1
|
Tsurui R, Yamada H, Natori T, Yoshimura M, Akasaki Y, Kawahara S, Niiro H, Kunisaki Y, Nakashima Y. Homeostatic signals, including IL-7 and self-MHC recognition, induce the development of peripheral helper T cells, which are enriched in the joints of rheumatoid arthritis. J Transl Autoimmun 2024; 9:100258. [PMID: 39554252 PMCID: PMC11567946 DOI: 10.1016/j.jtauto.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Objective Dysregulated T cell homeostasis has long been implicated in the pathogenesis of rheumatoid arthritis (RA), in the joint of which peripheral helper T (Tph) cells accumulate and form ectopic lymphoid organs. We examined whether homeostatic signals are involved in the development of Tph cells. Methods Human peripheral blood mononuclear cells were cultured with IL-7, the critical cytokine for T cell homeostasis. Development of Tph-like cells was assessed by flow cytometry, gene expression, and functional analysis. Chemotaxis of the Tph-like cells to RA synovial fluid (RASF) and the effect of RASF on the development of Tph-like cells was examined. Results PD-1highCXCR5- Tph-like cells developed from human peripheral blood CD4 T cells after proliferation in response to IL-7. Signals from self-MHC recognition and CD28 co-stimulation were also involved. The IL-7-induced Tph-like (IL-7-Tph) cells produced CXCL13 and IL-21 and helped B cells produce IgG. Comprehensive gene expression analysis further supported the similarity with Tph cells in RA joint. IL-7-Tph cells exhibited chemotaxis toward synovial fluid from RA patients (RASF), and RASF promoted the development of IL-7-Tph cells, which were also induced from CD4 T cells residing in non-inflamed joints. Conclusions Our results demonstrate an antigen-nonspecific developmental pathway of Tph cells triggered by homeostatic signals and promoted by the local environment of RA, which accounts for the accumulation of Tph cells in inflamed joints.
Collapse
Affiliation(s)
- Ryosuke Tsurui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisakata Yamada
- Department of Clinical Immunology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Natori
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoki Yoshimura
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Kawahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Okamoto K, Araki Y, Aizaki Y, Tanaka S, Kadono Y, Mimura T. Regulation of cytokine and chemokine expression by histone lysine methyltransferase MLL1 in rheumatoid arthritis synovial fibroblasts. Sci Rep 2024; 14:10610. [PMID: 38719857 PMCID: PMC11078978 DOI: 10.1038/s41598-024-60860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.
Collapse
Affiliation(s)
- Keita Okamoto
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-chou, Iruma-gun, Saitama, 350-0495, Japan
| | - Yasuto Araki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-chou, Iruma-gun, Saitama, 350-0495, Japan.
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-chou, Iruma-gun, Saitama, 350-0495, Japan
| | - Shinya Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-chou, Iruma-gun, Saitama, 350-0495, Japan
- Department of Orthopedic Surgery, Japan Community Health Care Organization Saitama Northern Medical Center, 1-851, Miyahara-cho, Kita-ku, Saitama-shi, Saitama, 331-8625, Japan
| | - Yuho Kadono
- Department of Orthopaedic Surgery, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-chou, Iruma-gun, Saitama, 350-0495, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-chou, Iruma-gun, Saitama, 350-0495, Japan
| |
Collapse
|
4
|
Nakajima S, Tsuchiya H, Ota M, Ogawa M, Yamada S, Yoshida R, Maeda J, Shirai H, Kasai T, Hirose J, Ninagawa K, Fujieda Y, Iwasaki T, Aizaki Y, Kajiyama H, Matsushita M, Kawakami E, Tamura N, Mimura T, Ohmura K, Morinobu A, Atsumi T, Tanaka Y, Takeuchi T, Tanaka S, Okamura T, Fujio K. Synovial Tissue Heterogeneity in Japanese Patients With Rheumatoid Arthritis Elucidated Using a Cell-Type Deconvolution Approach. Arthritis Rheumatol 2023; 75:2130-2136. [PMID: 37390361 DOI: 10.1002/art.42642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE Recent advances in single-cell RNA sequencing technology have improved our understanding of the immunological landscape of rheumatoid arthritis (RA). We aimed to stratify the synovium from East Asian patients with RA by immune cell compositions and gain insight into the inflammatory drivers of each synovial phenotype. METHODS Synovial tissues were obtained from East Asian patients in Japan with RA (n = 41) undergoing articular surgery. The cellular composition was quantified by a deconvolution approach using a public single-cell-based reference. Inflammatory pathway activity was calculated by gene set variation analysis, and chromatin accessibility was evaluated using assay of transposase accessible chromatin-sequencing. RESULTS We stratified RA synovium into three distinct subtypes based on the hierarchical clustering of cellular composition data. One subtype was characterized by abundant HLA-DRAhigh synovial fibroblasts, autoimmune-associated B cells, GZMK+ GZMB+ CD8+ T cells, interleukin (IL)1-β+ monocytes, and plasmablasts. In addition, tumor necrosis factor (TNF)-α, interferons (IFNs), and IL-6 signaling were highly activated in this subtype, and the expression of various chemokines was significantly enhanced. Moreover, we found an open chromatin region overlapping with RA risk locus rs9405192 near the IRF4 gene, suggesting the genetic background influences the development of this inflammatory synovial state. The other two subtypes were characterized by increased IFNs and IL-6 signaling, and expression of molecules associated with degeneration, respectively. CONCLUSION This study adds insights into the synovial heterogeneity in East Asian patients and shows a promising link with predominant inflammatory signals. Evaluating the site of inflammation has the potential to lead to appropriate drug selection that matches the individual pathology.
Collapse
Affiliation(s)
- Sotaro Nakajima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology and Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Ogawa
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junko Maeda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Shirai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Kasai
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Hirose
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keita Ninagawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Iwasaki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroshi Kajiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masakazu Matsushita
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Eiryo Kawakami
- Department of Artificial Intelligence Medicine, Chiba University Graduate School of Medicine, Chiba, Japan and Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Pfützner W, Polakova A, Möbs C. We are memory: B-cell responses in allergy and tolerance. Eur J Immunol 2023; 53:e2048916. [PMID: 37098972 DOI: 10.1002/eji.202048916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 04/27/2023]
Abstract
The significance of B-cell memory in sustaining IgE-mediated allergies but also ensuring the development of long-term allergen tolerance has remained enigmatic. However, well-thought murine and human studies have begun to shed more light on this highly disputed subject. The present mini review highlights important aspects, like the involvement of IgG1 memory B cells, the meaning of low- or high-affinity IgE antibody production, the impact of allergen immunotherapy, or the relevance of local memory established by ectopic lymphoid structures. Based on recent findings, future investigations should lead to deeper knowledge and the development of improved therapies treating allergic individuals.
Collapse
Affiliation(s)
- Wolfgang Pfützner
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Philipps-Universität Marburg, University Hospital Marburg, Marburg, Germany
| | - Alexandra Polakova
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Philipps-Universität Marburg, University Hospital Marburg, Marburg, Germany
| | - Christian Möbs
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Philipps-Universität Marburg, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
6
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Ma K. Editorial: Autoantibodies and the role of RNA/RNA therapy in rheumatoid arthritis. Front Immunol 2022; 13:1037843. [PMID: 36341462 PMCID: PMC9632725 DOI: 10.3389/fimmu.2022.1037843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
|
8
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. Two Main Cellular Components in Rheumatoid Arthritis: Communication Between T Cells and Fibroblast-Like Synoviocytes in the Joint Synovium. Front Immunol 2022; 13:922111. [PMID: 35844494 PMCID: PMC9284267 DOI: 10.3389/fimmu.2022.922111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that endangers the health of approximately 1% of the global population. Current RA medications on the market mainly include non-steroidal anti-inflammatory drugs, biological agents, and disease-modifying drugs. These drugs aim to inhibit the overactivated immune response or inflammation of RA, but they cannot cure RA. A better understanding of the pathogenesis of RA will provide a new understanding to search for RA targets and for drug development. The infiltration of T cells and hyper-proliferation of fibroblast-like synoviocytes (FLS) in the synovium of patients with RA are significantly upregulated. Furthermore, the abnormal activation of these two types of cells has been confirmed to promote development of the course of A by many studies. This article systematically summarizes the interactions between T cells and FLS in RA synovial tissues, including one-way/mutual regulation and direct/indirect regulation between the two. It further aims to investigate the pathogenesis of RA from the perspective of mutual regulation between T cells and FLS and to provide new insights into RA research.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Chen Zhu,
| |
Collapse
|
9
|
Meyer A, Parmar PJ, Shahrara S. Significance of IL-7 and IL-7R in RA and autoimmunity. Autoimmun Rev 2022; 21:103120. [PMID: 35595051 PMCID: PMC9987213 DOI: 10.1016/j.autrev.2022.103120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
While physiological levels of IL-7 are essential for T cell proliferation, survival and co-stimulation, its escalated concentration has been associated with autoimmune diseases such as Rheumatoid arthritis (RA). Expression of IL-7 and IL-7R in RA monocytes is linked to disease activity score and TNF transcription. TNF stimulation can modulate IL-7 secretion and IL-7R frequency in myeloid cells, however, only IL-7R transcription levels are downregulated in anti-TNF responsive patients. Elevated levels of IL-7 in RA synovial tissue and fluid are involved in attracting RA monocytes into the inflammatory joints and remodeling them into proinflammatory macrophages and mature osteoclasts. Further, IL-7 amplification of RA Th1 cell differentiation and IFNγ secretion, can directly prime myeloid IL-7R expression and thereby exacerbate IL-7-mediated joint inflammatory and erosive imprints. In parallel, IL-7 accentuates joint angiogenesis by expanding the production of proangiogenic factors from RA macrophages and endothelial cells. In preclinical models, blockade of IL-7 or IL-7R can effectively impair joint inflammation, osteoclast formation, and neovascularization primarily by impeding monocyte and endothelial cell infiltration as well as inhibition of pro-inflammatory macrophage and Th1/Th17 cell differentiation. In conclusion, disruption of IL-7/IL-7R signaling can uniquely intercept the crosstalk between RA myeloid and lymphoid cells in their ability to trigger neovascularization.
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Prashant J Parmar
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA.
| |
Collapse
|
10
|
Wang ZF, Cheng YC, Li YQ, Liu L, Ge SW, Xu G. Characteristics and Prognostic Value of Tertiary Lymphoid Organs in Membranous Nephropathy: A Retrospective Study. Front Med (Lausanne) 2022; 8:803929. [PMID: 35211487 PMCID: PMC8861205 DOI: 10.3389/fmed.2021.803929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Background Tertiary lymphoid organs play an essential role in the inflammation of the kidney. The clinical association between TLOs and membranous nephropathy (MN) is not clear yet. Methods Consecutive patients with the histologically confirmed membranous nephropathy in Tongji Hospital from July 19, 2012, to September 26, 2019, were included in this study. TLOs in renal biopsy tissues were detected by periodic acid–Schiff-stained and immunohistochemistry. Logistic regression was performed to evaluate the correlations of TLOs and clinical features of patients with MN. Kaplan–Meier analysis was utilized to examine the relationship between TLOs and remission of proteinuria. Results A total of 442 patients with MN were included in this study, of which the average age was 46.4 years old, and 58.8% were male. Moreover, 33% of patients with MN had TLOs in this study. The median value of proteinuria among patients with MN with TLOs was 4.9 g/24 h, which was much greater than no-TLOs ones (3.2 g/24 h, p < 0.001). Moreover, the patients with TLOs had higher serum creatinine and lower serum albumin. The severity of clinical features among the patients with MN aggravated with the increase in the grade of TLOs. In addition, the patients who had TLOs were more likely to be positive of anti-phospholipase A2 receptor autoantibodies. Meanwhile, the patients without TLOs showed significantly higher complete remission and total remission of proteinuria. Conclusion In this study, we demonstrated that TLOs were common among patients with MN. Moreover, the patients with MN with TLOs showed a worse clinical manifestation and an outcome compared with the patients without TLOs.
Collapse
Affiliation(s)
- Zu-Feng Wang
- Division of Internal Medicine, Department of Nephrology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chun Cheng
- Division of Internal Medicine, Department of Nephrology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yue-Qiang Li
- Division of Internal Medicine, Department of Nephrology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liu
- Division of Internal Medicine, Department of Nephrology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Wang Ge
- Division of Internal Medicine, Department of Nephrology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Division of Internal Medicine, Department of Nephrology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Vickovic S, Schapiro D, Carlberg K, Lötstedt B, Larsson L, Hildebrandt F, Korotkova M, Hensvold AH, Catrina AI, Sorger PK, Malmström V, Regev A, Ståhl PL. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun Biol 2022; 5:129. [PMID: 35149753 PMCID: PMC8837632 DOI: 10.1038/s42003-022-03050-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic recruitment and expansion of multiple cell types that interact in multifaceted ways within a localized area. Rheumatoid arthritis synovium has primarily been studied either by immunostaining or by molecular profiling after tissue homogenization. Here, we use Spatial Transcriptomics, where tissue-resident RNA is spatially labeled in situ with barcodes in a transcriptome-wide fashion, to study local tissue interactions at the site of chronic synovial inflammation. We report comprehensive spatial RNA-Seq data coupled to cell type-specific localization patterns at and around organized structures of infiltrating leukocyte cells in the synovium. Combining morphological features and high-throughput spatially resolved transcriptomics may be able to provide higher statistical power and more insights into monitoring disease severity and treatment-specific responses in seropositive and seronegative rheumatoid arthritis.
Collapse
Affiliation(s)
- Sanja Vickovic
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden. .,New York Genome Center, New York, NY, USA.
| | - Denis Schapiro
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Institute for Computational Biomedicine and Institute of Pathology, Faculty of Medicine, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Konstantin Carlberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Britta Lötstedt
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Franziska Hildebrandt
- Department of Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marina Korotkova
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Aase H Hensvold
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Vivianne Malmström
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
12
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Hinrichs AC, Blokland SLM, Lopes AP, Wichers CGK, Kruize AA, Pandit A, Radstake TRDJ, van Roon JAG. Transcriptome Analysis of CCR9+ T Helper Cells From Primary Sjögren's Syndrome Patients Identifies CCL5 as a Novel Effector Molecule. Front Immunol 2021; 12:702733. [PMID: 34386009 PMCID: PMC8354142 DOI: 10.3389/fimmu.2021.702733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction CCR9+ Tfh-like pathogenic T helper (Th) cells are elevated in patients with primary Sjögren’s syndrome (pSS) and indicated to play a role in pSS immunopathology. Here we delineate the CCR9+ Th cell-specific transcriptome to study the molecular dysregulation of these cells in pSS patients. Methods CCR9+, CXCR5+ and CCR9-CXCR5- Th cells from blood of 7 healthy controls (HC) and 7 pSS patients were FACS sorted and RNA sequencing was performed. Computational analysis was used to identify differentially expressed genes (DEGs), coherent gene expression networks and differentially regulated pathways. Target genes were replicated in additional cohorts. Results 5131 genes were differentially expressed between CCR9+ and CXCR5+ Th cells; 6493 and 4783 between CCR9+ and CCR9-CXCR5- and between CXCR5+ and CCR9-CXCR5-, respectively. In the CCR9+ Th cell subset 2777 DEGs were identified between HC and pSS patients, 1416 and 1077 in the CXCR5+ and CCR9-CXCR5- subsets, respectively. One gene network was selected based on eigengene expression differences between the Th cell subsets and pathways enriched for genes involved in migration and adhesion, cytokine and chemokine production. Selected DEGs of interest (HOPX, SOX4, ITGAE, ITGA1, NCR3, ABCB1, C3AR1, NT5E, CCR5 and CCL5) from this module were validated and found upregulated in blood CCR9+ Th cells, but were similarly expressed in HC and pSS patients. Increased frequencies of CCR9+ Th cells were shown to express higher levels of CCL5 than CXCR5+ and CCR9-CXCR5- Th cells, with the highest expression confined to effector CCR9+ Th cells. Antigenic triggering and stimulation with IL-7 of the Th cell subsets co-cultured with monocytes strongly induced CCL5 secretion in CCR9+ Th cell cocultures. Additionally, effector CCR9+ Th cells rapidly released CCL5 and secreted the highest CCL5 levels upon stimulation. Conclusion Transcriptomic analysis of circulating CCR9+ Th cells reveals CCR9-specific pathways involved in effector T cell function equally expressed in pSS patients and HC. Given the increased numbers of CCR9+ Th cells in the blood and inflamed glands of pSS patients and presence of inflammatory stimuli to activate these cells this suggests that CCR9-specific functions, such as cell recruitment upon CCL5 secretion, could significantly contribute to immunopathology in pSS.
Collapse
Affiliation(s)
- Anneline C Hinrichs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ana P Lopes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Catharina G K Wichers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aike A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Abstract
Adaptive immunity plays central roles in the pathogenesis of rheumatoid arthritis (RA), as it is regarded as an autoimmune disease. Clinical investigations revealed infiltrations of B cells in the synovium, especially those with ectopic lymphoid neogenesis, associate with disease severity. While some B cells in the synovium differentiate into plasma cells producing autoantibodies such as anti-citrullinated protein antibody, others differentiate into effector B cells producing proinflammatory cytokines and expressing RANKL. Synovial B cells might also be important as antigen-presenting cells. Synovial T cells are implicated in the induction of antibody production as well as local inflammation. In the former, a recently identified CD4 T cell subset, peripheral helper T (Tph), which is characterized by the expression of PD-1 and production of CXCL13 and IL-21, is implicated, while the latter might be mediated by Th1-like CD4 T cell subsets that can produce multiple proinflammatory cytokines, including IFN-γ, TNF-α, and GM-CSF, and express cytotoxic molecules, such as perforin, granzymes and granulysin. CD8 T cells in the synovium are able to produce large amount of IFN-γ. However, the involvement of those lymphocytes in the pathogenesis of RA still awaits verification. Their antigen-specificity also needs to be clarified.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Arthritis and Immunology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Logerot S, Figueiredo-Morgado S, Charmeteau-de-Muylder B, Sandouk A, Drillet-Dangeard AS, Bomsel M, Bourgault-Villada I, Couëdel-Courteille A, Cheynier R, Rancez M. IL-7-Adjuvanted Vaginal Vaccine Elicits Strong Mucosal Immune Responses in Non-Human Primates. Front Immunol 2021; 12:614115. [PMID: 33717097 PMCID: PMC7947860 DOI: 10.3389/fimmu.2021.614115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Mucosal immune responses are crucial in protecting against pathogens entering through mucosal surfaces. However, due to poor T-cell responsiveness upon mucosal antigenic stimulation, mucosal immunity remains difficult to obtain through vaccines and requires appropriate adjuvants. We previously demonstrated that administered systemically to healthy macaques or locally expressed in the intestinal mucosa of acutely SIV-infected macaques, interleukin-7 (IL-7) triggers chemokine expression and immune cell homing into mucosae, suggesting its important role in the development of mucosal immune responses. We therefore examined whether local delivery of recombinant glycosylated simian IL-7 (rs-IL-7gly) to the vaginal mucosa of rhesus macaques could prepare the lower female genital tract (FGT) for subsequent immunization and act as an efficient mucosal adjuvant. First, we showed that local administration of rs-IL-7gly triggers vaginal overexpression of chemokines and infiltration of mDCs, macrophages, NKs, B- and T-cells in the lamina propria while MamuLa-DR+ APCs accumulated in the epithelium. Subsequent mucosal anti-DT immunization in macaques resulted in a faster, stronger, and more persistent mucosal antibody response compared to DT-immunization alone. Indeed, we detected robust productions of DT-specific IgAs and IgGs in their vaginal secretions and identified cells secreting DT-specific IgAs in their vaginal mucosa and IgGs in draining lymph nodes. Finally, the expression of chemokines involved in the organization of tertiary lymphoid structures (TLS) was only increased in the vaginal mucosa of IL-7-adjuvanted immunized macaques. Interestingly, TLSs developed around PNAd+ high endothelial venules in their lower FGT sampled 2 weeks after the last immunization. Non-traumatic vaginal administration of rs-IL-7gly prepares the mucosa to respond to subsequent local immunization and allows the development of a strong mucosal immune response in macaques, through the chemokine-dependent recruitment of immune cells, the activation of mDCs and the formation of TLSs. The localization of DT-specific IgA+ plasma cells in the upper vaginal mucosa argues for their contribution to the production of specific immunoglobulins in the vaginal secretions. Our results highlight the potential of IL-7 as a potent mucosal adjuvant to stimulate the FGT immune system and elicit vaginal antibody responses to local immunization, which is the most promising way to confer protection against many sexually transmitted diseases.
Collapse
Affiliation(s)
- Sandrine Logerot
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Suzanne Figueiredo-Morgado
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Bénédicte Charmeteau-de-Muylder
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Abdelkader Sandouk
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Anne-Sophie Drillet-Dangeard
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Isabelle Bourgault-Villada
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Anne Couëdel-Courteille
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Rémi Cheynier
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Magali Rancez
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| |
Collapse
|
16
|
Rivière E, Pascaud J, Virone A, Dupré A, Ly B, Paoletti A, Seror R, Tchitchek N, Mingueneau M, Smith N, Duffy D, Cassard L, Chaput N, Pengam S, Gauttier V, Poirier N, Mariette X, Nocturne G. Interleukin-7/Interferon Axis Drives T Cell and Salivary Gland Epithelial Cell Interactions in Sjögren's Syndrome. Arthritis Rheumatol 2021; 73:631-640. [PMID: 33058491 DOI: 10.1002/art.41558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Primary Sjögren's syndrome (SS) is characterized by a lymphocytic infiltration of salivary glands (SGs) and the presence of an interferon (IFN) signature. SG epithelial cells (SGECs) play an active role in primary SS pathophysiology. We undertook this study to examine the interactions between SGECs and T cells in primary SS and the role of the interleukin-7 (IL-7)/IFN axis. METHODS Primary cultured SGECs from control subjects and patients with primary SS were stimulated with poly(I-C), IFNα, or IFNγ. T cells were sorted from blood and stimulated with IL-7. CD25 expression was assessed by flow cytometry. SG explants were cultured for 4 days with anti-IL-7 receptor (IL-7R) antagonist antibody (OSE-127), and transcriptomic analysis was performed using the NanoString platform. RESULTS Serum IL-7 level was increased in patients with primary SS compared to controls and was associated with B cell biomarkers. IL7R expression was decreased in T cells from patients with primary SS compared to controls. SGECs stimulated with poly(I-C), IFNα, or IFNγ secreted IL-7. IL-7 stimulation increased the activation of T cells, as well as IFNγ secretion. Transcriptomic analysis of SG explants showed a correlation between IL7 and IFN expression. Finally, explants cultured with anti-IL-7R antibody showed decreased IFN-stimulated gene expression. CONCLUSION These results suggest the presence of an IL-7/IFNγ amplification loop involving SGECs and T cells in primary SS. IL-7 was secreted by SGECs stimulated with type I or type II IFN and, in turn, activated T cells that secrete type II IFN. An anti-IL-7R antibody decreased the IFN signature in T cells in primary SS and could be of therapeutic interest.
Collapse
Affiliation(s)
- Elodie Rivière
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Recherche et Développement, Arthritis Fondation Courtin, Paris, France
| | - Juliette Pascaud
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Alexandre Virone
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Anastasia Dupré
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Bineta Ly
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Audrey Paoletti
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Raphaèle Seror
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Nicolas Tchitchek
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | | | - Nikaïa Smith
- Laboratoire d'Immunobiologie des Cellules Dendritiques, INSERM U1223, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Laboratoire d'Immunobiologie des Cellules Dendritiques, INSERM U1223, Institut Pasteur, Paris, France
| | - Lydie Cassard
- Université Paris-Saclay, Institut Gustave Roussy, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, INSERM, CNRS, Paris, France
| | - Nathalie Chaput
- Université Paris-Saclay, Institut Gustave Roussy, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, INSERM, CNRS, Paris, France
| | | | | | | | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Gaetane Nocturne
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| |
Collapse
|
17
|
Gao J, Wang C, Wei W. The effects of drug transporters on the efficacy of methotrexate in the treatment of rheumatoid arthritis. Life Sci 2021; 268:118907. [PMID: 33428880 DOI: 10.1016/j.lfs.2020.118907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporter families consist of common drug transporters that mediate the efflux and uptake of drugs, respectively, and play an important role in the absorption, distribution, metabolism and excretion of drugs in vivo. Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, and there are many RA patients worldwide. Methotrexate (MTX), the first-choice treatment for RA, can reduce the level of inflammation, prevent joint erosion and functional damage, and greatly reduce pain in RA patients. However, many patients show resistance to MTX, greatly affecting the efficacy of MTX. Many factors, such as irrational drug use and heredity, are associated with drug resistance. Considering the effect of drug transporters on drugs, many studies have compared the expression of drug transporters in drug-resistant and drug-sensitive patients, and abnormal transporter expression and transport activity have been found in patients with MTX resistance. Thus, drug transporters are involved in drug resistance. This article reviews the effects of transporters on the efficacy of MTX in the treatment of RA.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
18
|
Triaille C, Vansteenkiste L, Constant M, Ambroise J, Méric de Bellefon L, Nzeusseu Toukap A, Sokolova T, Galant C, Coulie P, Carrasco J, Durez P, Lauwerys BR. Paired Rheumatoid Arthritis Synovial Biopsies From Small and Large Joints Show Similar Global Transcriptomic Patterns With Enrichment of Private Specificity TCRB and TCR Signaling Pathways. Front Immunol 2020; 11:593083. [PMID: 33329580 PMCID: PMC7719799 DOI: 10.3389/fimmu.2020.593083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 01/30/2023] Open
Abstract
Objectives We explored histological and transcriptomic profiles of paired synovial biopsies from rheumatoid arthritis (RA) patients, in order to assess homogeneity in synovial tissue at the individual level. Methods Synovial biopsies were performed simultaneously in one small and one large joint per patient using needle-arthroscopy for the knee and ultrasound-guided biopsy for the hand or wrist. Synovium from individuals with osteoarthritis was used as controls. Paraffin-embedded samples were stained for CD3, CD20, and CD68. Total RNA was hybridized on high-density microarrays. TCRB variable sequences were obtained from synovial and blood RNA samples. Results Twenty paired biopsies from 10 RA patients with active disease were analyzed. Semi-quantification of histological markers showed a positive correlation for synovial hyperplasia, inflammatory infiltrates and CD3-positive T cells between pairs. Pairwise comparison of transcriptomic profiles showed similar expression of RA-related molecular pathways (TCR signaling, T cell costimulation and response to TNFα). T cells clonotypes were enriched in all but one joints compared to blood, regardless of the magnitude of T cell infiltration. Enriched clonotypes were shared between pairs (23-100%), but this was less the case in pairs of joints displaying weaker T cell signatures and more pronounced germinal center-like transcriptomic profiles. Conclusion Cellular and molecular alterations in RA synovitis are similar between small and large joints from the same patient. Interindividual differences in magnitude of T cell infiltrates and distribution of enriched T cell clonotypes support the concept of distinct synovial pathotypes in RA that are associated with systemic versus local antigen-driven activation of T cells.
Collapse
Affiliation(s)
- Clement Triaille
- Pôle de Pathologies Rhumatismales et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium.,Department of Pediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Louise Vansteenkiste
- Pôle de Pathologies Rhumatismales et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Manuel Constant
- Laboratory of Translational Oncology, Institute of Pathology and Genetics/Grand Hôpital de Charleroi, Gosselies, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Tatiana Sokolova
- Pôle de Pathologies Rhumatismales et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christine Galant
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Javier Carrasco
- Laboratory of Translational Oncology, Institute of Pathology and Genetics/Grand Hôpital de Charleroi, Gosselies, Belgium
| | - Patrick Durez
- Pôle de Pathologies Rhumatismales et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bernard R Lauwerys
- Pôle de Pathologies Rhumatismales et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
19
|
Local immunoglobulin production in nasal tissues: A key to pathogenesis in chronic rhinosinusitis with nasal polyps and aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2020; 126:127-134. [PMID: 33065294 DOI: 10.1016/j.anai.2020.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Local activation of B cells and antibody production are important for protective and pathogenic immune responses. Furthermore, there is evidence that local activation of B cells and antibody production are important for pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and a severe subset of CRSwNP, aspirin-exacerbated respiratory disease (AERD). This review summarizes these findings and the potential role of B cells and antibodies in disease pathogenesis. DATA SOURCES Published literature from PubMed searches. STUDY SELECTIONS Studies relevant to B cell development and the roles of B cells and antibodies in the pathogenesis of CRSwNP and AERD. RESULTS Formation of tertiary lymphoid structures plays a key role in the local activation of B cells and antibody production. This process is important for fighting infections, but it also contributes to autoimmune disease. Furthermore, there is evidence to support a role for local B cell activation and antibody production in a variety of allergic diseases. Nasal polyp tissues from patients with CRSwNP and AERD have elevated levels of activated B cell subsets and locally produced antibodies. These locally produced antibodies may contribute to disease pathogenesis in a variety of ways, including activation of innate effector cells, whereas locally activated B cells may contribute to pathogenesis through the activation of T cells. CONCLUSION More studies are needed to determine the role of B cells and antibodies in driving disease in these patients. However, targeting the processes that drive local B cell activation and antibody production may provide new therapeutic approaches and could help to reduce chronic inflammation.
Collapse
|
20
|
Kolan SS, Li G, Wik JA, Malachin G, Guo S, Kolan P, Skålhegg BS. Cellular metabolism dictates T cell effector function in health and disease. Scand J Immunol 2020; 92:e12956. [PMID: 32767795 DOI: 10.1111/sji.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
In a healthy person, metabolically quiescent T lymphocytes (T cells) circulate between lymph nodes and peripheral tissues in search of antigens. Upon infection, some T cells will encounter cognate antigens followed by proliferation and clonal expansion in a context-dependent manner, to become effector T cells. These events are accompanied by changes in cellular metabolism, known as metabolic reprogramming. The magnitude and variation of metabolic reprogramming are, in addition to antigens, dependent on factors such as nutrients and oxygen to ensure host survival during various diseases. Herein, we describe how metabolic programmes define T cell subset identity and effector functions. In addition, we will discuss how metabolic programs can be modulated and affect T cell activity in health and disease using cancer and autoimmunity as examples.
Collapse
Affiliation(s)
- Shrikant S Kolan
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gaoyang Li
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jonas A Wik
- Department of Pathology, Oslo University Hospital, Rikshopitalet, Oslo, Norway
| | - Giulia Malachin
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shuai Guo
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pratibha Kolan
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn S Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Lewis MJ, Barnes MR, Blighe K, Goldmann K, Rana S, Hackney JA, Ramamoorthi N, John CR, Watson DS, Kummerfeld SK, Hands R, Riahi S, Rocher-Ros V, Rivellese F, Humby F, Kelly S, Bombardieri M, Ng N, DiCicco M, van der Heijde D, Landewé R, van der Helm-van Mil A, Cauli A, McInnes IB, Buckley CD, Choy E, Taylor PC, Townsend MJ, Pitzalis C. Molecular Portraits of Early Rheumatoid Arthritis Identify Clinical and Treatment Response Phenotypes. Cell Rep 2020; 28:2455-2470.e5. [PMID: 31461658 PMCID: PMC6718830 DOI: 10.1016/j.celrep.2019.07.091] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/22/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022] Open
Abstract
There is a current imperative to unravel the hierarchy of molecular pathways that drive the transition of early to established disease in rheumatoid arthritis (RA). Herein, we report a comprehensive RNA sequencing analysis of the molecular pathways that drive early RA progression in the disease tissue (synovium), comparing matched peripheral blood RNA-seq in a large cohort of early treatment-naive patients, namely, the Pathobiology of Early Arthritis Cohort (PEAC). We developed a data exploration website (https://peac.hpc.qmul.ac.uk/) to dissect gene signatures across synovial and blood compartments, integrated with deep phenotypic profiling. We identified transcriptional subgroups in synovium linked to three distinct pathotypes: fibroblastic pauci-immune pathotype, macrophage-rich diffuse-myeloid pathotype, and a lympho-myeloid pathotype characterized by infiltration of lymphocytes and myeloid cells. This is suggestive of divergent pathogenic pathways or activation disease states. Pro-myeloid inflammatory synovial gene signatures correlated with clinical response to initial drug therapy, whereas plasma cell genes identified a poor prognosis subgroup with progressive structural damage. Deep phenotyping and RNA-seq of early rheumatoid arthritis individuals pre-treatment Synovial plasma cell gene expression predicts future progressive joint damage on X-ray Blood interferon gene signature associates with synovial B and plasma cell infiltration Interactive website enables RNA-seq and clinical data to be fully explored
Collapse
Affiliation(s)
- Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Kevin Blighe
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Katriona Goldmann
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sharmila Rana
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jason A Hackney
- Bioinformatics and Computational Biology, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nandhini Ramamoorthi
- Biomarker Discovery OMNI, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher R John
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - David S Watson
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Alan Turing Institute, British Library, London NW1 2DB, UK; Oxford Internet Institute, University of Oxford, Oxford OX1 3JS, UK
| | - Sarah K Kummerfeld
- Bioinformatics and Computational Biology, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sudeh Riahi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Vidalba Rocher-Ros
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Frances Humby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Stephen Kelly
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nora Ng
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Maria DiCicco
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | - Robert Landewé
- Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, the Netherlands
| | | | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and the Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ernest Choy
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Peter C Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and the Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michael J Townsend
- Biomarker Discovery OMNI, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
22
|
Lim JH, Han MH, Kim YJ, Jeon Y, Jung HY, Choi JY, Cho JH, Kim CD, Kim YL, Lee H, Kim DK, Moon KC, Park SH. Novel histopathologic predictors for renal outcomes in crescentic glomerulonephritis. PLoS One 2020; 15:e0236051. [PMID: 32716952 PMCID: PMC7384637 DOI: 10.1371/journal.pone.0236051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/27/2020] [Indexed: 01/11/2023] Open
Abstract
Introduction Crescentic glomerulonephritis (CrGN) is a histologic feature of severe glomerular injury, clinically characterized by a rapid decline of renal function when not treated in a timely fashion. Factors associated with CrGN prognosis have not been thoroughly investigated. This study investigated the prognostic predictors of renal outcomes associated with CrGN, such as the histopathologic classification of anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, arteriosclerosis, and tertiary lymphoid organ (TLO) formation. Methods A total of 114 patients diagnosed with CrGN between 2010 and 2018 at two university-based hospitals has been retrospectively analyzed. Relationships between potential predictors and renal outcomes were analyzed using Cox proportional hazards model and linear regression analysis. Results The mean age was 61.0 ± 15.3 years, and 49.1% were male. Among them, 92 (80.7%) and 11 (9.6%) patients were positive for ANCA and for anti-glomerular basement membrane antibody, respectively. During the median follow-up of 458.0 days, 55 patients (48.2%) had advanced to end-stage renal disease (ESRD). Cox proportional hazards analysis revealed that patients under the mixed and sclerotic classes had worse renal survival compared to those in the focal class (mixed: hazard ratio [HR], 3.74; 95% confidence interval [CI], 1.18 to 11.82; P = 0.025; sclerotic: HR, 4.84; 95% CI, 1.44 to 16.32; P = 0.011). Severe arteriosclerosis was also associated with poor renal survival (HR, 2.44; 95% CI, 1.04 to 5.77; P = 0.042). TLOs were observed in 41 patients (36.0%). Moreover, TLO formation was also a prognostic factor for ESRD (HR, 1.82; 95% CI, 1.03 to 3.21; P = 0.040). In the multivariate linear regression analysis, age and sclerotic class were independent predictors for the change in estimated glomerular filtration rate during 1 year after biopsy. Conclusions Specific histopathologic findings, histopathologic classification, severity of arteriosclerosis, and TLO formation provide helpful information in predicting renal outcomes associated with CrGN.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yong-Jin Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yena Jeon
- Department of Statistics, Kyungpook National University, Daegu, South Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji-Young Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- * E-mail:
| |
Collapse
|
23
|
Marinkovic T, Marinkovic D. Biological mechanisms of ectopic lymphoid structure formation and their pathophysiological significance. Int Rev Immunol 2020; 40:255-267. [PMID: 32631119 DOI: 10.1080/08830185.2020.1789620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ectopic lymphoid structures (ELS) or tertiary lymphoid organs are structures with the organization similar to the one of secondary lymphoid organs, formed in non-lymphoid tissues. They are considered to be an important site for the lymphocytic physiological and pathological role in conditions such are chronic infections, autoimmune diseases, cancer, and allograft rejection. Although similar to the secondary lymphoid tissues, the initiation of ELS formation is not preprogramed and requires chronic inflammation, expression of homeostatic chemokines, and lymphotoxin beta receptor activation. Importantly, while ELS formation may be considered beneficiary in antimicrobial and antitumor immunity, the persistence of these active lymphoid structures within the tissue increase the chance for development of autoimmunity and lymphoma. This paper is providing an overview of biological mechanisms involved in ELS formation, as well as the overview of the pathophysiological role of these structures. In addition, the paper discusses the possibility to therapeutically target ELS formation, bearing in mind their bivalent nature and role in different pathophysiological conditions.
Collapse
Affiliation(s)
- Tatjana Marinkovic
- Department of Medical Sciences, Western Serbia Academy of Applied Sciences, Uzice, Serbia
| | - Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Möller B, Kollert F, Sculean A, Villiger PM. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front Immunol 2020; 11:1108. [PMID: 32582191 PMCID: PMC7283532 DOI: 10.3389/fimmu.2020.01108] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease of unknown origin, which is predominantly affecting the joints. Antibodies against citrullinated peptides are a rather specific immunological hallmark of this heterogeneous entity. Furthermore, certain sequences of the third hypervariable region of human leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so called "shared epitope" sequences, appear to promote autoantibody positive types of RA. However, MHC-II molecule and other genetic associations with RA could not be linked to immune responses against specific citrullinated peptides, nor do genetic factors fully explain the origin of RA. Consequently, non-genetic factors must play an important role in the complex interaction of endogenous and exogenous disease factors. Tobacco smoking was the first environmental factor that was associated with onset and severity of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore, smoking is associated with extra-articular RA manifestations such as interstitial lung disease in anatomical proximity to the airway mucosa, but also with subcutaneous rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen with unique citrullinating capacity of foreign microbial antigens as well as candidate RA autoantigens. Although the original hypothesis that this single pathogen is causative for RA remained unproven, epidemiological as well as experimental evidence linking periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed to play a specific immunodominant role in context of RA. However, demonstration of T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically healthy subjects with citrulline directed immune responses and was correlated with RA onset. In conclusion, we retrieved more than one line of evidence for mucosal sites and different microbial taxa to be potentially involved in the development of RA. This review gives an overview of infectious agents and mucosal pathologies, and discusses the current evidence for causality between different exogenous or mucosal factors and systemic inflammation in RA.
Collapse
Affiliation(s)
- Burkhard Möller
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Florian Kollert
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Chen Z, Bozec A, Ramming A, Schett G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 2020; 15:9-17. [PMID: 30341437 DOI: 10.1038/s41584-018-0109-2] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a failure of spontaneous resolution of inflammation. Although the pro-inflammatory cytokines and mediators that trigger RA have been the focus of intense investigations, the regulatory and anti-inflammatory cytokines responsible for the suppression and resolution of disease in a context-dependent manner have been less well characterized. However, knowledge of the pathways that control the suppression and resolution of inflammation in RA is clinically relevant and conceptually important for understanding the pathophysiology of the disease and for the development of treatments that enable long-term remission. Cytokine-mediated processes such as the activation of T helper 2 cells by IL-4 and IL-13, the resolution of inflammation by IL-9, IL-5-induced eosinophil expansion, IL-33-mediated macrophage polarization, the production of IL-10 by regulatory B cells and IL-27-mediated suppression of lymphoid follicle formation are all involved in governing the regulation and resolution of inflammation in RA. By better understanding these immune-regulatory signalling pathways, new therapeutic strategies for RA can be envisioned that aim to balance and resolve, rather than suppress, inflammation.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
26
|
Abstract
Tertiary lymphoid organs (TLOs), also known as inducible lymphoid organs, tertiary lymphoid structures, tertiary lymphoid tissues, or ectopic lymphoid organs are accumulations of cells in chronic inflammation that have been observed in most tissues in autoimmunity, infection, and cancer in mouse and man. They share many properties with secondary lymphoid organs (SLOs), particularly lymph nodes, with regard to cellular composition, function, and regulation. TLOs include T and B cells, dendritic cells, follicular dendritic cells, and many other stromal cells, and high endothelial venules (HEVs) and lymphatic vessels. They serve as sites of antigen presentation and tolerance induction; they are harmful in autoimmunity and can be both harmful and beneficial in cancer. SLO induction in ontogeny is mediated by interactions of several cell types, including CD4+ CD3- lymphoid tissue inducer (LTi) RORγt+ cells that express LTαβ and interact with mesenchymal lymphoid tissue organizer (LTo) FAP+ cells in the presence of lymphatic and blood vessels. A variety of inducer cells initiate TLOs, including bona fide LTi cells, T cells, B cells, and NK cells. The mesenchymal organizer cells are less well characterized but can include FAP+ cells. Current challenges include identification of methods to inhibit TLOs in autoimmunity without affecting SLOs, and enhancement of TLOs for defense against tumors.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT, 06510, USA.
| |
Collapse
|
27
|
Rivellese F, Pontarini E, Pitzalis C. Tertiary Lymphoid Organs in Rheumatoid Arthritis. Curr Top Microbiol Immunol 2020; 426:119-141. [PMID: 32483659 DOI: 10.1007/82_2020_216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. RA mainly affects the joints, with inflammation of the synovial membrane, characterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives local inflammation and, if untreated, can lead to joint destruction and disability. In parallel to the well-known clinical heterogeneity, the underlying synovitis can also be significantly heterogeneous. In particular, in about 40% of patients with RA, synovitis is characterized by a dense lymphocytic infiltrate that can acquire the features of fully functional tertiary lymphoid organs (TLO). These structures amplify autoimmunity and inflammation locally associated with worse prognosis and potential implications for treatment response. Here, we will review the current knowledge on TLO in RA, with a focus on their pathogenetic and clinical relevance.
Collapse
Affiliation(s)
- Felice Rivellese
- Barts and the London School of Medicine & Dentistry, Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, John Vane Science Centre, London, UK
| | - Elena Pontarini
- Barts and the London School of Medicine & Dentistry, Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, John Vane Science Centre, London, UK
| | - Costantino Pitzalis
- Barts and the London School of Medicine & Dentistry, Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, John Vane Science Centre, London, UK.
| |
Collapse
|
28
|
IL-7 is a Key Driver Cytokine in Spondyloarthritis? J Immunol Res 2019; 2019:7453236. [PMID: 31276000 PMCID: PMC6560328 DOI: 10.1155/2019/7453236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
The rationale for a type 17 signature in the pathogenesis of spondyloarthritis (SpA) has been increasing and being ratified in studies recently. IL-7 is a cytokine whose ability to stimulate IL-17 production in both innate and adaptive immunity cells has made it a promising target not only for a better understanding of the disease as well as an important potential therapeutic target in patients with SpA.
Collapse
|
29
|
Lin L, Hu X, Zhang H, Hu H. Tertiary Lymphoid Organs in Cancer Immunology: Mechanisms and the New Strategy for Immunotherapy. Front Immunol 2019; 10:1398. [PMID: 31281318 PMCID: PMC6596321 DOI: 10.3389/fimmu.2019.01398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The immune system plays pivotal roles in the occurrence and progression of cancers. As blockade of immune-checkpoint has been proven effective at improving anti-tumor immune response in multiple tumor types, the tumor immunotherapy still faces many challenges. Emerging evidence indicates lymphoid organ-like structures, also called tertiary lymphoid organs (TLOs) or ectopic lymphoid organs (ELOs), have been identified in cancers, as the result of lymphoid neoorganogenesis. The prognostic value of TLOs in cancer patients has been evaluated with debates, however, such well-organized lymphoid structures in the site of cancer indicate TLOs are the important modulators of cancer immunological microenvironment. TLOs have attracted remarkable efforts to investigate their neoorganogenesis and function in immune responses, aiming to develop new strategies for cancer immunotherapy. In this review, we summarize the current understandings about the molecular and cellular mechanisms governing the formation and function of TLOs in immune responses against cancer.
Collapse
Affiliation(s)
- Liangbin Lin
- The State Key Laboratory of Biotherapy, Department of Rheumatology and Immunology, Collaboration and Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Hu
- The State Key Laboratory of Biotherapy, Department of Rheumatology and Immunology, Collaboration and Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- The State Key Laboratory of Biotherapy, Department of Rheumatology and Immunology, Collaboration and Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- The State Key Laboratory of Biotherapy, Department of Rheumatology and Immunology, Collaboration and Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Manzo A, Bugatti S, Rossi S. Clinical Applications of Synovial Biopsy. Front Med (Lausanne) 2019; 6:102. [PMID: 31134204 PMCID: PMC6524205 DOI: 10.3389/fmed.2019.00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
The synovial tissue is a primary target of multiple diseases characterized by different pathogenic mechanisms, including infective, deposition, neoplastic, and chronic immune-inflammatory pathologies. Synovial biopsy can have a relevant role in differential diagnosis of specific conditions in clinical practice, although its exploitation remains relatively limited. In particular, no validated synovial-tissue-derived biomarkers are currently available in the clinic to aid in the diagnosis and management in most frequent forms of chronic inflammatory arthropathies, namely rheumatoid arthritis (RA) and the spondyloarthritides (SpA). In this brief review, we will discuss the current spectrum of clinical applications of synovial biopsy in routine rheumatologic care and will provide an analysis of the perspectives for its potential exploitation in patients with chronic inflammatory arthritides.
Collapse
Affiliation(s)
- Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Serena Bugatti
- Rheumatology and Translational Immunology Research Laboratories, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Silvia Rossi
- Rheumatology and Translational Immunology Research Laboratories, Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| |
Collapse
|
31
|
Ouboussad L, Burska AN, Melville A, Buch MH. Synovial Tissue Heterogeneity in Rheumatoid Arthritis and Changes With Biologic and Targeted Synthetic Therapies to Inform Stratified Therapy. Front Med (Lausanne) 2019; 6:45. [PMID: 30941350 PMCID: PMC6433846 DOI: 10.3389/fmed.2019.00045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of rheumatoid arthritis (RA) has been transformed with the introduction of biologic disease modifying anti-rheumatic drugs (bDMARD) and more recently, targeted synthetic DMARD (tsDMARD) therapies in the form of janus-kinase inhibitors. Nevertheless, response to these agents varies such that a trial and error approach is adopted; leading to poor patient quality of life, and long-term outcomes. There is thus an urgent need to identify effective biomarkers to guide treatment selection. A wealth of research has been invested in this field but with minimal progress. Increasingly recognized is the importance of evaluating synovial tissue, the primary site of RA, as opposed to peripheral blood-based investigation. In this mini-review, we summarize the literature supporting synovial tissue heterogeneity, the conceptual basis for stratified therapy. This includes recognition of distinct synovial pathobiological subtypes and associated molecular pathways. We also review synovial tissue studies that have been conducted to evaluate the effect of individual bDMARD and tsDMARD on the cellular and molecular characteristics, with a view to identifying tissue predictors of response. Initial observations are being brought into the clinical trial landscape with stratified biopsy trials to validate toward implementation. Furthermore, development of tissue based omics technology holds still more promise in advancing our understanding of disease processes and guiding future drug selection.
Collapse
Affiliation(s)
- Lylia Ouboussad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Agata N. Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Andrew Melville
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Maya H. Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
32
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
33
|
Nerviani A, Pitzalis C. Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 2018; 104:333-341. [PMID: 29947426 PMCID: PMC6099300 DOI: 10.1002/jlb.3mr0218-062r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Ectopic (or tertiary) lymphoid structures (ELS) are organized aggregates of lymphocytes resembling secondary lymphoid organs and developing in chronically inflamed nonlymphoid tissues during persistent infections, graft rejection, autoimmune conditions, and cancer. In this review, we will first depict the mechanisms regulating ELS generation, focusing on the role played by lymphoid chemokines. We will then characterize ELS forming in target organs during autoimmune conditions, here exemplified by rheumatoid arthritis, and cancer, highlighting the relevance of the tissue-specific factors. Finally, we will discuss the clinical significance of ELS and the therapeutic potential of their inhibition and/or enhancement depending on the disease considered.
Collapse
Affiliation(s)
- Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
34
|
Pala O, Diaz A, Blomberg BB, Frasca D. B Lymphocytes in Rheumatoid Arthritis and the Effects of Anti-TNF-α Agents on B Lymphocytes: A Review of the Literature. Clin Ther 2018; 40:1034-1045. [PMID: 29801753 DOI: 10.1016/j.clinthera.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE The aim of this article was to review published research related to B lymphocytes in rheumatoid arthritis, their role in the pathogenesis of the disease, the effects of tumor necrosis factor (TNF)-α inhibitors on B lymphocytes, the risk for infection, and responses to vaccines. METHODS A PubMed search was conducted to review recent advances related to B lymphocytes and the effects of anti-TNF-α on B lymphocytes in rheumatoid arthritis. FINDINGS B lymphocytes play an important role in the pathogenesis of rheumatoid arthritis. In this review, we summarize the major mechanisms by which B lymphocytes play a pathologic role in the development and propagation of the disease, as B lymphocytes are recruited to the synovial fluid, where they contribute to local inflammation through the secretion of pro-inflammatory mediators (cytokines, chemokines, micro-RNAs) and present antigens to T cells. We discuss the effects of TNF-α, either direct or indirect, on B lymphocytes expressing receptors for this cytokine. We also show that total B-cell numbers have been reported to be reduced in the blood of patients with rheumatoid arthritis versus healthy controls, but are significantly increased up to normal levels in patients undergoing anti-TNF-α therapy. As for B-cell subsets, controversial results have been reported, with studies showing decreased frequencies of total memory B cells (and memory subsets) and others showing no differences in patients versus healthy controls. Studies investigating the effects of anti-TNF-α therapy have also given controversial results, with therapy found to increase (or not) the frequency of memory B lymphocytes, in patients with rheumatoid arthritis versus healthy controls. Those highly variable results could have been due to differences in patient characteristics and limited numbers of subjects. Finally, we summarize the effects of blocking TNF-α with anti-TNF-α agents on possible infections that patients with rheumatoid arthritis may contract, as well as on responses to vaccination. IMPLICATIONS B lymphocytes play a significant role in the pathogenesis of rheumatoid arthritis, and B cell-depletion therapy has a major effect on the course of the disease. The advances in treatment of rheumatoid arthritis include the development of targeted therapies. Anti-TNF-α therapies are widely used despite potentially serious adverse events. The data on the effects of anti-TNF-α therapies on B lymphocytes are limited and conflicting. There is a need for larger studies to better understand the effects of newly discovered therapies on the different cells of the immune system.
Collapse
Affiliation(s)
- Ozlem Pala
- Division of Rheumatology, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Alain Diaz
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
35
|
Wu C, Yang P, Liu H, Xiao W, Zhao L. Increased frequency of CCR7 +CD4 + T cells from patients with primary Sjögren's syndrome: An indicator of disease activity rather than of damage severity. Cytokine 2018; 110:9-17. [PMID: 29684636 DOI: 10.1016/j.cyto.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Expression of CCR7 on T cells has been reported to be associated with the lymphocytic migration and infiltration, which is recognized as a vital part of the pathogenesis of Primary Sjögren's syndrome (pSS). Here, we compared the expression of CCR7 on CD4+T cells between pSS patients and control groups, including healthy donors (HD) and patients with systemic lupus erythematosus (SLE) and examined correlations with disease activity and damage severity, which were evaluated by EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI) and Sjogren's Syndrome Disease Damage Index (SSDDI), respectively. Peripheral blood mononuclear Cells (PBMC) were obtained from patients and controls and expressions of CCR7 were evaluated by flow cytometry. CCR7 was selectively and frequently expressed on CD4+T cells, but less on CD8+ T cells of patients with pSS. In contrast, this phenomenon was neither seen in normal subjects nor in patients with SLE. The expression level of CCR7 in the peripheral blood CD4+ T cells is closely correlated with ESSDAI, but not SSDDI. Correspondently, the chemotactic index (CI) of CD4+T cells was higher than CD8+T cells in patients with pSS. Furthermore, the CI of CD4+T cells is also higher than that of other controls, which is correlated with ESSDAI. All the findings suggested that CCR7 might play an important role in the development of pSS by mediating the migration of CD4+cells. Thus, the expression of CCR7 in CD4+ T cells is probably a useful biomarker to evaluate and monitor disease activity. CCR7 can also potentially be a novel target for the therapy of pSS.
Collapse
Affiliation(s)
- Chunling Wu
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Pingting Yang
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Haina Liu
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Weiguo Xiao
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Lijuan Zhao
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China.
| |
Collapse
|
36
|
Kühne L, Jung B, Poth H, Schuster A, Wurm S, Ruemmele P, Banas B, Bergler T. Renal allograft rejection, lymphocyte infiltration, and de novo donor-specific antibodies in a novel model of non-adherence to immunosuppressive therapy. BMC Immunol 2017; 18:52. [PMID: 29258420 PMCID: PMC5735914 DOI: 10.1186/s12865-017-0236-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Non-adherence has been associated with reduced graft survival. The aim of this study was to investigate the immunological mechanisms underlying chronic renal allograft rejection using a model of non-adherence to immunosuppressive therapy. We used a MHC (major histocompatibility complex) -mismatched rat model of renal transplantation (Brown Norway to Lewis), in which rats received daily oral cyclosporine A. In analogy to non-adherence to therapy, one group received cyclosporine A on alternating days only. Rejection was histologically graded according to the Banff classification. We quantified fibrosis by trichrome staining and intra-graft infiltration of T cells, B cells, and monocytes/macrophages by immunohistochemistry. The distribution of B lymphocytes was assessed using immunofluorescence microscopy. Intra-graft chemokine, chemokine receptor, BAFF (B cell activating factor belonging to the TNF family), and immunoglobulin G transcription levels were analysed by RT-PCR. Finally, we evaluated donor-specific antibodies (DSA) and complement-dependent cytotoxicity using flow cytometry. Results After 28 days, cellular rejection occurred during non-adherence in 5/6 animals, mixed with humoral rejection in 3/6 animals. After non-adherence, the number of T lymphocytes were elevated compared to daily immunosuppression. Monocyte numbers declined over time. Accordingly, lymphocyte chemokine transcription was significantly increased in the graft, as was the transcription of BAFF, BAFF receptor, and Immunoglobulin G. Donor specific antibodies were elevated in non-adherence, but did not induce complement-dependent cytotoxicity. Conclusion Cellular and humoral rejection, lymphocyte infiltration, and de novo DSA are induced in this model of non-adherence. Electronic supplementary material The online version of this article (doi: 10.1186/s12865-017-0236-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louisa Kühne
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany.
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Helen Poth
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Simone Wurm
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Petra Ruemmele
- Department of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| |
Collapse
|
37
|
Blokland SLM, Hillen MR, Kruize AA, Meller S, Homey B, Smithson GM, Radstake TRDJ, van Roon JAG. Increased CCL25 and T Helper Cells Expressing CCR9 in the Salivary Glands of Patients With Primary Sjögren's Syndrome: Potential New Axis in Lymphoid Neogenesis. Arthritis Rheumatol 2017. [DOI: 10.1002/art.40182] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Aike A. Kruize
- University Medical Center Utrecht; Utrecht The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Tsujimura S, Adachi T, Saito K, Kawabe A, Tanaka Y. Relevance of P-glycoprotein on CXCR4 + B cells to organ manifestation in highly active rheumatoid arthritis. Mod Rheumatol 2017; 28:276-286. [PMID: 28696805 DOI: 10.1080/14397595.2017.1341458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4+ B cells to clinical manifestations in refractory RA. METHODS CD19+ B cells were analyzed using flow cytometry and immunohistochemistry. RESULTS P-gp was highly expressed especially on CXCR4+CD19+ B cells in RA. The proportion of P-gp-expressing CXCR4+ B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp+CXCR4+CD19+ B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp+CXCR4+ CD19+ B cells. Adalimumab reduced P-gp+CXCR4+ CD19+ B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. CONCLUSIONS Expansion of P-gp+CXCR4+ B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.
Collapse
Affiliation(s)
- Shizuyo Tsujimura
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Tomoko Adachi
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Kazuyoshi Saito
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Akio Kawabe
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Yoshiya Tanaka
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| |
Collapse
|
39
|
Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol 2017; 18:612-621. [DOI: 10.1038/ni.3742] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
|
40
|
Song X, Lin Q. Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis. Rheumatol Int 2017; 37:1257-1265. [DOI: 10.1007/s00296-017-3732-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/29/2017] [Indexed: 01/23/2023]
|
41
|
CCR7 deficient inflammatory Dendritic Cells are retained in the Central Nervous System. Sci Rep 2017; 7:42856. [PMID: 28216674 PMCID: PMC5316931 DOI: 10.1038/srep42856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DC) accumulate in the CNS during neuroinflammation, yet, how these cells contribute to CNS antigen drainage is still unknown. We have previously shown that after intracerebral injection, antigen-loaded bone marrow DC migrate to deep cervical lymph nodes where they prime antigen-specific T cells and exacerbate experimental autoimmune encephalomyelitis (EAE) in mice. Here, we report that DC migration from brain parenchyma is dependent upon the chemokine receptor CCR7. During EAE, both wild type and CCR7−/− CD11c-eYFP cells infiltrated into the CNS but cells that lacked CCR7 were retained in brain and spinal cord while wild type DC migrated to cervical lymph nodes. Retention of CCR7-deficient CD11c-eYFP cells in the CNS exacerbated EAE. These data are the first to show that CD11chigh DC use CCR7 for migration out of the CNS, and in the absence of this receptor they remain in the CNS in situ and exacerbate EAE.
Collapse
|
42
|
Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw 2016; 16:271-280. [PMID: 27799872 PMCID: PMC5086451 DOI: 10.4110/in.2016.16.5.271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
43
|
Jones GW, Hill DG, Jones SA. Understanding Immune Cells in Tertiary Lymphoid Organ Development: It Is All Starting to Come Together. Front Immunol 2016; 7:401. [PMID: 27752256 PMCID: PMC5046062 DOI: 10.3389/fimmu.2016.00401] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/21/2016] [Indexed: 01/28/2023] Open
Abstract
Tertiary lymphoid organs (TLOs) are frequently observed in tissues affected by non-resolving inflammation as a result of infection, autoimmunity, cancer, and allograft rejection. These highly ordered structures resemble the cellular composition of lymphoid follicles typically associated with the spleen and lymph node compartments. Although TLOs within tissues show varying degrees of organization, they frequently display evidence of segregated T and B cell zones, follicular dendritic cell networks, a supporting stromal reticulum, and high endothelial venules. In this respect, they mimic the activities of germinal centers and contribute to the local control of adaptive immune responses. Studies in various disease settings have described how these structures contribute to either beneficial or deleterious outcomes. While the development and architectural organization of TLOs within inflamed tissues requires homeostatic chemokines, lymphoid and inflammatory cytokines, and adhesion molecules, our understanding of the cells responsible for triggering these events is still evolving. Over the past 10–15 years, novel immune cell subsets have been discovered that have more recently been implicated in the control of TLO development and function. In this review, we will discuss the contribution of these cell types and consider the potential to develop new therapeutic strategies that target TLOs.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| | - David G Hill
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| | - Simon A Jones
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
44
|
CCL19 as a Chemokine Risk Factor for Posttreatment Lyme Disease Syndrome: a Prospective Clinical Cohort Study. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:757-66. [PMID: 27358211 DOI: 10.1128/cvi.00071-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Approximately 10% to 20% of patients optimally treated for early Lyme disease develop persistent symptoms of unknown pathophysiology termed posttreatment Lyme disease syndrome (PTLDS). The objective of this study was to investigate associations between PTLDS and immune mediator levels during acute illness and at several time points following treatment. Seventy-six participants with physician-documented erythema migrans and 26 healthy controls with no history of Lyme disease were enrolled. Sixty-four cytokines, chemokines, and inflammatory markers were measured at each visit for a total of 6 visits over 1 year. An operationalized definition of PTLDS incorporating symptoms and functional impact was applied at 6 months and 1 year following treatment completion, and clinical outcome groups were defined as the return-to-health, symptoms-only, and PTLDS groups. Significance analysis of microarrays identified 7 of the 64 immune mediators to be differentially regulated by group. Generalized logit regressions controlling for potential confounders identified posttreatment levels of the T-cell chemokine CCL19 to be independently associated with clinical outcome group. Receiver operating characteristic analysis identified a CCL19 cutoff of >111.67 pg/ml at 1 month following treatment completion to be 82% sensitive and 83% specific for later PTLDS. We speculate that persistently elevated CCL19 levels among participants with PTLDS may reflect ongoing, immune-driven reactions at sites distal to secondary lymphoid tissue. Our findings suggest the relevance of CCL19 both during acute infection and as an immunologic risk factor for PTLDS during the posttreatment phase. Identification of a potential biomarker predictor for PTLDS provides the opportunity to better understand its pathophysiology and to develop early interventions in the context of appropriate and specific clinical information.
Collapse
|
45
|
Jonker M, Wubben JAM, 't Hart BA, Haanstra KG. Lymphoid-Like Structures with Distinct B Cell Areas in Kidney Allografts are not Predictive for Graft Rejection. A Non-human Primate Study. Inflammation 2016; 38:2191-202. [PMID: 26140903 DOI: 10.1007/s10753-015-0202-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Kidney allograft biopsies were analyzed for the presence of B cell clusters/aggregates using CD20 staining. Few B cells were found in the diffuse interstitial infiltrates, but clusters of B cells were found in nodular infiltrates. These nodular infiltrates were smaller shortly after transplantation, and their size increased over time. At the time of clinical rejection, the nodules often presented as tertiary lymphoid structures (TLS) with lymphoid-like follicles. The presence of small B cell clusters during the first 2 months after transplantation was not associated with early rejection. Even in animals that did not reject their allograft, TLS-like structures were present and could disappear over time. Although TLS were more often found in samples with interstitial fibrosis and tubular atrophy (IFTA), TLS were also present in samples without IFTA. The presence and density of clusters resembling tertiary lymphoid structures most likely reflect an ongoing immune response inside the graft and do not necessarily signify a poor graft outcome or IFTA.
Collapse
Affiliation(s)
- Margreet Jonker
- Biomedical Primate Research Centre, PO box 3306, 2280 GH, Rijswijk, The Netherlands.,Department of Immunohematology, LUMC, Leiden, The Netherlands
| | | | - Bert A 't Hart
- Biomedical Primate Research Centre, PO box 3306, 2280 GH, Rijswijk, The Netherlands.,Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Krista G Haanstra
- Biomedical Primate Research Centre, PO box 3306, 2280 GH, Rijswijk, The Netherlands.
| |
Collapse
|
46
|
Neyt K, GeurtsvanKessel CH, Deswarte K, Hammad H, Lambrecht BN. Early IL-1 Signaling Promotes iBALT Induction after Influenza Virus Infection. Front Immunol 2016; 7:312. [PMID: 27579026 PMCID: PMC4985557 DOI: 10.3389/fimmu.2016.00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Inducible bronchus-associated lymphoid tissue (iBALT) is a long lasting tertiary lymphoid tissue that can be induced following influenza A virus (IAV) infection. Previous studies have shown that iBALT structures containing germinal center (GC) B cells protect against repeated infection by contributing locally to the cellular and humoral immune response. If we are to exploit this in vaccination strategies, we need a better understanding on how iBALT structures are induced. One hypothesis is that the strength of the initial innate response dictates induction of iBALT. In the present study, we investigated the role of interleukin (IL)-1 and IL-1R signaling on iBALT formation. Mice lacking the IL-1R had a delayed viral clearance and, thus, a prolonged exposure to viral replication, leading to increased disease severity, compared to wild-type mice. Contradictorily, iBALT formation following clearance of the virus was heavily compromised in Il1r1−/− mice. Quantification of gene induction after IAV infection demonstrated induction of IL-1α and to a much lesser extent of IL-1β. Administration of recombinant IL-1α to the lungs of wild-type mice, early but not late, after IAV infection led to more pronounced iBALT formation and an increased amount of GC B cells in the lungs. Bone marrow chimeric mice identified the stromal compartment as the crucial IL-1 responsive cell for iBALT induction. Mechanistically, Q-PCR analysis of lung homogenates revealed a strongly diminished production of CXCL13, a B cell-attracting chemokine, in Il1r−/− mice during the early innate phase of IAV infection. These experiments demonstrate that appropriate innate IL-1α–IL-1R signaling is necessary for IAV clearance and at the same time instructs the formation of organized tertiary lymphoid tissues through induction of CXCL13 early after infection. These findings are discussed in the light of recent insights on the pathogenesis of tertiary lymphoid organ formation in the lung in various diseases where the IL-1 axis is hyperactive, such as rheumatoid arthritis and COPD.
Collapse
Affiliation(s)
- Katrijn Neyt
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - Kim Deswarte
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
47
|
Wang H, Schuetz C, Arima A, Chihaya Y, Weinbauer GF, Habermann G, Xiao J, Woods C, Grogan J, Gelzleichter T, Cain G. Assessment of placental transfer and the effect on embryo-fetal development of a humanized monoclonal antibody targeting lymphotoxin-alpha in non-human primates. Reprod Toxicol 2016; 63:82-95. [DOI: 10.1016/j.reprotox.2016.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 04/03/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023]
|
48
|
New insights into B cell biology in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2016; 27:461-7. [PMID: 26164595 DOI: 10.1097/bor.0000000000000201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Our understanding of the physiological and pathogenic functions of B cells in systemic lupus erythematosus (SLE) and Primary Sjögren's syndrome (pSS) continues to expand. In this review, we discuss novel insights published in the last 18 months into the roles of B cells in systemic autoimmunity. RECENT FINDINGS Data have continued to expand regarding the diverse mechanisms by which innate immune signals including Toll-like receptors (TLRs) regulate the B cell compartment. Localized B cells and long-lived plasma cells have been identified as playing an important role in target tissue including the development of ectopic lymphoid structures in kidney and salivary gland. In addition to pathogenic roles for B cells, there is mounting evidence for regulatory B cell subsets that play a protective role and new insights into the signals that regulate their development. SUMMARY The past few years have provided insights into the multiple paths by which innate immune signals can lead to B cell activation in SLE and pSS and the increasingly diverse ways in which B cells contribute to disease expression. Further understanding the imbalance between protective and pathogenic functions for B cells in disease including in understudied target tissue should yield new treatment approaches.
Collapse
|
49
|
Hillen MR, Blokland SLM, Risselada AP, Bikker A, Lauwerys BR, Kruize AA, Radstake TRDJ, van Roon JAG. High soluble IL-7 receptor expression in Sjögren's syndrome identifies patients with increased immunopathology and dryness. Ann Rheum Dis 2016; 75:1735-6. [PMID: 27269297 DOI: 10.1136/annrheumdis-2016-209236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/17/2016] [Indexed: 11/03/2022]
Affiliation(s)
- M R Hillen
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - S L M Blokland
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A P Risselada
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A Bikker
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - B R Lauwerys
- Department of Rheumatology, Catholic University Louvain, Louvain, Belgium
| | - A A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - T R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J A G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
50
|
Ciccia F, Rizzo A, Maugeri R, Alessandro R, Croci S, Guggino G, Cavazza A, Raimondo S, Cannizzaro A, Iacopino DG, Salvarani C, Triolo G. Ectopic expression of CXCL13, BAFF, APRIL and LT-β is associated with artery tertiary lymphoid organs in giant cell arteritis. Ann Rheum Dis 2016; 76:235-243. [PMID: 27098405 DOI: 10.1136/annrheumdis-2016-209217] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To investigate whether artery tertiary lymphoid organs (ATLOs) are present in giant cell arteritis (GCA) and that their formation is associated with the ectopic expression of constitutive lymphoid tissue-homing chemokines. METHODS Reverse transcriptase PCR, immunohistochemical and immunofluorescence analysis were used to determine the presence of ectopic ATLOs in GCA and the expression of chemokines/chemokine receptors and cytokines involved in lymphoneogenesis in the temporal artery samples obtained from 50 patients with GCA and 30 controls. The presence of lymphatic conduits, of follicular dendritic cells (FDCs) precursors and lymphoid tissue inducer cells was also investigated. Finally, expression of CXCL13, B cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and CCL21 by isolated myofibroblasts was evaluated before and after stimulation with Toll-like receptors (TLRs) agonists and cytokines. RESULTS ATLOs were observed in the media layer of 60% of patients with GCA in close proximity to high endothelial venules and independently by the age of patients and the presence of atherosclerosis. ATLO formation was also accompanied by the expression of CXCL13, BAFF, a proliferation-inducing ligand (APRIL), lymphotoxin (LT)-β, interleukin (IL)-17 and IL-7, the presence of FDC precursors and of lymphoid conduits. Stimulation of myofibroblasts with TLR agonists and cytokines resulted in the upregulation of BAFF and CXCL13. CONCLUSIONS ATLOs occur in the inflamed arteries of patients with GCA possibly representing the immune sites where immune responses towards unknown arterial wall-derived antigens may be organised.
Collapse
Affiliation(s)
- Francesco Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università degli Studi di Palermo, Palermo, Italy
| | - Aroldo Rizzo
- Dipartimento di Oncoematologia, Sezione di Anatomia Patologica, Azienda Ospedaliera Ospedali riuniti Villa Sofia Cervello, Palermo, Italy
| | - Rosario Maugeri
- Dipartimento di Emergenze, Urgenze e Neuroscienze Cliniche, Università di Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Arcispedale Santa Maria Nuova, IRCCS, Reggio Emilia, Italy
| | - Giuliana Guggino
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università degli Studi di Palermo, Palermo, Italy
| | - Alberto Cavazza
- Pathology Unit, Arcispedale Santa Maria Nuova, IRCCS, Reggio Emilia, Italy
| | - Stefania Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Alessandra Cannizzaro
- Dipartimento di Oncoematologia, Sezione di Anatomia Patologica, Azienda Ospedaliera Ospedali riuniti Villa Sofia Cervello, Palermo, Italy
| | | | - Carlo Salvarani
- Unità operativa di Reumatologia, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Giovanni Triolo
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|