1
|
Jeyaraman N, Jeyaraman M, Muthu S, Balaji S, Ramasubramanian S, Patro BP. Chondrogenic Potential of Umbilical Cord-Derived Mesenchymal Stromal Cells: Insights and Innovations. Indian J Orthop 2024; 58:1349-1361. [PMID: 39324097 PMCID: PMC11420429 DOI: 10.1007/s43465-024-01239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Background The advent of tissue engineering and regenerative medicine has introduced innovative approaches to treating degenerative and traumatic injuries, particularly in cartilage, a tissue with limited self-repair capabilities. Among the various stem cell sources, umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have garnered significant interest due to their non-invasive collection, minimal ethical concerns, and robust regenerative potential, particularly in cartilage regeneration. Methods A comprehensive literature review was conducted using multiple databases, including PubMed, Scopus, Web of Science, and Google Scholar. Search terms focused on "umbilical cordderived mesenchymal stromal cells," "chondrogenesis," "cartilage regeneration," and related topics. Studies published in the past two decades were included, with selection criteria emphasizing methodological rigor and relevance to UC-MSC chondrogenesis. The review synthesizes findings from various sources to provide a thorough analysis of the potential of UC-MSCs in cartilage tissue engineering. Results UC-MSCs exhibit significant chondrogenic potential, supported by their ability to differentiate into chondrocytes under specific conditions. Recent advancements include the development of biomaterial scaffolds and the application of genetic engineering techniques, such as CRISPR/Cas9, to enhance chondrogenic differentiation. Despite these advancements, challenges remain in standardizing cell isolation techniques, scaling up production for clinical use, and ensuring the long-term functionality of regenerated cartilage. Conclusion UC-MSCs offer a promising solution for cartilage regeneration in the field of regenerative medicine. Ongoing research is focused on overcoming current challenges through the use of advanced technologies, including bioreactors and gene editing. Collaborative efforts among researchers, clinicians, and bioengineers are essential to translating the potential of UC-MSCs into effective clinical therapies, which could significantly advance tissue regeneration and therapeutic innovation. Graphical Abstract
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Tamil Nadu, Chennai, 600077 India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Tamil Nadu, Chennai, 600077 India
- VirginiaTech India, Dr MGR Educational and Research Institute, Tamil Nadu, Chennai, 600095 India
- Department of Orthopaedics, Orthopaedic Research Group, Tamil Nadu, Coimbatore, 641045 India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Tamil Nadu, Coimbatore, 641045 India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Tamil Nadu, Coimbatore, 641021 India
- Department of Orthopaedics, Government Karur Medical College, Tamil Nadu, Karur, 639004 India
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Tamil Nadu, Chennai, 600002 India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Tamil Nadu, Chennai, 600002 India
| | - Bishnu Prasad Patro
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019 India
| |
Collapse
|
2
|
Tian B, Zhang L, Zheng J, Kang X. The role of NF-κB-SOX9 signalling pathway in osteoarthritis. Heliyon 2024; 10:e37191. [PMID: 39319133 PMCID: PMC11419907 DOI: 10.1016/j.heliyon.2024.e37191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The nuclear factor-κB (NF-κB) signalling pathway exists in a variety of cells and is involved in the gene regulation of various physiological and pathological processes such as inflammation, immunity, cell proliferation and apoptosis. It has been shown that this signaling pathway is also involved in numerous events associated with osteoarthritis, including chondrocyte catabolism, chondrocyte survival, and synovial inflammation. SRY-related high mobility group-box 9(SOX9) is the "master regulator" of chondrocytes and one of the key transcription factors that maintain chondrocyte phenotype and cartilage homeostasis. NF-κB can positively regulate the expression of SOX9 by directly binding to its promoter region, and play a role in the formation and development of chondrocytes. This article reviews the regulatory effect of the NF-κB-SOX9 signaling axis on osteoarthritis.
Collapse
Affiliation(s)
- Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
- Department of Orthopedics, the First Afffliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Jiang Zheng
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| |
Collapse
|
3
|
Lian R, Wu G, Xu F, Zhao S, Li M, Wang H, Jia T, Dong Y. Clinical cases series and pathogenesis of Lamb-Shaffer syndrome in China. Orphanet J Rare Dis 2024; 19:281. [PMID: 39075495 PMCID: PMC11285261 DOI: 10.1186/s13023-024-03279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Lamb-Shaffer syndrome (LAMSHF, OMIM: 616803) is a rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, poor expressive speech, which is attributed to haploinsufficiency by heterozygous variants of SOX5 gene (SRY-Box Transcription Factor 5, HGNC: 11201) on chromosome 12p12. A total of 113 cases have been reported in the world, however, only 3 cases have been reported.in China. Here, we aimed to report novel variants of SOX5 gene and provide examples for clinical diagnosis by reporting the clinical phenotype of a series of Chinese patients with LAMSHF. METHODS This study retrospectively collected the information of families of LAMSHF patients in China. Whole Exome Sequencing (WES) were performed to confirm the diagnosis of 4 children with unexplained developmental delay or epilepsy. A minigene splicing assay was used to verify whether the splice variant affected splicing. Meanwhile, a literature review was conducted to analyze the clinical and genetic characteristics of patients with LAMSHF. RESULTS Three of the LAMSHF patients had a de novo heterozygous mutation in the SOX5 gene respectively, c.290delC (p.Pro97fs*30), chr12:23686019_24048958del, c.1772-1C > A, and the remaining one had a mutation inherited from his father, c.1411C > T (p.Arg471*). The main clinical manifestations of these children were presented with global developmental delays, and one of them also had seizures. And the results of the minigene experiment indicated that the splice variant, c.1772-1C > A, transcribed a novel mRNA product which leaded to the formation of a truncated protein. CONCLUSIONS Through a comprehensive review and analysis of existing literature and this study showed intellectual disability, speech delay and facial dysmorphisms were common clinical manifestation, while the seizures and EEG abnormalities were rare (21/95, 22.16%). Notably, we represent the largest sample size of LAMSHF in Asia that encompasses previously unreported SOX5 gene mutation, and a minigene testing have been conducted to validate the pathogenicity of the c.1772-1C > A splice variant. The research further expands the phenotype and genotype of LAMSHF while offers novel insights for potential pathogenicity of genes locus.
Collapse
Affiliation(s)
- Ruofei Lian
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Gongao Wu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Falin Xu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Shichao Zhao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Mengchun Li
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Haiyan Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Tianming Jia
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China
| | - Yan Dong
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, Henan Province, 450052, China.
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, the Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou, China.
| |
Collapse
|
4
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
5
|
Bandyopadhyay A, Ghibhela B, Mandal BB. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Biofabrication 2024; 16:022006. [PMID: 38277686 DOI: 10.1088/1758-5090/ad22f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Yang Y, Koga H, Nakagawa Y, Nakamura T, Katagiri H, Takada R, Katakura M, Tsuji K, Sekiya I, Miyatake K. Characteristics of the synovial microenvironment and synovial mesenchymal stem cells with hip osteoarthritis of different bone morphologies. Arthritis Res Ther 2024; 26:17. [PMID: 38200556 PMCID: PMC10777653 DOI: 10.1186/s13075-023-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Variations in bone morphology in patients with hip osteoarthritis (HOA) can be broadly categorized into three types: atrophic, normotrophic, and hypertrophic. Despite the investigations examining clinical elements, such as bone morphology, pain, and range of motion, our understanding of the pathogenesis of HOA remains limited. Previous studies have suggested that osteophytes typically originate at the interface of the joint cartilage, periosteum, and synovium, potentially implicating synovial mesenchymal stem cells (SMSCs) in the process. This study aimed to investigate the potential factors that drive the development of bone morphological features in HOA by investigating the characteristics of the synovium, differentiation potential of SMSCs, and composition of synovial fluid in different types of HOA. METHODS Synovial tissue and fluid were collected from 30 patients who underwent total hip arthroplasty (THA) with the variable bone morphology of HOA patients. RNA sequencing analysis and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were performed to analyse the genes in the normotrophic and hypertrophic synovial tissue. SMSCs were isolated and cultured from the normotrophic and hypertrophic synovial tissues of each hip joint in accordance with the variable bone morphology of HOA patients. Cell differentiation potential was compared using differentiation and colony-forming unit assays. Cytokine array was performed to analyse the protein expression in the synovial fluid. RESULTS In the RNA sequencing analysis, 103 differentially expressed genes (DEGs) were identified, predominantly related to the interleukin 17 (IL-17) signalling pathway. Using a protein-protein interaction (PPI) network, 20 hub genes were identified, including MYC, CXCL8, ATF3, NR4A1, ZC3H12A, NR4A2, FOSB, and FOSL1. Among these hub genes, four belonged to the AP-1 family. There were no significant differences in the tri-lineage differentiation potential and colony-forming capacity of SMSCs. However, RT-qPCR revealed elevated SOX9 expression levels in synovial tissues from the hypertrophic group. The cytokine array demonstrated significantly higher levels of CXCL8, MMP9, and VEGF in the synovial fluid of the hypertrophic group than in the normotrophic group, with CXCL8 and MMP9 being significantly expressed in the hypertrophic synovium. CONCLUSION Upregulation of AP-1 family genes in the synovium and increased concentrations of CXCL8, MMP9, and VEGF were detected in the synovial fluid of the hypertrophic group of HOA patients, potentially stimulating the differentiation of SMSCs towards the cartilage and thereby contributing to severe osteophyte formation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Nakamura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Ryohei Takada
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Katakura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Thamm JR, Jounaidi Y, Mueller ML, Rosen V, Troulis MJ, Guastaldi FPS. Temporomandibular Joint Fibrocartilage Contains CD105 Positive Mouse Mesenchymal Stem/Progenitor Cells with Increased Chondrogenic Potential. J Maxillofac Oral Surg 2023; 22:559-570. [PMID: 37534349 PMCID: PMC10390456 DOI: 10.1007/s12663-022-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Objective A specific type of mesenchymal stem/progenitor cells (MSPCs), CD105+ is reported to aid in cartilage regeneration through TGF-β/Smad2-signalling. The purpose of this study was to identify and characterize CD105+ MSPCs in temporomandibular joint (TMJ) cartilage. Materials and Methods MSPCs were isolated from mouse TMJ condyle explants and evaluated for their clonogenicity and pluripotential abilities. MSPC were examined for CD105 antigen using immunohistochemistry and flow cytometry. Results Immunohistochemistry revealed presence of CD105+ MSPCs in the proliferative zone of condyle's cartilage. Only 0.2% of isolated MSPCs exhibited CD105, along with the stem cell surface markers CD44 and Sca-1. In CD105+ MSPCs, intracellular immunostaining revealed significantly higher (p < 0.05) protein levels of collagen type 1, 2, proteoglycan 4. Ability for chondrogenic differentiation was found to be significantly higher (p < 0.05) after 4 weeks compared to CD105- cells, using alcian blue staining. CD105+ cells were found to resemble an early MSPC subgroup with significantly higher gene expression of biglycan, proteoglycan 4, collagen type 2, Gli2, Sox5 (p < 0.001) and Sox9 (p < 0.05). In contrast, significantly lower levels of Runx2 (p < 0.05), Osterix, Trps1, Col10a1 (p < 0.01), Ihh (p < 0.001) related to chondrocyte senescence and commitment to osteogenic lineage, were observed compared to CD105- cells. Conclusion The study showed the existence of a CD105+ MSPC subgroup within TMJ fibrocartilage that may be activated to aid in fibrocartilage repair.
Collapse
Affiliation(s)
- Janis R. Thamm
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Max-Laurin Mueller
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA USA
| | - Maria J. Troulis
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
- Walter C. Guralnick Professor of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Fernando Pozzi Semeghini Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, 50 Blossom St, Thier 513A, Boston, MA 02114 USA
| |
Collapse
|
8
|
Truong NC, Phan TNM, Huynh NT, Pham KD, Van Pham P. Interferon-Gamma Increases the Immune Modulation of Umbilical Cord-Derived Mesenchymal Stem Cells but Decreases Their Chondrogenic Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [PMID: 37291444 DOI: 10.1007/5584_2023_776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The pro-inflammatory cytokine interferon-gamma (IFN-γ) is reported to be an agent that boosts the immune modulation of mesenchymal stem cells (MSCs). However, the effects of IFN-γ on the chondrogenic potential of treated MSCs have not been evaluated in depth. This study aimed to evaluate the effects of IFN-γ on the immune modulation and chondrogenic potential of human umbilical cord-derived MSCs (hUC-MSCs). METHODS UC-MSCs were isolated and expanded following published protocols. They were characterized as MSCs before their use in further experiments. The UC-MSCs were treated with IFN-γ at 10 ng/mL for 48 h. Changes in phenotype were investigated based on changes in MSC markers, immunomodulatory genes (TGF-β, IL-4, and IDO) for immune modulation, and cartilage-related genes during the induction of differentiation (Col1a2, Col2a1, Sox9, Runx2, and Acan) for chondrogenic potential. RESULTS IFN-γ-treated UC-MSCs maintained MSC markers and exhibited decreased expression of transcriptional regulatory factors in chondrogenesis (Sox9 and Runx2) and the extracellular matrix-specific genes Col1a2 and Acan but not Col2a1 compared to non-treated cells (p < 0.05). Furthermore, the immunomodulatory capability of IFN-γ-treated UC-MSCs was clearly revealed through their increased expression of IDO and IL-4 and decreased expression of TGF-β compared to non-treated cells (p < 0.05). CONCLUSION This study demonstrated that UC-MSCs treated with IFN-γ at 10 ng/mL had reduced expression of chondrocyte-specific genes; however, they maintained multi-lineage differentiation and exhibited immunomodulatory properties.
Collapse
Affiliation(s)
- Nhat Chau Truong
- Stem Cell Institute, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Thu Ngoc-Minh Phan
- Stem Cell Institute, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Nhi Thao Huynh
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City, Viet Nam
| | - Khuong Duy Pham
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, University of Science, Ho Chi Minh City, Viet Nam.
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
- Laboratory of Cancer Research, University of Science, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Jin A, Xu H, Gao X, Sun S, Yang Y, Huang X, Wang X, Liu Y, Zhu Y, Dai Q, Bian Q, Jiang L. ScRNA-Seq Reveals a Distinct Osteogenic Progenitor of Alveolar Bone. J Dent Res 2023; 102:645-655. [PMID: 37148259 DOI: 10.1177/00220345231159821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
The metabolism and remodeling of alveolar bone are the most active among the whole skeletal system, which is related to the biological characteristics and heterogeneity of the bone mesenchymal stromal cells (MSCs). However, there is a lack of systematic description of the heterogeneity of MSC-derived osteoblastic lineage cells as well as their distinct osteogenic differentiation trajectory of alveolar bone. In this study, we constructed a single-cell atlas of the mouse alveolar bone cells through single-cell RNA sequencing (scRNA-seq). Remarkably, by comparing the cell compositions between the alveolar bone and long bone, we uncovered a previously undescribed cell population that exhibits a high expression of protocadherin Fat4 (Fat4+ cells) and is specifically enriched around alveolar bone marrow cavities. ScRNA-seq analysis indicated that Fat4+ cells may initiate a distinct osteogenic differentiation trajectory in the alveolar bone. By isolating and cultivating Fat4+ cells in vitro, we demonstrated that they possess colony-forming, osteogenic, and adipogenic capabilities. Moreover, FAT4 knockdown could significantly inhibit the osteogenic differentiation of alveolar bone MSCs. Furthermore, we revealed that the Fat4+ cells exhibit a core transcriptional signature consisting of several key transcription factors, such as SOX6, which are involved in osteogenesis, and further demonstrated that SOX6 is required for the efficient osteogenic differentiation of the Fat4+ cells. Collectively, our high-resolution single-cell atlas of the alveolar bone reveals a distinct osteogenic progenitor that may contribute to the unique physiological characteristics of alveolar bone.
Collapse
Affiliation(s)
- A Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - H Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - S Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Q Dai
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Q Bian
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Yang S, Wang YP, Li XY, Han PY, Han PF. The association between ADAM12 gene polymorphisms and osteoarthritis: an updated meta-analysis. J Orthop Surg Res 2023; 18:149. [PMID: 36855121 PMCID: PMC9974398 DOI: 10.1186/s13018-023-03626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Osteoarthritis of the knee is an irreversible disease that causes great pain, and genetic factors play an important role in its occurrence and development. There have been many studies on the correlation between ADAM12 polymorphisms and genetic susceptibility to osteoarthritis, but the results remain inconclusive. METHODS Papers from PubMed, Web of Science, EMbase, Springer, SCOPUS, Google Scholar and other databases were systematically retrieved with a cut-off of January 2022. All case-control studies on ADAM12 rs3740199, rs1871054, rs1044122, and rs1278279 polymorphisms and osteoarthritis were searched. Fixed or random effects models were used for pooled analysis with OR values and 95% confidence intervals (CI), and publication bias was assessed. In addition, the false-positive reporting probability test was used to assess the confidence of a statistically significant association. RESULTS Eleven articles were included, which included 3332 patients with osteoarthritis and 5108 healthy controls. Meta-analysis showed that the rs1871054 polymorphism of ADAM12 was associated with osteoarthritis in dominant, recessive, allelic, and homozygote genetic models [C vs. T: OR = 1.34 95% CI (1.05, 1.71), P < 0.001]. Our subgroup analysis revealed an association between the ADAM12 polymorphism rs1871054 in Asians and osteoarthritis [C vs. T: OR = 1.61, 95% CI (1.25, 2.08), P < 0.001], albeit this was only for three studies. In addition, the ADAM12 polymorphism rs1871054 is associated with osteoarthritis in patients younger than 60 years of age [C vs. T: OR = 1.39, 95% CI (1.01, 1.92), P = 0.289]; however, the ADAM12 gene rs3740199, rs1044122, and rs1278279 site polymorphisms were not significantly. Furthermore, when assessing the confidence of the positive results, the positive results were found to be credible (except for Age < 60). CONCLUSION Polymorphism at the rs1871054 site of ADAM12 is associated with genetic susceptibility to osteoarthritis, but rs3740199, rs1044122, and rs1278279 site polymorphisms are not.
Collapse
Affiliation(s)
- Su Yang
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi China
| | - Yue-peng Wang
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi China
| | - Xi-yong Li
- Department of Graduate School, Changzhi Medical College, Changzhi, Shanxi China
| | - Peng-yong Han
- Department of Graduate School, Changzhi Medical College, Changzhi, Shanxi China
| | - Peng-fei Han
- Department of Graduate School, Changzhi Medical College, Changzhi, Shanxi China
| |
Collapse
|
11
|
Bozhokin MS, Bozhkova SA, Sopova JV, Mikhailova ER, Marchenko DV, Khotin MG. Effect of recombinant Sox9 protein on the expression of cartilage-specific genes in human dermal fibroblasts cell culture. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.90447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Damage to the hyaline layer of large joints resulting from injuries or age-related changes restricts their mobility. The repair of these disorders is an actual issue in medicine. One of the promising therapies is the usage of cell engineering constructs based on a biodegradable scaffold and a modified cell culture. A frequently used method to modify the proliferation of cell culture for tissue engineering of hyaline cartilage, which makes it possible to introduce an experimental technique into clinical practice, is the application of recombinant proteins that affect chondrogenesis and lead to increase synthesis of extracellular matrix proteins. The goal of this work was to elucidate the effect of the key transcription factor in the chondrogenesis process – Sox9 protein – on the expression of genes responsible for chondrogenesis (Tgfβ3, Sox9, Acan, Comp, Col2a1).
Materials and methods: Human dermal fibroblasts were used as a cell culture; recombinant Sox9 was added at each change of medium; the modification was carried out for 21 days, and difference in gene expression was determined by real-time PCR and -ΔΔCt method.
Results and discussion: To assess the effectiveness of fibroblast modification, we analyzed the changing of expression of genes responsible for chondrogenesis (Tgfß3, Sox9, Col2a1, Acan, Comp). We studied the direct effect of different concentrations of the recombinant Sox9 protein on the proliferation of dermal fibroblasts in the chondrogenic direction. We showed that the addition of the recombinant Sox9 protein in various concentration did not significantly change the expression of both the genes encoding proteins of the extracellular matrix of hyaline cartilage (Acan, Col2a1, Comp) and the genes encoding chondrogenesis inducers (Tgfß3, Sox9).
Conclusion: As a result of the experiments, it was shown that the recombinant Sox9 protein has practically no effect on chondrogenic differentiation and does not significantly change the expression of chondrogenesis genes.
Collapse
|
12
|
Du S, Wang S, Liu X, Ye K. Effects of Bushen Zhuangjin Decoction drug serum on SOX9 expression and Chondrocyte phenotype in vitro. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction Bushen Zhuangjin Decoction (BZD), a well-known formulation in Traditional Chinese Medicine, has been widely used for the treatment of osteoarthritis (OA). Due to the poor intrinsic repair capacity of chondrocytes, promoting the proliferation of chondrocytes is an efficient treatment to delay the progression of cartilage degradation.
Hypothesis/Gap Statement Therefore, to explore the regulatory mechanism of Bushen Zhuangjin Decoction in chondrocytes will contribute to the repair of chondrocyte injury in OA, and may serve as a potential therapy for OA diseases.
Aim To investigate the expression and distribution of SOX9 mediated by serum containing Bushen Zhuangjin Decoction (BZD) and its therapeutic effect on chondrocyte injury in rats.
Methodology. The subcultured second-generation rat chondrocytes were randomly divided into four groups, and they were intervened with medium containing different serums, including: blank serum group, low-concentration BZD group, medium-concentration BZD group, and high-concentration BZD group. The viability, proliferation and apoptosis of chondrocytes were detected by MTT assay and flow cytometry. The gene and protein levels of SOX9, aggrecan and type II collagen genes were analysed by qRT-PCR and Western blot analysis. Immunofluorescence staining was used to analyse the expression and distribution of SOX9. Inflammatory factors in different culture mediums of chondrocytes were detected by ELISA.
Results Compared with the control group, the activity of chondrocytes in the BZD drug-containing serum group was significantly enhanced, and the degree of apoptosis was significantly decreased. The gene and protein levels of SOX9, proteoglycan aggrecan and collagen II in chondrocytes increased significantly. The inflammatory factors in the culture medium also decreased significantly. And in the above experiments, the medium concentration group BZD drug-containing serum had the best effect.
Conclusion Our research results show that BZD medicated serum can up-regulate the expression of SOX9, reduce the release of inflammatory factors, and promote changes in the phenotype of chondrocytes, which protects chondrocytes from damage.
Collapse
Affiliation(s)
- Shaowen Du
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Gansu Province 730000, PR China
| | - Shengdong Wang
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Gansu Province 730000, PR China
| | - Xiang Liu
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Gansu Province 730000, PR China
| | - Kaishan Ye
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Gansu Province 730000, PR China
| |
Collapse
|
13
|
Copy Number Variation of the SOX6 Gene and Its Associations with Growth Traits in Ashidan Yak. Animals (Basel) 2022; 12:ani12223074. [PMID: 36428302 PMCID: PMC9686495 DOI: 10.3390/ani12223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Copy number variation (CNV) is a fundamental type of structural variation of the genome affecting the economic traits of livestock. The SOX6 gene (sex-determining region Y-box 6), as a transcription factor, has multiple functions with regard to sex determination, embryonic growth, the nervous system development, as well as bone, and various organ formation. This study employed quantitative real-time fluorescence quota PCR (qPCR) for detecting the SOX6-CNV of the 311 Ashidan yaks and analyzed the correlation of the SOX6-CNV with four phenotypes (including body weight, withers height, body length, and chest girth) of the yaks aged 6, 12, 18, and 30 months using ANOVA and multiple comparisons. Furthermore, the SOX6 gene expression was identified in seven different tissues of the yaks. The experiment results demonstrated the expression of SOX6 in each tissue, and the kidney and muscle tissue were found to have higher relative expression levels. Based on the processing by IBM SPSS software, SOX6-CNV was significantly correlated with the chest girth of the 6-months old yaks (p < 0.05) and 30-months yaks (p < 0.05), and withers height of 6 months yaks (p < 0.05) and 18-months yaks (p < 0.05), as well as the normal type of CNV, was chosen for yak breeding. In conclusion, SOX6 might be prominently involved in promoting growth and development of yaks, suggesting that the SOX6 gene can be used in breeding yaks by molecular marker-assisted selection (MAS). The study also offered some important insights into the references and clues for the genetic breeding of yaks.
Collapse
|
14
|
Lufkin L, Samanta A, Baker D, Lufkin S, Schulze J, Ellis B, Rose J, Lufkin T, Kraus P. Glis1 and oxaloacetate in nucleus pulposus stromal cell somatic reprogramming and survival. Front Mol Biosci 2022; 9:1009402. [PMID: 36406265 PMCID: PMC9671658 DOI: 10.3389/fmolb.2022.1009402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Regenerative medicine aims to repair degenerate tissue through cell refurbishment with minimally invasive procedures. Adipose tissue (FAT)-derived stem or stromal cells are a convenient autologous choice for many regenerative cell therapy approaches. The intervertebral disc (IVD) is a suitable target. Comprised of an inner nucleus pulposus (NP) and an outer annulus fibrosus (AF), the degeneration of the IVD through trauma or aging presents a substantial socio-economic burden worldwide. The avascular nature of the mature NP forces cells to reside in a unique environment with increased lactate levels, conditions that pose a challenge to cell-based therapies. We assessed adipose and IVD tissue-derived stromal cells through in vitro transcriptome analysis in 2D and 3D culture and suggested that the transcription factor Glis1 and metabolite oxaloacetic acid (OAA) could provide NP cells with survival tools for the harsh niche conditions in the IVD.
Collapse
Affiliation(s)
- Leon Lufkin
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States,The Clarkson School, Clarkson University, Potsdam, NY, United States
| | - Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - DeVaun Baker
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Sina Lufkin
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | | | - Benjamin Ellis
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Jillian Rose
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States,*Correspondence: Petra Kraus,
| |
Collapse
|
15
|
Direct Reprogramming of Mouse Subchondral Bone Osteoblasts into Chondrocyte-like Cells. Biomedicines 2022; 10:biomedicines10102582. [PMID: 36289842 PMCID: PMC9599480 DOI: 10.3390/biomedicines10102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of full-thickness articular cartilage defects with exposure of subchondral bone often seen in osteoarthritic conditions has long been a great challenge, especially with a focus on the feasibility of in situ cartilage regeneration through minimally invasive procedures. Osteoblasts that situate in the subchondral bone plate may be considered a potentially vital endogenous source of cells for cartilage resurfacing through direct reprogramming into chondrocytes. Microarray-based gene expression profiles were generated to compare tissue-specific transcripts between subchondral bone and cartilage of mice and to assess age-dependent differences of chondrocytes as well. On osteoblast cell lines established from mouse proximal tibial subchondral bone, sequential screening by co-transduction of transcription factor (TF) genes that distinguish chondrocytes from osteoblasts reveals a shortlist of potential reprogramming factors exhibiting combined effects in inducing chondrogenesis of subchondral bone osteoblasts. A further combinatorial approach unexpectedly identified two 3-TF combinations containing Sox9 and Sox5 that exhibit differences in reprogramming propensity with the third TF c-Myc or Plagl1, which appeared to direct the converted chondrocytes toward either a superficial or a deeper zone phenotype. Thus, our approach demonstrates the possibility of converting osteoblasts into two major chondrocyte subpopulations with two combinations of three genes (Sox9, Sox5, and c-Myc or Plagl1). The findings may have important implications for developing novel in situ regeneration strategies for the reconstruction of full-thickness cartilage defects.
Collapse
|
16
|
Lee SY, Lee JW. 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070939. [PMID: 35888029 PMCID: PMC9317836 DOI: 10.3390/life12070939] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Cartilage is a connective tissue that constitutes the structure of the body and consists of chondrocytes that produce considerable collagenous extracellular matrix and plentiful ground substances, such as proteoglycan and elastin fibers. Self-repair is difficult when the cartilage is damaged because of insufficient blood supply, low cellularity, and limited progenitor cell numbers. Therefore, three-dimensional (3D) culture systems, including pellet culture, hanging droplets, liquid overlays, self-injury, and spinner culture, have attracted attention. In particular, 3D spheroid culture strategies can enhance the yield of exosome production of mesenchymal stem cells (MSCs) when compared to two-dimensional culture, and can improve cellular restorative function by enhancing the paracrine effects of MSCs. Exosomes are membrane-bound extracellular vesicles, which are intercellular communication systems that carry RNAs and proteins. Information transfer affects the phenotype of recipient cells. MSC-derived exosomes can facilitate cartilage repair by promoting chondrogenic differentiation and proliferation. In this article, we reviewed recent major advances in the application of 3D culture techniques, cartilage regeneration with stem cells using 3D spheroid culture system, the effect of exosomes on chondrogenic differentiation, and chondrogenic-specific markers related to stem cell derived exosomes. Furthermore, the utilization of MSC-derived exosomes to enhance chondrogenic differentiation for osteoarthritis is discussed. If more mechanistic studies at the molecular level are conducted, MSC-spheroid-derived exosomes will supply a better therapeutic option to improve osteoarthritis.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6516; Fax: +82-32-899-6039
| |
Collapse
|
17
|
Feng L, Yang Z, Li Y, Pan Q, Zhang X, Wu X, Lo JHT, Wang H, Bai S, Lu X, Wang M, Lin S, Pan X, Li G. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:328-341. [PMID: 35474736 PMCID: PMC9010521 DOI: 10.1016/j.omtn.2022.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease; thus, understanding the pathological mechanisms of OA initiation and progression is critical for OA treatment. MicroRNAs (miRNAs) have been shown to be involved in the progression of osteoarthritis, one candidate is microRNA-378 (miR-378), which is highly expressed in the synovium of OA patients during late-stage disease, but its function and the underlying mechanisms of how it contributes to disease progression remain poorly understood. In this study, miR-378 transgenic (TG) mice were used to study the role of miR-378 in OA development. miR-378 TG mice developed spontaneous OA and also exaggerated surgery-induced disease progression. Upon in vitro OA induction, miR-378 expression was upregulated and correlated with elevated inflammation and chondrocyte hypertrophy. Chondrocytes isolated from articular cartilage from miR-378 TG mice showed impaired chondrogenic differentiation. The bone marrow mesenchymal stem cells (BMSCs) collected from miR-378 TG mice also showed repressed chondrogenesis compared with the control group. The autophagy-related protein Atg2a, as well as chondrogenesis regulator Sox6, were identified as downstream targets of miR-378. Ectopic expression of Atg2a and Sox6 rescued miR-378-repressed chondrocyte autophagy and BMSC chondrogenesis, respectively. Anti-miR-378 lentivirus intra-articular injection in an established OA mouse model was shown to ameliorate OA progression, promote articular regeneration, and repress hypertrophy. Atg2a and Sox6 were again confirmed to be the target of miR-378 in vivo. In conclusion, miR-378 amplified OA development via repressing chondrocyte autophagy and by inhibiting BMSCs chondrogenesis, thus indicating miR-378 may be a potential therapeutic target for OA treatments.
Collapse
Affiliation(s)
- Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Department of Pediatric Orthopaedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaomin Wu
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Jessica Hiu Tung Lo
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaohua Pan
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| |
Collapse
|
18
|
Smith CA, Humphreys PA, Bates N, Naven MA, Cain SA, Dvir‐Ginzberg M, Kimber SJ. SIRT1 activity orchestrates ECM expression during hESC-chondrogenic differentiation. FASEB J 2022; 36:e22314. [PMID: 35416346 PMCID: PMC9322318 DOI: 10.1096/fj.202200169r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic modification is a key driver of differentiation, and the deacetylase Sirtuin1 (SIRT1) is an established regulator of cell function, ageing, and articular cartilage homeostasis. Here we investigate the role of SIRT1 during development of chondrocytes by using human embryonic stem cells (hESCs). HESC-chondroprogenitors were treated with SIRT1 activator; SRT1720, or inhibitor; EX527, during differentiation. Activation of SIRT1 early in 3D-pellet culture led to significant increases in the expression of ECM genes for type-II collagen (COL2A1) and aggrecan (ACAN), and chondrogenic transcription factors SOX5 and ARID5B, with SOX5 ChIP analysis demonstrating enrichment on the chondrocyte specific -10 (A1) enhancer of ACAN. Unexpectedly, when SIRT1 was activated, while ACAN was enhanced, glycosaminoglycans (GAGs) were reduced, paralleled by down regulation of gene expression for N-acetylgalactosaminyltransferase type 1 (GALNT1) responsible for GAG chain initiation/elongation. A positive correlation between ARID5B and COL2A1 was observed, and co-IP assays indicated association of ARID5B with SIRT1, further suggesting that COL2A1 expression is promoted by an ARID5B-SIRT1 interaction. In conclusion, SIRT1 activation positively impacts on the expression of the main ECM proteins, while altering ECM composition and suppressing GAG content during human cartilage development. These results suggest that SIRT1 activity has a differential effect on GAGs and proteins in developing hESC-chondrocytes and could only be beneficial to cartilage development and matrix protein synthesis if balanced by addition of positive GAG mediators.
Collapse
Affiliation(s)
- Christopher A. Smith
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Paul A. Humphreys
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Mark A. Naven
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Stuart A. Cain
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Mona Dvir‐Ginzberg
- Laboratory of Cartilage BiologyFaculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
19
|
Direct Reprogramming and Induction of Human Dermal Fibroblasts to Differentiate into iPS-Derived Nucleus Pulposus-like Cells in 3D Culture. Int J Mol Sci 2022; 23:ijms23074059. [PMID: 35409417 PMCID: PMC8999916 DOI: 10.3390/ijms23074059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) diseases are common spinal disorders that cause neck or back pain in the presence or absence of an underlying neurological disorder. IVD diseases develop on the basis of degeneration, and there are no established treatments for degeneration. IVD diseases may therefore represent a candidate for the application of regenerative medicine, potentially employing normal human dermal fibroblasts (NHDFs) induced to differentiate into nucleus pulposus (NP) cells. Here, we used a three-dimensional culture system to demonstrate that ectopic expression of MYC, KLF4, NOTO, SOX5, SOX6, and SOX9 in NHDFs generated NP-like cells, detected using Safranin-O staining. Quantitative PCR, microarray analysis, and fluorescence-activated cell sorting revealed that the induced NP cells exhibited a fully differentiated phenotype. These findings may significantly contribute to the development of effective strategies for treating IVD diseases.
Collapse
|
20
|
Liao HJ, Chang CH, Huang CYF, Chen HT. Potential of Using Infrapatellar–Fat–Pad–Derived Mesenchymal Stem Cells for Therapy in Degenerative Arthritis: Chondrogenesis, Exosomes, and Transcription Regulation. Biomolecules 2022; 12:biom12030386. [PMID: 35327578 PMCID: PMC8945217 DOI: 10.3390/biom12030386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Infrapatellar fat pad–derived mesenchymal stem cells (IPFP-MSCs) are a type of adipose-derived stem cell (ADSC). They potentially contribute to cartilage regeneration and modulation of the immune microenvironment in patients with osteoarthritis (OA). The ability of IPFP-MSCs to increase chondrogenic capacity has been reported to be greater, less age dependent, and less affected by inflammatory changes than that of other MSCs. Transcription-regulatory factors strictly regulate the cartilage differentiation of MSCs. However, few studies have explored the effect of transcriptional factors on IPFP-MSC-based neocartilage formation, cartilage engineering, and tissue functionality during and after chondrogenesis. Instead of intact MSCs, MSC-derived extracellular vesicles could be used for the treatment of OA. Furthermore, exosomes are increasingly being considered the principal therapeutic agent in MSC secretions that is responsible for the regenerative and immunomodulatory functions of MSCs in cartilage repair. The present study provides an overview of advancements in enhancement strategies for IPFP-MSC chondrogenic differentiation, including the effects of transcriptional factors, the modulation of released exosomes, delivery mechanisms for MSCs, and ethical and regulatory points concerning the development of MSC products. This review will contribute to the understanding of the IPFP-MSC chondrogenic differentiation process and enable the improvement of IPFP-MSC-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City 320315, Taiwan
- Correspondence: (C.-H.C.); (H.-T.C.)
| | - Chi-Ying F. Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hui-Ting Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (C.-H.C.); (H.-T.C.)
| |
Collapse
|
21
|
De Kinderen P, Meester J, Loeys B, Peeters S, Gouze E, Woods S, Mortier G, Verstraeten A. Differentiation of Induced Pluripotent Stem Cells Into Chondrocytes: Methods and Applications for Disease Modeling and Drug Discovery. J Bone Miner Res 2022; 37:397-410. [PMID: 35124831 DOI: 10.1002/jbmr.4524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology allows pathomechanistic and therapeutic investigation of human heritable disorders affecting tissue types whose collection from patients is difficult or even impossible. Among them are cartilage diseases. Over the past decade, iPSC-chondrocyte disease models have been shown to exhibit several key aspects of known disease mechanisms. Concurrently, an increasing number of protocols to differentiate iPSCs into chondrocytes have been published, each with its respective (dis)advantages. In this review we provide a comprehensive overview of the different differentiation approaches, the hitherto described iPSC-chondrocyte disease models and mechanistic and/or therapeutic insights that have been derived from their investigation, and the current model limitations. Key lessons are that the most appropriate differentiation approach is dependent upon the cartilage disease under investigation and that further optimization is still required to recapitulate the in vivo cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Pauline De Kinderen
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Josephina Meester
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elvire Gouze
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Geert Mortier
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
22
|
Salamanna F, Contartese D, Borsari V, Pagani S, Barbanti Brodano G, Griffoni C, Ricci A, Gasbarrini A, Fini M. Two Hits for Bone Regeneration in Aged Patients: Vertebral Bone Marrow Clot as a Biological Scaffold and Powerful Source of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 9:807679. [PMID: 35118056 PMCID: PMC8804319 DOI: 10.3389/fbioe.2021.807679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Recently, the use of a new formulation of bone marrow aspirate (BMA), the BMA clot, has been described. This product entails a naturally formed clot from the harvested bone marrow, which retains all the BMA components preserved in a matrix biologically molded by the clot. Even though its beneficial effects were demonstrated by some studies, the impact of aging and aging-associated processes on biological properties and the effect of BMA cell-based therapy are currently unknown. The purpose of our study was to compare selected parameters and properties of clotted BMA and BMA-derived mesenchymal stem cells (MSCs) from younger (<45 years) and older (>65 years) female donors. Clotted BMA growth factors (GFs) expression, MSCs morphology and viability, doubling time, surface marker expression, clonogenic potential, three-lineage differentiation, senescence-associated factors, and Klotho synthesis from younger and older donors were analyzed. Results indicated that donor age does not affect tissue-specific BMA clot regenerative properties such as GFs expression and MSCs morphology, viability, doubling time, surface antigens expression, colony-forming units, osteogenic and adipogenic differentiation, and Klotho and senescence-associated gene expression. Only few differences, i.e., increased platelet-derived growth factor-AB (PDGF-AB) synthesis and MSCs Aggrecan (ACAN) expression, were detected in younger donors in comparison with older ones. However, these differences do not interfere with all the other BMA clot biological properties. These results demonstrated that BMA clot can be applied easily, without any sample processing and avoiding potential contamination risks as well as losing cell viability, proliferation, and differentiation ability, for autologous transplantation in aged patients. The vertebral BMA clot showed two successful hits since it works as a biological scaffold and as a powerful source of mesenchymal stem cells, thus representing a novel and advanced therapeutic alternative for the treatment of orthopedic injuries.
Collapse
Affiliation(s)
- Francesca Salamanna
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Deyanira Contartese
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Deyanira Contartese,
| | - Veronica Borsari
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Pagani
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Ricci
- Anesthesia-Resuscitation and Intensive Care, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
23
|
Wu H, Peng Z, Xu Y, Sheng Z, Liu Y, Liao Y, Wang Y, Wen Y, Yi J, Xie C, Chen X, Hu J, Yan B, Wang H, Yao X, Fu W, Ouyang H. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development. Stem Cell Res Ther 2022; 13:19. [PMID: 35033199 PMCID: PMC8760691 DOI: 10.1186/s13287-021-02695-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. METHODS Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. RESULTS modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. CONCLUSIONS These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.
Collapse
Affiliation(s)
- Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Peng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixuan Sheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanshan Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Junzhi Yi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 310003, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 310003, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 310003, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China. .,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
24
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
25
|
Abstract
Aims Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Methods Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases. Results MDD has a significant genetic correlation with OA (rg = 0.29) and the two diseases share a considerable proportion of causal variants. Mendelian randomization analysis indicates that genetic liability to MDD has a causal effect on OA (bxy = 0.24) and genetic liability to OA conferred a causal effect on MDD (bxy = 0.20). Cross-trait meta-analyses identified 29 shared genomic loci between MDD and OA. Together with fine-mapping of transcriptome-wide association signals, our results suggest that Estrogen Receptor 1 (ESR1), SRY-Box Transcription Factor 5 (SOX5), and Glutathione Peroxidase 1 (GPX1) may have therapeutic implications for both MDD and OA. Conclusion The study reveals substantial shared genetic liability between MDD and OA, which may confer risk for one another. Our findings provide a novel insight into phenotypic relationships between MDD and OA. Cite this article: Bone Joint Res 2022;11(1):12–22.
Collapse
Affiliation(s)
- Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA.,Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
26
|
Iskandarani L, McHattie T, Robaire B, Hales BF. Effects of Bisphenols A, AF, and S on Endochondral Ossification and the Transcriptome of Murine Limb Buds. Toxicol Sci 2021; 187:234-253. [PMID: 34850234 DOI: 10.1093/toxsci/kfab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bisphenols are a family of chemicals commonly used to produce polycarbonate plastics and epoxy resins. Exposure to bisphenol A (BPA) is associated with a variety of adverse effects; thus, many alternatives to BPA, such as BPAF and BPS, are now emerging in consumer products. We have determined the effects of three bisphenols on endochondral ossification and the transcriptome in a murine limb bud culture system. Embryonic forelimbs were cultured in the presence of vehicle, BPA, BPAF, or BPS. BPA (≥ 10 μM), BPAF (≥ 1 μM) and BPS (≥ 50 μM) reduced the differentiation of hypertrophic chondrocytes and osteoblasts. Chondrogenesis was suppressed by exposure to ≥ 50 μM BPA, ≥ 5 μM BPAF, or 100 μM BPS and osteogenesis was almost completely arrested at 100 μM BPA or 10 μM BPAF. RNA sequencing analyses revealed that the total number of differentially expressed genes increased with time and the concentration tested. BPA exposure differentially regulated 635 genes, BPAF affected 554 genes, while BPS affected 95 genes. Although the genes that were differentially expressed overlapped extensively, each bisphenol also induced chemical-specific alterations in gene expression. BPA and BPAF-treated limbs exhibited a downregulation of RhoGDI signalling genes. Exposure to BPA and BPS resulted in the upregulation of key genes involved in cholesterol biosynthesis, while exposure to BPAF induced an upregulation of genes involved in bone formation and in the p53 signalling pathway. These data suggest that BPAF may be more detrimental to endochondral ossification than BPA, while BPS is of comparable toxicity to BPA.
Collapse
Affiliation(s)
- Lama Iskandarani
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Tessa McHattie
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
27
|
Ohba S. Genome-scale actions of master regulators directing skeletal development. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:217-223. [PMID: 34745394 PMCID: PMC8556520 DOI: 10.1016/j.jdsr.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/14/2021] [Accepted: 10/10/2021] [Indexed: 11/03/2022] Open
Abstract
The mammalian skeleton develops through two distinct modes of ossification: intramembranous ossification and endochondral ossification. During the process of skeletal development, SRY-box containing gene 9 (Sox9), runt-related transcription factor 2 (Runx2), and Sp7 work as master transcription factors (TFs) or transcriptional regulators, underlying cell fate specification of the two distinct populations: bone-forming osteoblasts and cartilage-forming chondrocytes. In the past two decades, core transcriptional circuits underlying skeletal development have been identified mainly through mouse genetics and biochemical approaches. Recently emerging next-generation sequencer (NGS)-based studies have provided genome-scale views on the gene regulatory landscape programmed by the master TFs/transcriptional regulators. With particular focus on Sox9, Runx2, and Sp7, this review aims to discuss the gene regulatory landscape in skeletal development, which has been identified by genome-scale data, and provide future perspectives in this field.
Collapse
Affiliation(s)
- Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
28
|
Lange C, Madry H, Venkatesan JK, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. rAAV-Mediated sox9 Overexpression Improves the Repair of Osteochondral Defects in a Clinically Relevant Large Animal Model Over Time In Vivo and Reduces Perifocal Osteoarthritic Changes. Am J Sports Med 2021; 49:3696-3707. [PMID: 34643471 DOI: 10.1177/03635465211049414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gene transfer of the transcription factor SOX9 with clinically adapted recombinant adeno-associated virus (rAAV) vectors offers a powerful tool to durably enhance the repair process at sites of osteochondral injuries and counteract the development of perifocal osteoarthritis (OA) in the adjacent articular cartilage. PURPOSE To examine the ability of an rAAV sox9 construct to improve the repair of focal osteochondral defects and oppose perifocal OA development over time in a large translational model relative to control gene transfer. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with rAAV-FLAG-hsox9 relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair and degenerative changes in the adjacent cartilage were monitored using macroscopic, histological, immunohistological, and biochemical evaluations after 6 months. The microarchitecture of the subchondral bone was assessed by micro-computed tomography. RESULTS Effective, prolonged sox9 overexpression via rAAV was significantly achieved in the defects after 6 months versus rAAV-lacZ treatment. The application of rAAV-FLAG-hsox9 improved the individual parameters of defect filling, matrix staining, cellular morphology, defect architecture, surface architecture, subchondral bone, and tidemark as well as the overall score of cartilage repair in the defects compared with rAAV-lacZ. The overexpression of sox9 led to higher levels of proteoglycan production, stronger type II collagen deposition, and reduced type I collagen immunoreactivity in the sox9- versus lacZ-treated defects, together with decreased cell densities and DNA content. rAAV-FLAG-hsox9 enhanced semiquantitative histological subchondral bone repair, while the microstructure of the incompletely restored subchondral bone in the sox9 defects was not different from that in the lacZ defects. The articular cartilage adjacent to the sox9-treated defects showed reduced histological signs of perifocal OA changes versus rAAV-lacZ. CONCLUSION rAAV-mediated sox9 gene transfer enhanced osteochondral repair in sheep after 6 months and reduced perifocal OA changes. These results underline the potential of rAAV-FLAG-hsox9 as a therapeutic tool to treat cartilage defects and afford protection against OA. CLINICAL RELEVANCE The delivery of therapeutic rAAV sox9 to sites of focal injuries may offer a novel, convenient tool to enhance the repair of osteochondral defects involving both the articular cartilage and the underlying subchondral bone and provide a protective role by reducing the extent of perifocal OA.
Collapse
Affiliation(s)
- Cliff Lange
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | | | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
29
|
Qiu M, Lu Y, Li J, Gu J, Ji Y, Shao Y, Kong X, Sun W. Interaction of SOX5 with SOX9 promotes warfarin-induced aortic valve interstitial cell calcification by repressing transcriptional activation of LRP6. J Mol Cell Cardiol 2021; 162:81-96. [PMID: 34520801 DOI: 10.1016/j.yjmcc.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
Calcific aortic valve disease (CAVD) is an important health burden due to its increasing prevalence and lack of available approaches. Osteogenic transdifferentiation of aortic valve interstitial cells (AVICs) contributes to valve calcification. SRY-related HMG-box transcription factor 5 (SOX5) is essential for cartilage development. Whether SOX5 is involved in AVIC calcification has not been determined. This study aimed to explore the role of SOX5 in warfarin-induced AVIC calcification. Immunostaining showed decreased SOX5 in human calcific AV and warfarin induced mouse calcific AV tissues compared with human noncalcific AV and control mouse AV tissues. In calcific human AVICs (hAVICs) and porcine AVICS (pAVICs), both knockdown and overexpression of SOX5 inhibited calcium deposition and osteogenic marker gene expression. Protein expression assays and ChIP assays showed that overexpression of SOX5 led to increased recruitment of SOX5 to the SOX9 promoter and resulted in increased mRNA and protein expression of SOX9. Coimmunoprecipitation and immunofluorescence showed that SOX5 binds to SOX9 with its HMG domain in nucleus. Blue Native PAGE showed overexpression of SOX5 led to multimeric complex formation of SOX5 and resulted in decreased binding of SOX5 to SOX9 similar to the results of knockdown of SOX5. Further ChIP and western blotting assays showed that both knockdown and overexpression of SOX5 resulted in SOX9 initiating transcription of anti-calcific gene LRP6 in warfarin-treated pAVICs. Knockdown of LRP6 rescues the anti-calcification effect of SOX5 overexpression. We found that both loss and gain of function of SOX5 lead to the same phenotype: decreased warfarin induced calcification. The stoichiometry of SOX5 is crucial for cooperation with SOX9, SOX9 nuclear localization and subsequent binding of SOX9 to LRP6 promoter. These results suggest that SOX5 is a potential target for the development of anti-calcification therapy.
Collapse
Affiliation(s)
- Ming Qiu
- School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China; Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yan Lu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Junhan Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Jia Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yue Ji
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Xiangqing Kong
- School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China; Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing 211166, China.
| | - Wei Sun
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| |
Collapse
|
30
|
Bourgery M, Ekholm E, Fagerlund K, Hiltunen A, Puolakkainen T, Pursiheimo JP, Heino T, Määttä J, Heinonen J, Yatkin E, Laitala T, Säämänen AM. Multiple targets identified with genome wide profiling of small RNA and mRNA expression are linked to fracture healing in mice. Bone Rep 2021; 15:101115. [PMID: 34458508 PMCID: PMC8379442 DOI: 10.1016/j.bonr.2021.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Long-bone fracture is a common injury and its healing process at the fracture site involves several overlapping phases, including inflammation, migration of mesenchymal progenitors into the fracture site, endochondral ossification, angiogenesis and finally bone remodelling. Increasing evidence shows that small noncoding RNAs are important regulators of chondrogenesis, osteogenesis and fracture healing. MicroRNAs are small single-stranded, non-coding RNA-molecules intervening in most physiological and biological processes, including fracture healing. Angiogenin-cleaved 5' tRNA halves, also called as tiRNAs (stress-induced RNAs) have been shown to repress protein translation. In order to gain further understanding on the role of small noncoding RNAs in fracture healing, genome wide expression profiles of tiRNAs, miRNAs and mRNAs were followed up to 14 days after fracture in callus tissue of an in vivo mouse model with closed tibial fracture and, compared to intact bone and articular cartilage at 2 months of age. Total tiRNA expression level in cartilage was only approximately one third of that observed in control D0 bone. In callus tissue, 11 mature 5'end tiRNAs out of 191 tiRNAs were highly expressed, and seven of them were differentially expressed during fracture healing. When comparing the control tissues, 25 miRNAs characteristic to bone and 29 miRNAs characteristic to cartilage tissue homeostasis were identified. Further, a total of 54 out of 806 miRNAs and 5420 out of 18,700 mRNAs were differentially expressed (DE) in callus tissue during fracture healing and, in comparison to control bone. They were associated to gene ontology processes related to mesenchymal tissue development and differentiation. A total of 581 miRNA-mRNA interactions were identified for these 54 DE miRNAs by literature searches in PubMed, thereby linking by Spearman correlation analysis 14 downregulated and 28 upregulated miRNAs to 164 negatively correlating and 168 positively correlating miRNA-mRNA pairs with chondrogenic and osteogenic phases of fracture healing. These data indicated that tiRNAs and miRNAs were differentially expressed in fracture callus tissue, suggesting them important physiological functions during fracture healing. Hence, the data provided by this study may contribute to future clinical applications, such as potential use as biomarkers or as tools in the development of novel therapeutic approaches for fracture healing.
Collapse
Affiliation(s)
| | - Erika Ekholm
- Institute of Biomedicine, University of Turku, Finland
| | | | | | - Tero Puolakkainen
- Institute of Biomedicine, University of Turku, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | | | - Terhi Heino
- Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Finland
- Turku Center for Disease Modeling (TCDM), Finland
| | | | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Institute of Biomedicine, University of Turku, Finland
| | | |
Collapse
|
31
|
Lan X, Liang Y, Erkut EJN, Kunze M, Mulet-Sierra A, Gong T, Osswald M, Ansari K, Seikaly H, Boluk Y, Adesida AB. Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering. FASEB J 2021; 35:e21191. [PMID: 33595884 DOI: 10.1096/fj.202002081r] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
Skin cancer patients often have tumorigenic lesions on their noses. Surgical resection of the lesions often results in nasal cartilage removal. Cartilage grafts taken from other anatomical sites are used for the surgical reconstruction of the nasal cartilage, but donor-site morbidity is a common problem. Autologous tissue-engineered nasal cartilage grafts can mitigate the problem, but commercially available scaffolds define the shape and sizes of the engineered grafts during tissue fabrication. Moreover, the engineered grafts suffer from the inhomogeneous distribution of the functional matrix of cartilage. Advances in 3D bioprinting technology offer the opportunity to engineer cartilages with customizable dimensions and anatomically shaped configurations without the inhomogeneous distribution of cartilage matrix. Here, we report the fidelity of Freeform Reversible Embedding of Suspended Hydrogel (FRESH) bioprinting as a strategy to generate customizable and homogenously distributed functional cartilage matrix engineered nasal cartilage. Using FRESH and in vitro chondrogenesis, we have fabricated tissue-engineered nasal cartilage from combining bovine type I collagen hydrogel and human nasoseptal chondrocytes. The engineered nasal cartilage constructs displayed molecular, biochemical and histological characteristics akin to native human nasal cartilage.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, AB, Canada
| | - Esra J N Erkut
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, AB, Canada
| | - Tianxing Gong
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, AB, Canada
| | - Martin Osswald
- Institute for Reconstructive Sciences in Medicine (iRSM), Misericordia Community Hospital, Edmonton, AB, Canada.,Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, AB, Canada
| | - Khalid Ansari
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, AB, Canada
| | - Hadi Seikaly
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, AB, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Azami M, Beheshtizadeh N. Identification of regeneration-involved growth factors in cartilage engineering procedure promotes its reconstruction. Regen Med 2021; 16:719-731. [PMID: 34287065 DOI: 10.2217/rme-2021-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To fabricate mature cartilage for implantation, developmental biological processes and proteins should be understood and employed. Methods: A systems biology study of all protein-coding genes participating in cartilage regeneration resulted in a network graph with 11 nodes and 28 edges. Gene ontology and centrality analysis were performed based on the degree index. Results: The four most crucial biological processes along with the seven most interactive proteins involved in cartilage regeneration were identified. Some proteins, which are under serious discussion in cartilage developmental and disease processes, are included in regeneration. Conclusions: Findings positively correlate with the literature, supporting the use of the four most impressive proteins as growth factors applicable to cartilage tissue engineering, including COL2A1, SOX9, CTGF and TGFβ1.
Collapse
Affiliation(s)
- Mahmoud Azami
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Regenerative Medicine group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Regenerative Medicine group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
33
|
Rauch A, Mandrup S. Transcriptional networks controlling stromal cell differentiation. Nat Rev Mol Cell Biol 2021; 22:465-482. [PMID: 33837369 DOI: 10.1038/s41580-021-00357-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/02/2023]
Abstract
Stromal progenitors are found in many different tissues, where they play an important role in the maintenance of tissue homeostasis owing to their ability to differentiate into parenchymal cells. These progenitor cells are differentially pre-programmed by their tissue microenvironment but, when cultured and stimulated in vitro, these cells - commonly referred to as mesenchymal stromal cells (MSCs) - exhibit a marked plasticity to differentiate into many different cell lineages. Loss-of-function studies in vitro and in vivo have uncovered the involvement of specific signalling pathways and key transcriptional regulators that work in a sequential and coordinated fashion to activate lineage-selective gene programmes. Recent advances in omics and single-cell technologies have made it possible to obtain system-wide insights into the gene regulatory networks that drive lineage determination and cell differentiation. These insights have important implications for the understanding of cell differentiation, the contribution of stromal cells to human disease and for the development of cell-based therapeutic applications.
Collapse
Affiliation(s)
- Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
34
|
Kita T, Tajima T, Chosa E. Turner's syndrome associated with discoid lateral meniscus and Blount's disease: a case report. BMC Musculoskelet Disord 2021; 22:449. [PMID: 33992118 PMCID: PMC8126072 DOI: 10.1186/s12891-021-04336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Background Turner’s syndrome, discoid meniscus, and Blount’s disease have all been studied in isolation, but, to the best of our knowledge, there have been no studies reporting a patient with all three. Thus, the first case of Turner’s syndrome with discoid meniscus and Blount’s disease is presented. Case presentation A 5-year-old Japanese girl with a history of Turner’s syndrome and Blount’s disease complained of pain in her left knee. Magnetic resonance imaging showed a discoid lateral meniscus tear, and arthroscopic partial meniscectomy was performed, providing a good outcome. Conclusions In this report, some possible explanations regarding the concomitant presence of these three diseases are discussed. A possible explanation in this case is that the patient with Turner’s syndrome had a discoid lateral meniscus that might have been induced by some genetic factors associated with Turner’s syndrome, and then the discoid lateral meniscus might have been the mechanical stress that caused Blount’s disease.
Collapse
Affiliation(s)
- Tsunemasa Kita
- Department of Orthopedic Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takuya Tajima
- Department of Orthopedic Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Etsuo Chosa
- Department of Orthopedic Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
35
|
Zafar I, Iftikhar R, Ahmad SU, Rather MA. Genome wide identification, phylogeny, and synteny analysis of sox gene family in common carp ( Cyprinus carpio). ACTA ACUST UNITED AC 2021; 30:e00607. [PMID: 33936955 PMCID: PMC8076717 DOI: 10.1016/j.btre.2021.e00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
27 SOX (high-mobility group HMG-box) genes were identified in the C. carp genome. SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative protein series from 307 to 509 amino acids. Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %. Chromosomal location and synteny analysis display all SOX gene are located on different chromosomes.
Common carp (Cyprinus carpio) is a commercial fish species valuable for nutritious components and plays a vital role in human healthy nutrition. The SOX (SRY-related genes systematically characterized by a high-mobility group HMG-box) encoded important gene regulatory proteins, a family of transcription factors found in a broad range of animal taxa and extensively known for its contribution in multiple developmental processes including contribution in sex determination across phyla. In our current study, we initially accomplished a genome-wide analysis to report the SOX gene family in common carp fish based on available genomic sequences of zebrafish retrieved from gene repository databases, we focused on the global identification of the Sox gene family in Common carp among wide range of vertebrates and teleosts based on bioinformatics tools and techniques and explore the evolutionary relationships. In our results, a total of 27 SOX (high-mobility group HMG-box) domain genes were identified in the C. carp genome. The full length sequences of SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative proteins series from 307 to 509 amino acids and all gene having exon number expect SOX9 and SOX13. All the SOX proteins contained at least one conserved DNA-binding HMG-box domain and two (SOX7 and SOX18) were found C terminal. The Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %, average in biological regulation 45.188 %, biosynthetic process (19.992 %), regulation of cellular process 39.68, 45.508 % organic substance metabolic process, multicellular organismal process 23.23 %,developmental process 21.74 %, system development 16.59 %, gene expression 16.05 % and 14.337 % of RNA metabolic process. Chromosomal location and syntanic analysis show all SOX gene are located on different chromosomes and apparently does not fallow the unique pattern. The maximum linkage of chromosome is (2) on Unplaced Scaffold region. Finally, our results provide important genomic suggestion for upcoming studies of biochemical, physiological, and phylogenetic understanding on SOX genes among teleost.
Collapse
Affiliation(s)
- Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Rida Iftikhar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Fauclty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
- Corresponding author.
| |
Collapse
|
36
|
Rilo-Alvarez H, Ledo AM, Vidal A, Garcia-Fuentes M. Delivery of transcription factors as modulators of cell differentiation. Drug Deliv Transl Res 2021; 11:426-444. [PMID: 33611769 DOI: 10.1007/s13346-021-00931-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Fundamental studies performed during the last decades have shown that cell fate is much more plastic than previously considered, and technologies for its manipulation are a keystone for many new tissue regeneration therapies. Transcription factors (TFs) are DNA-binding proteins that control gene expression, and they have critical roles in the control of cell fate and other cellular behavior. TF-based therapies have much medical potential, but their use as drugs depends on the development of suitable delivery technologies that can help them reach their action site inside of the cells. TFs can be used either as proteins or encoded in polynucleotides. When used in protein form, many TFs require to be associated to a cell-penetrating peptide or another transduction domain. As polynucleotides, they can be delivered either by viral carriers or by non-viral systems such as polyplexes and lipoplexes. TF-based therapies have extensively shown their potential to solve many tissue-engineering problems, including bone, cartilage and cardiac regeneration. Yet, their use has expanded beyond regenerative medicine to other prominent disease areas such as cancer therapy and immunomodulation. This review summarizes some of the delivery options for effective TF-based therapies and their current main applications.
Collapse
Affiliation(s)
- Héctor Rilo-Alvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Adriana M Ledo
- Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Inc, 700 Main Street, Cambridge, MA, 02139, USA
| | - Anxo Vidal
- Department of Physiology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
37
|
Liu L, He J, Liu C, Yang M, Fu J, Yi J, Ai X, Liu M, Zhuang Y, Zhang Y, Huang B, Li C, Zhou Y, Feng C. Cartilage intermediate layer protein affects the progression of intervertebral disc degeneration by regulating the extracellular microenvironment (Review). Int J Mol Med 2021; 47:475-484. [PMID: 33416131 PMCID: PMC7797476 DOI: 10.3892/ijmm.2020.4832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IDD), which is caused by multiple factors, affects the health of individuals and contributes to low back pain. The pathology of IDD is complicated, and changes in the extracellular microenvironment play an important role in promoting the process of degeneration. Cartilage intermediate layer protein (CILP) is a matrix protein that resides in the middle of human articular cartilage and is involved in numerous diseases that affect cartilage. However, there is no detailed review of the relationship between CILP and degenerative disc disease. Growing evidence has revealed the presence of CILP in the extracellular microenvironment of intervertebral discs (IVDs) and has suggested that there is a gradual increase in CILP in degenerative discs. Specifically, CILP plays an important role in regulating the metabolism of the extracellular matrix (ECM), an important component of the extracellular microenvironment. CILP can combine with transforming growth factor‑β or insulin‑like growth factor‑1 to regulate the ECM synthesis of IVDs and influence the balance of ECM metabolism, which leads to changes in the extracellular microenvironment to promote the process of IDD. It may be possible to show the correlation of CILP with IDD and to target CILP to interfere with IDD. For this purpose, in the present study, the current knowledge on CILP was summarized and a detailed description of CILP in discs was provided.
Collapse
Affiliation(s)
- Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Jinyue He
- Department of Orthopedics, Xi'nan Hospital, Army Medical University, Chongqing 400037
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Jiawei Fu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Jiarong Yi
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Xuezheng Ai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Miao Liu
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yong Zhuang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yaqing Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| |
Collapse
|
38
|
Reinhold S, Blankesteijn WM, Foulquier S. The Interplay of WNT and PPARγ Signaling in Vascular Calcification. Cells 2020; 9:cells9122658. [PMID: 33322009 PMCID: PMC7763279 DOI: 10.3390/cells9122658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC), the ectopic deposition of calcium phosphate crystals in the vessel wall, is one of the primary contributors to cardiovascular death. The pathology of VC is determined by vascular topography, pre-existing diseases, and our genetic heritage. VC evolves from inflammation, mediated by macrophages, and from the osteochondrogenic transition of vascular smooth muscle cells (VSMC) in the atherosclerotic plaque. This pathologic transition partly resembles endochondral ossification, involving the chronologically ordered activation of the β-catenin-independent and -dependent Wingless and Int-1 (WNT) pathways and the termination of peroxisome proliferator-activated receptor γ (PPARγ) signal transduction. Several atherosclerotic plaque studies confirmed the differential activity of PPARγ and the WNT signaling pathways in VC. Notably, the actively regulated β-catenin-dependent and -independent WNT signals increase the osteochondrogenic transformation of VSMC through the up-regulation of the osteochondrogenic transcription factors SRY-box transcription factor 9 (SOX9) and runt-related transcription factor 2 (RUNX2). In addition, we have reported studies showing that WNT signaling pathways may be antagonized by PPARγ activation via the expression of different families of WNT inhibitors and through its direct interaction with β-catenin. In this review, we summarize the existing knowledge on WNT and PPARγ signaling and their interplay during the osteochondrogenic differentiation of VSMC in VC. Finally, we discuss knowledge gaps on this interplay and its possible clinical impact.
Collapse
Affiliation(s)
- Stefan Reinhold
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881409
| |
Collapse
|
39
|
Overcoming Current Dilemma in Cartilage Regeneration: Will Direct Conversion Provide a Breakthrough? Tissue Eng Regen Med 2020; 17:829-834. [PMID: 33098546 DOI: 10.1007/s13770-020-00303-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Direct reprogramming/direct conversion/transdifferentiation is a process that induces conversion between completely different matured (differentiated) cells in higher organisms. Unlike the process of reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) and re-differentiation into the desired cell types, differentiated cells undergo the conversion into another type of differentiated cells without going through the iPSCs state. Osteoarthritis (OA) is the most common type of arthritis that causes a significant deterioration in patients' quality of life. The high prevalence of OA as well as the current lack of disease-modifying drugs has led to a rise in regenerative strategy for OA treatment. Regenerative therapy in OA started with the concept of engraftment of the administered cells within the cartilage lesion and differentiation to chondrocytes after the engraftment. However, recent studies show that cells, particularly when injected in suspension, rapidly undergo apoptosis after exerting a transient paracrine effect. In this perspective review, the general overview and current status of direct conversion are introduced along with the conceptual strategy and future directions for possible application of regenerative therapy using stem cells in OA. In vivo direct conversion may open a new stage of regenerative medicine for OA treatment. Recent advances in in vivo gene transfer and smart biomaterials can bring the concept into reality in near future. Direct conversion can be a new type of treatment technology that has the potential to overcome the limitations of current cell therapy.
Collapse
|
40
|
De Angelis E, Grolli S, Saleri R, Conti V, Andrani M, Berardi M, Cavalli V, Passeri B, Ravanetti F, Borghetti P. Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering. Res Vet Sci 2020; 133:98-105. [PMID: 32961475 DOI: 10.1016/j.rvsc.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation. Chondrocytes were cultured in serum-free medium, 10% foetal bovine serum (FBS) supplemented medium, or in the presence of alginate beads containing 5%, 10% and 20% PL. Cell proliferation and gene expression of relevant chondrocyte differentiation markers were investigated. The proliferative capacity of cultured chondrocytes, was sustained more effectively at certain concentrations of PL as compared to that with FBS. In addition, as opposed to FBS, PL, particularly at percentages of 5% and 10%, could maintain the gene expression pattern of relevant chondrocyte differentiation markers. In particular, 5% PL supplementation showed the best compromise between chondrocyte proliferation capacity and maintenance of differentiation. The results of the present study provide a rationale for using PL as an alternative to FBS for in vitro expansion of chondrocytes for matrix-assisted chondrocyte implantation, construction of 3D scaffolds for tissue engineering, and treatment of damaged articular cartilage.
Collapse
Affiliation(s)
| | - Stefano Grolli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Sciences, University of Parma, Italy
| | - Virna Conti
- Department of Veterinary Sciences, University of Parma, Italy
| | - Melania Andrani
- Department of Veterinary Sciences, University of Parma, Italy
| | - Martina Berardi
- Department of Veterinary Sciences, University of Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Sciences, University of Parma, Italy
| | | | | | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Italy
| |
Collapse
|
41
|
Durand AL, Dufour A, Aubert-Foucher E, Oger-Desfeux C, Pasdeloup M, Lustig S, Servien E, Vaz G, Perrier-Groult E, Mallein-Gerin F, Lafont JE. The Lysine Specific Demethylase-1 Negatively Regulates the COL9A1 Gene in Human Articular Chondrocytes. Int J Mol Sci 2020; 21:ijms21176322. [PMID: 32878268 PMCID: PMC7504057 DOI: 10.3390/ijms21176322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints which is associated with an impaired production of the cartilage matrix by the chondrocytes. Here, we investigated the role of Lysine-Specific Demethylase-1 (LSD1), a chromatin remodeling enzyme whose role in articular chondrocytes was previously associated with a catabolic activity and which is potentially involved during OA. Following a loss of function strategy and RNA sequencing analysis, we detail the genes which are targeted by LSD1 in human articular chondrocytes and identify COL9A1, a gene encoding the α1 chain of the cartilage-specific type IX collagen, as negatively regulated by LSD1. We show that LSD1 interacts with the transcription factor SOX9 and is recruited to the promoter of COL9A1. Interestingly, we observe that OA cartilage displays stronger LSD1 immunostaining compared with normal, and we demonstrate that the depletion of LSD1 in OA chondrocytes prevents the decrease in COL9A1 following Il-1β treatment. These results suggest LSD1 is a new regulator of the anabolic activity of articular chondrocytes potentially destabilizing the cartilage matrix, since it negatively regulates COL9A1, a gene encoding a crucial anchoring collagen molecule. This newly identified role played by LSD1 may thus participate in the alteration of the cartilage matrix during OA.
Collapse
Affiliation(s)
- Anne-Laure Durand
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Alexandre Dufour
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Elisabeth Aubert-Foucher
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Christine Oger-Desfeux
- PRABI-AMSB, Batiment Mendel, Campus de la Doua, Université Claude Bernard Lyon1, University Lyon, 69622 Villeurbanne CEDEX, France;
| | - Marielle Pasdeloup
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Sebastien Lustig
- FIFA Medical Center of Excellence Orthopaedic Surgery and Sports Medicine Department, Croix-Rousse Hospital, Hospices Civils de Lyon, 103 grande rue de la Croix-Rousse 69317 Lyon CEDEX 04, France and IFSTTAR, LBMC UMR_T9406 Univ Lyon, Claude Bernard Lyon 1 University, 69317 Lyon, France;
| | - Elvire Servien
- FIFA Medical Center of Excellence, Orthopaedic Surgery and Sports Medicine Department, Croix-Rousse Hospital, Hospices Civils de Lyon, 103 grande rue de la Croix-Rousse 69317 Lyon CEDEX 04, France; LIBM-EA 7424, Interuniversity Laboratory of Biology of Mobility, Claude Bernard Lyon 1 University, 69317 Lyon, France;
| | - Gualter Vaz
- Orthopaedic Surgery Department, CMCR les Massues, Croix rouge française, 92 rue Edmond Locard, 69005 Lyon, France;
| | - Emeline Perrier-Groult
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Frederic Mallein-Gerin
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Jerome E. Lafont
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
- Correspondence:
| |
Collapse
|
42
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Vyas C, Mishbak H, Cooper G, Peach C, Pereira RF, Bartolo P. Biological perspectives and current biofabrication strategies in osteochondral tissue engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40898-020-00008-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractArticular cartilage and the underlying subchondral bone are crucial in human movement and when damaged through disease or trauma impacts severely on quality of life. Cartilage has a limited regenerative capacity due to its avascular composition and current therapeutic interventions have limited efficacy. With a rapidly ageing population globally, the numbers of patients requiring therapy for osteochondral disorders is rising, leading to increasing pressures on healthcare systems. Research into novel therapies using tissue engineering has become a priority. However, rational design of biomimetic and clinically effective tissue constructs requires basic understanding of osteochondral biological composition, structure, and mechanical properties. Furthermore, consideration of material design, scaffold architecture, and biofabrication strategies, is needed to assist in the development of tissue engineering therapies enabling successful translation into the clinical arena. This review provides a starting point for any researcher investigating tissue engineering for osteochondral applications. An overview of biological properties of osteochondral tissue, current clinical practices, the role of tissue engineering and biofabrication, and key challenges associated with new treatments is provided. Developing precisely engineered tissue constructs with mechanical and phenotypic stability is the goal. Future work should focus on multi-stimulatory environments, long-term studies to determine phenotypic alterations and tissue formation, and the development of novel bioreactor systems that can more accurately resemble the in vivo environment.
Collapse
|
44
|
Therapeutic Delivery of rAAV sox9 via Polymeric Micelles Counteracts the Effects of Osteoarthritis-Associated Inflammatory Cytokines in Human Articular Chondrocytes. NANOMATERIALS 2020; 10:nano10061238. [PMID: 32630578 PMCID: PMC7353187 DOI: 10.3390/nano10061238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a prevalent joint disease linked to the irreversible degradation of key extracellular cartilage matrix (ECM) components (proteoglycans, type-II collagen) by proteolytic enzymes due to an impaired tissue homeostasis, with the critical involvement of OA-associated pro-inflammatory cytokines (interleukin 1 beta, i.e., IL-1β, and tumor necrosis factor alpha, i.e., TNF-α). Gene therapy provides effective means to re-establish such degraded ECM compounds by rejuvenating the altered OA phenotype of the articular chondrocytes, the unique cell population ubiquitous in the articular cartilage. In particular, overexpression of the highly specialized SOX9 transcription factor via recombinant adeno-associated viral (rAAV) vectors has been reported for its ability to readjust the metabolic balance in OA, in particular via controlled rAAV delivery using polymeric micelles as carriers to prevent a possible vector neutralization by antibodies present in the joints of patients. As little is known on the challenging effects of such naturally occurring OA-associated pro-inflammatory cytokines on such rAAV/polymeric gene transfer, we explored the capacity of polyethylene oxide (PEO) and polypropylene oxide (PPO)-based polymeric micelles to deliver a candidate rAAV-FLAG-hsox9 construct in human OA chondrocytes in the presence of IL-1β and TNF-α. We report that effective, micelle-guided rAAV sox9 overexpression enhanced the deposition of ECM components and the levels of cell survival, while advantageously reversing the deleterious effects afforded by the OA cytokines on these processes. These findings highlight the potentiality of polymeric micelles as effective rAAV controlled delivery systems to counterbalance the specific contribution of major OA-associated inflammatory cytokines, supporting the concept of using such systems for the treatment for chronic inflammatory diseases like OA.
Collapse
|
45
|
Semba JA, Mieloch AA, Rybka JD. Introduction to the state-of-the-art 3D bioprinting methods, design, and applications in orthopedics. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2019.e00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Raftery RM, Gonzalez Vazquez AG, Chen G, O'Brien FJ. Activation of the SOX-5, SOX-6, and SOX-9 Trio of Transcription Factors Using a Gene-Activated Scaffold Stimulates Mesenchymal Stromal Cell Chondrogenesis and Inhibits Endochondral Ossification. Adv Healthc Mater 2020; 9:e1901827. [PMID: 32329217 DOI: 10.1002/adhm.201901827] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Indexed: 02/02/2023]
Abstract
Current treatments for articular cartilage defects relieve symptoms but often only delay cartilage degeneration. Mesenchymal stem cells (MSCs) have shown chondrogenic potential but tend to undergo endochondral ossification when implanted in vivo. Harnessing factors governing joint development to functionalize biomaterial scaffolds, termed developmental engineering, might allow to prime host MSCs to regenerate mature articular cartilage in situ without requiring cell isolation or ex vivo expansion. Therefore, the aim of this study is to develop a gene-activated scaffold capable of delivering developmental cues to host MSCs, thus priming MSCs for articular cartilage differentiation and inhibiting endochondral ossification. It is shown that delivery of the SOX-Trio induced MSCs to over-express COL2A1 and ACAN and deposit a sulfated and collagen type II rich extracellular matrix while hypertrophic gene expression and collagen type X deposition is inhibited. When cell-free SOX-Trio-activated scaffolds are implanted ectopically in vivo, they induced spontaneous chondrogenesis without evidence of hypertrophy. MSCs pre-cultured on SOX-Trio-activated scaffolds prior to implantation differentiate into phenotypically stable chondrocytes as evidenced by a lack of collagen X expression or vascular invasion. This SOX-trio-activated scaffold represents a potent, single treatment, developmentally inspired strategy to prime MSCs in situ for articular cartilage defect repair.
Collapse
Affiliation(s)
- Rosanne M. Raftery
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland Dublin D02 YN77 Ireland
- Trinity Centre for Biomedical Engineering (TCBE)Trinity College Dublin Dublin 2 Dublin D02 R590 Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI and TCD Dublin D02 YN77 Ireland
| | - Arlyng G. Gonzalez Vazquez
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland Dublin D02 YN77 Ireland
- Trinity Centre for Biomedical Engineering (TCBE)Trinity College Dublin Dublin 2 Dublin D02 R590 Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI and TCD Dublin D02 YN77 Ireland
| | - Gang Chen
- Department of Physiology and Medical PhysicsCentre for the Study of Neurological DisordersMicrosurgical Research and Training Facility (MRTF)Royal College of Surgeons in Ireland Dublin D02 YN77 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland Dublin D02 YN77 Ireland
- Trinity Centre for Biomedical Engineering (TCBE)Trinity College Dublin Dublin 2 Dublin D02 R590 Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI and TCD Dublin D02 YN77 Ireland
| |
Collapse
|
47
|
Wang T, Hill RC, Dzieciatkowska M, Zhu L, Infante AM, Hu G, Hansen KC, Pei M. Site-Dependent Lineage Preference of Adipose Stem Cells. Front Cell Dev Biol 2020; 8:237. [PMID: 32351957 PMCID: PMC7174673 DOI: 10.3389/fcell.2020.00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Adult stem cells have unique properties in both proliferation and differentiation preference. In this study, we hypothesized that adipose stem cells have a depot-dependent lineage preference. Four rabbits were used to provide donor-matched adipose stem cells from either subcutaneous adipose tissue (ScAT) or infrapatellar fat pad (IPFP). Proliferation and multi-lineage differentiation were evaluated in adipose stem cells from donor-matched ScAT and IPFP. RNA sequencing (RNA-seq) and proteomics were conducted to uncover potential molecular discrepancy in adipose stem cells and their corresponding matrix microenvironments. We found that stem cells from ScAT exhibited significantly higher proliferation and adipogenic capacity compared to those from donor-matched IPFP while stem cells from IPFP displayed significantly higher chondrogenic potential compared to those from donor-matched ScAT. Our findings are strongly endorsed by supportive data from transcriptome and proteomics analyses, indicating a site-dependent lineage preference of adipose stem cells.
Collapse
Affiliation(s)
- Tingliang Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopedics, West Virginia University, Morgantown, WV, United States
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aniello M. Infante
- Bioinformatics Core Facility, West Virginia University, Morgantown, WV, United States
| | - Gangqing Hu
- Bioinformatics Core Facility, West Virginia University, Morgantown, WV, United States
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopedics, West Virginia University, Morgantown, WV, United States
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
48
|
Lee J, Lee CY, Park JH, Seo HH, Shin S, Song BW, Kim IK, Kim SW, Lee S, Park JC, Lim S, Hwang KC. Differentiation of adipose-derived stem cells into functional chondrocytes by a small molecule that induces Sox9. Exp Mol Med 2020; 52:672-681. [PMID: 32313200 PMCID: PMC7210883 DOI: 10.1038/s12276-020-0424-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease that results from the disintegration of joint cartilage and the underlying bone. Because cartilage and chondrocytes lack the ability to self-regenerate, efforts have been made to utilize stem cells to treat OA. Although various methods have been used to differentiate stem cells into functional chondrocytes, the currently available methods cannot induce stem cells to undergo differentiation into chondrocyte-like cells without inducing characteristics of hypertrophic chondrocytes, which finally lead to cartilage disintegration and calcification. Therefore, an optimized method to differentiate stem cells into chondrocytes that do not display undesired phenotypes is needed. This study focused on differentiating adipose-derived stem cells (ASCs) into functional chondrocytes using a small molecule that regulated the expression of Sox9 as a key factor in cartilage development and then explored its ability to treat OA. We selected ellipticine (ELPC), which induces chondrocyte differentiation of ASCs, using a GFP-Sox9 promoter vector screening system. An in vivo study was performed to confirm the recovery rate of cartilage regeneration with ASC differentiation into chondrocytes by ELPC in a collagenase-induced animal model of OA. Taken together, these data indicate that ellipticine induces ASCs to differentiate into mature chondrocytes without hypertrophic chondrocytes in vitro and in vivo, thus overcoming a problem encountered in previous studies. These results indicate that ELPC is a novel chondrocyte differentiation-inducing drug that shows potential as a cell therapy for OA.
Collapse
Affiliation(s)
- Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Sunhye Shin
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jong-Chul Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
49
|
Wise CA, Sepich D, Ushiki A, Khanshour AM, Kidane YH, Makki N, Gurnett CA, Gray RS, Rios JJ, Ahituv N, Solnica-Krezel L. The cartilage matrisome in adolescent idiopathic scoliosis. Bone Res 2020; 8:13. [PMID: 32195011 PMCID: PMC7062733 DOI: 10.1038/s41413-020-0089-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column. Scoliosis may be part of the clinical spectrum that is observed in many developmental disorders, but typically presents as an isolated symptom in otherwise healthy adolescent children. Adolescent idiopathic scoliosis (AIS) has defied understanding in part due to its genetic complexity. Breakthroughs have come from recent genome-wide association studies (GWAS) and next generation sequencing (NGS) of human AIS cohorts, as well as investigations of animal models. These studies have identified genetic associations with determinants of cartilage biogenesis and development of the intervertebral disc (IVD). Current evidence suggests that a fraction of AIS cases may arise from variation in factors involved in the structural integrity and homeostasis of the cartilaginous extracellular matrix (ECM). Here, we review the development of the spine and spinal cartilages, the composition of the cartilage ECM, the so-called "matrisome" and its functions, and the players involved in the genetic architecture of AIS. We also propose a molecular model by which the cartilage matrisome of the IVD contributes to AIS susceptibility.
Collapse
Affiliation(s)
- Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Diane Sepich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Anas M. Khanshour
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Yared H. Kidane
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Nadja Makki
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610 USA
| | - Christina A. Gurnett
- Departments of Neurology, Washington University School of Medicine, St Louis, MO 63110 USA
- Pediatrics, Washington University School of Medicine, St Louis, MO 63110 USA
- Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX 78723 USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
50
|
Yilmaz EN, Zeugolis DI. Electrospun Polymers in Cartilage Engineering-State of Play. Front Bioeng Biotechnol 2020; 8:77. [PMID: 32133352 PMCID: PMC7039817 DOI: 10.3389/fbioe.2020.00077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Articular cartilage defects remain a clinical challenge. Articular cartilage defects progress to osteoarthritis, which negatively (e.g., remarkable pain, decreased mobility, distress) affects millions of people worldwide and is associated with excessive healthcare costs. Surgical procedures and cell-based therapies have failed to deliver a functional therapy. To this end, tissue engineering therapies provide a promise to deliver a functional cartilage substitute. Among the various scaffold fabrication technologies available, electrospinning is continuously gaining pace, as it can produce nano- to micro- fibrous scaffolds that imitate architectural features of native extracellular matrix supramolecular assemblies and can deliver variable cell populations and bioactive molecules. Herein, we comprehensively review advancements and shortfalls of various electrospun scaffolds in cartilage engineering.
Collapse
Affiliation(s)
- Elif Nur Yilmaz
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|