1
|
Singhvi C, Sharma G, Verma R, Paidi VK, Glatzel P, Paciok P, Patel VB, Mohan O, Polshettiwar V. Tuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO 2 reduction reaction. Proc Natl Acad Sci U S A 2025; 122:e2411406122. [PMID: 39813253 DOI: 10.1073/pnas.2411406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO2) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO2)-based electronically tuned trimetallic catalyst for CO2 to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them. The catalyst showed CO productivity of 49,279 mmol g-1 h-1 at 650 °C. CO selectivity up to 99% and excellent stability (rate remained unchanged even after 100 h) stemmed from the synergistic interactions among Ni-Cu-Zn sites and their SMSI with the defective ceria support. High-energy-resolution fluorescence-detection X-ray absorption spectroscopy (HERFD-XAS) confirmed this SMSI, further corroborated by in situ electron energy loss spectroscopy (EELS) and density functional theory (DFT) simulations. The in situ studies (HERFD-XAS & EELS) indicated the key role of oxygen vacancies of defective CeO2 during catalysis. The in situ transmission electron microscopy (TEM) imaging under catalytic conditions visualized the movement and growth of active trimetallic sites, which completely stopped once SMSI was established. In situ FTIR (supported by DFT) provided a molecular-level understanding of the formation of various reaction intermediates and their conversion into products, which followed a complex coupling of direct dissociation and redox pathway assisted by hydrogen, simultaneously on different active sites. Thus, sophisticated manipulation of electronic properties of trimetallic sites and defect dynamics significantly enhanced catalytic performance during CO2 to CO conversion.
Collapse
Affiliation(s)
- Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Vinod K Paidi
- Experiments Division, European Synchrotron Radiation Facility, Grenoble 38043, Cedex 9, France
| | - Pieter Glatzel
- Experiments Division, European Synchrotron Radiation Facility, Grenoble 38043, Cedex 9, France
| | - Paul Paciok
- Ernst-Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Vashishtha B Patel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ojus Mohan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
2
|
Peng M, Li C, Wang Z, Wang M, Zhang Q, Xu B, Li M, Ma D. Interfacial Catalysis at Atomic Level. Chem Rev 2025. [PMID: 39818776 DOI: 10.1021/acs.chemrev.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Heterogeneous catalysts are pivotal to the chemical and energy industries, which are central to a multitude of industrial processes. Large-scale industrial catalytic processes rely on special structures at the nano- or atomic level, where reactions proceed on the so-called active sites of heterogeneous catalysts. The complexity of these catalysts and active sites often lies in the interfacial regions where different components in the catalysts come into contact. Recent advances in synthetic methods, characterization technologies, and reaction kinetics studies have provided atomic-scale insights into these critical interfaces. Achieving atomic precision in interfacial engineering allows for the manipulation of electronic profiles, adsorption patterns, and surface motifs, deepening our understanding of reaction mechanisms at the atomic or molecular level. This mechanistic understanding is indispensable not only for fundamental scientific inquiry but also for the design of the next generation of highly efficient industrial catalysts. This review examines the latest developments in atomic-scale interfacial engineering, covering fundamental concepts, catalyst design, mechanistic insights, and characterization techniques, and shares our perspective on the future trajectory of this dynamic research field.
Collapse
Affiliation(s)
- Mi Peng
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingxin Zhang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mufan Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Lim KRG, Kaiser SK, Herring CJ, Kim TS, Perich MP, Garg S, O'Connor CR, Aizenberg M, van der Hoeven JES, Reece C, Montemore MM, Aizenberg J. Partial PdAu nanoparticle embedding into TiO 2 support accentuates catalytic contributions from the Au/TiO 2 interface. Proc Natl Acad Sci U S A 2025; 122:e2422628122. [PMID: 39786932 DOI: 10.1073/pnas.2422628122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the broad catalytic relevance of metal-support interfaces, controlling their chemical nature, the interfacial contact perimeter (exposed to reactants), and consequently, their contributions to overall catalytic reactivity, remains challenging, as the nanoparticle and support characteristics are interdependent when catalysts are prepared by impregnation. Here, we decoupled both characteristics by using a raspberry-colloid-templating strategy that yields partially embedded PdAu nanoparticles within well-defined SiO2 or TiO2 supports, thereby increasing the metal-support interfacial contact compared to nonembedded catalysts that we prepared by attaching the same nanoparticles onto support surfaces. Between nonembedded PdAu/SiO2 and PdAu/TiO2, we identified a support effect resulting in a 1.4-fold higher activity of PdAu/TiO2 than PdAu/SiO2 for benzaldehyde hydrogenation. Notably, partial nanoparticle embedding in the TiO2 raspberry-colloid-templated support increased the metal-support interfacial perimeter and consequently, the number of Au/TiO2 interfacial sites by 5.4-fold, which further enhanced the activity of PdAu/TiO2 by an additional 4.1-fold. Theoretical calculations and in situ surface-sensitive desorption analyses reveal facile benzaldehyde binding at the Au/TiO2 interface and at Pd ensembles on the nanoparticle surface, explaining the connection between the number of Au/TiO2 interfacial sites (via the metal-support interfacial perimeter) and catalytic activity. Our results demonstrate partial nanoparticle embedding as a synthetic strategy to produce thermocatalytically stable catalysts and increase the number of catalytically active Au/TiO2 interfacial sites to augment catalytic contributions arising from metal-support interfaces.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Selina K Kaiser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Connor J Herring
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
| | - Taek-Seung Kim
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142
| | - Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | | | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
4
|
Guo W, Zhao G, Huang Z, Luo Z, Zheng X, Gao M, Liu Y, Pan H, Sun W. Strong Metal-Support Interaction Triggered by Molten Salts. Angew Chem Int Ed Engl 2025; 64:e202414516. [PMID: 39196817 DOI: 10.1002/anie.202414516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
Strong metal-support interaction (SMSI) plays a vital role in tuning the geometric and electronic structures of metal species. Generally, a high-temperature treatment (>500 °C) in reducing atmosphere is required for constructing SMSI, which may induce the sintering of metal species. Herein, we use molten salts as the reaction media to trigger the formation of high-intensity SMSI at reduced temperatures. The strong ionic polarization of the molten salt promotes the breakage of Ti-O bonds in the TiO2 support, and hence decreases the energy barrier for the formation of interfacial bonds. Consequently, a high-intensity SMSI state is achieved in TiO2 supported Ir nanoclusters, evidenced by a large number of Ir-Ti bonds at the interface, at a low temperature of 350 °C. Moreover, this method is applicable for triggering SMSI in various supported metal catalysts with different oxide supports including CeO2 and SnO2. This newly developed SMSI construction methodology opens a new avenue and holds significant potential for engineering advanced supported metal catalysts toward a broad range of applications.
Collapse
Affiliation(s)
- Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, P. R. China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zixiang Huang
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhouxin Luo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Mingxia Gao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yongfeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
5
|
Chen L, Zhang L, Wang C, Kong F, Duan H, Yang D. Support effect on methane combustion over iridium catalysts: Unraveling the metal-support interaction mechanism. J Colloid Interface Sci 2025; 684:291-299. [PMID: 39798425 DOI: 10.1016/j.jcis.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The redox properties of iridium (Ir) active component are critically important in methane combustion. Interface engineering is highly effective in modulating the redox properties of active metals via tailoring the metal-support interaction (MSI). Herein, Ir catalysts supported on different carriers (TiO2, CeO2, Al2O3) were synthesized and evaluated for methane combustion. The methane combustion performance varied depending on the support, following the order: Ir/TiO2 > Ir/CeO2 > Ir/Al2O3 catalysts. Detailed experimental characterizations indicate that, compared with stronger Ir-CeO2 and Ir-Al2O3 interfaces, the unique moderate Ir-TiO2 interface facilitates the generation of an electron-rich Ir structure with a higher Irδ+ ratio. Theoretical simulations further suggest that the initial cleavage of the CH bond in methane molecules is favored at the superior Ir-TiO2 interface. The more reactive Irδ+ species with electron-rich structures in Ir/TiO2 catalysts not only greatly enhance their redox performance but also lower the activation energy barrier for methane activation, ultimately leading to improved catalytic activity in the total oxidation of methane. This work provides valuable insights for the ingenious catalyst design of more efficient Ir-based catalysts for methane combustion through tailoring MSI.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Lijie Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071 China
| | - Chuanhui Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Fanxin Kong
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Huimei Duan
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 China.
| |
Collapse
|
6
|
Zhu S, Wang Y, Wang Y, Wei Y, Zhao G, Fu C. Accelerated interfacial hole transfer over Au/TiO 2 photocatalysts for highly efficient oxidative coupling of methane. Chem Commun (Camb) 2024; 61:354-357. [PMID: 39636097 DOI: 10.1039/d4cc05615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Accelerated interfacial hole transfer over Au/TiO2 photocatalysts facilitates a highly efficient oxidative coupling of methane, achieving a C2 hydrocarbon production rate of 3.3 mmol g-1 h-1 and selectivity of up to 97%.
Collapse
Affiliation(s)
- Shihua Zhu
- Anhui Basic Discipline Research Center for Clean Energy and Catalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Yachao Wang
- Anhui Basic Discipline Research Center for Clean Energy and Catalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Yu Wang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Guofeng Zhao
- Anhui Basic Discipline Research Center for Clean Energy and Catalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Cong Fu
- Anhui Basic Discipline Research Center for Clean Energy and Catalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
7
|
Zhang C, Xiao J, Gao J, Pang X, Yang L, Tang S, Chen Y, Tang W. Sintering Evolving Mn 2O 3-LaMnO 3 Perovskite Heterointerfaces as Highly Active and Durable Catalysts for Catalytic Removal of Volatile Organic Compounds. Inorg Chem 2024. [PMID: 39665643 DOI: 10.1021/acs.inorgchem.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Improving the catalyst performance for the thermal oxidation reaction faces the daunting challenge of the activity-stability trade-off. Herein, an evolved heterointerface was constructed on spherical Mn2O3 nanocatalysts to achieve exceptional stability while maintaining adequate activity by simply introducing La. The generation of the active Mn3O4-Mn2O3 heterointerfaces by La doping was experimentally observed, which further segregates to the surface during thermal aging and forms epitaxially grown heterostructured LaMnO3-Mn2O3 with Mn atoms. The former can act as highly active sites for the deep oxidation of VOCs due to the richness in oxygen vacancies and Mn4+ ions, while the latter acts as the diffusion barrier to inhibit grain growth and produce advantageous reactive electronic structures around the interface. The La-modified Mn2O3 oxide reached 90% conversion in toluene oxidation at 286 °C under the high WHSV of 240,000 mL g-1 h-1 and slightly increased to 327 °C after thermal aging at 800 °C. This work provides a versatile strategy for fabricating effective oxidation catalysts with high low-temperature activity and antisintering properties for industrial applications.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jinyan Xiao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xuan Pang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lei Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yunfa Chen
- Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100000, P. R. China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Chen S. Controlling Metal-Support Interactions to Engineer Highly Active and Stable Catalysts for CO x Hydrogenation. CHEMSUSCHEM 2024:e202401437. [PMID: 39535427 DOI: 10.1002/cssc.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Indexed: 11/16/2024]
Abstract
This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for COx hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO2, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO2 hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.
Collapse
Affiliation(s)
- Shilong Chen
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| |
Collapse
|
9
|
Qi F, Peng J, Liang Z, Guo J, Liu J, Fang T, Mao H. Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100443. [PMID: 39157790 PMCID: PMC11327470 DOI: 10.1016/j.ese.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Hou X, Li Y, Zhang H, Lund PD, Kwan J, Tsang SCE. Black titanium oxide: synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem Soc Rev 2024; 53:10660-10708. [PMID: 39269216 DOI: 10.1039/d4cs00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Since its advent in 2011, black titanium oxide (B-TiOx) has garnered significant attention due to its exceptional optical characteristics, notably its enhanced absorption spectrum ranging from 200 to 2000 nm, in stark contrast to its unmodified counterpart. The escalating urgency to address global climate change has spurred intensified research into this material for sustainable hydrogen production through thermal, photocatalytic, electrocatalytic, or hybrid water-splitting techniques. The rapid advancements in this dynamic field necessitate a comprehensive update. In this review, we endeavor to provide a detailed examination and forward-looking insights into the captivating attributes, synthesis methods, modifications, and characterizations of B-TiOx, as well as a nuanced understanding of its physicochemical properties. We place particular emphasis on the potential integration of B-TiOx into solar and electrochemical energy systems, highlighting its applications in green hydrogen generation, CO2 reduction, and supercapacitor technology, among others. Recent breakthroughs in the structure-property relationship of B-TiOx and its applications, grounded in both theoretical and empirical studies, are underscored. Additionally, we will address the challenges of scaling up B-TiOx production, its long-term stability, and economic viability to align with ambitious future objectives.
Collapse
Affiliation(s)
- Xuelan Hou
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yiyang Li
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Hang Zhang
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - Peter D Lund
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - James Kwan
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| |
Collapse
|
11
|
Luo Y, Wang P, Pei Y. Atomic Level Understanding of the Structural Stability and Catalytic Activity of Nanoporous Gold/Titania Cluster Inverse Catalysts at Ambient and High Temperatures. J Phys Chem Lett 2024; 15:10525-10534. [PMID: 39400288 DOI: 10.1021/acs.jpclett.4c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Nanoporous gold (NPG) exhibits exceptional catalytic performance at low temperatures, but its activity declines at elevated temperatures due to structural coarsening. Loading metal oxide nanoparticles onto NPG can enhance its catalytic activity at high temperatures. In this work, we used NPG-supported titania nanoparticles as a model system (denoted as Ti2O4/NPG) to study their catalytic activity at ambient and high temperatures with CO oxidation as a probe reaction by density functional theory (DFT) calculation and ab initio molecular dynamics (AIMD) simulations. The possible factors that may affect the CO oxidation reaction pathways and energy profiles on the Ti2O4/NPG, such as oxygen vacancies; silver impurities; Mars-van Krevelen (MvK), Eley-Rideal (ER), or trimolecular Eley-Rideal (TER) mechanisms; and catalytic active sites, were comprehensively investigated. The results showed that reaction energy barriers on Ti2O4/NPG were not significantly decreased compared to the pristine NPG, indicating that their catalytic activities at ambient temperature were comparable. At the evaluated temperature (400 °C), the Ti2O4/NPG exhibited superior thermal stability and maintained its active sites, while the NPG reduced active sites due to surface coarsening. The strong oxide-metal interaction (SOMI) effect between the NPG and Ti2O4 nanoparticles is found to be a main factor for the high structural stability and catalytic activity at high temperatures.
Collapse
Affiliation(s)
- Yuting Luo
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| |
Collapse
|
12
|
Zhang D, Gong H, Liu T, Yu J, Kuang P. Engineering antibonding orbital occupancy of NiMoO 4-supported Ru nanoparticles for enhanced chlorine evolution reaction. J Colloid Interface Sci 2024; 672:423-430. [PMID: 38850867 DOI: 10.1016/j.jcis.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chlorine evolution reaction (CER) is crucial for industrial-scale production of high-purity Cl2. Despite the development of classical dimensionally stable anodes to enhance CER efficiency, the competitive oxygen evolution reaction (OER) remains a barrier to achieving high Cl2 selectivity. Herein, a binder-free electrode, Ru nanoparticles (NPs)-decorated NiMoO4 nanorod arrays (NRAs) supported on Ti foam (Ru-NiMoO4/Ti), was designed for active CER in saturated NaCl solution (pH = 2). The Ru-NiMoO4/Ti electrode exhibits a low overpotential of 20 mV at 10 mA cm-2 current density, a high Cl2 selectivity exceeding 90%, and robust durability for 90h operation. The marked difference in Tafel slopes between CER and OER indicates the high Cl2 selectivity and superior reaction kinetics of Ru-NiMoO4/Ti electrode. Further studies reveal a strong metal-support interaction (SMSI) between Ru and NiMoO4, facilitating electron transfer through the Ru-O bridge bond and increasing the Ru 3d-Cl 2p antibonding orbital occupancy, which eventually results in weakened Ru-Cl bonding, promoted Cl desorption, and enhanced Cl2 evolution. Our findings provide new insights into developing electrodes with enhanced CER performance through antibonding orbital occupancy engineering.
Collapse
Affiliation(s)
- Dianzhi Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Haiming Gong
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China.
| |
Collapse
|
13
|
Dai J, Sun Y, Liu Z, Zhang Y, Duan S, Wang R. Using In situ Transmission Electron Microscopy to Study Strong Metal-Support Interactions in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409673. [PMID: 39052276 DOI: 10.1002/anie.202409673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in situ TEM studies on the SMSI are also provided.
Collapse
Affiliation(s)
- Jie Dai
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhewei Liu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiyuan Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sibin Duan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
14
|
Wang Y, Niu B, Zhang Z, Li J, Sheng H, Xu W, Cheng J, Hao Z, Duan D, Li J. Spatially Separate Center-to-Surround Radiation Structure Induced Tandem Electron Transfer Effect for Stable and Enhanced Photocatalysis. NANO LETTERS 2024; 24:12628-12633. [PMID: 39331820 DOI: 10.1021/acs.nanolett.4c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Spatially separate anchoring redox cocatalysts on the photocatalyst to shunt the charge migration paths is an effective route to regulate the charge flow. Differently, we herein introduce an artificially synthesized Sun-planet-like spatially separated center-to-surround radiation photosensitizer-cocatalyst structure to regulate electron flow in a tandem manner. A single Au sphere acts as the Sun/photosensitizer in the center, and small Pt particles scatter around as the planets/cocatalyst, both of which are fixed inside the MOF crystal. Such a structure can not only simultaneously increase the light harvesting capacity and electron migration kinetics but also optimize the electron transfer pathway to minimize the electron migration distance, so that the hot electrons generated by Au can be quickly transferred to Pt through MOF before annihilation, leading to a significant photoactivity promotion.
Collapse
Affiliation(s)
- Yang Wang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Zhiyong Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing 100049, People's Republic of China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Dongping Duan
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| |
Collapse
|
15
|
Ji J, Lin L, Hu Y, Xu J, Li Z. Thermally Stable Oxide-Capsulated Metal Nanoparticles Structure for Strong Metal-Support Interaction via Ultrafast Laser Plasmonic Nanowelding. SMALL METHODS 2024; 8:e2301612. [PMID: 39031877 DOI: 10.1002/smtd.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
Strong metal-support interaction (SMSI) has drawn much attention in heterogeneous catalysts due to its stable and excellent catalytic efficiency. However, construction of high-performance oxide-capsulated metal nanostructures meets great challenge in materials thermodynamic compatibility. In this work, dynamically controlled formation of oxide-capsulated metal nanoparticles (NPs) structures is demonstrated by ultrafast laser plasmonic nanowelding. Under the strong localized electromagnetic field interaction, metal (Au) NPs are dragged by an optical force toward oxide NPs (TiO2). Intense energy is simultaneously injected into this heterojunction area, where TiO2 is precisely ablated. With the embedding of metal into oxide, optical force on Au gradually turned from attractive to repulsive due to the varied metal-dielectric environment. Meanwhile, local ablated oxides are redeposited on Au NP. Upon the whole coverage of metal NP, the implantation behavior of metal NP is stopped, resulting in a controlled metal-oxide eccentric structure with capsulated oxide layer thickness ≈0.72-1.30 nm. These oxide-capsulated metal NPs structures can preserve their configurations even after thermal annealing in air at 600 °C for 10 min. This ultrafast laser plasmonic nanowelding can also extend to oxide-capsulated metal nanostructure fabrication with broad materials combinations (e.g., Au/ZnO, Au/MgO, etc.), which shows great potential in designing/constructing nanoscale high-performance catalysts.
Collapse
Affiliation(s)
- Junde Ji
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luchan Lin
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Hu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Xu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuguo Li
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Wang CX, Liu HX, Gu H, Li JY, Lai XM, Fu XP, Wang WW, Fu Q, Wang FR, Ma C, Jia CJ. Hydroxylated TiO 2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO 2 hydrogenation. Nat Commun 2024; 15:8290. [PMID: 39333511 PMCID: PMC11437244 DOI: 10.1038/s41467-024-52547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The reverse water gas shift reaction can be considered as a promising route to mitigate global warming by converting CO2 into syngas in a large scale, while it is still challenging for non-Cu-based catalysts to break the trade-off between activity and selectivity. Here, the relatively high loading of Ni species is highly dispersed on hydroxylated TiO2 through the strong Ni and -OH interactions, thereby inducing the formation of rich and stable Ni clusters (~1 nm) on anatase TiO2 during the reverse water gas shift reaction. This Ni cluster/TiO2 catalyst shows a simultaneous high CO2 conversion and high CO selectivity. Comprehensive characterizations and theoretical calculations demonstrate Ni cluster/TiO2 interfacial sites with strong CO2 activation capacity and weak CO adsorption are responsible for its unique catalytic performances. This work disentangles the activity-selectivity trade-off of the reverse water gas shift reaction, and emphasizes the importance of metal-OH interactions on surface.
Collapse
Affiliation(s)
- Cong-Xiao Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hao-Xin Liu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hao Gu
- Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Jin-Ying Li
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao-Meng Lai
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qiang Fu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Feng Ryan Wang
- Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK.
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
17
|
Puthiyaparambath MF, Samuel JE, Chatanathodi R. Tailoring surface morphology on anatase TiO 2 supported Au nanoclusters: implications for O 2 activation. NANOSCALE ADVANCES 2024:d4na00744a. [PMID: 39359353 PMCID: PMC11441460 DOI: 10.1039/d4na00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Strong interaction between the support surface and metal clusters activates the adsorbed molecules at the metal cluster-support interface. Using plane-wave DFT calculations, we precisely model the interface between anatase TiO2 and small Au nanoclusters. Our study focusses on the adsorption and activation of oxygen molecules on anatase TiO2, considering the influence of oxygen vacancies and steps on the surface. We find that the plane (101) and the stepped (103) surfaces do not support O2 activation, but the presence of oxygen vacancies results in strong adsorption and O-O bond length elongation. Modifying the TiO2 surface with supported small Au n nanoclusters (n = 3-5) also significantly enhances O2 adsorption and stretches the O-O bond. We observe that manipulating the cluster orientation through discrete rotations results in improved O2 adsorption and promotes charge transfer from the surface to the molecule. We propose that the orientation of the supported cluster may be manipulated by making the cluster adsorb at the step-edge of (103) TiO2. This results in activated O2 at the cluster-support interface, with a peroxide-range bond length and a low barrier for dissociation. Our modeling demonstrates a straightforward means of exploiting the interface morphology for O2 activation under low precious metal loading, which has important implications for electrocatalytic oxidation reactions and the rational design of supported catalysts.
Collapse
Affiliation(s)
| | - Julian Ezra Samuel
- Department of Physics, National Institute of Technology Calicut Calicut Kerala 673601 India
| | - Raghu Chatanathodi
- Department of Physics, National Institute of Technology Calicut Calicut Kerala 673601 India
| |
Collapse
|
18
|
Li Y, Li Z, Hu J, Huang W. Electronic Oxide-Metal Strong Interactions (EOMSI) Localized at CeO x-Ag Interface. J Phys Chem Lett 2024; 15:8682-8688. [PMID: 39159361 DOI: 10.1021/acs.jpclett.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Electronic oxide-metal strong interactions (EOMSI) refer to the electronic oxide-metal interactions (EOMI) between oxide adlayers and underlying metal substrate that is strong enough to stabilize supported oxide adlayers in a low-oxidation state, which individually is not stable under an ambient condition, from high temperature oxidation in air to a certain extent. Herein we report the deposition and electronic structure of CeOx adlayers on capping ligand-free cubic Ag nanocrystals, i.e., CeOx/Ag inverse catalysts. The EOMI occur via the charge transfer from Ag substrate to CeOx adlayers in the CeOx/Ag inverse catalyst, and the EOMSI are observed in the CeOx/Ag inverse catalyst with the average thickness of CeOx adlayers about 0.9 nm to exclusively form Ce2O3 adlayers stable against oxidation at 400 °C. As the thickness of CeOx adlayers increases, ceria adlayers with oxygen vacancies (CeO2-x) emerge and grow in the CeOx/Ag inverse catalysts, and the Ce3+/Ce4+ ratio decreases. Catalytic performance of CeOx/Ag inverse catalysts in the CO oxidation reaction is closely linked with the thickness and electronic structure of CeOx adlayers. These results demonstrate that the EOMSI and EOMI in the oxide/metal inverse catalysts are localized at the oxide-metal interface and sensitively vary with the thickness of oxide adlayers, offering a strategy of thickness engineering to tune electronic structures of oxide adlayers in oxide/metal inverse catalysts.
Collapse
Affiliation(s)
- Yangyang Li
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Institute of Pharmaceutics, Anhui Academy of Chinese Medicine and School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Zhaorui Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
19
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
20
|
Chen Y, Bin Q, Liu H, Xie Y, Wang S, Lu J, Ou W, Zhang M, Wang L, Yu K. A novel biosensing strategy on the dynamic and on-site detection of Vibrio coralliilyticus eDNA for coral health warnings. Bioelectrochemistry 2024; 158:108697. [PMID: 38554560 DOI: 10.1016/j.bioelechem.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Heat stress and coral diseases are the predominant factors causing the degradation of coral reef ecosystems. Over recent years, Vibrio coralliilyticus was identified as a temperature-dependent pathogen causing tissue lysis in Pocillopora damicornis and one of the primary pathogens causing bleaching and mortality in other corals. Yet current detection techniques for V. coralliilyticus rely primarily on qPCR and ddPCR, which cannot meet the requirements for non-invasive and real-time detection. Herein, we developed an effective electrochemical biosensor modified by an Au-MoS2/rGO (AMG) nanocomposites and a specific capture probe to dynamically detect V. coralliilyticus environment DNA (eDNA) in aquarium experiments, with a lower limit of detection (0.28 fM) for synthetic DNA and a lower limit of quantification (9.8 fg/µL, ∼0.86 copies/µL) for genomic DNA. Its reliability and accuracy were verified by comparison with the ddPCR method (P > 0.05). Notably, coral tissue started to lyse at only 29 °C when the concentration of V. coralliilyticus increased abruptly to 880 copies/µL, indicating the biosensor could reflect the types of pathogen and health risks of corals under heat stress. Overall, the novel and reliable electrochemical biosensing technology provides an efficient strategy for the on-site monitoring and early warning of coral health in the context of global warming.
Collapse
Affiliation(s)
- Yingzhan Chen
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Qi Bin
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanyu Xie
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shaopeng Wang
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jie Lu
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenchao Ou
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Man Zhang
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| | - Liwei Wang
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
21
|
Zhou JF, Peng B, Ding M, Shan BQ, Zhu YS, Bonneviot L, Wu P, Zhang K. The nature of crystal facet effect of TiO 2-supported Pd/Pt catalysts on selective hydrogenation of cinnamaldehyde: electron transfer process promoted by interfacial oxygen species. Phys Chem Chem Phys 2024; 26:18854-18864. [PMID: 38946575 DOI: 10.1039/d4cp01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Supported noble metal nanocatalysts typically exhibit strong crystal plane dependent catalytic behavior, but their working mechanism is still unclear. Herein, using anatase TiO2 with well-exposed crystal facets of {101}, {100} and {001} as a prototype support, Pd- and Pt-based supported TiO2 nanocatalysts (TiO2-Pd and TiO2-Pt) were prepared by chemical reduction with NaBH4 as reducer, and they showed a distinct metal-dependent crystal facet effect in the selective hydrogenation of cinamaldehyde (CAL). For Pd-based nanocatalysts, most Pd species on the {100} plane of TiO2 are present in the oxidized form with positive charges and unexpectedly show higher reactivity than the Pd species in the zero-valence state on the {101} and {001} planes. On the contrary, Pt species on all three crystal planes of TiO2 show zero-valence state, with relatively low conversion, but much better selectivity for hydrogenation of a CO bond than Pd-based catalysts. Well-designed experiments manipulating the stability and type of surface oxygen species confirmed that the essence of the crystal facet effect of the catalyst support actually creates a unique nanoconfined interface at the molecular level to construct a surface p-band intermediate state (PBIS), which provides a new alternative channel for surface electron transfer and consequently accelerates the reaction kinetics.
Collapse
Affiliation(s)
- Jia-Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Ding
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bing-Qian Shan
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yi-Song Zhu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Laurent Bonneviot
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364 CEDEX 07, France
| | - Peng Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Kun Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
22
|
Li S, Wang G, Lv H, Lin Z, Liang J, Liu X, Wang YG, Huang Y, Wang G, Li Q. Constructing Gradient Orbital Coupling to Induce Reactive Metal-Support Interaction in Pt-Carbide Electrocatalysts for Efficient Methanol Oxidation. J Am Chem Soc 2024; 146:17659-17668. [PMID: 38904433 DOI: 10.1021/jacs.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Reactive metal-support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L12-PtxM-MCy (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts. Density functional theory (DFT) calculations suggest that the gradient coupling of the d(M)-2p(C)-5d(Pt) orbital would induce the electron transfer from M to C covalent bonds to Pt NPs, which facilitates the formation of C vacancy (Cv) and the subsequent M migration (occurrence of RMSI). Moreover, the good correlation between the formation energy of Cv and the onset temperature of RMSI in Pt-MCx systems proves the key role of nonmetallic atomic vacancy formation for inducing RMSI. The developed L12-Pt3Ti-TiC catalyst exhibits excellent acidic methanol oxidation reaction activity, with mass activity of 2.36 A mgPt-1 in half-cell and a peak power density of 187.9 mW mgPt-1 in a direct methanol fuel cell, which is one of the best catalysts ever reported. DFT calculations reveal that L12-Pt3Ti-TiC favorably weakens *CO absorption compared to Pt-TiC due to the change of the absorption site from Pt to Ti, which accounts for the enhanced MOR performance.
Collapse
Affiliation(s)
- Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Houfu Lv
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China
- Suzhou Laboratory, Suzhou 215000, China
| | - Zijie Lin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Sun Q, Duan P, Zhang W, Xie Y, Ni X, Zheng J. Floatable Cu 2(OH)PO 4/rGO Aerogel for Full Spectrum Driven Photocatalytic Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11087-11097. [PMID: 38718184 DOI: 10.1021/acs.langmuir.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalytic technology is an attractive option for environmental remediation because of its green and sustainable nature. However, the inefficient utilization of solar energy and powder morphology currently impede its practical application. Here, we designed a floatable photocatalyst by anchoring 0D Cu2(OH)PO4 (CHP) nanoparticles on 2D graphene to construct 0D/2D CHP/reduced graphene oxide (rGO) aerogels. The CHP/rGO aerogels have interconnected mesopores that provide a large surface area, promoting particle dispersion and increasing the number of active sites. Moreover, the optical response of the CHP/rGO aerogel has been significantly expanded to cover the full spectrum of the solar light. Notably, the 20%CHP/rGO aerogel displayed a high degradation rate (k = 0.178 min-1) taking methylene blue (MB) as a model pollutant under light irradiation (λ > 420 nm). The enhanced photocatalytic activity is ascribed to the rapid electron transfer in the CHP/rGO heterostructures, as supported by the DFT theoretical calculations. Our research highlights the utilization of full spectrum responsive photocatalysts for the elimination of organic pollutants from wastewater under solar light irradiation, as well as the potential for catalyst recovery using floatable aerogels to meet industrial requirements.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Pengjun Duan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Wenqing Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Yuxuan Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Xiang Ni
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Jianzhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| |
Collapse
|
24
|
Sun S, Su M, Xiao H, Yin X, Liu Y, Yang W, Chen Y. Self-powered biosensing platform for Highly sensitive detection of soluble CD44 protein. Talanta 2024; 272:125824. [PMID: 38422906 DOI: 10.1016/j.talanta.2024.125824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
In this study, a self-powered biosensor based on an enzymatic biofuel cell was proposed for the first time for the ultrasensitive detection of soluble CD44 protein. The as-prepared biosensor was composed of the co-exist aptamer and glucose oxidase bioanode and bilirubin oxidase modified biocathode. Initially, the electron transfer from bioanode to biocathode was hindered due to the presence of the aptamer with high insulation, generating a low open-circuit voltage (EOCV). Once the target CD44 protein was present, it was recognized and captured by the aptamer at the bioanode, thus the interaction between the target CD44 protein and the immobilized aptamer caused the structural change at the surface of the electrode, which facilitated the transfer of electrons. The EOCV showed a good linear relationship with the logarithm of the CD44 protein concentrations in the range of 0.5-1000 ng mL-1 and the detection limit was 0.052 ng mL-1 (S/N = 3). The sensing platform showed excellent anti-interference performance and outstanding stability that maintained over 97% of original EOCV after 15 days. In addition, the relative standard deviation (1.40-1.96%) and recovery (100.23-101.31%) obtained from detecting CD44 protein in real-life blood samples without special pre-treatment indicated that the constructed biosensor had great potential for early cancer diagnosis.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Meng Su
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Han Xiao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Xiaoshuang Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Ying Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Yun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China.
| |
Collapse
|
25
|
Shao Z, Zhu Q, Wang X, Wang J, Wu X, Yao X, Wu YA, Huang K, Feng S. Strongly-Interacted NiSe 2/NiFe 2O 4 Architectures Built Through Selective Atomic Migration as Catalysts for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310266. [PMID: 38098346 DOI: 10.1002/smll.202310266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Indexed: 12/22/2023]
Abstract
The interactions between the catalyst and support are widely used in many important catalytic reactions but the construction of strong interaction with definite microenvironments to understand the structure-activity relationship is still challenging. Here, strongly-interacted composites are prepared via selective exsolution of active NiSe2 from the host matrix of NiFe2O4 (S-NiSe2/NiFe2O4) taking advantage of the differences of migration energy, in which the NiSe2 possessed both high dispersion and small size. The characteristics of spatially resolved scanning transmission X-ray microscopy (STXM) coupled with analytical Mössbauer spectra for the surface and bulk electronic structures unveiled that this strongly interacted composite triggered more charge transfers from the NiSe2 to the host of NiFe2O4 while stabilizing the inherent atomic coordination of NiFe2O4. The obtained S-NiSe2/NiFe2O4 exhibits overpotentials of 290 mV at 10 mA cm-2 for oxygen evolution reaction (OER). This strategy is general and can be extended to other supported catalysts, providing a powerful tool for modulating the catalytic performance of strongly-interacted composites.
Collapse
Affiliation(s)
- Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jian Wang
- Canadian Light Source, Saskatoon, SK, S7N 2V3, Canada
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xiangdong Yao
- School of Environment and Sciences, and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland, 4111, Australia
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
26
|
Zhou R, Wu D, Ma J, Ruan L, Feng Y, Ban C, Zhou K, Cai S, Gan LY, Zhou X. Boosting CO 2 piezo-reduction via metal-support interactions in Au/ZnO based catalysts. J Colloid Interface Sci 2024; 661:512-519. [PMID: 38308891 DOI: 10.1016/j.jcis.2024.01.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Confronting the challenge of climate change necessitates innovative approaches for the reduction of CO2 emissions. Metal-support interaction has been widely demonstrated to enable greatly improved performances in thermal-catalytic, photocatalytic and electrocatalytic CO2 reduction. However, its applicability and specifically its role in the emerging piezo-electrocatalytic CO2 reduction are unknown, severely hampering the utilizations of piezo-electrocatalysis in CO2 conversion. Herein, by adopting Au particles supported on ZnO (Au/ZnO) as a paradigm, it is found that the metal-support interaction can remarkably improve the separation and transfer of piezo-carriers and enhance CO2 adsorption. As a result, Au/ZnO demonstrates a substantially boosted activity for piezo-electrocatalytic CO2 reduction and the optimal sample exhibits a 37.3% increase in CO yield compared to the pristine ZnO. The integration of metal-support interactions opens a new avenue to the design of advanced piezo-electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rundong Zhou
- Corpus Christi College, University of Cambridge, Cambridgeshire CB2 1RH, United Kingdom
| | - Di Wu
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Jiangping Ma
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Lujie Ruan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Yajie Feng
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Kai Zhou
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Songjiang Cai
- Chongqing DEPU Foreign Language School, Chongqing 401320, China
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Xiaoyuan Zhou
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China; Analytical and Testing Center, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
27
|
Zhang J, Wang W, Chen X, Jin J, Yan X, Huang J. Single-Atom Ni Supported on TiO 2 for Catalyzing Hydrogen Storage in MgH 2. J Am Chem Soc 2024; 146:10432-10442. [PMID: 38498436 DOI: 10.1021/jacs.3c13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As an efficient and clean energy carrier, hydrogen is expected to play a key role in future energy systems. However, hydrogen-storage technology must be safe with a high hydrogen-storage density, which is difficult to achieve. MgH2 is a promising solid-state hydrogen-storage material owing to its large hydrogen-storage capacity (7.6 wt %) and excellent reversibility, but its large-scale utilization is restricted by slow hydrogen-desorption kinetics. Although catalysts can improve the hydrogen-storage kinetics of MgH2, they reduce the hydrogen-storage capacity. Single-atom catalysts maximize the atom utilization ratio and the number of interfacial sites to boost the catalytic activity, while easy aggregation at high temperatures limits further application. Herein, we designed a single-atom Ni-loaded TiO2 catalyst with superior thermal stability and catalytic activity. The optimized 15wt%-Ni0.034@TiO2 catalyst reduced the onset dehydrogenation temperature of MgH2 to 200 °C. At 300 °C, the H2 released and absorbed 4.6 wt % within 5 min and 6.53 wt % within 10 s, respectively. The apparent activation energies of MgH2 dehydrogenation and hydrogenation were reduced to 64.35 and 35.17 kJ/mol of H2, respectively. Even after 100 cycles of hydrogenation and dehydrogenation, there was still a capacity retention rate of 97.26%. The superior catalytic effect is attributed to the highly synergistic catalytic activity of single-atom Ni, numerous oxygen vacancies, and multivalent Tix+ in the TiO2 support, in which the single-atom Ni plays the dominant role, accelerating electron transfer between Mg2+ and H- and weakening the Mg-H bonds. This work paves the way for superior hydrogen-storage materials for practical unitization and also extends the application of single-atom catalysis in high-temperature solid-state reactions.
Collapse
Affiliation(s)
- Jiyue Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Wenda Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiaowei Chen
- School of Science, Jimei University, Xiamen 361021, China
| | - Jinlong Jin
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiaojun Yan
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191, China
- Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
| | - Jianmei Huang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191, China
- Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
| |
Collapse
|
28
|
Holm A, Davies B, Boscolo Bibi S, Moncada F, Halldin-Stenlid J, Paškevičius L, Claman V, Slabon A, Tai CW, Campos dos-Santos E, Koroidov S. A Water-Promoted Mars-van Krevelen Reaction Dominates Low-Temperature CO Oxidation over Au-Fe 2O 3 but Not over Au-TiO 2. ACS Catal 2024; 14:3191-3197. [PMID: 38449533 PMCID: PMC10913026 DOI: 10.1021/acscatal.3c05978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
We provide experimental evidence that is inconsistent with often proposed Langmuir-Hinshelwood (LH) mechanistic hypotheses for water-promoted CO oxidation over Au-Fe2O3. Passing CO and H2O, but no O2, over Au-γ-Fe2O3 at 25 °C, we observe significant CO2 production, inconsistent with LH mechanistic hypotheses. Experiments with H218O further show that previous LH mechanistic proposals cannot account for water-promoted CO oxidation over Au-γ-Fe2O3. Guided by density functional theory, we instead postulate a water-promoted Mars-van Krevelen (w-MvK) reaction. Our proposed w-MvK mechanism is consistent both with observed CO2 production in the absence of O2 and with CO oxidation in the presence of H218O and 16O2. In contrast, for Au-TiO2, our data is consistent with previous LH mechanistic hypotheses.
Collapse
Affiliation(s)
- Alexander Holm
- Department
of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 114
18 Stockholm, Sweden
- Laboratory
of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-60174 Sweden
| | - Bernadette Davies
- Department
of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 114
18 Stockholm, Sweden
| | - Sara Boscolo Bibi
- Department
of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Felix Moncada
- Department
of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Joakim Halldin-Stenlid
- KBR,
Inc., Intelligent Systems Division, NASA
Ames Research Center, Moffett
Field, California 94035, United States
| | - Laurynas Paškevičius
- Department
of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Vincent Claman
- Department
of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Adam Slabon
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 114
18 Stockholm, Sweden
- Inorganic
Chemistry, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Cheuk-Wai Tai
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 114
18 Stockholm, Sweden
| | - Egon Campos dos-Santos
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Sergey Koroidov
- Department
of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Xu M, Peng M, Tang H, Zhou W, Qiao B, Ma D. Renaissance of Strong Metal-Support Interactions. J Am Chem Soc 2024; 146:2290-2307. [PMID: 38236140 DOI: 10.1021/jacs.3c09102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Strong metal-support interactions (SMSIs) have emerged as a significant and cutting-edge area of research in heterogeneous catalysis. They play crucial roles in modifying the chemisorption properties, interfacial structure, and electronic characteristics of supported metals, thereby exerting a profound influence on the catalytic properties. This Perspective aims to provide a comprehensive summary of the latest advancements and insights into SMSIs, with a focus on state-of-the-art in situ/operando characterization techniques. This overview also identifies innovative designs and applications of new types of SMSI systems in catalytic chemistry and highlights their pivotal role in enhancing catalytic performance, selectivity, and stability in specific cases. Particularly notable is the discovery of SMSI between active metals and metal carbides, which opens up a new era in the field of SMSI. Additionally, the strong interactions between atomically dispersed metals and supports are discussed, with an emphasis on the electronic effects of the support. The chemical nature of SMSI and its underlying catalytic mechanisms are also elaborated upon. It is evident that SMSI modification has become a powerful tool for enhancing catalytic performance in various catalytic applications.
Collapse
Affiliation(s)
- Ming Xu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hailian Tang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
30
|
Wang K, Sun Z, Guo W, Chen M, Zhu C, Fei J, Liu Y, He H, Cao Y, Bao X. Upgrading Waste Polylactide via Catalyst-Controlled Tandem Hydrolysis-Oxidation. CHEMSUSCHEM 2023; 16:e202301128. [PMID: 37793185 DOI: 10.1002/cssc.202301128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/22/2023] [Indexed: 10/06/2023]
Abstract
As plastic waste pollution continues to pose significant challenges to our environment, it is crucial to develop eco-friendly processes that can transform plastic waste into valuable chemical products in line with the principles of green chemistry. One major challenge is breaking down plastic waste into economically valuable carbon resources. This however presents an opportunity for sustainable circular economies. In this regard, a flexible approach is presented that involves the use of supported-metal catalysts to selectively degrade polylactide waste using molecular oxygen. This protocol has several advantages, including its operation under organic solvent-free and mild conditions, simplicity of implementation, and high atom efficiency, resulting in minimal waste. This approach enables the chemical upcycling of polylactide waste into valuable chemicals such as pyruvic acid, acetic acid, or a mixture containing equimolar amounts of acetic acid and formaldehyde, providing a viable alternative for accessing key value-added feedstocks from waste and spent plastics.
Collapse
Affiliation(s)
- Kaizhi Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Zehui Sun
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Wendi Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Mugeng Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Conglin Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Jiachen Fei
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Yongmei Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Heyong He
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Yong Cao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
31
|
Chen J, Su Y, Meng Q, Qian H, Shi L, Darr JA, Wu Z, Weng X. Palladium Encapsulated by an Oxygen-Saturated TiO 2 Overlayer for Low-Temperature SO 2 -Tolerant Catalysis during CO Oxidation. Angew Chem Int Ed Engl 2023; 62:e202310191. [PMID: 37849070 DOI: 10.1002/anie.202310191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
The development of oxidation catalysts that are resistant to sulfur poisoning is crucial for extending the lifespan of catalysts in real-working conditions. Herein, we describe the design and synthesis of oxide-metal interaction (OMI) catalyst under oxidative atmospheres. By using organic coated TiO2 , an oxide/metal inverse catalyst with non-classical oxygen-saturated TiO2 overlayers were obtained at relatively low temperature. These catalysts were found to incorporate ultra-small Pd metal and support particles with exceptional reactivity and stability for CO oxidation (under 21 vol % O2 and 10 vol % H2 O). In particular, the core (Pd)-shell (TiO2 ) structured OMI catalyst exhibited excellent resistance to SO2 poisoning, yielding robust CO oxidation performance at 120 °C for 240 h (at 100 ppm SO2 and 10 vol % H2 O). The stability of this new OMI catalyst was explained through density functional theory (DFT) calculations that interfacial oxygen atoms at Pd-O-Ti sites (of oxygen-saturated overlayers) serve as non-metal active sites for low-temperature CO oxidation, and change the SO2 adsorption from metal(d)-to-SO2 (π*) back-bonding to much weaker σ(Ti-S) bonding.
Collapse
Affiliation(s)
- Jingkun Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuetan Su
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjie Meng
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Hehe Qian
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Le Shi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jawwad A Darr
- Christopher Ingold Laboratories, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Engineering Research Centre of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, P. R. China
| | - Xiaole Weng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
32
|
Zhu X, Xu H, Bi C, Song H, Zhou G, Zhong K, Yang J, Yi J, Xu H, Wang X. Piezo-photocatalysis for efficient charge separation to promote CO 2 photoreduction in nanoclusters. ULTRASONICS SONOCHEMISTRY 2023; 101:106653. [PMID: 37918293 PMCID: PMC10638044 DOI: 10.1016/j.ultsonch.2023.106653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The substantial emissions of CO2 greenhouse gases have resulted in severe environmental problems, and research on the implementation of semiconductor materials to minimize CO2 is currently a highly discussed subject. Effective separation of interface charges is a major challenge for efficient piezo-photocatalytic systems. Meanwhile, the ultrasmall-sized metal nanoclusters can shorten the distance of electron transport. Herein, we synthesized Au25(p-MBA)18 nanoclusters (Au25 NCs) modified red graphitic carbon nitride (RCN) nanocatalysts with highly exposed Au active sites by in-situ seed growth method. The loading of Au25 NCs on the RCN surface provides more active sites and creates a long-range ordered electric field. It allows for the direct utilization of the piezoelectric field to separate photogenerated carriers during photo-piezoelectric excitation. Based on the above advantages, the rate of CO2 reduction to CO over Au25 NCs/RCN (111.95 μmol g-1 h-1) was more than triple compared to that of pristine RCN. This paper has positive implication for further application of metal clusters loaded semiconductor for piezo-photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Xingwang Zhu
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China.
| | - Hangmin Xu
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Chuanzhou Bi
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Hao Song
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Ganghua Zhou
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Kang Zhong
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinman Yang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianjian Yi
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xiaozhi Wang
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
33
|
Guo H, Yang P, Yang Y, Wu H, Zhang F, Huang ZF, Yang G, Zhou Y. Vacancy-Mediated Control of Local Electronic Structure for High-Efficiency Electrocatalytic Conversion of N 2 to NH 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309007. [PMID: 38037488 DOI: 10.1002/smll.202309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Ambient electrocatalytic nitrogen (N2 ) reduction has gained significant recognition as a potential substitute for producing ammonia (NH3 ). However, N2 adsorption and *NN protonation for N2 activation reaction with the competing hydrogen evolution reaction remain a daunting challenge. Herein, a defect-rich TiO2 nanosheet electrocatalyst with PdCu alloy nanoparticles (PdCu/TiO2-x ) is designed to elucidate the reactivity and selectivity trends of N2 cleavage path for N2 -to-NH3 catalytic conversion. The introduction of oxygen vacancy (OV) not only acts as active sites but also effectively promotes the electron transfer from Pd-Cu sites to high-concentration Ti3+ sites, and thus lends to the N2 activation via electron donation of PdCu. OVs-mediated control effectively lowers the reaction barrier of *N2 H and *H adsorption and facilitates the first hydrogenation process of N2 activation. Consequently, PdCu/TiO2-x catalyst attains a high rate of NH3 evolution, reaching 5.0 mmol gcat. -1 h-1 . This work paves a pathway of defect-engineering metal-supported electrocatalysts for high-efficient ammonia electrosynthesis.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Peng Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuantao Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Haoran Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Fengying Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 7010049, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
34
|
Han J, Yang J, Zhang Z, Jiang X, Liu W, Qiao B, Mu J, Wang F. Strong Metal-Support Interaction Facilitated Multicomponent Alloy Formation on Metal Oxide Support. J Am Chem Soc 2023; 145:22671-22684. [PMID: 37814206 DOI: 10.1021/jacs.3c07915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports. PtPdCoFe MA is readily synthesized on anatase TiO2 with the help of SMSI, which exhibits good catalytic activity and stability for methane combustion. This strategy demonstrates excellent universality on various supports and multicomponent alloy compositions. Our work not only reports a holistic synthesis strategy for MA synthesis by synergizing unique properties of reducible oxides and the mixing entropy of alloy but also offers a new insight that SMSI plays a vigorous role in the formation of alloy NPs on reducible oxides.
Collapse
Affiliation(s)
- Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| |
Collapse
|
35
|
Araújo TP, Morales-Vidal J, Giannakakis G, Mondelli C, Eliasson H, Erni R, Stewart JA, Mitchell S, López N, Pérez-Ramírez J. Reaction-Induced Metal-Metal Oxide Interactions in Pd-In 2 O 3 /ZrO 2 Catalysts Drive Selective and Stable CO 2 Hydrogenation to Methanol. Angew Chem Int Ed Engl 2023; 62:e202306563. [PMID: 37395462 DOI: 10.1002/anie.202306563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
Ternary Pd-In2 O3 /ZrO2 catalysts exhibit technological potential for CO2 -based methanol synthesis, but developing scalable systems and comprehending complex dynamic behaviors of the active phase, promoter, and carrier are key for achieving high productivity. Here, we show that the structure of Pd-In2 O3 /ZrO2 systems prepared by wet impregnation evolves under CO2 hydrogenation conditions into a selective and stable architecture, independent of the order of addition of Pd and In phases on the zirconia carrier. Detailed operando characterization and simulations reveal a rapid restructuring driven by the metal-metal oxide interaction energetics. The proximity of InPdx alloy particles decorated by InOx layers in the resulting architecture prevents performance losses associated with Pd sintering. The findings highlight the crucial role of reaction-induced restructuring in complex CO2 hydrogenation catalysts and offer insights into the optimal integration of acid-base and redox functions for practical implementation.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jordi Morales-Vidal
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Av. Catalunya 35, 43002, Tarragona, Spain
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Cecilia Mondelli
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Henrik Eliasson
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Joseph A Stewart
- TotalEnergies OneTech Belgium, Zone Industrielle Feluy C, 7181, Seneffe, Belgium
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
36
|
Liu H, Yuan C, Wu S, Sun C, Huang Z, Xu H, Shen W. Constructing an oxygen vacancy- and hydroxyl-rich TiO2-supported Pd catalyst with improved Pd dispersion and catalytic stability. J Chem Phys 2023; 159:124701. [PMID: 38127376 DOI: 10.1063/5.0171023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
Surface property modification of catalyst support is a straightforward approach to optimize the performance of supported noble metal catalysts. In particular, oxygen vacancies and hydroxyl groups play significant roles in promoting noble metal dispersion on catalysts as well as catalytic stability. In this study, we developed a nanoflower-like TiO2-supported Pd catalyst that has a higher concentration of oxygen vacancies and surface hydroxyl groups compared to that of commercial anatase and P25 support. Notably, due to the distinctive structure of the nanoflower-like TiO2, our catalyst exhibited improved dispersion and stabilization of Pd species and the formation of abundant reactive oxygen species, thereby facilitating the activation of CO and O2 molecules. As a result, the catalyst showed remarkable efficiency in catalyzing the low-temperature CO oxidation reaction with a complete CO conversion at 80 °C and stability for over 100 h.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chenyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chao Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Shen L, Wang Z, Gong Q, Zhang Y, Wang J. Photocatalytic Synthesis of Ultrafine Pt Electrocatalysts with High Stability Using TiO 2 -Decorated N-Doped Carbon as Composite Support. CHEMSUSCHEM 2023; 16:e202300393. [PMID: 37248649 DOI: 10.1002/cssc.202300393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 05/31/2023]
Abstract
Commercial Pt/C (Com. Pt/C) electrocatalysts are considered optimal for oxygen reduction and hydrogen evolution reactions (ORR and HER). However, their high Pt content and poor stability restrict their large-scale application. In this study, photocatalytic synthesis was used to reduce ultrafine Pt nanoparticles in-situ on a composite support of TiO2 -decorated nitrogen-doped carbon (TiO2 -NC). The nitrogen-doped carbon had a large surface area and electronic effects that ensured the uniform dispersion of TiO2 nanoparticles to form a highly photoactive and stable support. TiO2 -NC served as a composite support that enhanced the dispersibility and stability of ultrafine Pt electrocatalyst, owing to the presence of N sites and the strong metal-support interaction. Relative to Com. Pt/C, the as-obtained Pt/TiO2 -NC had positive shifts of 44 and 10 mV in the ORR half-wave potential and HER overpotential at -10 mA cm-2 , respectively. After an accelerated durability test, Pt/TiO2 -NC had lower losses in electrochemical specific area (0.7 %) and electrocatalytic activity (0 mV shift) than Com. Pt/C (25.6 %, 22 mV shift). These results indicate that the developed strategy enabled the facile synthesis and stabilization of ultrafine Pt nanoparticles, which improved the utilization efficiency and long-term stability of Pt-based electrocatalysts.
Collapse
Affiliation(s)
- Le Shen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zemei Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qi Gong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jingyu Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
38
|
Chen C, Wu M, Ma C, Song M, Jiang G. Efficient Photo-Assisted Thermal Selective Oxidation of Toluene Using N-Doped TiO 2. ACS OMEGA 2023; 8:21026-21031. [PMID: 37332816 PMCID: PMC10268642 DOI: 10.1021/acsomega.3c01887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Selective oxidation of toluene is a key reaction to produce high value-added products but remains a big challenge. In this study, we introduce a nitrogen-doped TiO2 (N-TiO2) catalyst to create more Ti3+ and oxygen vacancy (OV), which act as active sites for selective oxidation of toluene via activating O2 to superoxide radical (•O2-). Interestingly, the resulting N-TiO2-2 exhibited an outstanding photo-assisted thermal performance with a product yield of 209.6 mmol·gcat-1 and a toluene conversion of 10960.0 μmol·gcat-1·h-1, which are 1.6 and 1.8 times greater than those obtained under thermal catalysis. We showed that the enhanced performance under photo-assisted thermal catalysis was attributed to more active species generation by making full use of photogenerated carriers. Our work suggests a viewpoint to apply a noble-metal-free TiO2 system in the selective oxidation of toluene under solvent-free conditions.
Collapse
Affiliation(s)
- Cheng Chen
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingge Wu
- Key
Laboratory of Photochemistry, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Ma
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| |
Collapse
|
39
|
Yang P, Guo H, Wu H, Zhang F, Liu J, Li M, Yang Y, Cao Y, Yang G, Zhou Y. Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO 2 nanosheets for enhancing nitrogen electroreduction to ammonia production. J Colloid Interface Sci 2023; 636:184-193. [PMID: 36634390 DOI: 10.1016/j.jcis.2023.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (eNRR) to ammonia (NH3) has been recognized as an effective, carbon-neutral, and great-potential strategy for ammonia production. However, the conversion efficiency and selectivity of eNRR still face significant challenges due to the slow transfer kinetics and lack of effective N2 adsorption and activation sites in this process. Herein, we designed and fabricated defect-rich TiO2 nanosheets furnished with oxygen vacancies (OVs) and Au nanoparticles (Au/TiO2-x) as the electrocatalyst for efficient N2-fixing. The experimental results demonstrate that OVs act as active sites, which enable efficient chemisorption and activation of N2 molecules. The Au nanoparticles loaded on the OVs-rich TiO2 nanosheets not only accelerate charge transfer but also change the local electronic structure, thus enhancing N2 adsorption and activation. In this work, the optimal Au/TiO2-x electrocatalyst displays a considerable NH3 yield activity of 12.5 μg h-1 mgcat.-1 and a faradaic efficiency (FE) of 10.2 % at -0.40 V vs reversible hydrogen electrode (RHE). More importantly, the Au/TiO2-x exhibits a stable N2-fixing activity in cycling and it persists even after 80 h of consecutive electrolysis. Density functional theory (DFT) calculations reveal that the OVs serve as the active sites in TiO2, while Au nanoparticles are crucial for improving N2 chemisorption and lowering the reaction energy barrier by facilitating the charge transfer for eNRR with a distal hydrogenation pathway. This research offers a rational catalytic site design for modulating charge transfer of active sites on metal-supported defective catalysts to boost N2 electroreduction to NH3.
Collapse
Affiliation(s)
- Peng Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Heng Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.
| | - Haoran Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Fengying Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jiaxin Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Mengyue Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuantao Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuehan Cao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Guidong Yang
- XJTU-Oxford International Joint Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 7010049, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; Tianfu Yongxing Laboratory, Chengdu 611130, China.
| |
Collapse
|
40
|
Liu X, Gu Q, Zhang Y, Xu X, Wang H, Sun Z, Cao L, Sun Q, Xu L, Wang L, Li S, Wei S, Yang B, Lu J. Atomically Thick Oxide Overcoating Stimulates Low-Temperature Reactive Metal-Support Interactions for Enhanced Catalysis. J Am Chem Soc 2023; 145:6702-6709. [PMID: 36920448 DOI: 10.1021/jacs.2c12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Reactive metal-support interactions (RMSIs) induce the formation of bimetallic alloys and offer an effective way to tune the electronic and geometric properties of metal sites for advanced catalysis. However, RMSIs often require high-temperature reductions (>500 °C), which significantly limits the tuning of bimetallic compositional varieties. Here, we report that an atomically thick Ga2O3 coating of Pd nanoparticles enables the initiation of RMSIs at a much lower temperature of ∼250 °C. State-of-the-art microscopic and in situ spectroscopic studies disclose that low-temperature RMSIs initiate the formation of rarely reported Ga-rich PdGa alloy phases, distinct from the Pd2Ga phase formed in traditional Pd/Ga2O3 catalysts after high-temperature reduction. In the CO2 hydrogenation reaction, the Ga-rich alloy phases impressively boost the formation of methanol and dimethyl ether ∼5 times higher than that of Pd/Ga2O3. In situ infrared spectroscopy reveals that the Ga-rich phases greatly favor formate formation as well as its subsequent hydrogenation, thus leading to high productivity.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hengwei Wang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Lina Cao
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qimeng Sun
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lulu Xu
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Leilei Wang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shang Li
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junling Lu
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, iChem, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
41
|
Tian X, Dong Y, Zahid M. One‐pot
synthesis of
CuO
/
TiO
2
nanocomposites for improved photocatalytic hydrogenation of
4‐nitrophenol
to
4‐aminophenol
under direct sunlight. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Xiqiang Tian
- Heilongjiang Province Key Laboratory of Environmental Catalysis and Energy Storage Materials, Department of Food and Pharmaceutical Engineering Suihua University Suihua China
| | - Yanping Dong
- Heilongjiang Province Key Laboratory of Environmental Catalysis and Energy Storage Materials, Department of Food and Pharmaceutical Engineering Suihua University Suihua China
| | - Muhammad Zahid
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University Harbin China
| |
Collapse
|
42
|
Zhang X, Shi W, Li Y, Zhao W, Han S, Shen W. Pt 3Ti Intermetallic Alloy Formed by Strong Metal–Support Interaction over Pt/TiO 2 for the Selective Hydrogenation of Acetophenone. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Xixiong Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Shi
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
43
|
Sun Y, Yang Z, Dai S. Nonclassical Strong Metal-Support Interactions for Enhanced Catalysis. J Phys Chem Lett 2023; 14:2364-2377. [PMID: 36848324 DOI: 10.1021/acs.jpclett.2c03915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strong metal-support interaction (SMSI), which encompasses reversible encapsulation and de-encapsulation and modulation of surface adsorption properties, imposes great impacts on the performance of heterogeneous catalysts. Recent development of SMSI has surpassed the prototypical encapsulated Pt-TiO2 catalyst, affording a series of conceptually novel and practically advantageous catalytic systems. Here we provide our perspective on recent progress in nonclassical SMSIs for enhanced catalysis. Unravelling the structural complexity of SMSI necessitates the combination of multiple characterization techniques at different scales. Synthesis strategies leveraging chemical, photonic, and mechanochemical driving forces further expand the definition and application scope of SMSI. Exquisite structure engineering permits elucidation of the interface, entropy, and size effect on the geometric and electronic characteristics. Materials innovation places the atomically thin two-dimensional materials at the forefront of interfacial active site control. A broader space is awaiting exploration, where exploitation of metal-support interactions brings compelling catalytic activity, selectivity, and stability.
Collapse
Affiliation(s)
- Yifan Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
44
|
An X, Wei T, Ding P, Liu LM, Xiong L, Tang J, Ma J, Wang F, Liu H, Qu J. Sodium-Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency. J Am Chem Soc 2023; 145:1759-1768. [PMID: 36607337 DOI: 10.1021/jacs.2c10690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrating different reaction sites offers new prospects to address the difficulties in single-atom catalysis, but the precise regulation of active sites at the atomic level remains challenging. Here, we demonstrate a sodium-directed photon-induced assembly (SPA) strategy for boosting the atomic utilization efficiency of single-atom catalysts (SACs) by constructing multifarious Au sites on TiO2 substrate. Na+ was employed as the crucial cement to direct Au single atoms onto TiO2, while the light-induced electron transfer from excited TiO2 to Au(Na+) ensembles contributed to the self-assembly formation of Au nanoclusters. The synergism between plasmonic near-field and Schottky junction enabled the cascade electron transfer for charge separation, which was further enhanced by oxygen vacancies in TiO2. Our dual-site photocatalysts exhibited a nearly 2 orders of magnitude improvement in the hydrogen evolution activity under simulated solar light, with a striking turnover frequency (TOF) value of 1533 h-1 that exceeded other Au/TiO2-based photocatalysts reported. Our SPA strategy can be easily extended to prepare a wide range of metal-coupled nanostructures with enhanced performance for diverse catalytic reactions. Thus, this study provides a well-defined platform to extend the boundaries of SACs for multisite catalysis through harnessing metal-support interactions.
Collapse
Affiliation(s)
- Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingcha Wei
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,MIIT Key Laboratory of Aerospace Information Materials and Physics, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Peijia Ding
- School of Physics, Beihang University, Beijing 100191, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi'an 710119, China
| | - Feng Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Pu T, Zhang W, Zhu M. Engineering Heterogeneous Catalysis with Strong Metal-Support Interactions: Characterization, Theory and Manipulation. Angew Chem Int Ed Engl 2023; 62:e202212278. [PMID: 36287199 DOI: 10.1002/anie.202212278] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Strong metal-support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.
Collapse
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenhao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
46
|
Wu X, Liu CJ, Wang H, Ge Q, Zhu X. Origin of strong metal-support interactions between Pt and anatase TiO2 facets for hydrodeoxygenation of m-cresol on Pt/TiO2 catalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Gao M, Yang Z, Zhang H, Ma J, Zou Y, Cheng X, Wu L, Zhao D, Deng Y. Ordered Mesopore Confined Pt Nanoclusters Enable Unusual Self-Enhancing Catalysis. ACS CENTRAL SCIENCE 2022; 8:1633-1645. [PMID: 36589882 PMCID: PMC9801509 DOI: 10.1021/acscentsci.2c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 06/17/2023]
Abstract
As an important kind of emerging heterogeneous catalyst for sustainable chemical processes, supported metal cluster (SMC) catalysts have received great attention for their outstanding activity; however, the easy aggregation of metal clusters due to their migration along the substrate's surface usually deteriorates their activity and even causes catalyst failure during cycling. Herein, stable Pt nanoclusters (NCs, ∼1.06 nm) are homogeneously confined in the uniform spherical mesopores of mesoporous titania (mpTiO2) by the interaction between Pt NCs and metal oxide pore walls made of polycrystalline anatase TiO2. The obtained Pt-mpTiO2 exhibits excellent stability with well-retained CO conversion (∼95.0%) and Pt NCs (∼1.20 nm) in the long term water-gas shift (WGS) reaction. More importantly, the Pt-mpTiO2 displays an unusual increasing activity during the cyclic catalyzing WGS reaction, which was found to stem from the in situ generation of interfacial active sites (Ti3+-Ov-Ptδ+) by the reduction effect of spillover hydrogen generated at the stably supported Pt NCs. The Pt-mpTiO2 catalysts also show superior performance toward the selective hydrogenation of furfural to 2-methylfuran. This work discloses an efficient and robust Pt-mpTiO2 catalyst and systematically elucidates the mechanism underlying its unique catalytic activity, which helps to design stable SMC catalysts with self-enhancing interfacial activity in sustainable heterogeneous catalysis.
Collapse
Affiliation(s)
- Meiqi Gao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Zhirong Yang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Haijiao Zhang
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Xiaowei Cheng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Limin Wu
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, Hohhot010021, China
| | - Dongyuan Zhao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| |
Collapse
|
48
|
Zhang Y, Jia A, Li Z, Yuan Z, Huang W. Titania-Morphology-Dependent Pt–TiO 2 Interfacial Catalysis in Water-Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yunshang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Aiping Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Zhaorui Li
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Zhenxuan Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Weixin Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
49
|
Kim D, Dimitrakopoulos G, Yildiz B. Controlling the Size of Au Nanoparticles on Reducible Oxides with the Electrochemical Potential. J Am Chem Soc 2022; 144:21926-21938. [PMID: 36441525 DOI: 10.1021/jacs.2c08422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling the size of Au nanoparticles (NPs) and their interaction with the oxide support is important for their catalytic performance in chemical reactions, such as CO oxidation and water-gas shift. It is known that the oxygen vacancies at the surface of support oxides form strong chemical bonding with the Au NPs and inhibit their coarsening and deactivation. The resulting Au/oxygen vacancy interface also acts as an active site for oxidation reactions. Hence, small Au NPs are needed to increase the density of the Au/oxide interface. A dynamic way to control the size of the Au NPs on an oxide support is desirable but has been missing in the field. Here, we demonstrate an electrochemical method to control the size of the Au NPs by controlling the surface oxygen vacancy concentration of the support oxide. Oxides with different reducibilities, La0.8Ca0.2MnO3±δ and Pr0.1Ce0.9O2-δ, are used as model support oxides. By applying the electrochemical potential, we achieve a wide range of effective oxygen pressures, pO2 (10-37-1014 atm), in the support oxides. Applying the cathodic potential creates a high concentration of oxygen vacancies and forms finely distributed Au NPs with sizes of 7-13 nm at 700-770 °C in 10 min, while the anodic potential oxidizes the surface and increases the size of the Au NPs. The onset cathodic potential required to create small Au NPs depends strongly on the reducibility of the support oxide. The Au NPs did not undergo sintering even at 700-770 °C under the cathodic potential and also were stable in catalytically relevant conditions without potential.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgios Dimitrakopoulos
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bilge Yildiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Dourado AH, Silva-Jr NA, Neves-Garcia T, Braga AH, Rossi LM, de.Torresi SIC. Boosting SO2 electrocatalytic oxidation reaction on highly dispersed subnanometric Au/TiO2 catalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|