1
|
Zhang X, Wang P, Liang Z, Zhong W, Ma Q. A novel Cu-MOFs nanosheet/BiVO 4 nanorod-based ECL sensor for colorectal cancer diagnosis. Talanta 2024; 266:124952. [PMID: 37473470 DOI: 10.1016/j.talanta.2023.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Although luminescence metal organic framework (MOFs) has displayed the significant advantages, the limitations in the electrochemical performance (e.g. rapid charge recombination rates and inadequate charge transport) limited the sensing application of MOFs. Herein, a novel Cu-MOFs/BiVO4 nanorod-based electrogenerated chemiluminescence (ECL) sensor has been developed. Firstly, Cu-MOFs with strong luminescence were synthesized via the three-layer approach as ECL emitter. Furthermore, BiVO4 nanorods was modified on the electrode as the actuator to improve the electrochemical activity of Cu-MOFs in the ECL process. As an n-type semiconductor, BiVO4 formed a complementary structure with p-type semiconductor Cu-MOF. Therefore, electrons in the conduction band of BiVO4 transferred to that of Cu-MOF. As a result, more electrons reacted with coreactant on the surface of Cu-MOF, which effectively enhanced the ECL performance of 2D Cu-MOFs nanosheets. As a result, the quantitation of KRAS gene was realized in the linear range of 0.1 pM-1 nM with a detection limit of 0.02 fM. Moreover, the detection of KRAS gene in actual colorectal cancer samples was also carried out with good recovery, which offered a broad application possibility for ECL research and clinical analysis.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weiyao Zhong
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
3
|
Lee S, Lee G, Oh M. Induced Production of Atypical Naturally Nonpreferred Metal-Organic Frameworks and Their Detachment via Provoking Post-Mismatching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303580. [PMID: 37246265 DOI: 10.1002/smll.202303580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 05/30/2023]
Abstract
The structures of metal-organic frameworks (MOFs) are typically determined by the building blocks that compose them and the conditions under which they are formed. MOFs tend to adopt a thermodynamically and/or kinetically stable structure (naturally preferred form). Thus, constructing MOFs with naturally nonpreferred structures is a challenging task, as it requires avoiding the easier pathway toward a naturally preferred MOF. Herein, an approach to construct naturally nonpreferred dicarboxylate-linked MOFs employing reaction templates is reported. This strategy relies on the registry between the surface of the template and the cell lattice of a target MOF, which reduces the effort required to form naturally nonpreferred MOFs. Reactions of p-block trivalent metal ions (Ga3+ and In3+ ) with dicarboxylic acids typically produce preferred MIL-53 or MIL-68. However, the surface of UiO-67 (and UiO-66) template exhibits the well-defined hexagonal lattice, which induce the selective formation of a naturally nonpreferred MIL-88 structure. Inductively grown MIL-88s are purely isolated from the template via provoking a post-mismatch in their lattices and weakening the interfacial interaction between product and template. It is also discovered that an appropriate template for effective induced production of naturally nonpreferred MOFs shall be properly selected based on the cell lattice of a target MOF.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Wu T, Chen W, Wu M, Zhang Y. Membrane-based purification and recovery of phosphate and antibiotics by two-dimensional zeolitic nanoflakes. RSC Adv 2023; 13:18799-18811. [PMID: 37346951 PMCID: PMC10281495 DOI: 10.1039/d3ra02933f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
The pervasive presence of persistent contaminants in water resources, including phosphate and antibiotics, has attracted significant attention due to their potential adverse effects on ecosystems and human health. Adsorption membranes packed with metal-organic frameworks (MOFs) have been proposed as a potential solution to this challenge due to their high surface area to volume ratio, and the tailored functionality they can provide for selective purification. However, devising a straightforward method to enhance the stability of MOF membranes on polymer supports and manipulate their surface morphology remains challenging. In this study, we present a facile solution immersion technique to fabricate a ZIF-L adsorption membrane on commercial supports by leveraging the self-polymerization characteristics of dopamine. The simple coating methodology provides a polydopamine-lined interface that regulates the ZIF-L heteroepitaxial growth, along with tailored nanoflake morphology. Compared with crystals prepared in bulk solution, the sorbents grown on the membrane exhibit a higher saturation capacity of 248 mg g-1 of phosphate (∼80 mg phosphorus per g sorbent) and 196 mg g-1 for tetracycline in static adsorption experiments at 30 °C. Additionally, the membranes are capable of selectively removing 99.5% of the phosphate in simulant solutions comprising competitive background ions in various concentrations, and efficiently removing tetracycline. The result from the static adsorption experiments directly translates to a flow-through process, showcasing the utility of a composite membrane with a 3 μm thick active layer in practical adsorption applications. The facile solution immersion fabrication protocol introduced in this work may offer a more efficient paradigm to harness the potential of MOF composite membranes in selective adsorption and resource recovery applications.
Collapse
Affiliation(s)
- Tong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
5
|
Tatebe CJ, Fromel E, Bellas MK, Zeller M, Genna DT. Mechanistic Investigation of the Synthesis of Dianionic In-Derived Coordination Polymers. Inorg Chem 2023; 62:5881-5885. [PMID: 37001027 DOI: 10.1021/acs.inorgchem.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The mechanism of formation of crystalline coordination polymers is as complex as the architectures themselves. In this Communication, we detail a three-tiered approach using density functional theory (DFT) analysis, synthesis, and in situ Raman spectroscopy to study the formation of coordination polymers. Specifically, the previously reported coordination polymers YCM-22 and YCM-51 containing the [In(CO2R)2X3]2- (X = halogen) molecular building unit (MBU) were investigated. DFT revealed two potential pathways of formation, involving the initial formation of either [InCl4]- or [In(CO2R)Cl3]-. A molecular dimeric In species (8a) containing two [In(CO2R)Cl4]2- centers bridged by 2,5-thiophenedicarboxylic acid was isolated. When a suspension of 8a was treated with a solution of 2,5-thiophenedicarboxylic acid, an isomer of the coordination polymer YCM-22 (denoted as YCM-22') was formed. In situ Raman analysis of the formation of YCM-22 confirms that [InCl4]- forms at the onset of the reaction and that the [In(CO2R)2X3]2- MBU forms at its expense. The totality of the data presented support a mechanism of formation of one-dimensional In-derived coordination polymers and present a roadmap for future investigations into the formation of other crystalline coordination polymers.
Collapse
Affiliation(s)
- Caleb J. Tatebe
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Emily Fromel
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Michael K. Bellas
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Douglas T. Genna
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| |
Collapse
|
6
|
Skjelstad BB, Hijikata Y, Maeda S. Early-Stage Formation of the SIFSIX-3-Zn Metal-Organic Framework: An Automated Computational Study. Inorg Chem 2023; 62:1210-1217. [PMID: 36626658 DOI: 10.1021/acs.inorgchem.2c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted significant attention over the past 2 decades due to their wide applicability as functional materials. However, targeted synthesis of novel MOFs remains problematic as their formation mechanisms are poorly understood, which forces us to rely on serendipity in the synthesis of novel MOFs. Here, we demonstrate a workflow employing the artificial force induced reaction (AFIR) method to investigate the self-assembly process of the node of the SIFSIX-3-Zn MOF, [Zn(pyz)4(SiF6)2]2- (pyz = pyrazine), in an automated manner. The workflow encompassing AFIR calculations, generation of extensive reaction path networks, propagation simulations of intermediates, and further refinements of identified formation pathways showed that the nodal structure can form through multiple competing pathways involving interconvertible intermediates. This finding provides a plausible rationale for the stochastic multistage processes believed to be key in MOF formation. Furthermore, this work represents the first application of an automated reaction mechanism discovery method to a MOF system using a general workflow that is applicable to study the formation of other MOF motifs as well.
Collapse
Affiliation(s)
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
7
|
Zheng Z, Hanikel N, Lyu H, Yaghi OM. Broadly Tunable Atmospheric Water Harvesting in Multivariate Metal-Organic Frameworks. J Am Chem Soc 2022; 144:22669-22675. [PMID: 36446081 DOI: 10.1021/jacs.2c09756] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of multivariate metal-organic frameworks (MOFs) as derivatives of the state-of-art water-harvesting material MOF-303 {[Al(OH)(PZDC)], where PZDC2- is 1H-pyrazole-3,5-dicarboxylate} was shown to be a powerful tool to generate efficient water sorbents tailored to a given environmental condition. Herein, a new multivariate MOF-303-based water-harvesting framework series from readily available reactants is developed. The resulting MOFs exhibit a larger degree of tunability in the operational relative humidity range (16%), regeneration temperature (14 °C), and desorption enthalpy (5 kJ mol-1) than reported previously. Additionally, a high-yielding (≥90%) and scalable (∼3.5 kg) synthesis is demonstrated in water and with excellent space-time yields, without compromising framework crystallinity, porosity, and water-harvesting performance.
Collapse
Affiliation(s)
- Zhiling Zheng
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States.,Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California94720, United States.,Bakar Institute of Digital Materials for the Planet, Division of Computing, Data Science, and Society, University of California, Berkeley, Berkeley, California94720, United States
| | - Nikita Hanikel
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States.,Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California94720, United States
| | - Hao Lyu
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States.,Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California94720, United States
| | - Omar M Yaghi
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States.,Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California94720, United States.,Bakar Institute of Digital Materials for the Planet, Division of Computing, Data Science, and Society, University of California, Berkeley, Berkeley, California94720, United States.,KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh11442, Saudi Arabia
| |
Collapse
|
8
|
Salionov D, Semivrazhskaya OO, Casati NPM, Ranocchiari M, Bjelić S, Verel R, van Bokhoven JA, Sushkevich VL. Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nat Commun 2022; 13:3762. [PMID: 35768412 PMCID: PMC9243051 DOI: 10.1038/s41467-022-31294-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
The vast structural and chemical diversity of metal-organic frameworks (MOFs) provides the exciting possibility of material's design with tailored properties for gas separation, storage and catalysis. However, after more than twenty years after first reports introducing MOFs, the discovery and control of their synthesis remains extremely challenging due to the lack of understanding of mechanisms of their nucleation and growth. Progress in deciphering crystallization pathways depends on the possibility to follow conversion of initial reagents to products at the molecular level, which is a particular challenge under solvothermal conditions. The present work introduces a detailed molecular-level mechanism of the formation of MIL-53(Al), unraveled by combining in situ time-resolved high-resolution mass-spectrometry, magic angle spinning nuclear magnetic resonance spectroscopy and X-ray diffraction. In contrast to the general belief, the crystallization of MIL-53 occurs via a solid-solid transformation mechanism, associated with the spontaneous release of monomeric aluminum. The role of DMF hydrolysis products, formate and dimethylamine, is established. Our study emphasizes the complexity of MOF crystallization chemistry, which requires case-by-case investigation using a combination of advanced in situ methods for following the induction period, the nucleation and growth across the time domain.
Collapse
Affiliation(s)
- Daniil Salionov
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Olesya O Semivrazhskaya
- Laboratory for Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Nicola P M Casati
- Laboratory for Synchrotron Radiation - Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Saša Bjelić
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
9
|
Miller QRS, Pohl M, Livo K, Asgar H, Nune SK, Sinnwell MA, Prasad M, Gadikota G, McGrail BP, Schaef HT. Porous Colloidal Nanoparticles as Injectable Multimodal Contrast Agents for Enhanced Geophysical Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23420-23425. [PMID: 35575693 DOI: 10.1021/acsami.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Injecting fluids into underground geologic structures is crucial for the development of long-term strategies for managing captured carbon and facilitating sustainable energy extraction operations. We have previously reported that the injection of metal-organic frameworks (MOFs) into the subsurface can enhance seismic monitoring tools to track fluids and map complex structures, reduce risk, and verify containment in carbon storage reservoirs because of their absorption capacity of low-frequency seismic waves. Here, we demonstrate that water-based Cr/Zn/Zr MOF colloidal suspensions (nanofluids) are multimodal geophysical contrast agents that enhance near-wellbore logging tools. Based on experimental fluid-only measurements, MIL-101(Cr), ZIF-8, and UiO-66 nanofluids have distinct complex conductivity and/or low-field nuclear magnetic resonance (NMR) signatures that are relevant to field-deployed technologies, implying the potential to enhance near-wellbore monitoring of CO2 injection and associated processes with downhole logging tools. Small- and wide-angle X-ray scattering characterization of ∼0.5 wt % MIL-101(Cr) suspensions confirmed phase stability and provided insight into the fractal nature of colloidal nanoparticles. Finally, low-field (2 MHz) NMR measurements of MIL-101(Cr) nanofluid injection into a prototypical Berea sandstone demonstrate how paramagnetic high-surface area MOFs may dominate the relaxation times of hydrogen-bearing fluids in porous geologic matrices, enhancing the mapping of near-surface and near-wellbore transport pathways and advancing sustainable subsurface energy technologies.
Collapse
Affiliation(s)
- Quin R S Miller
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mathias Pohl
- Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kurt Livo
- Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hassnain Asgar
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Satish K Nune
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Manika Prasad
- Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - B Peter McGrail
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - H Todd Schaef
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Du Bois DR, Wright KR, Bellas MK, Wiesner N, Matzger AJ. Linker Deprotonation and Structural Evolution on the Pathway to MOF-74. Inorg Chem 2022; 61:4550-4554. [PMID: 35254060 DOI: 10.1021/acs.inorgchem.1c03988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of MOF-74 (MOF = metal-organic framework) proceeds first through the generation of chemically and topologically distinct materials, referred to as phases, displaying exclusively carboxylate coordination, followed by further deprotonation to enable oxo coordination and MOF-74 formation. The synthesis of Mg-MOF-74 at high concentrations of linker and metal enables the stabilization and characterization of the previously unobserved, exclusively carboxylate coordinating phases. Ex situ and in situ approaches are leveraged to provide the time-resolved observation of Mg-MOF-74 synthesis and the formation of phases that precede Mg-MOF-74 formation as well as metastable phase dissolution. These data support dissolution and redeposition as the mechanism of MOF-74 formation and provide insight into the formation mechanism of MOFs with multiple linker coordination types.
Collapse
|
11
|
Zorainy MY, Titi HM, Kaliaguine S, Boffito DC. Multivariate metal-organic framework MTV-MIL-101 via post-synthetic cation exchange: is it truly achievable? Dalton Trans 2022; 51:3280-3294. [PMID: 35133374 DOI: 10.1039/d1dt04222j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The post-synthetic exchange (PSE) method is a well-proven route to replace, modify, and add different functionalities to metal-organic frameworks (MOFs). Particularly, the solvent-assisted cation substitution (SACS) technique has been reported to prepare mixed-metal multivariate metal-organic frameworks (MTV-MOFs). However, such a technique does not apply to all types of MOFs. In 2013, Szilágyi et al. reported the achievement of the mixed-metal MTV-MIL-101 framework via PSE. Since then, a debate has been taking place about the validity of these findings. On the other hand, the attainment of the mixed-metal MIL-101 was reported to be obtainable through the direct synthesis, which is, to some, the only way to achieve it. Here, we settle this dispute by investigating Szilágyi's method not only as described, but also at extended conditions of time and different metal precursors: all attempts were vain. However, by reconsidering the refluxing solvent (dimethylformamide "DMF" instead of water) and the applied reaction conditions (110 °C-20 h), mixed-metal MIL-101(Cr/Fe) was achieved via a simple PSE method.
Collapse
Affiliation(s)
- Mahmoud Y Zorainy
- Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada. .,Chemical Engineering Department, Military Technical College, Cairo, Egypt
| | - Hatem M Titi
- Department of Chemistry, McGill University, Montréal, QC H3A 0B8, Canada
| | - Serge Kaliaguine
- Chemical Engineering Department, Laval University, Québec, QC G1V 0A6, Canada
| | - Daria C Boffito
- Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada.
| |
Collapse
|
12
|
Petersen H, Weidenthaler C. A review of recent developments for the in situ/operando characterization of nanoporous materials. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00977c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is a review on up-to-date in situ/operando methods for a comprehensive characterization of nanoporous materials. The group of nanoporous materials is constantly growing, and with it, the variety of...
Collapse
|
13
|
Abstract
Many of the proposed applications of metal-organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the 'time gap' in the literature - that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.
Collapse
|
14
|
Lee S, Lee G, Oh M. Lattice-Guided Construction and Harvest of a Naturally Nonpreferred Metal-Organic Framework. ACS NANO 2021; 15:17907-17916. [PMID: 34734712 DOI: 10.1021/acsnano.1c06207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Constructing metal-organic frameworks (MOFs) to have a desired structure from the given components is critical to achieve ideal MOFs with optimal properties. However, thermodynamics and/or kinetics typically impose a restriction on MOF structures. Here, we report the MOF farming concept to produce a naturally nonpreferred structure from the given components. The HKUST-1 template offers ideal places for the efficient seeding and epitaxial growth of Ga-MIL-88B that is a naturally nonpreferred structure however intentionally produced instead of the preferred Ga-MIL-68. The MOF growth on the differently shaped HKUST-1 templates (octahedral, cuboctahedral, and cubic), containing different exposed lattices, proves that a hexagonal lattice with an exposed {111} plane of HKUST-1 selectively directs the perpendicular growth of Ga-MIL-88B, owing to the lattice matching with the {001} plane of Ga-MIL-88B. The grown Ga-MIL-88B is isolated in a pure form, and the refreshed template is reused to grow additional Ga-MIL-88B.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
He B, Macreadie LK, Gardiner J, Telfer SG, Hill MR. In Situ Investigation of Multicomponent MOF Crystallization during Rapid Continuous Flow Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54284-54293. [PMID: 34739210 PMCID: PMC8822483 DOI: 10.1021/acsami.1c04920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
Access to the potential applications of metal-organic frameworks (MOFs) depends on rapid fabrication. While there have been advances in the large-scale production of single-component MOFs, rapid synthesis of multicomponent MOFs presents greater challenges. Multicomponent systems subjected to rapid synthesis conditions have the opportunity to form separate kinetic phases that are each built up using just one linker. We sought to investigate whether continuous flow chemistry could be adapted to the rapid formation of multicomponent MOFs, exploring the UMCM-1 and MUF-77 series. Surprisingly, phase pure, highly crystalline multicomponent materials emerge under these conditions. To explore this, in situ WAXS was undertaken to gain an understanding of the formation mechanisms at play during flow synthesis. Key differences were found between the ternary UMCM-1 and the quaternary MUF-7, and key details about how the MOFs form were then uncovered. Counterintuitively, despite consisting of just two ligands UMCM-1 proceeds via MOF-5, whereas MUF-7 consists of three ligands but is generated directly from the reaction mixture. By taking advantage of the scalable high-quality materials produced, C6 separations were achieved in breakthrough settings.
Collapse
Affiliation(s)
- Brandon He
- Department
of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- CSIRO
Private Bag 10, Clayton
South, VIC 3169, Australia
| | - Lauren K. Macreadie
- School
of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- MacDiarmid
Institute for Advanced Materials and Nanotechnology Institute of Fundamental
Sciences, Massey University, Palmerston North 4442, New Zealand
| | - James Gardiner
- CSIRO
Private Bag 10, Clayton
South, VIC 3169, Australia
| | - Shane G. Telfer
- MacDiarmid
Institute for Advanced Materials and Nanotechnology Institute of Fundamental
Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew R. Hill
- Department
of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- CSIRO
Private Bag 10, Clayton
South, VIC 3169, Australia
| |
Collapse
|
16
|
Martini A, Bugaev AL, Guda SA, Guda AA, Priola E, Borfecchia E, Smolders S, Janssens K, De Vos D, Soldatov AV. Revisiting the Extended X-ray Absorption Fine Structure Fitting Procedure through a Machine Learning-Based Approach. J Phys Chem A 2021; 125:7080-7091. [PMID: 34351779 DOI: 10.1021/acs.jpca.1c03746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the analysis of extended X-ray absorption fine structure (EXAFS) spectra is developed exploiting an inverse machine learning-based algorithm. Through this approach, it is possible to explore and account for, in a precise way, the nonlinear geometry dependence of the photoelectron backscattering phases and amplitudes of single and multiple scattering paths. In addition, the determined parameters are directly related to the 3D atomic structure, without the need to use complex parametrization as in the classical fitting approach. The applicability of the approach, its potential and the advantages over the classical fit were demonstrated by fitting the EXAFS data of two molecular systems, namely, the KAu (CN)2 and the [RuCl2(CO)3]2 complexes.
Collapse
Affiliation(s)
- A Martini
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia.,Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - A L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia.,Southern Scientific Centre, Russian Academy of Sciences, Chekhova 41, 344006 Rostov-on-Don, Russia
| | - S A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia.,Institute of mathematics, mechanics and computer science, Southern Federal University, Milchakova 8a, 344090 Rostov-on-Don, Russia
| | - A A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - E Priola
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CrisDi, Interdepartemental Center for Crystallography, University of Turin, Torino, Via P. Giuria 7, I-10125 Italy
| | - E Borfecchia
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - S Smolders
- Department of Microbial and Molecular Systems (M2S); Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Post box 2454, 3001 Leuven, Belgium
| | - K Janssens
- Department of Microbial and Molecular Systems (M2S); Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Post box 2454, 3001 Leuven, Belgium
| | - D De Vos
- Department of Microbial and Molecular Systems (M2S); Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Post box 2454, 3001 Leuven, Belgium
| | - A V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| |
Collapse
|
17
|
Cao B, Guo HY, Hao XL, Wu ZH, Wu FG, Yu ZW. Transition Mechanism from Nonlamellar to Well-Ordered Lamellar Phases: Is the Lamellar Liquid-Crystal Phase a Must? J Phys Chem Lett 2021; 12:4484-4489. [PMID: 33956459 DOI: 10.1021/acs.jpclett.1c01146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the self-assembly mechanisms of amphiphilic molecules in solutions and regulating their phase behaviors are of primary significance for their applications. To challenge the reported direct phase transitions from nonlamellar to ordered lamellar phases, the self-assembly and phase behavior of the 1-hexadecyl-3-methylimidazolium chloride aqueous dispersions were studied using a strategy of isothermal incubation after the temperature jump. A disordered lamellar phase (identified as the lamellar liquid-crystal (Lα) phase), serving as an intermediate, was found to bridge the transition from a spherical micellar (M) phase to a lamellar-gel (Lβ) phase. Meanwhile, the nonsynchronicity in the tail and headgroup regions of the ionic liquid surfactant during the transition process was also unveiled, with the former being prior to the latter. The in-depth understanding of the self-assembly mechanisms may help push forward the related applications in the future.
Collapse
Affiliation(s)
- Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhong-Hua Wu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
18
|
Tanaka Y, Yamada S, Tanaka D. Continuous Fluidic Techniques for the Precise Synthesis of Metal-Organic Frameworks. Chempluschem 2021; 86:650-661. [PMID: 33864353 DOI: 10.1002/cplu.202000798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/31/2021] [Indexed: 12/18/2022]
Abstract
The continuous fluidics-based synthesis of metal-organic frameworks (MOFs) has attracted considerable attention, resulting in advancements in the reaction efficiency, a continuous production of complex structures, and access to products that are difficult or impossible to attain by bulk synthetic routes. This Minireview discusses the continuous fluidics-based synthesis of MOFs in terms of reaction process control, and is divided into three chapters dealing with the efficient synthesis of high-quality MOFs, the confined-space synthesis of MOF composites with diverse morphologies, and the selective synthesis of metastable products. The products of continuous fluidic synthetic process are introduced (e. g., uniform products, composites, fibers, membranes, and metastable products with advantageous properties that cannot be obtained by bulk synthesis), and their usefulness is demonstrated by referencing representative examples.
Collapse
Affiliation(s)
- Yoko Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Saki Yamada
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
19
|
Hardian R, Dissegna S, Ullrich A, Llewellyn PL, Coulet MV, Fischer RA. Tuning the Properties of MOF-808 via Defect Engineering and Metal Nanoparticle Encapsulation. Chemistry 2021; 27:6804-6814. [PMID: 33586233 PMCID: PMC8251568 DOI: 10.1002/chem.202005050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Defect engineering and metal encapsulation are considered as valuable approaches to fine-tune the reactivity of metal-organic frameworks. In this work, various MOF-808 (Zr) samples are synthesized and characterized with the final aim to understand how defects and/or platinum nanoparticle encapsulation act on the intrinsic and reactive properties of these MOFs. The reactivity of the pristine, defective and Pt encapsulated MOF-808 is quantified with water adsorption and CO2 adsorption calorimetry. The results reveal strong competitive effects between crystal morphology and missing linker defects which in turn affect the crystal morphology, porosity, stability, and reactivity. In spite of leading to a loss in porosity, the introduction of defects (missing linkers or Pt nanoparticles) is beneficial to the stability of the MOF-808 towards water and could also be advantageously used to tune adsorption properties of this MOF family.
Collapse
Affiliation(s)
- Rifan Hardian
- CNRS, MADIREL (UMR 7246), Aix-Marseille University, Campus St Jérôme, 13013, Marseille, France
| | - Stefano Dissegna
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Dept. of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Aladin Ullrich
- Institute of Physics, University of Augsburg, Universitätsstrasse 1, 86159, Augsburg, Germany
| | - Philip L Llewellyn
- CNRS, MADIREL (UMR 7246), Aix-Marseille University, Campus St Jérôme, 13013, Marseille, France
| | - Marie-Vanessa Coulet
- CNRS, MADIREL (UMR 7246), Aix-Marseille University, Campus St Jérôme, 13013, Marseille, France
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Dept. of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| |
Collapse
|
20
|
Shearan SJI, Jacobsen J, Costantino F, D'Amato R, Novikov D, Stock N, Andreoli E, Taddei M. In Situ X-ray Diffraction Investigation of the Crystallisation of Perfluorinated Ce IV -Based Metal-Organic Frameworks with UiO-66 and MIL-140 Architectures*. Chemistry 2021; 27:6579-6592. [PMID: 33480453 DOI: 10.1002/chem.202005085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Indexed: 11/08/2022]
Abstract
We report on the results of an in situ synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated CeIV -based metal-organic frameworks (MOFs), analogues of the already well investigated ZrIV -based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as reagents, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds, varying parameters such as temperature, amount of the protonation modulator nitric acid and amount of the coordination modulator acetic acid. When only HNO3 is present in the reaction environment, only F4_MIL-140A(Ce) is obtained. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C. Upon addition of AcOH to the system, alongside HNO3 , mixed-phased products are obtained. F4_UiO-66(Ce) is always formed faster, and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate-determining step. A higher amount of HNO3 favours the formation of F4_MIL-140A(Ce), whereas increasing the amount of AcOH favours the formation of F4_UiO-66(Ce). Based on the in situ results, a new optimised route to achieving a pure, high-quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.
Collapse
Affiliation(s)
- Stephen J I Shearan
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Jannick Jacobsen
- Institute of Inorganic Chemistry, Christian-Albrechts-University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto n. 8, 06123, Perugia, Italy
| | - Roberto D'Amato
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto n. 8, 06123, Perugia, Italy
| | - Dmitri Novikov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Enrico Andreoli
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Marco Taddei
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea, SA1 8EN, UK.,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
21
|
Exploring competitive metal binding and crystallization of UO22+ and Cu2+ tetrahydrofuran-2,3,4,5-tetracarboxylic acid complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Sarkar A, Jana AK, Natarajan S. Aliphatic amine mediated assembly of [M 6( mna) 6] (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00544h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New aliphatic amine directed two-dimensional cadmium coordination polymers were shown to exhibit Lewis-acid catalytic activity for the cyanation of imines.
Collapse
Affiliation(s)
- Anupam Sarkar
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Ajay Kumar Jana
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Srinivasan Natarajan
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
23
|
Wu T, Prasetya N, Li K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118493] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Jones CL, Hughes CE, Yeung HHM, Paul A, Harris KDM, Easun TL. Exploiting in situ NMR to monitor the formation of a metal-organic framework. Chem Sci 2020; 12:1486-1494. [PMID: 34163912 PMCID: PMC8179150 DOI: 10.1039/d0sc04892e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
The formation processes of metal-organic frameworks are becoming more widely researched using in situ techniques, although there remains a scarcity of NMR studies in this field. In this work, the synthesis of framework MFM-500(Ni) has been investigated using an in situ NMR strategy that provides information on the time-evolution of the reaction and crystallization process. In our in situ NMR study of MFM-500(Ni) formation, liquid-phase 1H NMR data recorded as a function of time at fixed temperatures (between 60 and 100 °C) afford qualitative information on the solution-phase processes and quantitative information on the kinetics of crystallization, allowing the activation energies for nucleation (61.4 ± 9.7 kJ mol-1) and growth (72.9 ± 8.6 kJ mol-1) to be determined. Ex situ small-angle X-ray scattering studies (at 80 °C) provide complementary nanoscale information on the rapid self-assembly prior to MOF crystallization and in situ powder X-ray diffraction confirms that the only crystalline phase present during the reaction (at 90 °C) is phase-pure MFM-500(Ni). This work demonstrates that in situ NMR experiments can shed new light on MOF synthesis, opening up the technique to provide better understanding of how MOFs are formed.
Collapse
Affiliation(s)
- Corey L Jones
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Colan E Hughes
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Hamish H-M Yeung
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Alison Paul
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Kenneth D M Harris
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Timothy L Easun
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
25
|
Maia RA, Carneiro LSDA, Cifuentes JMC, Buarque CD, Esteves PM, Percebom AM. Small-angle X-ray scattering as a multifaceted tool for structural characterization of covalent organic frameworks. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720011553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small-angle X-ray scattering (SAXS) is an accurate nondestructive method that requires a minimum of sample preparation and is employed to study porosity, morphology and hierarchical structures. Zeolites and silica are among the porous materials that are widely investigated by SAXS. However, studies of covalent organic frameworks (COFs) are still scarce. In the present study, SAXS was employed to investigate meso- and microporous COFs, affording insightful information about their nanostructure textural properties. SAXS is especially useful when combined with other characterization techniques, such as powder X-ray diffraction and N2 adsorption isotherms, emerging as an efficient tool to further characterize COFs. For microporous COFs, SAXS was used mainly to obtain quantitative values of surface roughness as a function of fractal parameters, in all cases indicating surface fractals of the large-scale scattering object, namely the `grain'. Mesoporous COF studies allowed elucidation of their hexagonal structure on the basis of their structure peaks; however, the main result lies in the distinction between the pore and the grain, which are described as a hierarchical structure by the Beaucage model and evaluated according to their fractality. These COFs generally exhibit pores with mass fractal features and grains with surface fractal features when they are submitted to post-functionalization, which may be due to the poor diffusivity of the functionalizing agents into the pores. In addition, a proposed aggregation description of the porous scattering objects was envisioned, based on small-angle scattering premises, which was confirmed for a microporous COF by high-resolution transmission electron microscopy.
Collapse
|
26
|
Estevenon P, Causse J, Szenknect S, Welcomme E, Mesbah A, Moisy P, Poinssot C, Dacheux N. In situ study of the synthesis of thorite (ThSiO 4) under environmental representative conditions. Dalton Trans 2020; 49:11512-11521. [PMID: 32840279 DOI: 10.1039/d0dt01790f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thorite, (ThSiO4) with a zircon type structure, is one of the most abundant natural sources of thorium on Earth. Generally, actinides are known to form nanoparticles in silicate medium, though no direct link between those colloids and the crystalline form of thorite was evidenced until now. Here we show the formation of thorite from colloids and nanocrystalline structures under experimental conditions close to environmental pH and temperature. Through in situ small and wide angle X-ray scattering (SWAXS) measurements, colloids with a few nanometers in size were first evidenced at a low reaction time. These colloids have elongated shapes and finally tend to aggregate after their size has reached 10 nm. Once aggregated, the system goes through a maturation step, ending with the emergence of nanocrystallites as thorite zircon structures. This maturation step is longer when the reaction temperature is decreased which highlights the kinetic considerations. These results have potential implications on the paragenesis of Th mineral deposits and also in the behaviour of Th and, by analogy, tetravalent actinides in the environment. The significant characteristics of this work are that Th-silicate colloids were demonstrated at low temperatures and a near neutral pH with long-term stability and a morphology in favor of high mobility in groundwater. If these species are formed in more diluted media, this could be problematic owing to the spreading of Th and, by analogy, other tetravalent actinides in the environment.
Collapse
Affiliation(s)
- Paul Estevenon
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, France. and CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Jeremy Causse
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, France.
| | | | | | - Adel Mesbah
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, France.
| | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | | | - Nicolas Dacheux
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, France.
| |
Collapse
|
27
|
Tanaka Y, Kitamura Y, Kawano R, Shoji K, Hiratani M, Honma T, Takaya H, Yoshikawa H, Tsuruoka T, Tanaka D. Competing Roles of Two Kinds of Ligand during Nonclassical Crystallization of Pillared-Layer Metal-Organic Frameworks Elucidated Using Microfluidic Systems. Chemistry 2020; 26:8889-8896. [PMID: 32643834 DOI: 10.1002/chem.202001438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 11/08/2022]
Abstract
To diversify metal-organic frameworks (MOFs), multi-component MOFs constructed from more than two kinds of bridging ligand have been actively investigated due to the high degree of design freedom afforded by the combination of multiple ligands. Predicting the synthesis conditions for such MOFs requires an understanding of the crystallization mechanism, which has so far remained elusive. In this context, microflow systems are efficient tools for capturing non-equilibrium states as they facilitate precise and efficient mixing with reaction times that correspond to the distance from the mixing point, thus enabling reliable control of non-equilibrium crystallization processes. Herein, we prepared coordination polymers with pillared-layer structures and observed the intermediates in the syntheses with an in-situ measurement system that combines microflow reaction with UV/Vis and X-ray absorption fine-structure spectroscopies, thereby enabling their rapid nucleation to be monitored. Based on the results, a three-step nonclassical nucleation mechanism involving two kinds of intermediate is proposed.
Collapse
Affiliation(s)
- Yoko Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| | - Yu Kitamura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Kan Shoji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Moe Hiratani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, 1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hikaru Takaya
- Institute of Chemical Research, Kyoto University, Gokasyo, Uji-shi, Kyoto, 611-0011, Japan
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| | - Takaaki Tsuruoka
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20, Minatojimaminami-cho, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan.,JST, PRESTO, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| |
Collapse
|
28
|
Fujii S, Miyake R, Campo LD, Lee JH, Takahashi R, Sakurai K. Structural Polymorphism of Resorcinarene Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6222-6227. [PMID: 32391699 DOI: 10.1021/acs.langmuir.0c00861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In 1997, a study based on X-ray crystallography revealed that resorcinarenes adopt a hexameric capsule-like structure. The function of resorcinarenes has been discussed on the basis of this structure; however, our recent study showed that the hexamer may be only one of resorcinarenes' polymorphic members. Here, we present the solvent dependence of the aggregation number of C-undecylresorcinarene in water-saturated toluene and chloroform using small-angle neutron and X-ray scattering and analytical ultracentrifugation measurements. We found that a new octamer was formed in toluene where the eight resorcinarene units were placed at the vertices of a regular cube; this contrasts to the previous structure in chloroform, namely, a hexamer with the six resorcinarenes located at the vertices of a regular octahedron that has a cavity inside where chloroform molecules are pooled.
Collapse
Affiliation(s)
- Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Rika Miyake
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Liliana de Campo
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, Sydney, NSW 2234, Australia
| | - Ji Ha Lee
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Rintaro Takahashi
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
29
|
Synthesis of hierarchical zeolite T nanocrystals with the assistance of zeolite seed solution. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Embrechts H, Hartmann M, Peukert W, Distaso M. In Situ Monitoring of Particle Formation with Spectroscopic and Analytical Techniques Under Solvothermal Conditions. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heidemarie Embrechts
- FAU Erlangen-NurembergInstitute of Particle Technology Cauerstrasse 4 91058 Erlangen Germany
- FAU Erlangen-NurembergInterdisciplinary Center for Functional Particle Systems Haberstrasse 9a 91058 Erlangen Germany
| | - Martin Hartmann
- FAU Erlangen-NurembergInterdisciplinary Center for Functional Particle Systems Haberstrasse 9a 91058 Erlangen Germany
- FAU Erlangen-NurembergErlangen Center for Interface Research and Catalysis (ECRC) Egerlandstrasse 3 91058 Erlangen Germany
| | - Wolfgang Peukert
- FAU Erlangen-NurembergInstitute of Particle Technology Cauerstrasse 4 91058 Erlangen Germany
- FAU Erlangen-NurembergInterdisciplinary Center for Functional Particle Systems Haberstrasse 9a 91058 Erlangen Germany
| | - Monica Distaso
- FAU Erlangen-NurembergInstitute of Particle Technology Cauerstrasse 4 91058 Erlangen Germany
- FAU Erlangen-NurembergInterdisciplinary Center for Functional Particle Systems Haberstrasse 9a 91058 Erlangen Germany
| |
Collapse
|
31
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
32
|
Embrechts H, Kriesten M, Ermer M, Peukert W, Hartmann M, Distaso M. In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al). RSC Adv 2020; 10:7336-7348. [PMID: 35492146 PMCID: PMC9049789 DOI: 10.1039/c9ra09968a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/08/2020] [Indexed: 11/21/2022] Open
Abstract
The paper describes a method to induce the formation of MIL-68(Al) rather than MIL-53(Al) using a formic acid modulated synthesis approach.
Collapse
Affiliation(s)
- Heidemarie Embrechts
- Institute of Particle Technology
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| | - Martin Kriesten
- Erlangen Center for Interface Research and Catalysis (ECRC)
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
| | - Matthias Ermer
- Erlangen Center for Interface Research and Catalysis (ECRC)
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
| | - Wolfgang Peukert
- Institute of Particle Technology
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| | - Martin Hartmann
- Interdisciplinary Center for Functional Particle Systems
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Erlangen Center for Interface Research and Catalysis (ECRC)
| | - Monica Distaso
- Institute of Particle Technology
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| |
Collapse
|
33
|
Priola E, Volpi G, Rabezzana R, Borfecchia E, Garino C, Benzi P, Martini A, Operti L, Diana E. Bridging Solution and Solid-State Chemistry of Dicyanoaurate: The Case Study of Zn–Au Nucleation Units. Inorg Chem 2019; 59:203-213. [DOI: 10.1021/acs.inorgchem.9b00961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emanuele Priola
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Giorgio Volpi
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Roberto Rabezzana
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Elisa Borfecchia
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Claudio Garino
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Paola Benzi
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Andrea Martini
- Department of Physics, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
- International Research Institute “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Lorenza Operti
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Eliano Diana
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
- CriSDi, Interdepartmental Center for Crystallography, Via Pietro Giuria 7, 10125 Turin, Italy
| |
Collapse
|
34
|
Li S, Hu X, Chen Q, Zhang X, Chai H, Huang Y. Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosens Bioelectron 2019; 137:133-139. [DOI: 10.1016/j.bios.2019.05.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/05/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022]
|
35
|
Wei YS, Zhang M, Kitta M, Liu Z, Horike S, Xu Q. A Single-Crystal Open-Capsule Metal-Organic Framework. J Am Chem Soc 2019; 141:7906-7916. [PMID: 31042369 DOI: 10.1021/jacs.9b02417] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Micro-/nanocapsules have received substantial attention due to various potential applications for storage, catalysis, and drug delivery. However, their conventional enclosed non-/polycrystalline walls pose huge obstacles for rapid loading and mass diffusion. Here, we present a new single-crystal capsular-MOF with openings on the wall, which is carefully designed at the molecular level and constructed from a crystal-structure transformation. This rare open-capsule MOF can easily load the largest amounts of sulfur and iodine among known MOFs. In addition, derived from capsular-MOF and melamine through pyrolysis-phosphidation, we fabricated a nitrogen-doped capsular carbon-based framework with iron-nickel phosphide nanoparticles immobilized on capsular carbons interconnected by plentiful carbon nanotubes. Benefiting from synergistic effects between the carbon framework and highly surface-exposed phosphide sites, the material exhibits efficient multifunctional electrocatalysis for oxygen evolution, hydrogen evolution, and oxygen reduction, achieving well-qualified assemblies of an overall water splitting (low potential of 1.59 V at 10 mA·cm-2) and a rechargeable Zn-air battery (high peak power density of 250 mW·cm-2 and excellent stability for 500 h), which afford remarkably practical prospects over previously known electrocatalysts.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Mitsunori Kitta
- Research Institute of Electrochemical Energy , National Institute of Advanced Industrial Science and Technology (AIST) , Ikeda, Osaka 563-8577 , Japan
| | - Zheng Liu
- Inorganic Functional Materials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98 Anagahora , Shimoshidami, Moriyamaku, Nagoya , Aichi 463-8560 , Japan
| | - Satoshi Horike
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) , Sakyo-ku, Kyoto 606-8501 , Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) , Sakyo-ku, Kyoto 606-8501 , Japan.,Research Institute of Electrochemical Energy , National Institute of Advanced Industrial Science and Technology (AIST) , Ikeda, Osaka 563-8577 , Japan
| |
Collapse
|
36
|
Colón YJ, Guo AZ, Antony LW, Hoffmann KQ, de Pablo JJ. Free energy of metal-organic framework self-assembly. J Chem Phys 2019; 150:104502. [DOI: 10.1063/1.5063588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yamil J. Colón
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ashley Z. Guo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lucas W. Antony
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Kyle Q. Hoffmann
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
37
|
Evans JD, Garai B, Reinsch H, Li W, Dissegna S, Bon V, Senkovska I, Fischer RA, Kaskel S, Janiak C, Stock N, Volkmer D. Metal–organic frameworks in Germany: From synthesis to function. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Xu H, Sommer S, Broge NLN, Gao J, Iversen BB. The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation. Chemistry 2019; 25:2051-2058. [PMID: 30480850 DOI: 10.1002/chem.201805024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Indexed: 11/06/2022]
Abstract
The concept of secondary building units (SBUs) is central to all science on metal-organic frameworks (MOFs), and they are widely used to design new MOF materials. However, the presence of SBUs during MOF formation remains controversial, and the formation mechanism of MOFs remains unclear, due to limited information about the evolution of prenucleation cluster structures. Here in situ pair distribution function (PDF) analysis was used to probe UiO-66 formation under solvothermal conditions. The expected SBU-a hexanuclear zirconium cluster-is present in the metal salt precursor solution. Addition of organic ligands results in a disordered structure with correlations up to 23 Å, resembling crystalline UiO-66. Heating leads to fast cluster aggregation, and further growth and ordering results in the crystalline product. Thus, SBUs are present already at room temperature and act as building blocks for MOF formation. The proposed formation steps provide insight for further development of MOF synthesis.
Collapse
Affiliation(s)
- Hui Xu
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark.,College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Sanna Sommer
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Nils Lau Nyborg Broge
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Junkuo Gao
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
| | - Bo Brummerstedt Iversen
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| |
Collapse
|
39
|
Ardila-Suárez C, Rodríguez-Pereira J, Baldovino-Medrano VG, Ramírez-Caballero GE. An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties. CrystEngComm 2019. [DOI: 10.1039/c8ce01722k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different zirconium precursors lead to different bulk properties but similar defective surfaces.
Collapse
Affiliation(s)
- Carolina Ardila-Suárez
- Grupo de Investigación en Polímeros
- Universidad Industrial de Santander
- Colombia
- Centro de Investigaciones en Catálisis (@CICATUIS)
- Universidad Industrial de Santander
| | - Jhonatan Rodríguez-Pereira
- Centro de Investigaciones en Catálisis (@CICATUIS)
- Universidad Industrial de Santander
- Colombia
- Laboratorio de Ciencia de Superficies (@Csss-UIS)
- Universidad Industrial de Santander
| | - Víctor G. Baldovino-Medrano
- Grupo de Investigación en Polímeros
- Universidad Industrial de Santander
- Colombia
- Centro de Investigaciones en Catálisis (@CICATUIS)
- Universidad Industrial de Santander
| | - Gustavo E. Ramírez-Caballero
- Grupo de Investigación en Polímeros
- Universidad Industrial de Santander
- Colombia
- Centro de Investigaciones en Catálisis (@CICATUIS)
- Universidad Industrial de Santander
| |
Collapse
|
40
|
Ohhashi T, Tsuruoka T, Takashima Y, Akamatsu K. Control of the nucleation and growth processes of metal–organic frameworks using a metal ion-doped polymer substrate for the construction of continuous films. CrystEngComm 2019. [DOI: 10.1039/c9ce01054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Densely-packed continuous MOF crystal-based films can be prepared by controlling the nucleation and growth processes.
Collapse
Affiliation(s)
- Takashi Ohhashi
- Department of Nanobiochemistry
- Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe 650-0047
- Japan
| | - Takaaki Tsuruoka
- Department of Nanobiochemistry
- Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe 650-0047
- Japan
| | - Yohei Takashima
- Department of Nanobiochemistry
- Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe 650-0047
- Japan
| | - Kensuke Akamatsu
- Department of Nanobiochemistry
- Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe 650-0047
- Japan
| |
Collapse
|
41
|
Rabon AM, Goolsby KL, Young MC. One-dimensional networks formed via the self-assembly of anthracenedibenzoic acid with zinc(II). ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1774-1780. [PMID: 30516164 DOI: 10.1107/s2053229618016649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022]
Abstract
Self-assembly of metal-organic coordination polymers occurs because of enthalpically favorable interactions. In the case of the bulky 4,4'-(anthracene-9,10-diyl)dibenzoic acid ligand (abdH2), we demonstrate that the presence of numerous π-π and C-H...π interactions outweigh the formation of saturated coordination complexes with zinc, leading to the formation of a dimethylformamide (DMF) solvate, namely 4,4'-(anthracene-9,10-diyl)dibenzoic acid dimethylformamide disolvate, C28H18O4·2C3H7NO or [(abdH2)(DMF)2], at low concentrations of zinc. Meanwhile, at higher zinc concentrations, the abdH2 ligand gives rise to the nonporous one-dimensional coordination polymer catena-poly[[bis(dimethylformamide-κO)zinc(II)]-μ-4,4'-(anthracene-9,10-diyl)dibenzoato-κ2O:O'], [Zn(C28H16O4)(C3H7NO)2]n or [Zn(abd)(DMF)2]n, when assembled in dimethylformamide, while a related compound is observed when N,N-dimethylacetamide (DMA) is used as the solvent, namely catena-poly[[[bis(N,N-dimethylacetamide-κO)zinc(II)]-μ-4,4'-(anthracene-9,10-diyl)dibenzoato-κ2O:O'] N,N-dimethylacetamide monosolvate], {[Zn(C28H16O4)(C4H9NO)2]·C4H9NO}n or {[Zn(abd)(DMA)2]·DMA}n. Attempts to use other amide-based solvents did not give rise to any other assembled structures.
Collapse
Affiliation(s)
- Allison M Rabon
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Kayla L Goolsby
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Michael C Young
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
42
|
|
43
|
Heidenreich N, Waitschat S, Reinsch H. Investigation of the Kinetic Stabilization of a Ce4+
-based MOF by in-situ Powder X-ray Diffraction. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Niclas Heidenreich
- Institute of Inorganic Chemistry; CAU Kiel; Max-Eyth- Straße 2 24118 Kiel Germany
- Deutsches Elektronen Synchrotron (DESY); Notkestraße 85 22607 Hamburg Germany
| | - Steve Waitschat
- Institute of Inorganic Chemistry; CAU Kiel; Max-Eyth- Straße 2 24118 Kiel Germany
| | - Helge Reinsch
- Institute of Inorganic Chemistry; CAU Kiel; Max-Eyth- Straße 2 24118 Kiel Germany
| |
Collapse
|
44
|
Zou L, Hou CC, Liu Z, Pang H, Xu Q. Superlong Single-Crystal Metal–Organic Framework Nanotubes. J Am Chem Soc 2018; 140:15393-15401. [DOI: 10.1021/jacs.8b09092] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lianli Zou
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Graduate School of Engineering, Kobe University, Nada
Ku, Kobe, Hyogo 657-8501, Japan
| | - Chun-Chao Hou
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Zheng Liu
- Inorganic Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Japan
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiang Xu
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Graduate School of Engineering, Kobe University, Nada
Ku, Kobe, Hyogo 657-8501, Japan
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
45
|
Millange F, Walton RI. MIL-53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal-Organic Framework. Isr J Chem 2018. [DOI: 10.1002/ijch.201800084] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Franck Millange
- Département de Chimie; Université de Versailles-St-Quentin-en-Yvelines; 45 Avenue des États-Unis 78035 Versailles cedex France
| | - Richard I. Walton
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| |
Collapse
|
46
|
Dare NA, Egan TJ. Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractEncapsulated metalloporphyrins have been widely studied for their use as efficient heterogeneous catalysts, inspired by the known catalytic activity of porphyrins in haemoproteins. The oxidation of organic substrates by haemoproteins is one of the well-known roles of these proteins, in which the haem (ferriprotoporphyrin IX = FePPIX) cofactor is the centre of reactivity. While these porphyrins are highly efficient catalysts in the protein environment, once removed, they quickly lose their reactivity. It is for this reason that they have garnered much interest in the field of heterogeneous catalysis of oxidation reactions. This review details current research in the field, focusing on the application of encapsulated haem, and other synthetic metalloporphyrins, applied to oxidation reactions.
Collapse
Affiliation(s)
- Nicola A. Dare
- Department of Chemistry, University of Cape Town, Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
47
|
Haouas M. Nuclear Magnetic Resonance Spectroscopy for In Situ Monitoring of Porous Materials Formation under Hydrothermal Conditions. MATERIALS 2018; 11:ma11081416. [PMID: 30103562 PMCID: PMC6119870 DOI: 10.3390/ma11081416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022]
Abstract
The employment of nuclear magnetic resonance (NMR) spectroscopy for studying crystalline porous materials formation is reviewed in the context of the development of in situ methodologies for the observation of the real synthesis medium, with the aim of unraveling the nucleation and growth processes mechanism. Both liquid and solid state NMR techniques are considered to probe the local environment at molecular level of the precursor species either soluble in the liquid phase or present in the reactive gel. Because the mass transport between the liquid and solid components of the heterogeneous system plays a key role in the synthesis course, the two methods provide unique insights and are complementary. Recent technological advances for hydrothermal conditions NMR are detailed and their applications to zeolite and related materials crystallization are illustrated. Achievements in the field are exemplified with some representative studies of relevance to zeolites, aluminophosphate zeotypes, and metal-organic frameworks.
Collapse
Affiliation(s)
- Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 av. des Etats-Unis, 78330 Versailles, France.
| |
Collapse
|
48
|
Martin NP, Volkringer C, Henry N, Trivelli X, Stoclet G, Ikeda-Ohno A, Loiseau T. Formation of a new type of uranium(iv) poly-oxo cluster {U 38} based on a controlled release of water via esterification reaction. Chem Sci 2018; 9:5021-5032. [PMID: 29938031 PMCID: PMC5994743 DOI: 10.1039/c8sc00752g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 01/20/2023] Open
Abstract
A new strategy for the synthesis of large poly-oxo clusters bearing 38 tetravalent uranium atoms {U38} has been developed by controlling the water release from the esterification reaction between a carboxylic acid and an alcohol. The molecular entity [U38O56Cl40(H2O)2(ipa)20]·(ipa) x (ipa = isopropanol) was crystallized from the solvothermal reaction of a mixture of UCl4 and benzoic acid in isopropanol at temperature ranging from 70 to 130 °C. Its crystal structure reveals the molecular assembly of the UO2 fluorite-like inner core {U14} with oxo groups bridging the uranium centers. The {U14} core is further surrounded by six tetrameric sub-units of {U4} to form the {U38} cluster. Its surface is decorated by either bridging- and terminal chloride anions or terminal isopropanol molecules. Another synthesis using the same reactant mixture at room temperature resulted in the crystallization of a discrete dinuclear complex [U2Cl4(bz)4(ipa)4]·(ipa)0.5 (bz = benzoate), in which each uranium center is coordinated by two chlorine atoms, four oxygen atoms from carboxylate groups and two additional oxygen atoms from isopropanol. The slow production of water released from the esterification of isopropanol allows the formation of the giant cluster with oxo bridges linking the uranium atoms at a temperature above 70 °C, whereas no such oxo groups are present in the dinuclear complex formed at room temperature. The kinetics of {U38} crystallization as well as the ester formation are analyzed and discussed. SAXS experiments indicate that the {U38} species are not dominant in the supernatant, but hexanuclear entities which are closely related to the [U6O8] type are formed.
Collapse
Affiliation(s)
- Nicolas P Martin
- Unité de Catalyse et Chimie du Solide (UCCS) , UMR CNRS 8181 , Université de Lille , ENSCL , Bat C7, BP 90108 , 59000 Lille , France . ; ; Tel: +33 3 20 434 122
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS) , UMR CNRS 8181 , Université de Lille , ENSCL , Bat C7, BP 90108 , 59000 Lille , France . ; ; Tel: +33 3 20 434 122
- Institut Universitaire de France (IUF) , 1 rue Descartes , 756231 Paris Cedex 05 , France
| | - Natacha Henry
- Unité de Catalyse et Chimie du Solide (UCCS) , UMR CNRS 8181 , Université de Lille , ENSCL , Bat C7, BP 90108 , 59000 Lille , France . ; ; Tel: +33 3 20 434 122
| | - Xavier Trivelli
- Université de Lille , CNRS , UMR 8576 , UGSF , Unité de Glycobiologie Structurale et Fonctionnelle , F-59000 , France
| | - Grégory Stoclet
- Unité Matériaux Et Transformations (UMET) , UMR CNRS 8207 , Université de Lille Nord de France , USTL-ENSCL , Bat C7, BP 90108 , 59652 Villeneuve d'Ascq , France
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstrasse 400 , 01328 Dresden , Germany
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide (UCCS) , UMR CNRS 8181 , Université de Lille , ENSCL , Bat C7, BP 90108 , 59000 Lille , France . ; ; Tel: +33 3 20 434 122
| |
Collapse
|
49
|
Van Vleet MJ, Weng T, Li X, Schmidt J. In Situ, Time-Resolved, and Mechanistic Studies of Metal–Organic Framework Nucleation and Growth. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00582] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mary J. Van Vleet
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tingting Weng
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Xinyi Li
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - J.R. Schmidt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
50
|
Wen G, Guo Z. Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|