1
|
Xiao P, Wang L, Toyoda H, Wang Y, Nakamura K, Huang J, Osuga R, Nishibori M, Gies H, Yokoi T. Revealing Active Sites and Reaction Pathways in Direct Oxidation of Methane over Fe-Containing CHA Zeolites Affected by the Al Arrangement. J Am Chem Soc 2024. [PMID: 39499854 DOI: 10.1021/jacs.4c11773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fe-containing zeolites are effective catalysts in converting the greenhouse gases CH4 and N2O into valuable chemicals. However, the activities of Fe-containing zeolites in methane conversion and N2O decomposition are frequently conflated, and the activities of different Fe species are still controversial. Herein, Fe-containing aluminosilicate CHA zeolites with Fe species at different spatial distances affected by the arrangement of framework Al atoms were synthesized in a one-pot manner in the presence or absence of Na. The arrangement of framework Al atoms was identified by 27Al and 29Si MAS NMR spectra and thermogravimetry-differential thermal analysis (TG-DTA) curves. Ultraviolet (UV)-vis, X-ray absorption spectroscopy (XAS), and NO adsorption fourier transform infrared spectroscopy (FTIR) spectra were adopted to analyze Fe speciation. The higher proportion of Fe species in the 6 MR of Fe-CHA zeolites in the presence of Na was confirmed by the NO adsorption FTIR spectrum. The activities of proximal and distant Fe sites in reactions including direct oxidation of methane to methanol, methanol to hydrocarbon, and N2O decomposition were compared at different temperatures to provide the corresponding active sites and reaction pathways. The distant, isolated Fe and isolated proton were more active in the direct oxidation of methane to methanol and tandem conversion of methanol to hydrocarbon reactions than the proximal, isolated Fe and paired protons, respectively. Additionally, proximal, isolated Fe sites afforded higher activity in N2O decomposition. These findings guide the design of highly active catalysts in methane oxidation, methanol to hydrocarbon, and N2O decomposition reactions, addressing energy and environmental concerns.
Collapse
Affiliation(s)
- Peipei Xiao
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hiroto Toyoda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yong Wang
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ryota Osuga
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Maiko Nishibori
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Hermann Gies
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- iPEACE223 Inc., Konwa Building, 1-12-22 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
2
|
Cheng Q, Yao X, Li G, Li G, Zheng L, Yang K, Emwas AH, Li X, Han Y, Gascon J. Atomically Dispersed Iron-Copper Dual-Metal Sites Synergistically Boost Carbonylation of Methane. Angew Chem Int Ed Engl 2024; 63:e202411048. [PMID: 38946177 DOI: 10.1002/anie.202411048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The direct liquid-phase oxidative carbonylation of methane, utilizing abundant natural gas, offers a mild and straightforward alternative. However, most catalysts proposed for this process suffer from low acetic acid yields due to few active sites and rapid C1 oxygenate generation, impeding their industrial feasibility. Herein, we report a highly efficient 0.1Cu/Fe-HZSM-5-TF (TF denotes template-free synthesis) catalyst featuring exclusively mononuclear Fe and Cu anchored in the ZSM-5 channels. Under optimized conditions, the catalyst achieved an unprecedented acetic acid yield of 40.5 mmol gcat -1 h-1 at 50 °C, tripling the previous records of 12.0 mmol gcat -1 h-1. Comprehensive characterization, isotope-labeled experiments and density functional theory (DFT) calculations reveal that the homogeneous mononuclear Fe sites are responsible for the activation and oxidation of methane, while the neighboring Cu sites play a key role in retarding the oxidation process, promoting C-C coupling for effective acetic acid synthesis. Furthermore, the methyl-group carbon in acetic acid originates solely from methane, while its carbonyl-group carbon is derived exclusively from CO, rather than the conversion of other C1 oxygenates. The proposed bimetallic catalyst design not only overcomes the limitations of current catalysts but also generalizes the oxidative carbonylation of other alkanes, demonstrating promising advancements in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Qingpeng Cheng
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xueli Yao
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708WG, The Netherlands
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaijie Yang
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Xingang Li
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yu Han
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900, Saudi Arabia
- Electron Microscopy Center, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Fang G, Yu W, Wang X, Lin J. Heterogeneous catalysis of methane hydroxylation with nearly total selectivity under mild conditions. Chem Commun (Camb) 2024; 60:11034-11051. [PMID: 39254608 DOI: 10.1039/d4cc02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The efficient utilization of methane, a vital component of natural gas, shale gas and methane hydrate, holds significant importance for global energy security and environmental sustainability. However, converting methane into value-added oxygenates presents a formidable challenge due to its inert nature. Direct selective oxidation of methane (DSOM) under mild conditions is essential for reducing energy consumption and carbon emissions compared with traditional indirect routes. Achieving total selectivity in methane hydroxylation remains elusive due to the competitive CO2 formation. This feature article highlights recent advancements in methane hydroxylation using thermo-, photo-, and electro-catalytic systems. Through strategically designing the structure of catalysts to control the reactive oxygen species and optimizing reaction parameters, significant progress has been made in enhancing oxygenate selectivity and minimizing overoxidation. A comprehensive understanding of the mechanisms underlying methane hydroxylation with total selectivity offers insights for improving catalyst design and reaction parameter optimization, promoting sustainable methane utilization.
Collapse
Affiliation(s)
- Geqian Fang
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, Lille F-59000, France
| | - Wenjun Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
4
|
Yasumura S, Nagai K, Miyazaki S, Qian Y, Chen D, Toyao T, Kamiya Y, Shimizu KI. Low-Temperature Methane Combustion Using Ozone over Coβ Catalyst. J Am Chem Soc 2024. [PMID: 39031765 DOI: 10.1021/jacs.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Catalytic methane (CH4) combustion is a promising approach to reducing the release of unburned methane in exhaust gas. Here, we report Co-exchanged β zeolite (Coβ) as an efficient catalyst for CH4 combustion using O3. A series of ion-exchanged β zeolites (Co, Ni, Mn, Fe, and Pd) are subjected to the catalytic test, and Coβ exhibits a superior performance in a low-temperature region (<100 °C). The results of X-ray absorption spectroscopy (XAS) and catalytic tests for Coβ with different Co loadings indicate the isolated Co species is the plausible active site. The reaction mechanism of CH4 combustion over the isolated Co2+ cation is theoretically investigated by the single-component artificial force-induced reaction (SC-AFIR) method to thoroughly search for possible reaction routes. The resulting path toward CO2 formation shows an activation energy of 73 kJ/mol for the rate-determining step and an exothermicity of 1025 kJ/mol, which supports the experimental results. During a long-term catalytic test for 160 h without external heating, the CH4 conversion gradually decreases from 80 to 40%, but the conversion fully recovers after dehydration at 500 °C (0.5 h). The copresence of H2O and CO exhibits a negative impact on the catalytic activity, while NO and SO2 do not markedly change the catalytic activity.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Ken Nagai
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Shinta Miyazaki
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Duotian Chen
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yuichi Kamiya
- Faculty of Environmental Earth Science, Hokkaido University, N-5, K-10, Kita-ku, Sapporo 060-0810, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
5
|
Su HS, Liu Y, Tian H, Chen D, Shen Q, Chang X, Lu Q, Xu B. Selective C-H Bond Activation in Propane with Molecular Oxygen over Cu(I)-ZSM-5 at Ambient Conditions. J Am Chem Soc 2024; 146:17170-17179. [PMID: 38865584 DOI: 10.1021/jacs.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Selective activation of C-H bonds in light alkanes under mild conditions is challenging but holds the promise of efficient upgrading of abundant hydrocarbons. In this work, we report the conversion of propane to propylene with ∼95% selectivity on Cu(I)-ZSM-5 with O2 at room temperature and pressure. The intraporous Cu(I) species was oxidized to Cu(II) during the reaction but could be regenerated with H2 at 220 °C. Diffuse reflectance ultraviolet spectroscopy indicated the presence of both Cu+-O2 and Cu2(μ-O2)2+ species in the zeolite pores during the reaction, and electron paramagnetic resonance results showed that propane activation occurred via a radical-mediated pathway distinct from that with H2O2 as the oxidant. Correlation between spectroscopic and reactivity results on Cu(I)-ZSM-5 with different Cu loadings suggests that the isolated intraporous Cu(I) species is the main active species in propane activation.
Collapse
Affiliation(s)
- Hai-Sheng Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Yiwei Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Hao Tian
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Dinghui Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Qikai Shen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Inner Mongolia 017000, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- Ordos Laboratory, Inner Mongolia 017000, China
| |
Collapse
|
6
|
He Z, Zhang H. Converting CO 2 Into Natural Gas Within the Autoclave: A Kinetic Study on Hydrogenation of Carbonates in Aqueous Solution. CHEMSUSCHEM 2024:e202400478. [PMID: 38923202 DOI: 10.1002/cssc.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Catalytic conversion of carbon dioxide (CO2) into value-added chemicals is of pivotal importance, well the cost of capturing CO2 from dilute atmosphere is super challenge. One promising strategy is combining the adsorption and transformation at one step, such as applying alkali solution that could selectively reduce carbonate (CO3 2-) as consequences of CO2 adsorption. Due to complexity of this system, the mechanistic details on controlling the hydrogenation have not been investigated in depth. Herein, Ru/TiO2 catalyst was applied as a probe to elucidate the mechanism of CO3 2- activation, in which with thermodynamic and kinetic investigations, a compact Langmuir-Hinshelwood reaction model was established which suggests that the overall rate of CO3 2- hydrogenation was controlled by a specific C-O bond rupture elementary step within HCOO- and the Ru surface was mainly covered by CO3 2- or HCOO- at independent conditions. This assumption was further supported by negligible kinetic isotope effects (kH/kD≈1), similarity on reaction barriers of CO3 2- and HCOO- hydrogenation (ΔH≠ hydr,Na2CO3 and ΔH≠ hydr,HCOONa) and a non-variation of entropy (ΔS≠ hydr≈0). More interestingly, the alkalinity of the solution is certainly like a two sides in a sword and could facilitate the adsorption of CO2 while hold back catalysis during CO3 2- hydrogenation.
Collapse
Affiliation(s)
- Zhiwei He
- School of Materials Science and Engineering, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| |
Collapse
|
7
|
Yamada Y, Miwa Y, Toyoda Y, Uno Y, Phung QM, Tanaka K. Effect of porphyrin ligands on the catalytic CH 4 oxidation activity of monocationic μ-nitrido-bridged iron porphyrinoid dimers by using H 2O 2 as an oxidant. Dalton Trans 2024; 53:6556-6567. [PMID: 38525694 DOI: 10.1039/d3dt04313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The μ-nitrido-bridged iron phthalocyanine homodimer is a potent molecule-based CH4 oxidation catalyst that can effectively oxidize chemically stable CH4 under mild reaction conditions in an acidic aqueous solution including an oxidant such as H2O2. The reactive intermediate is a high-valent iron-oxo species generated upon reaction with H2O2. However, a detailed comparison of the CH4 oxidation activity of the μ-nitrido-bridged iron phthalocyanine dimer with those of μ-nitrido-bridged iron porphyrinoid dimers containing one or two porphyrin ring(s) has not been yet reported, although porphyrins are the most important class of porphyrinoids. Herein, we compare the catalytic CH4 and CH3CH3 oxidation activities of a monocationic μ-nitrido-bridged iron porphyrin homodimer and a monocationic μ-nitrido-bridged heterodimer of an iron porphyrin and an iron phthalocyanine with those of a monocationic μ-nitrido-bridged iron phthalocyanine homodimer in an acidic aqueous solution containing H2O2 as an oxidant. It was demonstrated that the CH4 oxidation activities of monocationic μ-nitrido-bridged iron porphyrinoid dimers containing porphyrin ring(s) were much lower than that of a monocationic μ-nitrido-bridged iron phthalocyanine homodimer. These findings suggested that the difference in the electronic structure of the porphyrinoid rings of monocationic μ-nitrido-bridged iron porphyrinoid dimers strongly affected their catalytic light alkane oxidation activities.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yusuke Miwa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Yuka Toyoda
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshiki Uno
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
- Institute of Transformaytive Bio-Molecules (ITBM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
8
|
Li B, Mu J, Long G, Song X, Huang E, Liu S, Wei Y, Sun F, Feng S, Yuan Q, Cai Y, Song J, Dong W, Zhang W, Yang X, Yan L, Ding Y. Water-participated mild oxidation of ethane to acetaldehyde. Nat Commun 2024; 15:2555. [PMID: 38519506 PMCID: PMC10959925 DOI: 10.1038/s41467-024-46884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
The direct conversion of low alkane such as ethane into high-value-added chemicals has remained a great challenge since the development of natural gas utilization. Herein, we achieve an efficient one-step conversion of ethane to C2 oxygenates on a Rh1/AC-SNI catalyst under a mild condition, which delivers a turnover frequency as high as 158.5 h-1. 18O isotope-GC-MS shows that the formation of ethanol and acetaldehyde follows two distinct pathways, where oxygen and water directly participate in the formation of ethanol and acetaldehyde, respectively. In situ formed intermediate species of oxygen radicals, hydroxyl radicals, vinyl groups, and ethyl groups are captured by laser desorption ionization/time of flight mass spectrometer. Density functional theory calculation shows that the activation barrier of the rate-determining step for acetaldehyde formation is much lower than that of ethanol, leading to the higher selectivity of acetaldehyde in all the products.
Collapse
Affiliation(s)
- Bin Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ende Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyue Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Wei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Siquan Feng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qiao Yuan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Cai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Hefei National Laboratory, Hefei, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
9
|
Yin H, Wu B, Ma X, Su G, Han M, Lin H, Liu X, Li H, Zeng J. CO-Assisted Methane Oxidation into Oxygenates over Surface Platinum-Titanium Alloyed Layers. NANO LETTERS 2024. [PMID: 38511842 DOI: 10.1021/acs.nanolett.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Methane oxidation using molecular oxygen remains a grand challenge in which the obstacle is not only the activation of methane but also the reaction with oxygen, considering the mismatch of the ground spin states. Herein, we report TiO2-supported Pt nanocrystals (Pt/TiO2) with surface Pt-Ti alloyed layers that directly convert methane into oxygenates by using O2 as the oxidant with the assistance of CO. The oxygenate yield reached 749.8 mmol gPt-1 in a H2O aqueous solution over 0.1% Pt/TiO2 under 31 bar of mixed gas (20:5:6 CH4:CO:O2) at 150 °C for 3 h, while the CH3OH selectivity was 62.3%. On the basis of the control experiments and spectroscopic results, we identified the surface Pt-Ti alloy as the active sites. Moreover, CO promoted the dissociation of O2 on the surface of Pt-Ti alloyed layers and the subsequent activation of CH4 to form oxygenated products.
Collapse
Affiliation(s)
- Haibin Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bo Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinlong Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guangning Su
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mei Han
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongfei Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinglong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
10
|
Kishore MA, Lee S, Yoo JS. Fundamental Limitation in Electrochemical Methane Oxidation to Alcohol: A Review and Theoretical Perspective on Overcoming It. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301912. [PMID: 37740423 PMCID: PMC10625077 DOI: 10.1002/advs.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Indexed: 09/24/2023]
Abstract
The direct conversion of gaseous methane to energy-dense liquid derivatives such as methanol and ethanol is of profound importance for the more efficient utilization of natural gas. However, the thermo-catalytic partial oxidation of this simple alkane has been a significant challenge due to the high C-H bond energy. Exploiting electrocatalysis for methane activation via active oxygen species generated on the catalyst surface through electrochemical water oxidation is generally considered as economically viable and environmentally benign compared to energy-intensive thermo-catalysis. Despite recent progress in electrochemical methane oxidation to alcohol, the competing oxygen evolution reaction (OER) still impedes achieving high faradaic efficiency and product selectivity. In this review, an overview of current progress in electrochemical methane oxidation, focusing on mechanistic insights on methane activation, catalyst design principles based on descriptors, and the effect of reaction conditions on catalytic performance are provided. Mechanistic requirements for high methanol selectivity, and limitations of using water as the oxidant are discussed, and present the perspective on how to overcome these limitations by employing carbonate ions as the oxidant.
Collapse
Affiliation(s)
- M.R. Ashwin Kishore
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Sungwoo Lee
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| |
Collapse
|
11
|
Vali SA, Markeb AA, Moral-Vico J, Font X, Sánchez A. Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2754. [PMID: 37887905 PMCID: PMC10609106 DOI: 10.3390/nano13202754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Methane and carbon dioxide are the main contributors to global warming, with the methane effect being 25 times more powerful than carbon dioxide. Although the sources of methane are diverse, it is a very volatile and explosive gas. One way to store the energy content of methane is through its conversion to methanol. Methanol is a liquid under ambient conditions, easy to transport, and, apart from its use as an energy source, it is a chemical platform that can serve as a starting material for the production of various higher-value products. Accordingly, the transformation of methane to methanol has been extensively studied in the literature, using traditional catalysts as different types of zeolites. However, in the last few years, a new generation of catalysts has emerged to carry out this transformation with higher conversion and selectivity, and more importantly, under mild temperature and pressure conditions. These new catalysts typically involve the use of a highly porous supporting material such as zeolite, or more recently, metal-organic frameworks (MOFs) and graphene, and metallic nanoparticles or a combination of different types of nanoparticles that are the core of the catalytic process. In this review, recent advances in the porous supports for nanoparticles used for methane oxidation to methanol under mild conditions are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
12
|
Khairova R, Komaty S, Dikhtiarenko A, Cerrillo JL, Veeranmaril SK, Telalović S, Tapia AA, Hazemann JL, Ruiz-Martinez J, Gascon J. Zeolite Synthesis in the Presence of Metallosiloxanes for the Quantitative Encapsulation of Metal Species for the Selective Catalytic Reduction (SCR) of NO x. Angew Chem Int Ed Engl 2023; 62:e202311048. [PMID: 37581296 DOI: 10.1002/anie.202311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
Metal encapsulation in zeolitic materials through one-pot hydrothermal synthesis (HTS) is an attractive technique to prepare zeolites with a high metal dispersion. Due to its simplicity and the excellent catalytic performance observed for several catalytic systems, this method has gained a great deal of attention over the last few years. While most studies apply synthetic methods involving different organic ligands to stabilize the metal under synthesis conditions, here we report the use of metallosiloxanes as an alternative metal precursor. Metallosiloxanes can be synthesized from simple and cost-affordable chemicals and, when used in combination with zeolite building blocks under standard synthesis conditions, lead to quantitative metal loading and high dispersion. Thanks to the structural analogy of siloxane with TEOS, the synthesis gel stabilizes by forming siloxane bridges that prevent metal precipitation and clustering. When focusing on Fe-encapsulation, we demonstrate that Fe-MFI zeolites obtained by this method exhibit high catalytic activity in the NH3 -mediated selective catalytic reduction (SCR) of NOx along with a good H2 O/SO2 tolerance. This synthetic approach opens a new synthetic route for the encapsulation of transition metals within zeolite structures.
Collapse
Affiliation(s)
- Rushana Khairova
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Sarah Komaty
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Alla Dikhtiarenko
- Imaging and Characterization Department, KAUST Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jose Luis Cerrillo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Sudheesh Kumar Veeranmaril
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Selvedin Telalović
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Antonio Aguilar Tapia
- Institut de Chimie Moléculaire de Grenoble, UAR2607 CNRS, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS, Université Grenoble Alpes, 38000, Grenoble, France
| | - Javier Ruiz-Martinez
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
13
|
Li M, Li H, Ling C, Shang H, Wang H, Zhao S, Liang C, Mao C, Guo F, Zhou B, Ai Z, Zhang L. Highly selective synthesis of surface Fe IV=O with nanoscale zero-valent iron and chlorite for efficient oxygen transfer reactions. Proc Natl Acad Sci U S A 2023; 120:e2304562120. [PMID: 37695890 PMCID: PMC10515137 DOI: 10.1073/pnas.2304562120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/05/2023] [Indexed: 09/13/2023] Open
Abstract
High-valent iron-oxo species (FeIV=O) has been a long-sought-after oxygen transfer reagent in biological and catalytic chemistry but suffers from a giant challenge in its gentle and selective synthesis. Herein, we propose a new strategy to synthesize surface FeIV=O (≡FeIV=O) on nanoscale zero-valent iron (nZVI) using chlorite (ClO2-) as the oxidant, which possesses an impressive ≡FeIV=O selectivity of 99%. ≡FeIV=O can be energetically formed from the ferrous (FeII) sites on nZVI through heterolytic Cl-O bond dissociation of ClO2- via a synergistic effect between electron-donating surface ≡FeII and proximal electron-withdrawing H2O, where H2O serves as a hydrogen-bond donor to the terminal O atom of the adsorbed ClO2- thereby prompting the polarization and cleavage of Cl-O bond for the oxidation of ≡FeII toward the final formation of ≡FeIV=O. With methyl phenyl sulfoxide (PMS16O) as the probe molecule, the isotopic labeling experiment manifests an exclusive 18O transfer from Cl18O2- to PMS16O18O mediated by ≡FeIV=18O. We then showcase the versatility of ≡FeIV=O as the oxygen transfer reagent in activating the C-H bond of methane for methanol production and facilitating selective triphenylphosphine oxide synthesis with triphenylphosphine. We believe that this new ≡FeIV=O synthesis strategy possesses great potential to drive oxygen transfer for efficient high-value-added chemical synthesis.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chengliang Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
14
|
Wang Y, Sun J, Tsubaki N. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis. Acc Chem Res 2023; 56:2341-2353. [PMID: 37579494 DOI: 10.1021/acs.accounts.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
ConspectusC1 catalysis, which refers to the conversion of molecules with a single carbon atom, such as CO, CO2, and CH4, into clean fuels and basic building blocks for chemical industries, has built a bridge between carbon resource utilization and valuable chemical supply. With respect to the goal of carbon neutrality, C1 catalysis also plays an essential role owing to its integrated functions in the green catalytic process with fewer CO2 emissions and even direct high-value-added utilization of greenhouse gases (CO2 and CH4). However, the inert nature of the C-O or C-H bond in C1 molecules as well as uncontrollable C-C coupling render C1 catalysis challenging. The rational design of highly active catalytic materials (denoted as C1 catalysts) with strong capacities for C-O or C-H bond activation and C-C coupling by convenient nanomaterials fabrication methods to boost the catalytic performance of C1 molecule conversion, including targeted product selectivity and long-term stability, is the cornerstone of C1 catalysis.Notably, the familiar concepts in heterogeneous catalysis, such as tandem catalysis and confinement catalysis, are applicable for C1 catalysis and have been successfully used to design a C1 catalyst. Regarding the tandem catalysis concept that integrates multiple reactions in a single-pass via a bi- or multifunctional catalyst, it is promising to shed new light on the oriented conversion of C1 molecules, especially for C2+ hydrocarbon or oxygenate synthesis. The confinement effect is powerful for controlling the product distribution and enhancing activation efficiency of inert chemical bonds in C1 catalysis due to the unique reactants/intermediate adsorption and evolution behaviors on the confined catalytic interface with a special electronic environment. Moreover, metal-support interactions (MSIs), electronic properties of the active site, and catalytic engineering issues are also susceptible to the C1 molecule conversion performance. Therefore, under the guidance of basic and novel rules in heterogeneous catalysis, the innovation of catalytic materials with the aid of advanced catalytic materials fabrication techniques has always been a hot research topic in C1 catalysis.In this Account, we briefly describe the challenges in thermal-catalytic C1 molecule (mainly CO, CO2, and CH4) conversion. At the same time, the synergistic functioning of the physicochemical properties of the catalytic materials on the performance in C1 molecule conversion is highlighted. More importantly, we summarize our progress in rationally designing tailor-made C1 catalysts to enhance C1 molecule activation efficiency and targeted product selectivity via powerful nanomaterials fabrication techniques, such as traditional wet-chemistry strategies, the magnetron sputtering method, and 3D printing technology. Specifically, the ingenious capsule catalyst and ammonia pools in zeolites fabricated by a wet chemistry process possess an extraordinary effect on the transformation of CO, CO2, and CH4 molecules. Also, the sputtering method is reliable in modulating the electronic properties of metallic active sites for C1 molecule conversion, thereby tailoring the final product selectivity. Furthermore, we showcase the strong capability of metal 3D printing technology in fabricating a self-catalytic reactor, by which the functions of the reaction field and nanoscale active sites are well integrated. Finally, we predict the future research opportunities in highly efficient C1 catalyst design with the assistance of clever nanomaterials fabrication techniques.
Collapse
Affiliation(s)
- Yang Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| |
Collapse
|
15
|
Yang CH, Liu XC, Li Y, Yuan S, Wang T, Zhou ZY, Sun SG. Selective Conversion of Propane by Electrothermal Catalysis in Proton Exchange Membrane Fuel Cell. CHEMSUSCHEM 2023:e202300699. [PMID: 37561115 DOI: 10.1002/cssc.202300699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Electrochemical conversion of alkanes to high value-added oxygenated products under a mild condition is of significance. Herein, we effectively couple the electrocatalysis of H2 O2 with the thermo-catalysis of propane oxidation in the cathode of proton exchange membrane fuel cell. Specifically, H2 O2 is in-situ generated on the nitric acid-treated carbon black (C-acid) via 2e- process of oxygen reduction reaction, and then transports to the Fe active sites of MIL-53 (Al, Fe) metal-organic frameworks for propane oxidation. Based on this strategy, the space-time yield of C3 oxygenated products of propane oxidation reaches 2.65 μmol h-1 cm-2 , which represents a new benchmark for electrochemical alkane oxidation in the fuel-cell-type electrolyzer. This study highlights the importance of multifunctional composite catalysts in the field of electrosynthesis.
Collapse
Affiliation(s)
- Cong-Hua Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao-Chen Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Youcong Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Tao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
16
|
Kim J, Kim JH, Oh C, Yun H, Lee E, Oh HS, Park JH, Hwang YJ. Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H 2O 2 under ambient conditions. Nat Commun 2023; 14:4704. [PMID: 37543676 PMCID: PMC10404228 DOI: 10.1038/s41467-023-40415-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Direct partial oxidation of methane to liquid oxygenates has been regarded as a potential route to valorize methane. However, CH4 activation usually requires a high temperature and pressure, which lowers the feasibility of the reaction. Here, we propose an electro-assisted approach for the partial oxidation of methane, using in-situ cathodically generated reactive oxygen species, at ambient temperature and pressure. Upon using acid-treated carbon as the electrocatalyst, the electro-assisted system enables the partial oxidation of methane in an acidic electrolyte to produce oxygenated liquid products. We also demonstrate a high production rate of oxygenates (18.9 μmol h-1) with selective HCOOH production. Mechanistic analysis reveals that reactive oxygen species such as ∙OH and ∙OOH radicals are produced and activate CH4 and CH3OH. In addition, unstable CH3OOH generated from methane partial oxidation can be additionally reduced to CH3OH on the cathode, and so-produced CH3OH is further oxidized to HCOOH, allowing selective methane partial oxidation.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoul, 02792, Republic of Korea
| | - Jae Hyung Kim
- Clean Fuel Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Cheoulwoo Oh
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoul, 02792, Republic of Korea
| | - Hyewon Yun
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Eunchong Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Yun Jeong Hwang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Fu Y, Li C, An S, Li W, Yuan L. Cu and Zn Bimetallic Co-Modified H-MOR Catalyst for Direct Oxidation of Low-Concentration Methane to Methanol. ACS OMEGA 2023; 8:27179-27189. [PMID: 37546673 PMCID: PMC10399163 DOI: 10.1021/acsomega.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
The direct oxidation of low-concentration methane to value-added chemicals can not only reduce carbon emission but also provide an alternative production route for fossil fuels. Herein, we proposed a novel catalyst for the direct oxidation of low-concentration methane to methanol via the impregnation method, which selected copper and zinc as co-modifiers to modify the MOR catalyst. The highest methanol yield of 71.35 μmol·gcat-1·h-1 was obtained over a bimetallic Cu0.5Zn0.35-MOR catalyst. The catalyst retained good activity after three cycles of testing experiments, indicating good recyclability. Based on the results of performance tests and characterization studies, it was confirmed that Cu species bound to the zeolite framework were the main active sites for methane oxidation. The introduction of Zn decreased the generation of the octahedrally coordinated extra-framework aluminum, which promoted the dispersion of Cu within the zeolite framework. In other words, more tetrahedrally coordinated FAl-stabilized Cu species were presented in our CuZn-MOR catalyst system in comparison to the monometallic Cu-MOR catalyst. Benefiting from the aforementioned modification, the agglomerative sintering of the metal during the reaction was effectively prevented. This work may provide a feasible guide for the future optimization of Cu-based catalysts designed for the selective oxidation of methane.
Collapse
Affiliation(s)
- Yan Fu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Cunshuo Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shengxin An
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Liang Yuan
- National & Local Joint Engineering Research Center of Precision Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
18
|
Wang W, Zhou W, Tang Y, Cao W, Docherty SR, Wu F, Cheng K, Zhang Q, Copéret C, Wang Y. Selective Oxidation of Methane to Methanol over Au/H-MOR. J Am Chem Soc 2023. [PMID: 37267262 DOI: 10.1021/jacs.3c04260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Selective oxidation of methane to methanol by dioxygen (O2) is an appealing route for upgrading abundant methane resource and represents one of the most challenging reactions in chemistry due to the overwhelmingly higher reactivity of the product (methanol) versus the reactant (methane). Here, we report that gold nanoparticles dispersed on mordenite efficiently catalyze the selective oxidation of methane to methanol by molecular oxygen in aqueous medium in the presence of carbon monoxide. The methanol productivity reaches 1300 μmol gcat-1 h-1 or 280 mmol gAu-1 h-1 with 75% selectivity at 150 °C, outperforming most catalysts reported under comparable conditions. Both hydroxyl radicals and hydroperoxide species participate in the activation and conversion of methane, while it is shown that the lower affinity of methanol on gold mainly accounts for higher methanol selectivity.
Collapse
Affiliation(s)
- Wangyang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Yuchen Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weicheng Cao
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Fangwei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Dummer N, Willock DJ, He Q, Howard MJ, Lewis RJ, Qi G, Taylor SH, Xu J, Bethell D, Kiely CJ, Hutchings GJ. Methane Oxidation to Methanol. Chem Rev 2023; 123:6359-6411. [PMID: 36459432 PMCID: PMC10176486 DOI: 10.1021/acs.chemrev.2c00439] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.
Collapse
Affiliation(s)
- Nicholas
F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - David J. Willock
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Qian He
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore117575, Singapore
| | - Mark J. Howard
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Richard J. Lewis
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Guodong Qi
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Jun Xu
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Don Bethell
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, United
Kingdom
| | - Christopher J. Kiely
- Department
of Materials Science and Engineering, Lehigh
University, 5 East Packer
Avenue, Bethlehem, Pennsylvania18015, United States
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| |
Collapse
|
20
|
van Steen E, Guo J, Hytoolakhan Lal Mahomed N, Leteba GM, Mahlaba SVL. Selective, Aerobic Oxidation of Methane to Formaldehyde over Platinum ‐ a Perspective. ChemCatChem 2023. [DOI: 10.1002/cctc.202201238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Yamada Y, Morita K, Sugiura T, Toyoda Y, Mihara N, Nagasaka M, Takaya H, Tanaka K, Koitaya T, Nakatani N, Ariga-Miwa H, Takakusagi S, Hitomi Y, Kudo T, Tsuji Y, Yoshizawa K, Tanaka K. Stacking of a Cofacially Stacked Iron Phthalocyanine Dimer on Graphite Achieved High Catalytic CH 4 Oxidation Activity Comparable to That of pMMO. JACS AU 2023; 3:823-833. [PMID: 37006766 PMCID: PMC10052267 DOI: 10.1021/jacsau.2c00618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/19/2023]
Abstract
Numerous biomimetic molecular catalysts inspired by methane monooxygenases (MMOs) that utilize iron or copper-oxo species as key intermediates have been developed. However, the catalytic methane oxidation activities of biomimetic molecule-based catalysts are still much lower than those of MMOs. Herein, we report that the close stacking of a μ-nitrido-bridged iron phthalocyanine dimer onto a graphite surface is effective in achieving high catalytic methane oxidation activity. The activity is almost 50 times higher than that of other potent molecule-based methane oxidation catalysts and comparable to those of certain MMOs, in an aqueous solution containing H2O2. It was demonstrated that the graphite-supported μ-nitrido-bridged iron phthalocyanine dimer oxidized methane, even at room temperature. Electrochemical investigation and density functional theory calculations suggested that the stacking of the catalyst onto graphite induced partial charge transfer from the reactive oxo species of the μ-nitrido-bridged iron phthalocyanine dimer and significantly lowered the singly occupied molecular orbital level, thereby facilitating electron transfer from methane to the catalyst in the proton-coupled electron-transfer process. The cofacially stacked structure is advantageous for stable adhesion of the catalyst molecule on the graphite surface in the oxidative reaction condition and for preventing decreases in the oxo-basicity and generation rate of the terminal iron-oxo species. We also demonstrated that the graphite-supported catalyst exhibited appreciably enhanced activity under photoirradiation owing to the photothermal effect.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
- Research
Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Kentaro Morita
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Takuya Sugiura
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Yuka Toyoda
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Nozomi Mihara
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | | | - Hikaru Takaya
- Institute
for Molecular Science, Myodaiji, Okazaki444-8585, Japan
| | - Kiyohisa Tanaka
- Institute
for Molecular Science, Myodaiji, Okazaki444-8585, Japan
| | - Takanori Koitaya
- Institute
for Molecular Science, Myodaiji, Okazaki444-8585, Japan
| | - Naoki Nakatani
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji192-0397, Tokyo, Japan
| | - Hiroko Ariga-Miwa
- Institute
for Catalysis, Hokkaido University, Kita 21-10, Kita-ku, Sapporo001-0021, Hokkaido, Japan
| | - Satoru Takakusagi
- Institute
for Catalysis, Hokkaido University, Kita 21-10, Kita-ku, Sapporo001-0021, Hokkaido, Japan
| | - Yutaka Hitomi
- Department
of Molecular Chemistry and Biochemistry, Graduate School of Science
and Engineering, Doshisha University, Kyotanabe610-0321, Kyoto, Japan
| | - Toshiji Kudo
- Daltonics
Division, Bruker Japan K.K., 3-9, Moriya-cho, Kanagawa-ku, Yokohama-shi221-0022, Kanagawa, Japan
| | - Yuta Tsuji
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka819-0385, Japan
| | - Kazunari Yoshizawa
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka819-0385, Japan
| | - Kentaro Tanaka
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| |
Collapse
|
22
|
Wu B, Huang M, Yu X, Liu J, Lin T, Zhong L. Selective Oxidation of Methane to Oxygenates using Oxygen via Tandem Catalysis. Chemistry 2023; 29:e202203057. [PMID: 36527358 DOI: 10.1002/chem.202203057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Selective oxidation of methane to oxygenates using low-cost and environment-friendly molecular oxygen (O2 ) under mild reaction conditions is a promising strategy but still remains grand challenge. It is of great importance to accelerate the activation of O2 to generate highly active oxygen species, such as hydroxyl peroxide and hydroxyl species to improve catalytic performance for selective oxidation of methane. Selective oxidation of methane using O2 by coupling with in situ generation of hydrogen peroxide via tandem catalysis ensures the easy formation of active oxygen species for methane activation, leading to high oxygenates productivity under mild conditions. In this concept, we summarized the recent progresses for selective oxidation of methane to oxygenates using O2 based on tandem catalysis by coupling with in situ generation of hydrogen peroxide. The remaining challenges and future perspectives for selective oxidation of methane to oxygenates via tandem catalysis were also proposed.
Collapse
Affiliation(s)
- Bo Wu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Min Huang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China, PR China
| | - Xing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jin Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China, PR China
| | - Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China, PR China
| |
Collapse
|
23
|
Methane Oxidation over the Zeolites-Based Catalysts. Catalysts 2023. [DOI: 10.3390/catal13030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Zeolites have ordered pore structures, good spatial constraints, and superior hydrothermal stability. In addition, the active metal elements inside and outside the zeolite framework provide the porous material with adjustable acid–base property and good redox performance. Thus, zeolites-based catalysts are more and more widely used in chemical industries. Combining the advantages of zeolites and active metal components, the zeolites-based materials are used to catalyze the oxidation of methane to produce various products, such as carbon dioxide, methanol, formaldehyde, formic acid, acetic acid, and etc. This multifunction, high selectivity, and good activity are the key factors that enable the zeolites-based catalysts to be used for methane activation and conversion. In this review article, we briefly introduce and discuss the effect of zeolite materials on the activation of C–H bonds in methane and the reaction mechanisms of complete methane oxidation and selective methane oxidation. Pd/zeolite is used for the complete oxidation of methane to carbon dioxide and water, and Fe- and Cu-zeolite catalysts are used for the partial oxidation of methane to methanol, formaldehyde, formic acid, and etc. The prospects and challenges of zeolite-based catalysts in the future research work and practical applications are also envisioned. We hope that the outcome of this review can stimulate more researchers to develop more effective zeolite-based catalysts for the complete or selective oxidation of methane.
Collapse
|
24
|
Ji Y, Blankenship AN, van Bokhoven JA. Heterogeneous Mn-Based Catalysts for the Aerobic Conversion of Methane-to-Methyl Trifluoroacetate. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Yinjie Ji
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrea N. Blankenship
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
25
|
Wang K, Luo L, Wang C, Tang J. Photocatalytic methane activation by dual reaction sites co-modified WO3. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
26
|
Lazaridou A, Smith LR, Pattisson S, Dummer NF, Smit JJ, Johnston P, Hutchings GJ. Recognizing the best catalyst for a reaction. Nat Rev Chem 2023; 7:287-295. [PMID: 37117418 DOI: 10.1038/s41570-023-00470-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Heterogeneous catalysis is immensely important, providing access to materials essential for the well-being of society, and improved catalysts are continuously required. New catalysts are frequently tested under different conditions making it difficult to determine the best catalyst. Here we describe a general approach to identify the best catalyst using a data set based on all reactions under kinetic control to calculate a set of key performance indicators (KPIs). These KPIs are normalized to take into account the variation in reaction conditions. Plots of the normalized KPIs are then used to demonstrate the best catalyst using two case studies: (i) acetylene hydrochlorination, a reaction of current interest for vinyl chloride manufacture, and (ii) the selective oxidation of methane to methanol using O2 in water, a reaction that has attracted very recent attention in the academic literature.
Collapse
|
27
|
Mild Oxidation of Methane to Oxygenates with O2 and CO on Fluorine Modified TS-1 Supported Rh Single-Atom Catalyst in a Flow Reactor. Catal Letters 2023. [DOI: 10.1007/s10562-023-04298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
29
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
30
|
Yashnik SA, Surovtsova TA, Salnikov AV, Parmon VN. Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:671. [PMID: 36676413 PMCID: PMC9860764 DOI: 10.3390/ma16020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The catalyst preparation route is well known to affect the copper loading and its electronic state, which influence the properties of the resulting catalyst. Electronic states of copper ions in copper-containing silicalites with the MFI-framework topology obtained by a solid-state transformation S (SST) were studied with using EPR, UV-Vis DR, XRD, H2-TPR and chemical differentiating dissolution. They were compared with Cu-ZSM-5 and Cu-MFI (silicalite) prepared via the ion-exchange and incipient wetness impregnation. SST route was shown to provide the formation of MFI structure and favor clustering of Cu-ions near surface and subsurface of zeolite crystals. The square-planar oxide clusters of Cu2+-ions and the finely dispersed CuO nanoparticles with the size down to 20 nm were revealed in Cu-MFI-SST samples with low (0.5-1.0 wt.%) and high (16 wt.%) Cu-content. The CuO nanoparticles were characterized by energy band gap 1-1.16 eV. The CuO-like clusters were characterized by ligand-to-metal charge transfer band (CTB L → M) at 32,000 cm-1 and contain EPR-visible surface Cu2+-ions. The low Cu-loaded SST-samples had poor redox properties and activity towards different solvents due to decoration of copper-species by silica; whereas CuO nanoparticles were easily removed from the catalyst by HCl. In the ion-exchanged samples over MFI-silicalite and ZSM-5, Cu2+-ions were mainly CuO-like clusters and isolated Cu2+ ions inside MFI channels. Their redox properties and tendency to dissolve in acidic solutions differed from the behavior of SST-series samples.
Collapse
|
31
|
Li H, Shen Y, Xiao X, Jiang H, Gu Q, Zhang Y, Lin L, Luo W, Zhou S, Zhao J, Wang A, Zhang T, Yang B. Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yuebo Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang110034, China
| | - Hong Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
32
|
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Sun X, Chen X, Fu C, Yu Q, Zheng XS, Fang F, Liu Y, Zhu J, Zhang W, Huang W. Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates. Nat Commun 2022; 13:6677. [PMID: 36335138 PMCID: PMC9637122 DOI: 10.1038/s41467-022-34563-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
H2O2 is widely used as an oxidant for photocatalytic methane conversion to value-added chemicals over oxide-based photocatalysts under mild conditions, but suffers from low utilization efficiencies. Herein, we report that O2 is an efficient molecular additive to enhance the utilization efficiency of H2O2 by suppressing H2O2 adsorption on oxides and consequent photogenerated holes-mediated H2O2 dissociation into O2. In photocatalytic methane conversion over an anatase TiO2 nanocrystals predominantly enclosed by the {001} facets (denoted as TiO2{001})-C3N4 composite photocatalyst at room temperature and ambient pressure, O2 additive significantly enhances the utilization efficiency of H2O2 up to 93.3%, giving formic acid and liquid-phase oxygenates selectivities respectively of 69.8% and 97% and a formic acid yield of 486 μmolHCOOH·gcatalyst−1·h−1. Efficient charge separation within TiO2{001}-C3N4 heterojunctions, photogenerated holes-mediated activation of CH4 into ·CH3 radicals on TiO2{001} and photogenerated electrons-mediated activation of H2O2 into ·OOH radicals on C3N4, and preferential dissociative adsorption of methanol on TiO2{001} are responsible for the active and selective photocatalytic conversion of methane to formic acid over TiO2{001}-C3N4 composite photocatalyst. The oxidation of methane to formic acid or related oxygenates relies on efficient reaction with H2O2. Here, the authors report a TiO2-based catalyst to selectively form formic acid by using molecular O2 additives to avoid unwanted side reactions.
Collapse
|
34
|
Liu Y, Wang R, Russell CK, Jia P, Yao Y, Huang W, Radosz M, Gasem KA, Adidharma H, Fan M. Mechanisms for direct methane conversion to oxygenates at low temperature. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Effects of Cu Species on Liquid-Phase Partial Oxidation of Methane with H2O2 over Cu-Fe/ZSM-5 Catalysts. Catalysts 2022. [DOI: 10.3390/catal12101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a Cu-promoted Fe/ZSM-5 catalyst was examined to reveal the effects of Cu species in selective oxidation of methane into methane oxygenates using H2O2 in water. Cu/ZSM-5, Cu-Fe/ZSM-5, and Fe/ZSM-5 catalysts were prepared using wet impregnation, solid-state ion exchange, and ion-exchange methods. Various techniques, including nitrogen physisorption, temperature-programmed reduction with H2, UV-vis spectroscopy, and FT-IR spectroscopy after NO adsorption, were utilized to characterize the catalysts. The promotional effect of Cu on the Cu-Fe/ZSM-5 catalyst in terms of methanol selectivity was confirmed. The preparation method has a considerable influence on the catalyst performance, and the ion-exchange method is the most effective. However, leaching of the Cu species was observed during this reaction, which can affect the quantification of formic acid by 1H-NMR. The homogeneous Cu species increase hydrogen peroxide decomposition and CO2 selectivity, which is undesirable for this reaction.
Collapse
|
36
|
Sánchez A. Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In recent years, the high cost and availability of energy sources have boosted the implementation of strategies to obtain different types of renewable energy. Among them, methane contained in biogas from anaerobic digestion has gained special relevance, since it also permits the management of a big amount of organic waste and the capture and long-term storage of carbon. However, methane from biogas presents some problems as energy source: 1) it is a gas, so its storage is costly and complex, 2) it is not pure, being carbon dioxide the main by-product of anaerobic digestion (30%–50%), 3) it is explosive with oxygen under some conditions and 4) it has a high global warming potential (27–30 times that of carbon dioxide). Consequently, the conversion of biogas to methanol is as an attractive way to overcome these problems. This process implies the conversion of both methane and carbon dioxide into methanol in one oxidation and one reduction reaction, respectively. In this dual system, the use of effective and selective catalysts for both reactions is a critical issue. In this regard, nanomaterials embedded in metal organic frameworks have been recently tested for both reactions, with very satisfactory results when compared to traditional materials. In this review paper, the recent configurations of catalysts including nanoparticles as active catalysts and metal organic frameworks as support materials are reviewed and discussed. The main challenges for the future development of this technology are also highlighted, that is, its cost in environmental and economic terms for its development at commercial scale.
Collapse
|
37
|
One-step direct conversion of methane to methanol with water in non-thermal plasma. Commun Chem 2022; 5:124. [PMID: 36698023 PMCID: PMC9814404 DOI: 10.1038/s42004-022-00735-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
Achieving methane-to-methanol is challenging under mild conditions. In this study, methanol is synthesized by one-step direction conversion of CH4 with H2O at room temperature under atmospheric pressure in non-thermal plasma (NTP). This route is characterized by the use of methane and liquid water as the reactants, which enables the transfer of the methanol product to the liquid phase in time to inhibit its further decomposition and conversion. Therefore, the obtained product is free of carbon dioxide. The reaction products include gas and liquid-phase hydrocarbons, CO, CH3OH, and C2H5OH. The combination of plasma and semiconductor materials increases the production rate of methanol. In addition, the addition of Ar or He considerably increases the production rate and selectivity of methanol. The highest production rate of methanol and selectivity in liquid phase can reach 56.7 mmol gcat-1 h-1 and 93%, respectively. Compared with the absence of a catalyst and added gas, a more than 5-fold increase in the methanol production rate is achieved.
Collapse
|
38
|
Britschgi J, Kersten W, Waldvogel SR, Schüth F. Electrochemically Initiated Synthesis of Methanesulfonic Acid. Angew Chem Int Ed Engl 2022; 61:e202209591. [PMID: 35972467 DOI: 10.1002/anie.202209591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/07/2023]
Abstract
The direct sulfonation of methane to methanesulfonic acid was achieved in an electrochemical reactor without adding peroxide initiators. The synthesis proceeds only from oleum and methane. This is possible due to in situ formation of an initiating species from the electrolyte at a boron-doped diamond anode. Elevated pressure, moderate temperature and suitable current density are beneficial to reach high concentration at outstanding selectivity. The highest concentration of 3.7 M (approximately 62 % yield) at 97 % selectivity was reached with a stepped electric current program at 6.25-12.5 mA cm-2 , 70 °C and 90 bar methane pressure in 22 hours. We present a novel, electrochemical method to produce methanesulfonic acid, propose a reaction mechanism and show general dependencies between parameters and yields for methanesulfonic acid.
Collapse
Affiliation(s)
- Joel Britschgi
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Wolfgang Kersten
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Siegfried R Waldvogel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| |
Collapse
|
39
|
Yashnik SA, Boltenkov VV, Babushkin DE, Surovtsova TA, Parmon VN. Liquid-Phase Methane Peroxidation in the Presence of Cu-ZSM-5: Effect of Modification with Palladium. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422050172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zirconium‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022; 61:e202205077. [DOI: 10.1002/anie.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Geqian Fang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Jin‐Nian Hu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Ling‐Chan Tian
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jin‐Xia Liang
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
41
|
Direct methane to methanol stepwise conversion over Cu-oxo species in zeolites – Insights on the Cu-zeolite activation in air or helium from in situ UV-Vis analyses. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Antil N, Chauhan M, Akhtar N, Newar R, Begum W, Malik J, Manna K. Metal–Organic Framework-Encaged Monomeric Cobalt(III) Hydroperoxides Enable Chemoselective Methane Oxidation to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jaideep Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
43
|
Britschgi J, Kersten W, Waldvogel SR, Schüth F. Electrochemically Initiated Synthesis of Methanesulfonic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Britschgi
- Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | | | | | - Ferdi Schüth
- Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim GERMANY
| |
Collapse
|
44
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
45
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
46
|
Extremely low barrier activation of methane on spin-polarized ferryl ion [FeO]2+ at the four-membered ring of zeolite. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zr‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective •OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Geqian Fang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Jinnian Hu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Lingchan Tian
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jinxia Liang
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jian Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Lin Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Chun Zhu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Xiaodong Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Zhongshan Road 457, Dalian, China 116023 Dalian CHINA
| |
Collapse
|
49
|
Wu B, Lin T, Huang M, Li S, Li J, Yu X, Yang R, Sun F, Jiang Z, Sun Y, Zhong L. Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. Angew Chem Int Ed Engl 2022; 61:e202204116. [DOI: 10.1002/anie.202204116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Bo Wu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
| | - Min Huang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Ji Li
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Xing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
50
|
Takahashi H, Wada K, Tanaka K, Fujikawa K, Hitomi Y, Endo T, Kodera M. Alkane Oxidation with H 2O 2 Catalyzed by Dicopper Complex with 6-hpa Ligand: Mechanistic Insights as Key Features for the Methane Oxidation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroto Takahashi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Kazuhiko Wada
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Kosei Tanaka
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Kyosuke Fujikawa
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Takatsugu Endo
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| |
Collapse
|