Riverol M, Hedera P, Bassi MT, Bresolin N, van de Warrenburg BP, Kremer B, Nicolai J, Charles P, Xu J, Singh S, Patronas NJ, Fung SH, Gregory MD, Masdeu JC. "Ears of the Lynx" MRI Sign Is Associated with SPG11 and SPG15 Hereditary Spastic Paraplegia. AJNR Am J Neuroradiol 2019; 40:199-203. [PMID: 30606727 DOI: 10.3174/ajnr.a5935] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE The "ears of the lynx" MR imaging sign has been described in case reports of hereditary spastic paraplegia with a thin corpus callosum, mostly associated with mutations in the spatacsin vesicle trafficking associated gene, causing Spastic Paraplegia type 11 (SPG11). This sign corresponds to long T1 and T2 values in the forceps minor of the corpus callosum, which appears hyperintense on FLAIR and hypointense on T1-weighted images. Our purpose was to determine the sensitivity and specificity of the ears of the lynx MR imaging sign for genetic cases compared with common potential mimics. MATERIALS AND METHODS Four independent raters, blinded to the diagnosis, determined whether the ears of the lynx sign was present in each of a set of 204 single anonymized FLAIR and T1-weighted MR images from 34 patients with causal mutations associated with SPG11 or Spastic Paraplegia type 15 (SPG15). 34 healthy controls, and 34 patients with multiple sclerosis. RESULTS The interrater reliability for FLAIR images was substantial (Cohen κ, 0.66-0.77). For these images, the sensitivity of the ears of the lynx sign across raters ranged from 78.8 to 97.0 and the specificity ranged from 90.9 to 100. The accuracy of the sign, measured by area under the receiver operating characteristic curve, ranged from very good (87.1) to excellent (93.9). CONCLUSIONS The ears of the lynx sign on FLAIR MR imaging is highly specific for the most common genetic subtypes of hereditary spastic paraplegia with a thin corpus callosum. When this sign is present, there is a high likelihood of a genetic mutation, particularly associated with SPG11 or SPG15, even in the absence of a family history.
Collapse
Affiliation(s)
- B Pascual
- From the Departments of Neurology (B.P., M.R.D., J.C.M.)
| | - S T de Bot
- Department of Neurology (S.T.d.B.), Leiden University Medical Centre, Leiden, the Netherlands
| | - M R Daniels
- From the Departments of Neurology (B.P., M.R.D., J.C.M.)
| | - M C França
- Department of Neurology (M.C.F.), University of Campinas, Campinas, Brazil
| | - C Toro
- National Institutes of Health Intramural Research Program (C.T., N.J.P., M.D.G.), Bethesda, Maryland
| | - M Riverol
- Department of Neurology (M.R.), Clínica Universidad de Navarra, Pamplona, Spain
| | - P Hedera
- Department of Neurology (P.H.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - M T Bassi
- Laboratory of Molecular Biology (M.T.B.), Scientific Institute Istituto di Ricovero e Cura a Carattere Scientifico E. Medea, Bosisio Parini, Lecco, Italy
| | - N Bresolin
- Department of Neuroscience and Mental Health (N.B.), University Hospital Policlinico Ca'Granda, University of Milan, Milan, Italy
| | - B P van de Warrenburg
- Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B Kremer
- Department of Neurology (B.K.), University Medical Center Groningen, Groningen, the Netherlands
| | - J Nicolai
- Department of Neurology (J.N.), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - P Charles
- Department of Genetics (P.C.), Hôpital Pitié-Salpêtrière, Paris, France
| | | | - S Singh
- Radiology (S.S., S.H.F.), Houston Methodist Research Institute, Houston, Texas
| | - N J Patronas
- National Institutes of Health Intramural Research Program (C.T., N.J.P., M.D.G.), Bethesda, Maryland
| | - S H Fung
- Radiology (S.S., S.H.F.), Houston Methodist Research Institute, Houston, Texas
| | - M D Gregory
- National Institutes of Health Intramural Research Program (C.T., N.J.P., M.D.G.), Bethesda, Maryland
| | - J C Masdeu
- From the Departments of Neurology (B.P., M.R.D., J.C.M.)
| |
Collapse
|
29
|
Pozner T, Schray A, Regensburger M, Lie DC, Schlötzer-Schrehardt U, Winkler J, Turan S, Winner B. Tideglusib Rescues Neurite Pathology of SPG11 iPSC Derived Cortical Neurons. Front Neurosci 2018; 12:914. [PMID: 30574063 PMCID: PMC6291617 DOI: 10.3389/fnins.2018.00914] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control. SPG11-iPSC derived cortical neurons, as well as the genome edited neurons exhibited shorter and less complex neurites than controls. Administration of tideglusib to these lines led to the rescue of neuritic impairments. Moreover, the treatment restored increased cell death and ameliorated the membranous inclusions in iPSC derived SPG11 neurons. Our results provide a first evidence for the rescue of neurite pathology in SPG11-HSP by tideglusib. The current lack of disease-modifying treatments for SPG11 and related types of complicated HSP renders tideglusib a candidate compound for future clinical application.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Schray
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Soeren Turan
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Mukai M, Koh K, Ohnuki Y, Nagata E, Takiyama Y, Takizawa S. Novel SPG11 Mutations in a Patient with Symptoms Mimicking Multiple Sclerosis. Intern Med 2018; 57:3183-3186. [PMID: 29877287 PMCID: PMC6262711 DOI: 10.2169/internalmedicine.0976-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We describe the cases of two sisters with spastic paraplegia 11 (SPG11). The younger sister developed relapsing lesions in the brain white matter with enhancement during the acute phase that mimicked multiple sclerosis (MS). The elevation of myelin basic protein in the cerebrospinal fluid (CSF) suggested demyelination, but a normal IgG index, the absence of oligoclonal bands, and the ineffectiveness of steroid treatment indicate that an autoimmune mechanism may not have been involved. In these affected sisters, we identified novel compound heterozygous mutations in the SPG11 gene. Our cases indicate the possible existence of a broader phenotypic spectrum of SPG11 mutations.
Collapse
Affiliation(s)
- Masako Mukai
- Department of Neurology, Tokai University School of Medicine, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yuko Ohnuki
- Department of Molecular Life Science, Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Japan
| |
Collapse
|
31
|
Faber I, Martinez ARM, Martins CR, Maia ML, Souza JP, Lourenço CM, Marques W, Montecchiani C, Orlacchio A, Pedroso JL, Barsottini OGP, Ramos CD, Lopes-Cendes Í, Friedman JH, Amorim BJ, França MC. SPG11-related parkinsonism: Clinical profile, molecular imaging and l-dopa response. Mov Disord 2018; 33:1650-1656. [PMID: 30306626 DOI: 10.1002/mds.27491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular imaging has proven to be a powerful tool to elucidate degenerated paths in a wide variety of neurological diseases and has not been systematically studied in hereditary spastic paraplegias. OBJECTIVES To investigate dopaminergic degeneration in a cohort of 22 patients with hereditary spastic paraplegia attributed to SPG11 mutations and evaluate treatment response to l-dopa. METHODS Patients and controls underwent single-photon emission computed tomography imaging utilizing 99m Tc-TRODAT-1 tracer. A single-blind trial with 600 mg of l-dopa was performed comparing UPDRS scores. RESULTS Reduced dopamine transporter density was universal among patients. Nigral degeneration was symmetrical and correlated with disease duration and motor and cognitive handicap. No statistically significant benefit could be demonstrated with l-dopa intake during the trial. CONCLUSION Disruption of presynaptic dopaminergic pathways is a widespread phenomenon in patients with SPG11 mutations, even in the absence of parkinsonism. Unresponsiveness to treatment could be related to postsynaptic damage that needs to be further investigated.
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Maidane Luise Maia
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana Pasquotto Souza
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Wilson Marques
- Department of Neurology, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy.,Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Celso Darío Ramos
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Joseph H Friedman
- Department of Neurology, Butler Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bárbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
32
|
Faber I, Martinez ARM, de Rezende TJR, Martins CR, Martins MP, Lourenço CM, Marques W, Montecchiani C, Orlacchio A, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage. Neuroimage Clin 2018; 19:848-857. [PMID: 29946510 PMCID: PMC6008284 DOI: 10.1016/j.nicl.2018.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination Revised
- ALS, amyotrophic lateral sclerosis
- CA, cord area
- CE, cord eccentricity
- CMAP, compound muscle action potential
- CST, corticospinal tract
- Complicated hereditary spastic paraplegia
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- HSP, hereditary spastic paraplegia
- LH, left hemisphere
- MD, mean diffusivity
- MOCA, Montreal cognitive assessment
- Motor neuron disorder
- NPI, neuropsychiatric inventory
- PNP, sensory-motor polyneuropathy
- PNS, peripheral nervous system
- RH, right hemisphere
- ROI, region of interest
- SC, spinal cord
- SNAP, sensory nerve action potential
- SPG11
- SPRS, Spastic Paraplegia Rating Scale
- STS, cortex adjacent to the superior temporal sulcus
- Spinal cord
- Thinning of the corpus callosum
- WES, whole exome sequencing
- WM, white matter
- White matter
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | - Wilson Marques
- Department of Neurology, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
33
|
Konstantopoulos K, Zamba-Papanicolaou E, Christodoulou K. Quantification of dysarthrοphonia in a Cypriot family with autosomal recessive hereditary spastic paraplegia associated with a homozygous SPG11 mutation. Neurol Sci 2018; 39:1547-1550. [PMID: 29804168 DOI: 10.1007/s10072-018-3453-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/19/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Dysarthrophonia is often reported by hereditary spastic paraplegia (HSP) patients with SPG11 mutations but it has been poorly investigated. OBJECTIVE The goal of this study was to investigate dysarthrophonia in SPG11 patients using quantitative measures. The voice/speech of two patients and a non-affected mutation carrier was recorded and analyzed using electroglottography (EGG) and speech acoustics. RESULTS Dysarthrophonia showed a higher standard deviation of the average fundamental frequency, a three to eight times higher jitter, a 80-110 Hz higher mean fundamental frequency, and a two times higher fundamental frequency range. Diadochokinesis showed a pattern of a two to three times increase in the mean duration of the release burst of the phonemes /p/, /t/, /k/ as well as a 1.5 time increase in the mean vowel duration of the syllables /pa/, /ta/, /ka/. CONCLUSION Non-invasive physiological methods (EGG and speech acoustics) offer essential tools for the assessment of dysarthrophonia in SPG11 patients.
Collapse
Affiliation(s)
- Kostas Konstantopoulos
- European University Cyprus, 6 Diogenous Street, Engomi, 2404, P.O. Box 22006, 1516, Nicosia, Cyprus. .,Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - Eleni Zamba-Papanicolaou
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
34
|
Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLoS Genet 2018; 14:e1007363. [PMID: 29698489 PMCID: PMC5940238 DOI: 10.1371/journal.pgen.1007363] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/08/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
The hereditary spastic paraplegias (HSP) are a clinically and genetically heterogeneous group of disorders characterized by progressive lower limb spasticity. Mutations in subunits of the heterotetrameric (ε-β4-μ4-σ4) adaptor protein 4 (AP-4) complex cause an autosomal recessive form of complicated HSP referred to as "AP-4 deficiency syndrome". In addition to lower limb spasticity, this syndrome features intellectual disability, microcephaly, seizures, thin corpus callosum and upper limb spasticity. The pathogenetic mechanism, however, remains poorly understood. Here we report the characterization of a knockout (KO) mouse for the AP4E1 gene encoding the ε subunit of AP-4. We find that AP-4 ε KO mice exhibit a range of neurological phenotypes, including hindlimb clasping, decreased motor coordination and weak grip strength. In addition, AP-4 ε KO mice display a thin corpus callosum and axonal swellings in various areas of the brain and spinal cord. Immunohistochemical analyses show that the transmembrane autophagy-related protein 9A (ATG9A) is more concentrated in the trans-Golgi network (TGN) and depleted from the peripheral cytoplasm both in skin fibroblasts from patients with mutations in the μ4 subunit of AP-4 and in various neuronal types in AP-4 ε KO mice. ATG9A mislocalization is associated with increased tendency to accumulate mutant huntingtin (HTT) aggregates in the axons of AP-4 ε KO neurons. These findings indicate that the AP-4 ε KO mouse is a suitable animal model for AP-4 deficiency syndrome, and that defective mobilization of ATG9A from the TGN and impaired autophagic degradation of protein aggregates might contribute to neuroaxonal dystrophy in this disorder.
Collapse
|
35
|
Travaglini L, Aiello C, Stregapede F, D’Amico A, Alesi V, Ciolfi A, Bruselles A, Catteruccia M, Pizzi S, Zanni G, Loddo S, Barresi S, Vasco G, Tartaglia M, Bertini E, Nicita F. The impact of next-generation sequencing on the diagnosis of pediatric-onset hereditary spastic paraplegias: new genotype-phenotype correlations for rare HSP-related genes. Neurogenetics 2018; 19:111-121. [DOI: 10.1007/s10048-018-0545-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
|
36
|
Abstract
Hereditary ataxias and spastic paraplegias are genetic disorders with age-dependent nearly complete penetrance. The mostly monogenetic etiology allows one to establish the diagnosis, study pathogenesis and to develop new causative therapeutic approaches for these diseases. Both the causative genes as well as the clinical presentation overlap considerably between hereditary ataxias and spastic paraplegias. This strongly argues towards a united classification for these two groups of diseases. Next generation sequencing technologies have greatly expanded the number of genes known to be causative for hereditary ataxias and spastic paraplegias and allow simultaneous time- and cost-effective diagnostic testing of > 200 genes. However, repeat expansions and large genomic deletions must be considered separately. Here, we suggest a pragmatic algorithm for genetic testing in hereditary ataxias and spastic paraplegias that we have developed in our specialized outpatient clinics. Detailed phenotyping remains crucial to interpret the multitude of genetic variants discovered by high throughput sequencing techniques. Despite recent technical advances, a substantial proportion of ataxia and spastic paraplegia families are still without a molecular diagnosis. Beside new and so far undetected ataxia and spasticity genes, unusual mutation types including noncoding variants and polygenic inheritance patterns may contribute. Because of these clinical, genetic, and technological challenges, patients with hereditary ataxias and spastic paraplegias should be referred to specialized centers offering research and clinical studies. This will also help to recruit representative patient cohorts for upcoming interventional trials.
Collapse
Affiliation(s)
- R Schüle
- Neurologische Klinik und Hertie-Institut für Klinische Hirnforschung, Eberhard-Karls-Universität, Hoppe-Seyler Str. 3, 72076, Tübingen, Deutschland
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Tübingen, Deutschland
| | - L Schöls
- Neurologische Klinik und Hertie-Institut für Klinische Hirnforschung, Eberhard-Karls-Universität, Hoppe-Seyler Str. 3, 72076, Tübingen, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Tübingen, Deutschland.
| |
Collapse
|
37
|
Branchu J, Boutry M, Sourd L, Depp M, Leone C, Corriger A, Vallucci M, Esteves T, Matusiak R, Dumont M, Muriel MP, Santorelli FM, Brice A, El Hachimi KH, Stevanin G, Darios F. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration. Neurobiol Dis 2017; 102:21-37. [PMID: 28237315 PMCID: PMC5391847 DOI: 10.1016/j.nbd.2017.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/10/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Spg11 knockout mouse recapitulates the motor and cognitive symptoms observed in patients. Spg11 knockout mouse presents neurodegeneration in cortex, cerebellum, hippocampus and spinal cord. Loss of spatacsin, the product of Spg11, leads to early lysosomal dysfunction. Loss of spatacsin promotes lipid accumulation in lysosomes.
Collapse
Affiliation(s)
- Julien Branchu
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Maxime Boutry
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Laura Sourd
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Marine Depp
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Céline Leone
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Alexandrine Corriger
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Maeva Vallucci
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Typhaine Esteves
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Raphaël Matusiak
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Magali Dumont
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Marie-Paule Muriel
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Filippo M Santorelli
- Molecular Medicine, IRCCS Stella Maris Foundation, Calambronne, I-56100 Pisa, Italy
| | - Alexis Brice
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Khalid Hamid El Hachimi
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France.
| | - Frédéric Darios
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France.
| |
Collapse
|
38
|
Manole A, Chelban V, Haridy NA, Hamed SA, Berardo A, Reilly MM, Houlden H. Severe axonal neuropathy is a late manifestation of SPG11. J Neurol 2016; 263:2278-2286. [PMID: 27544499 PMCID: PMC5065903 DOI: 10.1007/s00415-016-8254-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
Complex hereditary spastic paraplegia (HSP) is a clinically heterogeneous group of disorders usually inherited in an autosomal recessive manner. In the past, complex recessive spastic paraplegias have been frequently associated with SPG11 mutations but also with defects in SPG15, SPG7 and a handful of other rare genes. Pleiotropy exists in HSP genes, exemplified in the recent association of SPG11 mutations with CMT2. In this study, we performed whole exome sequence analysis and identified two siblings with novel compound heterozygous frameshift SPG11 mutations. The mutations segregated with disease were not present in control databases and analysis of skin fibroblast derived mRNA indicated that the SPG11 truncated mRNA species were not degraded significantly by non-sense mediated mRNA decay. These siblings had severe early-onset spastic paraplegia but later in their disease developed severe axonal neuropathy, neuropathic pain and blue/black foot discolouration likely caused by a combination of the severe neuropathy with autonomic dysfunction and peripheral oedema. We also identified a similar late-onset axonal neuropathy in a Cypriot SPG11 family. Although neuropathy is occasionally present in SPG11, in our SPG11 patients reported here it was particularly severe, highlighting the association of axonal neuropathy with SPG11 and the late manifestation of axonal peripheral nerve damage.
Collapse
Affiliation(s)
- Andreea Manole
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Viorica Chelban
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, Medical University N. Testemitanu, Chisinau, Republic of Moldova
| | - Nourelhoda A Haridy
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sherifa A Hamed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Andrés Berardo
- Instituto de Neurociencias Conci Carpinella, Laboratorio de Neurobiologìa, Instituto de Investigaciónes Medicas "Mercedes y Martín Ferreyra", INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Mary M Reilly
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
39
|
Yu ACS, Chan AYY, Au WC, Shen Y, Chan TF, Chan HYE. Whole-genome sequencing of two probands with hereditary spastic paraplegia reveals novel splice-donor region variant and known pathogenic variant in SPG11. Cold Spring Harb Mol Case Stud 2016; 2:a001248. [PMID: 27900367 PMCID: PMC5111012 DOI: 10.1101/mcs.a001248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of heterogeneous neurodegenerative disorders, which are often presented with overlapping phenotypes such as progressive paraparesis and spasticity. To assist the diagnosis of HSP subtypes, next-generation sequencing is often used to provide supporting evidence. In this study, we report the case of two probands from the same family with HSP symptoms, including bilateral lower limb weakness, unsteady gait, cognitive decline, dysarthria, and slurring of speech since the age of 14. Subsequent whole-genome sequencing revealed that the patients are compound heterozygous for variants in the SPG11 gene, including the paternally inherited c.6856C>T (p.Arg2286*) variant and the novel maternally inherited c.2316+5G>A splice-donor region variant. Variants in SPG11 are the common cause of autosomal recessive spastic paraplegia type 11. According to the ClinVar database, there are already 101 reported pathogenic variants in SPG11 that are associated with HSPs. To our knowledge, this is the first report of SPG11 variants in our local population. The novel splice variant identified in this study enriches the catalog of SPG11 variants, potentially leading to better genetic diagnosis of HSPs.
Collapse
Affiliation(s)
- Allen Chi-Shing Yu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR;; Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Anne Yin-Yan Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Wing Chi Au
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR;; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Yun Shen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Ting Fung Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR;; Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR;; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Ho-Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR;; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| |
Collapse
|
40
|
Laurencin C, Rascle L, Cotton F, Grosset-Janin C, Bernard E, Depienne C, Vukusic S, Thobois S. A rare case of SPG11 mutation with multiple sclerosis. Rev Neurol (Paris) 2016; 172:389-91. [DOI: 10.1016/j.neurol.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/28/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022]
|
41
|
Mishra HK, Prots I, Havlicek S, Kohl Z, Perez-Branguli F, Boerstler T, Anneser L, Minakaki G, Wend H, Hampl M, Leone M, Brückner M, Klucken J, Reis A, Boyer L, Schuierer G, Behrens J, Lampert A, Engel FB, Gage FH, Winkler J, Winner B. GSK3ß-dependent dysregulation of neurodevelopment in SPG11-patient induced pluripotent stem cell model. Ann Neurol 2016; 79:826-840. [PMID: 26971897 PMCID: PMC5084783 DOI: 10.1002/ana.24633] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Objective Mutations in the spastic paraplegia gene 11 (SPG11), encoding spatacsin, cause the most frequent form of autosomal‐recessive complex hereditary spastic paraplegia (HSP) and juvenile‐onset amyotrophic lateral sclerosis (ALS5). When SPG11 is mutated, patients frequently present with spastic paraparesis, a thin corpus callosum, and cognitive impairment. We previously delineated a neurodegenerative phenotype in neurons of these patients. In the current study, we recapitulated early developmental phenotypes of SPG11 and outlined their cellular and molecular mechanisms in patient‐specific induced pluripotent stem cell (iPSC)‐derived cortical neural progenitor cells (NPCs). Methods We generated and characterized iPSC‐derived NPCs and neurons from 3 SPG11 patients and 2 age‐matched controls. Results Gene expression profiling of SPG11‐NPCs revealed widespread transcriptional alterations in neurodevelopmental pathways. These include changes in cell‐cycle, neurogenesis, cortical development pathways, in addition to autophagic deficits. More important, the GSK3ß‐signaling pathway was found to be dysregulated in SPG11‐NPCs. Impaired proliferation of SPG11‐NPCs resulted in a significant diminution in the number of neural cells. The decrease in mitotically active SPG11‐NPCs was rescued by GSK3 modulation. Interpretation This iPSC‐derived NPC model provides the first evidence for an early neurodevelopmental phenotype in SPG11, with GSK3ß as a potential novel target to reverse the disease phenotype. Ann Neurol 2016;79:826–840
Collapse
Affiliation(s)
- Himanshu K Mishra
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Iryna Prots
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Steven Havlicek
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Francesc Perez-Branguli
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Tom Boerstler
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Lukas Anneser
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Holger Wend
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Martin Hampl
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Martina Brückner
- Department of Experimental Medicine II, Nikolaus-Fiebiger-Centre for Molecular Medicine, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Leah Boyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gerhard Schuierer
- Institute of Neuroradiology, Center of Neuroradiology, Regensburg, Germany
| | - Jürgen Behrens
- Department of Experimental Medicine II, Nikolaus-Fiebiger-Centre for Molecular Medicine, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany.,Institute of Physiology, RWTH University, Aachen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| |
Collapse
|
42
|
Günther S, Elert-Dobkowska E, Soehn AS, Hinreiner S, Yoon G, Heller R, Hellenbroich Y, Hübner CA, Ray PN, Hehr U, Bauer P, Sulek A, Beetz C. High Frequency of Pathogenic Rearrangements in SPG11 and Extensive Contribution of Mutational Hotspots and Founder Alleles. Hum Mutat 2016; 37:703-9. [PMID: 27071356 DOI: 10.1002/humu.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
Biallelic loss-of-function mutations in SPG11 cause a wide spectrum of recessively inherited, neurodegenerative disorders including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease. By comprehensive screening of three large cohorts of HSP index patients, we identified 83 alleles with "small" mutations and 13 alleles that carry large genomic rearrangements. Including relevant data from previous studies, we estimate that copy number variants (CNVs) account for ∼19% of pathogenic SPG11 alleles. The breakpoints for all novel and some previously reported CNVs were determined by long-range PCR and sequencing. This revealed several Alu-associated recombination hotspots. We also found evidence for additional mutational mechanisms, including for a two-step event in which an Alu retrotransposition preceded the actual rearrangement. Apparently independent samples with identical breakpoints were analyzed by microsatellite PCRs. The resulting haplotypes suggested the existence of two rearrangement founder alleles. Our findings widen the spectra of mutations and mutational mechanisms in SPG11, underscore the pivotal role played by Alus, and are of high diagnostic relevance for a wide spectrum of clinical phenotypes including the most frequent form of recessive HSP.
Collapse
Affiliation(s)
- Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | - Anne S Soehn
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Sophie Hinreiner
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | | | - Peter N Ray
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Hehr
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
43
|
Coignion C, Banneau G, Goizet C. Paraplegie spastiche ereditarie. Neurologia 2016. [DOI: 10.1016/s1634-7072(16)77572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Novel SPG 11 Mutations in Hereditary Spastic Paraplegia With Thin Corpus Callosum in a Chinese Family. Can J Neurol Sci 2016; 43:833-840. [PMID: 27018819 DOI: 10.1017/cjn.2016.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a neurodegenerative disease that is characterized by progressive weakness and spasticity of the lower extremities; HSP can present as complicated forms with additional neurological signs. More than 70 disease loci have been described with different modes of inheritance. METHODS In this study, nine subjects from a Chinese family that included two individuals affected by HSP were examined through detailed clinical evaluations, physical examinations, and genetic tests. Targeted exome capture technology was used to identify gene mutations. RESULTS Two novel compound heterozygous mutations in the SPG 11 gene were identified, c.4001_4002insATAAC and c.4057C>G. The c.4001_4002insATAAC mutation leads to a reading frame shift during transcription, resulting in premature termination of the protein product. The missense mutation c.4057C>G (p.H1353D) is located in a highly conserved domain and is predicted to be a damaging substitution. CONCLUSIONS Based on the results described here, we propose that these novel compound heterozygous mutations in SPG 11 are the genetic cause of autosomal recessive HSP in this Chinese family.
Collapse
|
45
|
Denora PS, Smets K, Zolfanelli F, Ceuterick-de Groote C, Casali C, Deconinck T, Sieben A, Gonzales M, Zuchner S, Darios F, Peeters D, Brice A, Malandrini A, De Jonghe P, Santorelli FM, Stevanin G, Martin JJ, El Hachimi KH. Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain 2016; 139:1723-34. [PMID: 27016404 PMCID: PMC5839621 DOI: 10.1093/brain/aww061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
The most common form of autosomal recessive hereditary spastic paraplegia is caused by
mutations in the SPG11/KIAA1840 gene on chromosome 15q.
The nature of the vast majority of SPG11 mutations found to date suggests
a loss-of-function mechanism of the encoded protein, spatacsin. The SPG11 phenotype is, in
most cases, characterized by a progressive spasticity with neuropathy, cognitive
impairment and a thin corpus callosum on brain MRI. Full neuropathological
characterization has not been reported to date despite the description of >100
SPG11 mutations. We describe here the clinical and pathological
features observed in two unrelated females, members of genetically ascertained SPG11
families originating from Belgium and Italy, respectively. We confirm the presence of
lesions of motor tracts in medulla oblongata and spinal cord associated with other lesions
of the central nervous system. Interestingly, we report for the first time pathological
hallmarks of SPG11 in neurons that include intracytoplasmic granular lysosome-like
structures mainly in supratentorial areas, and others in subtentorial areas that are
partially reminiscent of those observed in amyotrophic lateral sclerosis, such as
ubiquitin and p62 aggregates, except that they are never labelled with anti-TDP-43 or
anti-cystatin C. The neuropathological overlap with amyotrophic lateral sclerosis,
associated with some shared clinical manifestations, opens up new fields of investigation
in the physiopathological continuum of motor neuron degeneration.
Collapse
Affiliation(s)
- Paola S Denora
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 5 Department of Genetics and Rare Diseases, IRCCS Bambino Gesu' Children Hospital, Rome, Italy
| | - Katrien Smets
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Carlo Casali
- 11 Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Polo Pontino Rome, Italy
| | - Tine Deconinck
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Anne Sieben
- 10 Institute Born-Bunge, University of Antwerp, Belgium 12 Department of Neurology, University Hospital Gent, Belgium
| | - Michael Gonzales
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephan Zuchner
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Frédéric Darios
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Dirk Peeters
- 14 Department of Neurology, AZ Groeninge, Kortrijk, Belgium
| | - Alexis Brice
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Alessandro Malandrini
- 16 Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Peter De Jonghe
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Filippo M Santorelli
- 17 Molecular Medicine Laboratory, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Giovanni Stevanin
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | | | - Khalid H El Hachimi
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| |
Collapse
|
46
|
Genetic background of the hereditary spastic paraplegia phenotypes in Hungary - An analysis of 58 probands. J Neurol Sci 2016; 364:116-21. [PMID: 27084228 DOI: 10.1016/j.jns.2016.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases with progressive lower limb spasticity and weakness. The aim of this study is to determine the frequency of different SPG mutations in Hungarian patients, and to provide further genotype-phenotype correlations for the known HSP causing genes. METHODS We carried out genetic testing for 58 probands with clinical characteristics of HSP. For historical reasons, three different approaches were followed in different patients: 1) Sanger sequencing of ATL1 and SPAST genes, 2) whole exome, and 3) targeted panel sequencing by next generation sequencing. RESULTS Genetic diagnosis was established for 20 probands (34.5%). We detected nine previously unreported mutations with high confidence for pathogenicity. The most frequently affected gene was SPAST with pathogenic or likely pathogenic mutations in 10 probands. The most frequently detected variant in our cohort was the SPG7 p.Leu78*, observed in four probands. Altogether five probands were diagnosed with SPG7. Additional mutations were detected in SPG11, ATL1, NIPA1, and ABCD1. CONCLUSION This is the first comprehensive genetic epidemiological study of patients with HSP in Hungary. Next generation sequencing improved the yield of genetic diagnostics in this disease group even when the phenotype was atypical. However, considering the frequency of the HSP-causing gene defects, SPG4, the most common form of the disease, should be tested first to be cost effective in this economic region.
Collapse
|
47
|
Schüle R, Wiethoff S, Martus P, Karle KN, Otto S, Klebe S, Klimpe S, Gallenmüller C, Kurzwelly D, Henkel D, Rimmele F, Stolze H, Kohl Z, Kassubek J, Klockgether T, Vielhaber S, Kamm C, Klopstock T, Bauer P, Züchner S, Liepelt-Scarfone I, Schöls L. Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Ann Neurol 2016; 79:646-58. [DOI: 10.1002/ana.24611] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/14/2022]
|
48
|
Montecchiani C, Pedace L, Lo Giudice T, Casella A, Mearini M, Gaudiello F, Pedroso JL, Terracciano C, Caltagirone C, Massa R, St George-Hyslop PH, Barsottini OGP, Kawarai T, Orlacchio A. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain 2015; 139:73-85. [PMID: 26556829 PMCID: PMC5839554 DOI: 10.1093/brain/awv320] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot-Marie-Tooth disease type 2H on chromosome 8q13-21.1 was excluded by linkage analysis. Pedigrees originated in Italy, Brazil, Canada, England, Iran, and Japan. Interestingly, we identified 15 ALS5/SPG11/KIAA1840 mutations in 12 families (two sequence variants were never reported before, p.Gln198* and p.Pro2212fs*5). No large deletions/duplications were detected in these patients. The novel mutations seemed to be pathogenic since they co-segregated with the disease in all pedigrees and were absent in 300 unrelated controls. Furthermore, in silico analysis predicted their pathogenic effect. Our results indicate that ALS5/SPG11/KIAA1840 is the causative gene of a wide spectrum of clinical features, including autosomal recessive axonal Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
| | - Lucia Pedace
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Temistocle Lo Giudice
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Antonella Casella
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Marzia Mearini
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | | | - José L Pedroso
- 3 Department of Neurology, Universidade Federal de São Paulo, Brazil
| | - Chiara Terracciano
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy 4 Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Santa Lucia, Rome, Italy
| | - Roberto Massa
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Peter H St George-Hyslop
- 5 Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada 6 Department of Medicine, University of Toronto, Toronto, Ontario, Canada 7 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Toshitaka Kawarai
- 8 Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Antonio Orlacchio
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
49
|
Varga RE, Khundadze M, Damme M, Nietzsche S, Hoffmann B, Stauber T, Koch N, Hennings JC, Franzka P, Huebner AK, Kessels MM, Biskup C, Jentsch TJ, Qualmann B, Braulke T, Kurth I, Beetz C, Hübner CA. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11. PLoS Genet 2015; 11:e1005454. [PMID: 26284655 PMCID: PMC4540459 DOI: 10.1371/journal.pgen.1005454] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/20/2015] [Indexed: 12/04/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice. Autophagy is a degradative pathway for the removal and subsequent recycling of dysfunctional intracellular components. The material destined for degradation is initially enclosed by a double membrane, the autophagosome. In autolysosomes, which result from fusion of autophagosomes with lysosomes, the material is finally broken down. Recent in vitro data suggested that the protein Spatacsin plays a pivotal role in the regeneration of lysosomes from autolysosomes. Spatacsin is encoded by SPG11, the most common gene mutated in autosomal recessive hereditary spastic paraplegia. Here we show that mice devoid of Spatacsin develop symptoms consistent with spastic paraplegia and progressively loose cortical motoneurons and Purkinje cells. In these mice degenerating neurons have a reduced number of lysosomes available for fusion with autophagosomes and consequently accumulate autolysosome-derived material over time. In the long term this causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells.
Collapse
Affiliation(s)
- Rita-Eva Varga
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Clinical Chemistry, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Markus Damme
- Biochemical Institute, University of Kiel, Kiel, Germany
| | - Sandor Nietzsche
- Electron Microscopy Center, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Birgit Hoffmann
- Biomolecular Photonics Group, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie (FMP) und Max-Delbrück Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Nicole Koch
- Institute of Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - J. Christopher Hennings
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Patricia Franzka
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Antje K. Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christoph Biskup
- Biomolecular Photonics Group, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas J. Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) und Max-Delbrück Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Beetz
- Institute of Clinical Chemistry, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
50
|
Van Giau V, An SSA, Bagyinszky E, Kim S. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0011-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|