1
|
Lei Y, Wang X, Sun S, He B, Sun W, Wang K, Chen Z, Guo Z, Li Z. A review of lipid accumulation by oleaginous yeasts: Culture mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170385. [PMID: 38364585 DOI: 10.1016/j.scitotenv.2024.170385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/18/2024]
Abstract
Microbial lipids have attracted considerable interest owing to their favorable environmental sustainability benefits. In laboratory-scale studies, the factors impacting lipid production in oleaginous yeasts, including culture conditions, nutrients, and low-cost substrates, have been extensively studied. However, there were several different modes of microbial lipid cultivation (batch culture, fed-batch culture, continuous culture, and other novel culture modes), making it difficult to comprehensively analyze impacting factors under different cultivation modes on a laboratory scale. And only few cases of microbial lipid production have been conducted at the pilot scale, which requires more technological reliability assessments and environmental benefit evaluations. Thus, this study summarized the different culture modes and cases of scale-up processes, highlighting the role of the nutrient element ratio in regulating culture mode selection and lipid accumulation. The cost distribution and environmental benefits of microbial lipid production by oleaginous yeasts were also investigated. Our results suggested that the continuous culture mode was recommended for the scale-up process because of its stable lipid accumulation. More importantly, exploring the continuous culture mode integrated with other efficient culture modes remained to be further investigated. In research on scale-up processes, low-cost substrate (organic waste) application and optimization of reactor operational parameters were key to increasing environmental benefits and reducing costs.
Collapse
Affiliation(s)
- Yuxin Lei
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Shushuang Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Bingyang He
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Wenjin Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Kexin Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhengxian Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhiling Guo
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
2
|
Hou D, Tang D, Wang Y, Zhu J, Luo R, Liu Z, Lu Y, Sun T, Ma Y, Zhang Y, Yu H. Molecular phylogenetics of the Umbelopsis genus-identification of new species and evaluation of their oil application value. J Appl Microbiol 2024; 135:lxae065. [PMID: 38553969 DOI: 10.1093/jambio/lxae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
AIMS The aim of this study was to reconstruct the evolutionary framework of the genus Umbelopsis by using modern taxonomic strategies and evaluating the quality of oil and prospective uses of three distinct species. METHODS AND RESULTS Three species of Umbelopsis were identified based on morphological characteristics and phylogenetic evidence obtained from three genes (ITS, LSU, and ACT). A new species of Umbelopsis was described and illustrated, and subsequently named U. ophiocordycipiticola. The characteristics of U. ophiocordycipiticola exhibited sporangia with a diameter ranging from 8 to 17 µm. and sporangiospores that were oval to ellipsoidal in shape, irregularly angular, with dimensions of ∼1.9-2.9 × 1.7-3.0 µm. Gas chromatography and mass spectrometry (GC-MS) were used to examine the composition of fatty acids. Notably, U. ophiocordycipiticola showed a significantly higher oil content of 50.89% in dry cell weight (DCW) compared to U. vinacea and U. ramanniana. The mean proportion of polyunsaturated fatty acids (PUFAs) in U. ophiocordycipiticola was 32.38%, and the maximum levels of γ-linolenic acid (GLA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) in U. ophiocordycipiticola were found to be 14.51, 0.24, 0.54, and 0.53%, respectively. The biodiesel quality from all three species complied with applicable standards set by the American Association for Testing and Materials (ASTM 6751) and the Brazilian National Petroleum Agency (ANP 255). CONCLUSIONS The establishment of a novel species, U. ophiocordycipiticola, was strongly supported by morphological and molecular evidence. Umbelopsis ophiocordycipiticola exhibited a high-value PUFA content. Additionally, three Umbelopsis species demonstrated good quality for biodiesel production.
Collapse
Affiliation(s)
- Donghai Hou
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
- School of Life Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Dexiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
- School of Life Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
| | - Juye Zhu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
| | - Run Luo
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
- School of Life Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Zuoheng Liu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
| | - Yingling Lu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
- School of Life Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Tao Sun
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
- School of Life Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Yanhong Ma
- Kunming Institute for Food and Drug Control, Kunming 650034, China
| | - Yuyao Zhang
- Kunming Institute for Food and Drug Control, Kunming 650034, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan 650504, China
- School of Life Science, Yunnan University, Kunming, Yunnan 650504, China
| |
Collapse
|
3
|
Tian J, Wei S, Jiao Y, Liang W, Wang G. A strategy to reduce the byproduct glucose by simultaneously producing levan and single cell oil using an engineered Yarrowia lipolytica strain displaying levansucrase on the surface. BIORESOURCE TECHNOLOGY 2024; 395:130395. [PMID: 38301939 DOI: 10.1016/j.biortech.2024.130395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Currently, levan is attracting attention due to its promising applications in the food and biomedical fields. Levansucrase synthesizes levan by polymerizing the fructosyl unit in sucrose. However, a large amount of the byproduct glucose is produced during this process. In this paper, an engineered oleaginous yeast (Yarrowia lipolytica) strain was constructed using a surface display plasmid containing the LevS gene of Gluconobacter sp. MP2116. The levansucrase activity of the engineered yeast strain reached 327.8 U/g of cell dry weight. The maximal levan concentration (58.9 g/l) was achieved within 156 h in the 5-liter fermentation. Over 81.2 % of the sucrose was enzymolyzed by the levansucrase, and the byproduct glucose was converted to 21.8 g/l biomass with an intracellular oil content of 25.5 % (w/w). The obtained oil was comprised of 91.3 % long-chain fatty acids (C16-C18). This study provides new insight for levan production and comprehensive utilization of the byproduct in levan biosynthesis.
Collapse
Affiliation(s)
- Junjie Tian
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China
| | - Shumin Wei
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China
| | - Yingying Jiao
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China.
| |
Collapse
|
4
|
Castañeda MT, Nuñez S, Jamilis M, De Battista H. Computational assessment of lipid production in Rhodosporidium toruloides in two-stage and one-stage batch bioprocesses. Biotechnol Bioeng 2024; 121:238-249. [PMID: 37902687 DOI: 10.1002/bit.28579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
Oleaginous yeasts are promising platforms for microbial lipids production as a renewable and sustainable alternative to vegetable oils in biodiesel production. In this paper, a thorough in silico assessment of lipid production in batch cultivation by Rhodosporidium toruloides was developed. By means of dynamic flux balance analysis, the traditional two-stage bioprocess (TSB) performed by the native strain was contrasted with one-stage bioprocess (OSB) using four designed strains obtained by gene knockout strategies. Lipid titer, yield, content, and productivity were analyzed at different initial C/N ratios as relevant performance indicators used in bioprocesses. By weighting these indicators, a global lipid efficiency metric (GLEM) was defined to consider different scenarios. Under simulated conditions, designed strains for lipid overproduction in OSB outperformed the TSB in terms of lipid title (up to threefold), lipid yield (up to 2.4-fold), lipid content (up to 2.8-fold, with a maximum of 76%), and productivity (up to 1.3-fold), depending on C/N ratios. Using these efficiency parameters and the proposed GLEM, the process of selecting the most suitable candidates for lipid production could be carried out before experimental assays. This methodology holds the potential to be extended to other oleaginous microorganisms and diverse strain design techniques.
Collapse
Affiliation(s)
- María Teresita Castañeda
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sebastián Nuñez
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Jamilis
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hernán De Battista
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
5
|
Gallego-García M, Susmozas A, Negro MJ, Moreno AD. Challenges and prospects of yeast-based microbial oil production within a biorefinery concept. Microb Cell Fact 2023; 22:246. [PMID: 38053171 DOI: 10.1186/s12934-023-02254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Biodiesel, unlike to its fossil-based homologue (diesel), is renewable. Its use contributes to greater sustainability in the energy sector, mainly by reducing greenhouse gas emissions. Current biodiesel production relies on plant- and animal-related feedstocks, resulting in high final costs to the prices of those raw materials. In addition, the production of those materials competes for arable land and has provoked a heated debate involving their use food vs. fuel. As an alternative, single-cell oils (SCOs) obtained from oleaginous microorganisms are attractive sources as a biofuel precursor due to their high lipid content, and composition similar to vegetable oils and animal fats. To make SCOs competitive from an economic point of view, the use of readily available low-cost substrates becomes essential. This work reviews the most recent advances in microbial oil production from non-synthetic sugar-rich media, particularly sugars from lignocellulosic wastes, highlighting the main challenges and prospects for deploying this technology fully in the framework of a Biorefinery concept.
Collapse
Affiliation(s)
- María Gallego-García
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - Ana Susmozas
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain.
| | - Antonio D Moreno
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
| |
Collapse
|
6
|
Timotheo CA, Fabricio MF, Ayub MAZ, Valente P. Evaluation of cell disruption methods in the oleaginous yeasts Yarrowia lipolytica QU21 and Meyerozyma guilliermondii BI281A for microbial oil extraction. AN ACAD BRAS CIENC 2023; 95:e20191256. [PMID: 38055604 DOI: 10.1590/0001-3765202320191256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/08/2023] Open
Abstract
The interest for oleaginous yeasts has grown significantly in the last three decades, mainly due to their potential use as a renewable source of microbial oil or single cell oils (SCOs). However, the methodologies for cell disruption to obtain the microbial oil are considered critical and determinant for a large-scale production. Therefore, this work aimed to evaluate different methods for cell wall disruption for the lipid extraction of Yarrowia lipolytica QU21 and Meyerozyma guilliermondii BI281A. The two strains were separately cultivated in 5 L batch fermenters for 120 hours, at 26 ºC and 400 rpm. Three different lipid extraction processes using Turrax homogenizer, Ultrasonicator and Braun homogenizer combined with bead milling were applied in wet, oven-dried, and freeze-dried biomass of both strains. The treatment with the highest percentage of disrupted cells and highest oil yield was the ultrasonication of oven-dried biomass (37-40% lipid content for both strains). The fact that our results point to one best extraction strategy for two different yeast strains, belonging to different species, is a great news towards the development of a unified technique that could be applied at industrial plants.
Collapse
Affiliation(s)
- Carina A Timotheo
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Micologia, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Mariana F Fabricio
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia, Laboratório de Biotecnologia e Engenharia Bioquímica, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Marco Antônio Z Ayub
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia, Laboratório de Biotecnologia e Engenharia Bioquímica, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Patricia Valente
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Micologia, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Ouellet B, Morneau Z, Abdel-Mawgoud AM. Nile red-based lipid fluorometry protocol and its use for statistical optimization of lipids in oleaginous yeasts. Appl Microbiol Biotechnol 2023; 107:7313-7330. [PMID: 37741936 DOI: 10.1007/s00253-023-12786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
As lipogenic yeasts are becoming increasingly harnessed as biofactories of oleochemicals, the availability of efficient protocols for the determination and optimization of lipid titers in these organisms is necessary. In this study, we optimized a quick, reliable, and high-throughput Nile red-based lipid fluorometry protocol adapted for oleaginous yeasts and validated it using different approaches, the most important of which is using gas chromatography coupled to flame ionization detection and mass spectrometry. This protocol was applied in the optimization of the concentrations of ammonium chloride and glycerol for attaining highest lipid titers in Rhodotorula toruloides NRRL Y-6987 and Yarrowia lipolytica W29 using response surface central composite design (CCD). Results of this optimization showed that the optimal concentration of ammonium chloride and glycerol is 4 and 123 g/L achieving a C/N ratio of 57 for R. toruloides, whereas for Y. lipolytica, concentrations are 4 and 139 g/L with a C/N ratio of 61 for Y. lipolytica. Outside the C/N of 33 to 74 and 45 to 75, respectively, for R. toruloides and Y. lipolytica, lipid productions decrease by more than 10%. The developed regression models and response surface plots show the importance of the careful selection of C/N ratio to attain maximal lipid production. KEY POINTS: • Nile red (NR)-based lipid fluorometry is efficient, rapid, cheap, high-throughput. • NR-based lipid fluorometry can be well used for large-scale experiments like DoE. • Optimal molar C/N ratio for maximum lipid production in lipogenic yeasts is ~60.
Collapse
Affiliation(s)
- Benjamin Ouellet
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada
| | - Zacharie Morneau
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada
| | - Ahmad M Abdel-Mawgoud
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada.
| |
Collapse
|
8
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
9
|
Upgrading Major Waste Streams Derived from the Biodiesel Industry and Olive Mills via Microbial Bioprocessing with Non-Conventional Yarrowia lipolytica Strains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This study reports the development of a bioprocess involving the valorization of biodiesel-derived glycerol as the main carbon source for cell proliferation of Yarrowia lipolytica strains and production of metabolic compounds, i.e., citric acid (Cit), polyols, and other bio-metabolites, the substitution of process tap water with olive mill wastewater (OMW) in batch fermentations, and partial detoxification of OMW (up to 31.1% decolorization). Increasing initial phenolics (Phen) of OMW-glycerol blends led to substantial Cit secretion. Maximum Cit values, varying between 64.1–65.1 g/L, combined with high yield (YCit/S = 0.682–0.690 g Cit/g carbon sources) and productivity (0.335–0.344 g/L/h) were achieved in the presence of Phen = 3 g/L. The notable accumulation of endopolysaccharides (EPs) on the produced biomass was determined when Y. lipolytica LMBF Y-46 (51.9%) and ACA-YC 5033 (61.5%) were cultivated on glycerol-based media. Blending with various amounts of OMW negatively affected EPs and polyols biosynthesis. The ratio of mannitol:arabitol:erythritol was significantly affected (p < 0.05) by the fermentation media. Erythritol was the major polyol in the absence of OMW (53.5–62.32%), while blends of OMW-glycerol (with Phen = 1–3 g/L) promoted mannitol production (54.5–76.6%). Nitrogen-limited conditions did not favor the production of cellular lipids (up to 16.6%). This study addressed sustainable management and resource efficiency enabling the bioconversion of high-organic-load and toxic waste streams into valuable products within a circular bioeconomy approach.
Collapse
|
10
|
Gao R, Zhang H, Xiong L, Li H, Chen X, Wang M, Chen X. Fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate: Impacts of the mixed strains fermentation. J Biotechnol 2023; 366:10-18. [PMID: 36868409 DOI: 10.1016/j.jbiotec.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
This present study mainly focused on the investigation and optimization of the fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate (EUOH), which contains abundant and diverse sugars. More importantly, the impacts of the mixed strains fermentation compared with the single strain fermentation were analyzed and evaluated, through systematic investigations of substrate metabolism, cell growth, polysaccharide and lipid production, COD and ammonia-nitrogen removals. It was found that the mixed strains fermentation could effectively promote a more comprehensive and thorough utilization of the various sugars in EUOH, greatly improve COD removal effect, biomass and yeast polysaccharide production, but could not significantly improve the overall lipid content and ammonia nitrogen removal effect. In this study, when the two strains with the highest lipid content (i.e. L. starkeyi and R. toruloides) were mixed-cultured, the maximum lipid yield of 3.82 g/L was achieved, and the yeast polysaccharide yield, COD and ammonia-nitrogen removal rates of the fermentation (LS+RT) were 1.64 g/L, 67.4% and 74.9% respectively. When the strain with the highest polysaccharide content (i.e. R. toruloides) was mixed-cultured with the strains with strong growth activity (i.e. T. cutaneum and T. dermatis), a large amount of yeast polysaccharides could be obtained, which were 2.33 g/L (RT+TC) and 2.38 g/L (RT+TD) respectively. And the lipid yield, COD and ammonia-nitrogen removal rates of the fermentation (RT+TC), (RT+TD) were 3.09 g/L, 77.7%, 81.4% and 2.54 g/L, 74.9%, 80.4%, respectively.
Collapse
Affiliation(s)
- Ruiling Gao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Hailong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Mengkun Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China.
| |
Collapse
|
11
|
Kim J, Lee EJ, Lee KE, Nho YH, Ryu J, Kim SY, Yoo JK, Kang S, Seo SW. Docsubty: FLALipid extract derived from newly isolated Rhodotorula toruloides LAB-07 for cosmetic applications. Comput Struct Biotechnol J 2023; 21:2009-2017. [PMID: 36968014 PMCID: PMC10036517 DOI: 10.1016/j.csbj.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Rhodotorula toruloides is a non-conventional yeast with a natural carotenoid pathway. In particular, R. toruloides is an oleaginous yeast that can accumulate lipids in high content, thereby gaining interest as a promising industrial host. In this study, we isolated and taxonomically identified a new R. toruloides LAB-07 strain. De novo genome assembly using PacBio and Illumina hybrid platforms yielded 27 contigs with a 20.78 Mb genome size. Subsequent genome annotation analysis based on RNA-seq predicted 5296 protein-coding genes, including the fatty acid production pathway. We compared lipid production under different media; it was highest in the yeast extract salt medium with glycerol as a carbon source. Polyunsaturated α-linolenic acid was detected among the fatty acids, and docking phosphatidylcholine as a substrate to modeled Fad2, which annotated as Δ12-fatty acid desaturase showed bifunctional Δ12, 15-desaturation is structurally possible in that the distances between the diiron center and the carbon-carbon bond in which desaturation occurs were similar to those of structurally identified mouse stearoyl-CoA desaturase. Finally, the applicability of the extracted total lipid fraction of R. toruloides was investigated, demonstrating an increase in filaggrin expression and suppression of heat-induced MMP-1 expression when applied to keratinocytes, along with the additional antioxidant activity. This work presents a new R. toruloides LAB-07 strain with genomic and lipidomic data, which would help understand the physiology of R. toruloides. Also, the various skin-related effect of R. toruloides lipid extract indicates its potential usage as a promising cosmetic ingredient.
Collapse
|
12
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Growth Potential of Selected Yeast Strains Cultivated on Xylose-Based Media Mimicking Lignocellulosic Wastewater Streams: High Production of Microbial Lipids by Rhodosporidium toruloides. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential of Rhodosporidium toruloides, Candida oleophila, Metschnikowia pulcherima, and Cryptococcus curvatus species to produce single-cell-oil (SCO) and other valuable metabolites on low-cost media, based on commercial-type xylose, was investigated. Rhodosporidium strains were further evaluated in shake-flasks using different lignosulphonate (LS) concentrations, in media mimicking waste streams derived from the paper and pulp industry. Increasing the LS concentration up to 40 g/L resulted in enhanced dry cell weight (DCW) while SCO production increased up to ~5.0 g/L when R. toruloides NRRL Y-27012 and DSM 4444 were employed. The intra-cellular polysaccharide production ranged from 0.9 to 2.3 g/L in all fermentations. Subsequent fed-batch bioreactor experiments with R. toruloides NRRL Y-27012 using 20 g/L of LS and xylose, led to SCO production of 17.0 g/L with maximum lipids in DCW (YL/X) = 57.0% w/w. The fatty acid (FA) profile in cellular lipids showed that oleic (50.3–63.4% w/w) and palmitic acid (23.9–31.0%) were the major FAs. Only SCO from batch trials of R. toruloides strains contained α-linolenic acid. Media that was supplemented with various LS concentrations enhanced the unsaturation profile of SCO from R. toruloides NRRL Y-27012. SCO from R. toruloides strains could replace plant-based commodity oils in oleochemical-operations and/or it could be micro- and nano-encapsulated into novel food-based formulas offering healthier food-products.
Collapse
|
14
|
Zhao D, Li C. Multi-omics profiling reveals potential mechanisms of culture temperature modulating biosynthesis of carotenoids, lipids, and exopolysaccharides in oleaginous red yeast Rhodotorula glutinis ZHK. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Gutiérrez-Hernández CA, Hernández-Almanza A, Hernández-Beltran JU, Balagurusamy N, Hernández-Teran F. Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Szczepańska P, Rychlicka M, Moroz P, Janek T, Gliszczyńska A, Lazar Z. Elevating Phospholipids Production Yarrowia lipolytica from Crude Glycerol. Int J Mol Sci 2022; 23:ijms231810737. [PMID: 36142650 PMCID: PMC9505966 DOI: 10.3390/ijms231810737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used in food, cosmetic, and pharmaceutical products as natural emulsifiers and components of liposomes. In Yarrowia lipolytica, PLs are synthesized through a similar pathway like in higher eukaryotes. However, PL biosynthesis in this yeast is still poorly understood. The key intermediate in this pathway is phosphatidic acid, which in Y. lipolytica is mostly directed to the production of triacylglycerols and, in a lower amount, to PL. This study aimed to deliver a strain with improved PL production, with a particular emphasis on increased biosynthesis of phosphatidylcholine (PC). Several genetic modifications were performed: overexpression of genes from PL biosynthesis pathways as well as the deletion of genes responsible for PL degradation. The best performing strain (overexpressing CDP-diacylglycerol synthase (CDS) and phospholipid methyltransferase (OPI3)) reached 360% of PL improvement compared to the wild-type strain in glucose-based medium. With the substitution of glucose by glycerol, a preferred carbon source by Y. lipolytica, an almost 280% improvement of PL was obtained by transformant overexpressing CDS, OPI3, diacylglycerol kinase (DGK1), and glycerol kinase (GUT1) in comparison to the wild-type strain. To further increase the amount of PL, the optimization of culture conditions, followed by the upscaling to a 2 L bioreactor, were performed. Crude glycerol, being a cheap and renewable substrate, was used to reduce the costs of PL production. In this process 653.7 mg/L of PL, including 352.6 mg/L of PC, was obtained. This study proved that Y. lipolytica is an excellent potential producer of phospholipids, especially from waste substrates.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Magdalena Rychlicka
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Paweł Moroz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
17
|
Liu Z, Tian J, Miao Z, Liang W, Wang G. Metabolome and Transcriptome Profiling Reveal Carbon Metabolic Flux Changes in Yarrowia lipolytica Cells to Rapamycin. J Fungi (Basel) 2022; 8:jof8090939. [PMID: 36135664 PMCID: PMC9504542 DOI: 10.3390/jof8090939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast for the production of oleochemicals and biofuels. Nitrogen deficiency is beneficial to lipids biosynthesis in Y. lipolytica. Target of rapamycin (TOR) regulates the utilization of nutrients, which is inhibited in nitrogen starvation or by rapamycin treatment. However, under nitrogen-rich conditions, the lipids biosynthesis in Y. lipolytica after inhibition of TOR by rapamycin is elusive. Combining metabolomics and transcriptomics analysis, we found that rapamycin altered multiple metabolic processes of Y. lipolytica grown in nitrogen-rich medium, especially the metabolisms of amino acids and lipids. A total of 176 differentially accumulated metabolites were identified after rapamycin treatment. Rapamycin increased the levels of tryptophan, isoleucine, proline, serine, glutamine, histidine, lysine, arginine and glutamic acid, and decreased the levels of threonine, tyrosine and aspartic acid. Two fatty acids in lipid droplets, stearic acid (down-regulated) and stearidonic acid (up-regulated), were identified. The expression of 2224 genes changed significantly after rapamycin treatment. Further analysis revealed that rapamycin reduced carbon flux through lipids biosynthesis, accompanied by increased carbon flux through fatty acids degradation and amino acid (especially glutamic acid, glutamine, proline and arginine) biosynthesis. The dataset provided here is valuable for understanding the molecular mechanisms of amino acid and lipids metabolisms in oleaginous yeast.
Collapse
Affiliation(s)
- Ziyu Liu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Tian
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhengang Miao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
18
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
19
|
Gientka I, Wirkowska-Wojdyła M, Ostrowska-Ligęza E, Janowicz M, Reczek L, Synowiec A, Błażejak S. Enhancing Red Yeast Biomass Yield and Lipid Biosynthesis by Using Waste Nitrogen Source by Glucose Fed-Batch at Low Temperature. Microorganisms 2022; 10:microorganisms10061253. [PMID: 35744771 PMCID: PMC9229382 DOI: 10.3390/microorganisms10061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
This work reports the effect of simple feeding strategies and temperature to obtain high-cell-density cultures of Rhodotorula glutinis var. rubescens LOCKR13 maximizing the de novo lipid productivity using deproteinated potato wastewater (DPW) as a basic medium. Feeding DPW with glucose enables a high yield of Rhodotorula glutinis var. rubescens LOCKR13 biomass (52 g d.w. L−1) to be obtained. The highest values of lipid accumulation (34.15%, w/w), production (14.68 g L−1) and yield coefficients (YL/S: 0.242 g g−1), and volumetric productivity (PL: 0.1 g L−1 h−1) were reached by the strain in the two-stage fed-batch process at 20 °C. The lipid of yeast biomass was rich in oleic acid (Δ9C18:1) and palmitic acid (C16:0), and the lower temperature of incubation significantly increased the MUFA (especially oleic acid) content. For the first time, a unique set of thermal analyses of the microbial oil was performed. The isotherms of the oxidation kinetics (PDSC) showed that lipids extracted from the biomass of red yeast had high oxidative stability. This feature of the yeast oil can be useful for long-shelf-life food products and can be promising for the production of biodiesel.
Collapse
Affiliation(s)
- Iwona Gientka
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
- Correspondence:
| | - Magdalena Wirkowska-Wojdyła
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland; (M.W.-W.); (E.O.-L.)
| | - Ewa Ostrowska-Ligęza
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland; (M.W.-W.); (E.O.-L.)
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland;
| | - Lidia Reczek
- Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland;
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
| |
Collapse
|
20
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Diwan B, Gupta P. Key media microsupplements for boosting de novo lipogenesis in an oleaginic yeast isolate. J Biosci Bioeng 2022; 134:95-104. [PMID: 35659719 DOI: 10.1016/j.jbiosc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
Present work reports a simple approach of microsupplementing nitrogen starved production media with potential activators of lipogenic enzymes for boosting de novo lipogenesis and demonstrated a 70-117 % rise in lipid content (LC) of yeast isolate Geotrichum candidum NBT-1. A hypothesis was proposed to increase the LC in the isolate at fixed minimum C/N ratio and small molecular activators for 3 key enzymes of lipogenic pathways. ATP citrate lyase, malic enzyme and acetyl CoA-carboxylase were screened in silico. Screened molecules were microsupplemented in nitrogen-starved media for examining the actual influence of their individual and synergistic combination on boosting LC of the isolate, which revealed sodium acetate as a major effector. Acetate in 4 mM concentration, independently and in combination with citric acid and sucrose resulted in a 2-2.2-fold increase in G. candidum LC from 24.8% in control to 49.27% and 53.96%, respectively. A volumetric lipid productivity of 0.0288 g/L/h with appreciable lipid coefficient of 9.77 was achieved in acetate supplemented media. Extracted lipids were 70-90% concentrated in a medium chain fatty acid (MCFA)-caprylic acid (C8:0), which has upsurging nutritional and nutraceutical importance.
Collapse
Affiliation(s)
- Batul Diwan
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur 492010, India; Centre for Ayurveda Biology and Holistic Nutrition (CABHN), The University of Transdisciplinary Health Science and Technology Bangalore, Bangalore 560064, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur 492010, India.
| |
Collapse
|
22
|
Gufrana T, Islam H, Khare S, Pandey A, P R. In-situ transesterification of single-cell oil for biodiesel production: a review. Prep Biochem Biotechnol 2022; 53:120-135. [PMID: 35499507 DOI: 10.1080/10826068.2022.2065684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, biodiesel synthesis and production demands have increased because of its high degradability, cleaner emissions, non-toxicity, and an alternative to petroleum diesel. In this context, Single Cell Oil (SCO) has been identified as an alternative feedstock, having the advantage of accumulating high intracellular lipid. SCO/microbial lipids are potential alternatives for sustainable biodiesel production. The traditional technique for biodiesel production from the oils obtained from microbes generally requires two steps: lipid extraction and transesterification. In-situ transesterification is an innovative and renewable process for biodiesel production. It rules out the need to isolate and refine the feedstock lipid, as it directly uses biomass in a single step, i.e., the pretreated biomass will be subjected to in-situ transesterification in the presence of catalysts. Hence, the production cost can be reduced by eliminating the lipid extraction procedure. The current review focuses on the basic features and advantages of in-situ transesterification of SCO for biodiesel production with the aid of short-chain alcohols along with different acid, base, and enzyme catalysts. In addition, a comparative study was carried out to highlight the merits of in-situ transesterification over conventional transesterification.
Collapse
Affiliation(s)
- Tasneem Gufrana
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hasibul Islam
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shivani Khare
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankita Pandey
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Radha P
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
23
|
Kolhe N, Damle E, Pradhan A, Zinjarde S. A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnol Adv 2022; 59:107967. [PMID: 35489656 DOI: 10.1016/j.biotechadv.2022.107967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica has been popular as a model system for understanding biological processes such as dimorphism and lipid accumulation. The organism can efficiently utilize hydrophobic substrates (hydrocarbons and triglycerides) thereby rendering it relevant in bioremediation of oil polluted environments. The current review focuses on the interactions of this fungus with metal pollutants and its potential application in bioremediation of metal contaminated locales. This fungus is intrinsically equipped with a variety of physiological and biochemical features that enable it to tide over stress conditions induced by the presence of metals. Production of enzymes such as phosphatases, reductases and superoxide dismutases are worth a special mention. In the presence of metals, levels of inherently produced metal binding proteins (metallothioneins) and the pigment melanin are seen to be elevated. Morphological alterations with respect to biofilm formation and dimorphic transition from yeast to mycelial form are also induced by certain metals. The biomass of Y. lipolytica is inherently important as a biosorbent and cell surface modification, process optimization or whole cell immobilization techniques have aided in improving this capability. In the presence of metals such as mercury, cadmium, copper and uranium, the culture forms nanoparticulate deposits. In addition, on account of its intrinsic reductive ability, Y. lipolytica is being exploited for synthesizing nanoparticles of gold, silver, cadmium and selenium with applications as antimicrobial compounds, location agents for bioimaging and as feed supplements. This versatile organism thus has great potential in interacting with various metals and addressing problems related to their pollutant status.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Eeshan Damle
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Aditya Pradhan
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
24
|
Sustainable and Eco-Friendly Conversions of Olive Mill Wastewater-Based Media by Pleurotus pulmonarius Cultures. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pleurotus pulmonarius mushroom was cultivated on liquid cultures with olive mill wastewaters (OMWs) of initial phenolic compound concentrations of 0 (control), 1, 2 and 3 g/L and glucose at initial concentrations of 40 and 60 g/L. The ability of the fungus to grow on media containing toxic compounds enriched with glucose was assessed through biomass production, glucose consumption, polysaccharide (IPS) accumulation and total cellular lipids biosynthesis, while the total phenolic compounds (TPC) and antioxidant component monitoring were also assessed during a 43-day fermentation. An analysis of the total simple sugar composition of IPS and the total fatty acid composition of lipids was performed. The phenolic reduction and media decolorization were also monitored. Results showed that the addition of glucose in OMW-based media had a positive effect on biomass, IPS and lipid production and increased the unsaturated fatty acids and TPC concentration. The maximum recorded values were the following: biomass 32.76 g/L, IPS 4.38 g/L (14.70%, w/w in dry weight), lipids 2.85 g/L (11.69%, w/w in dry weight). The mycelial lipids were unsaturated and dominated by linoleic acid, whereas IPS were composed mainly of glucose. Significant phenolic compound reduction (87–95%) and color removal (70–85%) occurred. Results strongly suggest the potentiality of P. pulmonarius utilization in the OMW treatment.
Collapse
|
25
|
Burgstaller L, Löffler S, De Marcellis L, Ghassemi K, Neureiter M. The influence of different carbon sources on growth and single cell oil production in oleaginous yeasts Apiotrichum brassicae and Pichia kudriavzevii. N Biotechnol 2022; 69:1-7. [PMID: 35182781 DOI: 10.1016/j.nbt.2022.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
Oleaginous yeasts offer an interesting possibility for renewable lipid production, since the single cell oil accumulated can be based on a wide range of cheap, waste-derived carbon sources. Here, several short chain carboxylic acids and sugars commonly found in these substrates were assessed as carbon sources for Apiotrichum brassicae and Pichia kudriavzevii. While both strains were able to utilize all carbon sources employed, high volumetric lipid productivities (0.4g/Lh) and lipid contents (68%) could be reached particularly with acetic acid as carbon source. Odd-numbered volatile fatty acids led to lower productivities and lipid contents, but the lipids contained unusually high proportions of odd-numbered fatty acids (up to 80% of total fatty acids). These fatty acids are rather uncommon in nature and might offer the possibility for various high value applications. In conclusion both strains are able to utilize a wide range of substrates potentially present in waste-derived substrates. Lipid content and volumetric lipid productivity strongly depend on the carbon source, with even-numbered volatile fatty acids resulting in the highest values. For volatile fatty acids in particular, the carbon source also strongly influences the composition of the lipids produced by the yeast strains.
Collapse
Affiliation(s)
- Lukas Burgstaller
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Sebastian Löffler
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Luca De Marcellis
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Khatereh Ghassemi
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Markus Neureiter
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria.
| |
Collapse
|
26
|
Argiz L, Correa-Galeote D, Val Del Río Á, Mosquera-Corral A, González-Cabaleiro R. Valorization of lipid-rich wastewaters: A theoretical analysis to tackle the competition between polyhydroxyalkanoate and triacylglyceride-storing populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150761. [PMID: 34624285 DOI: 10.1016/j.scitotenv.2021.150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The lipid fraction of the effluents generated in several food-processing activities can be transformed into polyhydroxyalkanoates (PHAs) and triacylglycerides (TAGs), through open culture biotechnologies. Although competition between storing and non-storing populations in mixed microbial cultures (MMCs) has been widely studied, the right selective environment allowing for the robust enrichment of a community when different types of accumulators coexist is still not clear. In this research, comprehensive metabolic analyses of PHA and TAG synthesis and degradation, and concomitant respiration of external carbon, were used to understand and explain the changes observed in a laboratory-scale bioreactor fed with the lipid-rich fraction (mainly oleic acid) of a wastewater stream produced in the fish-canning industry. It was concluded that the mode of oxygen, carbon, and nitrogen supply determines the enrichment of the culture in specific populations, and hence the type of intracellular compounds preferentially accumulated. Coupled carbon and nitrogen feeding regime mainly selects for TAG producers whereas uncoupled feeding leads to PHA or TAG production function of the rate of carbon supply under specific aeration rates and feast and famine phases lengths.
Collapse
Affiliation(s)
- Lucía Argiz
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - David Correa-Galeote
- Department of Microbiology and Institute of Water Research, Universidad de Granada, Granada, Spain
| | - Ángeles Val Del Río
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Rebeca González-Cabaleiro
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
27
|
Brine and Post-Frying Oil Management in the Fish Processing Industry—A Concept Based on Oleaginous Yeast Culture. Processes (Basel) 2022. [DOI: 10.3390/pr10020294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Waste management solutions including the valorization of waste materials in biotechnological processes is an important issue needing to be explored. A significant amount of waste is being generated by the food industry. In this study, an attempt was made to utilize two fish industry wastes simultaneously—waste brine and post-frying oil from frying fish fillets in Yarrowia lipolytica culture with high single cell oil synthesis yield. Oxygenation in the culture medium had a positive effect on the biosynthesis efficiency of microbial oil, resulting in the highest content of lipids in yeast cells at the level of 0.431 g/g dm (dry mass). Y. lipolytica yeast preferentially accumulated oleic acid and linoleic acid, and the high content of linolenic acid, valuable from a nutritional point of view, was also found in microbial oil. This study proved that the use of post-frying rapeseed oil gives a chance to obtain valuable storage lipids in Y. lipolytica yeast cells via ex novo biosynthesis pathway. Furthermore, the wastewater stream could be limited using a waste brine as a solvent in medium preparation, but the brine share should not exceed 30% so as not to inhibit yeast cell growth.
Collapse
|
28
|
Production of microbial oils by the oleaginous yeast Rhodotorula graminis S1/2R in a medium based on agro-industrial by-products. World J Microbiol Biotechnol 2022; 38:46. [PMID: 35083575 DOI: 10.1007/s11274-022-03236-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Biodiesel generated by transesterification of triglycerides from renewable sources is a clean form of energy that is currently used in many countries in blends with petrodiesel. It is mainly produced from food-grade vegetable oils obtained from oleaginous crops. High prices of these oils have made the sustainability of biodiesel production questionable. The use of nonedible feedstocks, such as intracellular triglycerides accumulated by oleaginous yeasts, appears as a feasible alternative. However, it has been demonstrated that an economically sustainable production of yeast oil could only be possible if low-cost media based on industrial subproducts, or wastes are used. In this work, we propose intracellular lipids production by a previously selected oleaginous yeast strain in a medium composed only by sugar cane vinasse and crude glycerol. Different culture strategies were studied. The highest biomass and lipid yields were obtained when the yeast R. graminis S1/2R was cultivated in batch without control of dissolved oxygen. The fatty acid methyl esters obtained under these conditions met the specification of international biodiesel standards.
Collapse
|
29
|
Xu Y, Wang X, Li Z, Cheng S, Jiang J. Potential of food waste hydrolysate as an alternative carbon source for microbial oil synthesis. BIORESOURCE TECHNOLOGY 2022; 344:126312. [PMID: 34767904 DOI: 10.1016/j.biortech.2021.126312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Volatile fatty acids (VFAs) have great potential as cheap raw materials in microbial oil synthesis and reducing the cost of substrates is essential for the development of microbial oil biosynthesis. In this study, the food waste hydrolysate and synthetic VFAs media were both used as substrate to synthesis microbial oil. The optimal short-chain VFAs ratio for microbial oil synthesis is 20:5:5 and increasing the proportion of propionic acid is the key to obtaining odd fatty acids. The hydrolysate obtained from food waste under the total solid condition of 2:1 and pH 5 is the most suitable medium for microbial oil synthesis. The biological products obtained from food waste hydrolysate were comparable to synthetic VFAs media, obtaining a 34.02% of lipid content. Results prove that food waste hydrolysate has great potential as the available feedstock for microbial oil synthesis and a promising application value in food waste recycling.
Collapse
Affiliation(s)
- Yaning Xu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xuemei Wang
- Shunde Graduate School of University of Science and Technology Beijing, Beijing, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jiacheng Jiang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
30
|
Triacyl Glycerols from Yeast-Catalyzed Batch and Fed-Batch Bioconversion of Hydrolyzed Lignocellulose from Cardoon Stalks. FERMENTATION 2021. [DOI: 10.3390/fermentation7040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lipogenic ability of the yeast Solicoccozyma terricola DBVPG 5870 grown on hydrolyzed lignocellulose obtained from cardoon stalks was evaluated. Data on cell biomass, lipid production, and fatty acid profiles of triacylglycerols obtained in batch and fed-batch experiments were carried out at the laboratory scale in a 5L fermenter, and at two different temperatures (20 and 25 °C) were reported. The higher production of total intracellular lipids (13.81 g/L) was found in the fed-batch experiments carried out at 20 °C. S. terricola exhibited the ability to produce high amounts of triacylglycerol (TAGs) with a characteristic fatty acids profile close to that of palm oil. The TAGs obtained from S. terricola grown on pre-treated lignocellulose could be proposed as a supplementary source of oleochemicals. Indeed, due to the rising prices of fossil fuels and because of the environmental-related issues linked to their employment, the use of TAGs produced by S. terricola grown on lignocellulose could represent a promising option as a supplementary oleochemical, especially for biodiesel production.
Collapse
|
31
|
Shaigani P, Awad D, Redai V, Fuchs M, Haack M, Mehlmer N, Brueck T. Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microb Cell Fact 2021; 20:220. [PMID: 34876116 PMCID: PMC8650408 DOI: 10.1186/s12934-021-01710-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/20/2021] [Indexed: 11/12/2022] Open
Abstract
Background Oleaginous yeasts are promising microbial platforms for sustainable, bio-based production of biofuels and oleochemical building blocks. Bio-based residues provide sustainable and cost-effective carbon sources for fermentative yeast oil production without land-use change. Considering the regional abundancy of different waste streams, we chose complex biomass residue streams of marine origin; macroalgae hydrolysate, and terrestrial origin; wheat straw hydrolysate in the presence, and absence of corn steep liquor as a complex nitrogen source. We investigated the biomass and lipid yields of an array of well-described oleaginous yeasts; R. glutinis, T. asahii, R. mucilaginosa, R. toruloides, C. oleaginosus growing on these hydrolysates. Furthermore, their sugar utilization, fatty acid profile, and inhibitory effect of the hydrolysates on yeast growth were compared. For correlative reference, we initially performed comparative growth experiments for the strains on individual monomeric sugars separately. Each of these monomeric sugars was a dominant carbon source in the complex biomass hydrolysates evaluated in this study. In addition, we evaluated N-acetylglucosamine, the monomeric building block of chitin, as a low-cost nitrogen and carbon source in yeast fermentation. Results C. oleaginosus provided the highest biomass and lipid yields. In the wheat straw and brown algae hydrolysates, this yeast strain gained 7.5 g/L and 3.8 g/L lipids, respectively. Cultivation in algae hydrolysate resulted in a higher level of unsaturated fatty acids in the lipids accumulated by all yeast strains. R. toruloides and C. oleaginosus were able to effectively co-utilize mannitol, glucose, and xylose. Growth rates on wheat straw hydrolysate were enhanced in presence of corn steep liquor. Conclusions Among the yeast strains investigated in this study, C. oleaginosus proved to be the most versatile strain in terms of substrate utilization, productivity, and tolerance in the complex media. Various fatty acid profiles obtained on each substrate encourage the manipulation of culture conditions to achieve the desired fatty acid composition for each application. This could be accomplished by combining the element of carbon source with other formerly studied factors such as temperature and oxygen. Moreover, corn steep liquor showed promise for enhancement of growth in the oleaginous strains provided that carbon substrate is available. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01710-3.
Collapse
Affiliation(s)
- Pariya Shaigani
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Veronika Redai
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Thomas Brueck
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
32
|
Single-Cell Oils from Oleaginous Microorganisms as Green Bio-Lubricants: Studies on Their Tribological Performance. ENERGIES 2021. [DOI: 10.3390/en14206685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Biolubricants refer to eco-friendly, biodegradable, and non-toxic lubricants. Their applications are still limited compared to mineral oils; however, their sustainable credentials are making them increasingly attractive. Vegetable oils are frequently used for this purpose. However, vegetable oils have issues of low lipid productivity, dependence on climatic conditions, and need for agricultural land. Microbial oils represent a more sustainable alternative. To ensure their widespread applicability, the suitability of microbial oils from a physicochemical point of view needs to be determined first. In this study, oils obtained from various oleagenic microbes—such as microalgae, thraustochytrids, and yeasts—were characterized in terms of their fatty acid profile, viscosity, friction coefficient, wear, and thermal stability. Oleaginous microalgal strains (Auxenochlorella protothecoides and Chlorella sorokiniana), thraustochytrids strains (Aurantiochytrium limacinum SR21 and Aurantiochytrium sp. T66), and yeast strains (Rhodosporidium toruloides and Cryptococcus curvatus) synthesized 64.5%, 35.15%, 47.89%, 47.93%, 56.42%, and 52.66% of lipid content, respectively. Oils from oleaginous microalgae (A. protothecoides and C. sorokiniana) and yeasts (R. toruloides and C. curvatus) possess excellent physicochemical and tribological qualities due to high amount of monounsaturated fatty acids (oleic acid C18:1 content, 56.38%, 58.82%, 46.67%, 38.81%) than those from oleaginous thraustochytrids (A. limacinum SR21 and Aurantiochytrium sp. T66; 0.96%, 0.08%, respectively) supporting their use as renewable and biodegradable alternatives to traditional mineral oil-based lubricants. Oil obtained from microalgae showed a lower friction coefficient than oils obtained from yeasts and thraustochytrids.
Collapse
|
33
|
Chaturvedi S, Sadaf A, Bhattacharya A, Rout PK, Nain L, Khare SK. Environment‐Friendly Synergistic Abiotic Stress for Enhancing the Yield of Lipids from Oleaginous Yeasts. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Ayesha Sadaf
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Prasant Kumar Rout
- Phytochemistry Division CSIR‐Central Institute of medicinal and Aromatic Plants Lucknow Uttar Pradesh 226015 India
| | - Lata Nain
- Division of Microbiology ICAR‐Indian Agricultural Research Institute New Delhi 110014 India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| |
Collapse
|
34
|
Thangavelu K, Sundararaju P, Srinivasan N, Uthandi S. Bioconversion of sago processing wastewater into biodiesel: Optimization of lipid production by an oleaginous yeast, Candida tropicalis ASY2 and its transesterification process using response surface methodology. Microb Cell Fact 2021; 20:167. [PMID: 34446015 PMCID: PMC8394618 DOI: 10.1186/s12934-021-01655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biodiesel is an eco-friendly and renewable energy source and a valuable substitute for petro-diesel. Sago processing wastewater (SWW), a by-product of the cassava processing industry, has starch content ranging from 4 to 7 g L-1 and serves as an outstanding source for producing microbial lipids by the oleaginous microorganisms. In the present study, Candida tropicalis ASY2 was employed to optimize single-cell oil (SCO) production using SWW and subsequent transesterification by response surface methodology. Variables such as starch content, yeast extract, airflow rate, pH, and temperature significantly influenced lipid production in a preliminary study. The lipid production was scaled up to 5 L capacity airlift bioreactor and its optimization was done by response surface methodology. The dried yeast biomass obtained under optimized conditions from 5 L bioreactor was subjected to a direct transesterification process. Biomass: methanol ratio, catalyst concentration, and time were the variables used to attain higher FAME yield in the transesterification optimization process. RESULTS Under optimized conditions, the highest lipid yield of 2.68 g L-1 was obtained with 15.33 g L-1 of starch content, 0.5 g L-1 of yeast extract, and 5.992 L min-1 of airflow rate in a bioreactor. The optimized direct transesterification process yielded a higher FAME yield of 86.56% at 1:20 biomass: methanol ratio, 0.4 M catalyst concentration, and a time of 6.85 h. CONCLUSIONS Thus, this optimized process rendered the microbial lipids derived from C. tropicalis ASY2 as potentially alternative oil substitutes for sustainable biodiesel production to meet the rising energy demands.
Collapse
Affiliation(s)
- Kiruthika Thangavelu
- Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Pugalendhi Sundararaju
- Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Naganandhini Srinivasan
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India.
| |
Collapse
|
35
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
36
|
Lopes M, Miranda SM, Costa AR, Pereira AS, Belo I. Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization - challenges and opportunities. Crit Rev Biotechnol 2021; 42:163-183. [PMID: 34157916 DOI: 10.1080/07388551.2021.1931016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to its physiological and enzymatic features, Yarrowia lipolytica produces several valuable compounds from a wide range of substrates. Appointed by some authors as an industrial workhorse, Y. lipolytica has an extraordinary ability to use unrefined and complex low-cost substrates as carbon and nitrogen sources, aiding to reduce the waste surplus and to produce added-value compounds in a cost-effective way. Dozens of review papers regarding Y. lipolytica have been published till now, proving the interest that this yeast arouses in the scientific community. However, most of them are focused on metabolic pathways involved in substrates assimilation and product formation, or the development of synthetic biology tools in order to obtain engineered strains for biotechnological applications. This paper provides an exhaustive and up-to-date revision on the application of Y. lipolytica to valorize liquid effluents and solid wastes and its role in developing cleaner biotechnological approaches, aiming to boost the circular economy. Firstly, a general overview about Y. lipolytica is introduced, describing its intrinsic features and biotechnological applications. Then, an extensive survey of the literature regarding the assimilation of oily wastes (waste cooking oils, oil cakes and olive mill wastewaters), animal fat wastes, hydrocarbons-rich effluents, crude glycerol and agro-food wastes by Y. lipolytica strains will be discussed. This is the first article that brings together the environmental issue of all such residues and their valorization as feedstock for valuable compounds production by Y. lipolytica. Finally, it will demonstrate the potential of this non-conventional yeast to be used as a biorefinery platform.
Collapse
Affiliation(s)
- Marlene Lopes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana S Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
37
|
Chalima A, de Castro LF, Burgstaller L, Sampaio P, Carolas AL, Gildemyn S, Velghe F, Ferreira BS, Pais C, Neureiter M, Dietrich T, Topakas E. Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches. FEMS Microbiol Lett 2021; 368:6283741. [PMID: 34036336 DOI: 10.1093/femsle/fnab054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The establishment of a sustainable circular bioeconomy requires the effective material recycling from biomass and biowaste beyond composting/fertilizer or anaerobic digestion/bioenergy. Recently, volatile fatty acids attracted much attention due to their potential application as carbon source for the microbial production of high added-value products. Their low-cost production from different types of wastes through dark fermentation is a key aspect, which will potentially lead to the sustainable production of fuels, materials or chemicals, while diminishing the waste volume. This article reviews the utilization of a volatile fatty acid platform for the microbial production of polyhydroxyalkanoates, single cell oil and omega-3 fatty acids, giving emphasis on the fermentation challenges for the efficient implementation of the bioprocess and how they were addressed. These challenges were addressed through a research project funded by the European Commission under the Horizon 2020 programme entitled 'VOLATILE-Biowaste derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks'.
Collapse
Affiliation(s)
- Angelina Chalima
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Laura Fernandez de Castro
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 1, 01510 Miñano, Álava, Spain
| | - Lukas Burgstaller
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Lúcia Carolas
- Biotrend SA - Biocant Park, Núcleo 04, Lote 2, 3060-197 Cantanhede, Portugal
| | | | | | | | - Celia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Markus Neureiter
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Thomas Dietrich
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 1, 01510 Miñano, Álava, Spain
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
38
|
Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules 2021; 26:molecules26113123. [PMID: 34073703 PMCID: PMC8197184 DOI: 10.3390/molecules26113123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Besides their best-known uses in the food and fermentation industry, yeasts have also found application as microcapsules. In the encapsulation process, exogenous and most typically hydrophobic compounds diffuse and end up being passively entrapped in the cell body, and can be released upon application of appropriate stimuli. Yeast cells can be employed either living or dead, intact, permeabilized, or even emptied of all their original cytoplasmic contents. The main selling points of this set of encapsulation technologies, which to date has predominantly targeted food and-to a lesser extent-pharmaceutical applications, are the low cost, biodegradability and biocompatibility of the capsules, coupled to their sustainable origin (e.g., spent yeast from brewing). This review aims to provide a broad overview of the different kinds of yeast-based microcapsules and of the main physico-chemical characteristics that control the encapsulation process and its efficiency.
Collapse
|
39
|
Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol 2021; 42:1-22. [PMID: 34000935 DOI: 10.1080/07388551.2021.1922353] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
40
|
Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ. Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol 2021; 9:659472. [PMID: 33996782 PMCID: PMC8116571 DOI: 10.3389/fbioe.2021.659472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified Saccharomyces cerevisiae, however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks. Hence, the use of non-Saccharomyces species, or non-conventional yeasts, bearing native metabolic routes, allows conversion of a wide range of substrates into different products, and higher tolerance to inhibitors improves the efficiency of biorefineries. In this study, nine non-conventional yeast strains were selected and screened on a diluted hemicellulosic hydrolysate from Birch. Kluyveromyces marxianus CBS 6556, Scheffersomyces stipitis CBS 5773, Lipomyces starkeyi DSM 70295, and Rhodotorula toruloides CCT 7815 were selected for further characterization, where their growth and substrate consumption patterns were analyzed under industrially relevant substrate concentrations and controlled environmental conditions in bioreactors. K. marxianus CBS 6556 performed poorly under higher hydrolysate concentrations, although this yeast was determined among the fastest-growing yeasts on diluted hydrolysate. S. stipitis CBS 5773 demonstrated a low growth and biomass production while consuming glucose, while during the xylose-phase, the specific growth and sugar co-consumption rates were among the highest of this study (0.17 h–1 and 0.37 g/gdw*h, respectively). L. starkeyi DSM 70295 and R. toruloides CCT 7815 were the fastest to consume the provided sugars at high hydrolysate conditions, finishing them within 54 and 30 h, respectively. R. toruloides CCT 7815 performed the best of all four studied strains and tested conditions, showing the highest specific growth (0.23 h–1), substrate co-consumption (0.73 ± 0.02 g/gdw*h), and xylose consumption (0.22 g/gdw*h) rates. Furthermore, R. toruloides CCT 7815 was able to produce 10.95 ± 1.37 gL–1 and 1.72 ± 0.04 mgL–1 of lipids and carotenoids, respectively, under non-optimized cultivation conditions. The study provides novel information on selecting suitable host strains for biorefinery processes, provides detailed information on substrate consumption patterns, and pinpoints to bottlenecks possible to address using metabolic engineering or adaptive evolution experiments.
Collapse
Affiliation(s)
| | - Daria Aborneva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
41
|
Genome Sequence Analysis of the Oleaginous Yeast, Rhodotorula diobovata, and Comparison of the Carotenogenic and Oleaginous Pathway Genes and Gene Products with Other Oleaginous Yeasts. J Fungi (Basel) 2021; 7:jof7040320. [PMID: 33924147 PMCID: PMC8074367 DOI: 10.3390/jof7040320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Rhodotorula diobovata is an oleaginous and carotenogenic yeast, useful for diverse biotechnological applications. To understand the molecular basis of its potential applications, the genome was sequenced using the Illumina MiSeq and Ion Torrent platforms, assembled by AbySS, and annotated using the JGI annotation pipeline. The genome size, 21.1 MB, was similar to that of the biotechnological “workhorse”, R. toruloides. Comparative analyses of the R. diobovata genome sequence with those of other Rhodotorula species, Yarrowia lipolytica, Phaffia rhodozyma, Lipomyces starkeyi, and Sporidiobolus salmonicolor, were conducted, with emphasis on the carotenoid and neutral lipid biosynthesis pathways. Amino acid sequence alignments of key enzymes in the lipid biosynthesis pathway revealed why the activity of malic enzyme and ATP-citrate lyase may be ambiguous in Y. lipolytica and L. starkeyi. Phylogenetic analysis showed a close relationship between R. diobovata and R. graminis WP1. Dot-plot analysis of the coding sequences of the genes crtYB and ME1 corroborated sequence homologies between sequences from R. diobovata and R. graminis. There was, however, nonsequential alignment between crtYB CDS sequences from R. diobovata and those from X. dendrorhous. This research presents the first genome analysis of R. diobovata with a focus on its biotechnological potential as a lipid and carotenoid producer.
Collapse
|
42
|
Wang X, Balamurugan S, Liu SF, Ji CY, Liu YH, Yang WD, Jiang L, Li HY. Hydrolysis of organophosphorus by diatom purple acid phosphatase and sequential regulation of cell metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2918-2932. [PMID: 33491071 DOI: 10.1093/jxb/erab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) limitation affects phytoplankton growth and population size in aquatic systems, and consequently limits aquatic primary productivity. Plants have evolved a range of metabolic responses to cope with P limitation, such as accumulation of purple acid phosphatases (PAPs) to enhance acquisition of phosphates. However, it remains unknown whether algae have evolved a similar mechanism. In this study, we examined the role of PAPs in the model microalga Phaeodactylum tricornutum. Expression of PAP1 was enhanced in P. tricornutum cells grown on organophosphorus compared to inorganic phosphate. PAP1 overexpression improved cellular growth and biochemical composition in a growth-phase dependent manner. PAP1 promoted growth and photosynthesis during growth phases and reallocated carbon flux towards lipogenesis during the stationary phase. PAP1 was found to be localized in the endoplasmic reticulum and it orchestrated the expression of genes involved in key metabolic pathways and translocation of inorganic P (Pi), thereby improving energy use, reducing equivalents and antioxidant potential. RNAi of PAP1 induced expression of its homolog PAP2, thereby compensating for the Pi scavenging activity of PAP1. Our results demonstrate that PAP1 brings about sequential regulation of metabolism, and provide novel insights into algal phosphorus metabolism and aquatic primary productivity.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Chang-Yang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Diamantopoulou P, Gardeli C, Papanikolaou S. Impact of olive mill wastewaters on the physiological behavior of a wild-type new Ganoderma resinaceum isolate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20570-20585. [PMID: 33410062 DOI: 10.1007/s11356-020-11835-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
A new wild-type Ganoderma resinaceum isolate was cultivated on glucose-enriched liquid cultures with olive mill wastewaters (OMWs) in initial phenolic compounds concentrations 0.0 (control), 0.5, 0.8, and 1.5 g/l. The effect of the fungus on the reduction of phenolics and color was assessed, whereas biomass production, glucose consumption, intra-cellular (IPS) and extra-cellular (EPS) polysaccharides biosynthesis, antioxidant activity of the biomass, and laccase synthesis were monitored. Results showed that significant phenolic reduction (94.5%) and decolorization (76.5%) occurred, 14.6 g/l of biomass was produced, glucose was almost totally consumed, EPS were produced in sufficient amounts (0.79 g/l), whereas the presence of OMWs enhanced the synthesis of IPS (maximum absolute values 4.0-5.2 g/l corresponding to 35-42% w/w). Kinetic analysis demonstrated that EPS and IPS values fluctuated with time, regardless of the available amount of glucose in the media, showing a maximum in the 17th day of culture. Laccase was highly synthesized in the middle of the fermentation, reaching the maximum value of 14 U/ml. Little growth was however observed at 1.5 g/l phenolics. Strong correlation between total phenolic content and free radical scavenging activity has been noticed in the methanolic extracts of the mycelium. Results strongly suggest the potentiality of G. resinaceum utilization in the OMW waste treatment.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization - Demeter, 1 Sofokli Venizelou Street, 14123 - Lykovryssi, Attiki, Greece.
| | - Chrysavgi Gardeli
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| |
Collapse
|
44
|
Abstract
This review provides an overview of the composition, structure, and biological activities of milk fat globule membrane (MFGM) compounds with focus on the future application of this compound as a food ingredient. MFGM is a particular component of mammalian milks and is comprised of a tri-layer of polar lipids, glycolipids and proteins. In recent years, MFGM has been extensively studied for the purpose of enhancing the efficacy of infant nutrition formula. For example, infant formulas supplemented with bovine MFGM have shown promising results with regard to neurodevelopment and defense against infections. Components of MFGM have been shown to present several health benefits as the proteins of the membrane have shown antiviral activity and a reduction in the incidence of diarrhea. Moreover, the presence of sphingomyelin, a phospholipid, implies beneficial effects on human health such as enhanced neuronal development in infants and the protection of neonates from bacterial infections. The development of a lipid that is similar to human milk fat would represent a significant advance for the infant formula industry and would offer high technology formulas for those infants that depend on infant formula. The complexity of the structure of MFGM and its nutritional and technological properties is critically examined in this review with a focus on issues relevant to the dairy industry.
Collapse
|
45
|
Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021; 9:microorganisms9020251. [PMID: 33513696 PMCID: PMC7910848 DOI: 10.3390/microorganisms9020251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and “green” solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
Collapse
|
46
|
Gao B, Wang F, Huang L, Liu H, Zhong Y, Zhang C. Biomass, lipid accumulation kinetics, and the transcriptome of heterotrophic oleaginous microalga Tetradesmus bernardii under different carbon and nitrogen sources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:4. [PMID: 33407769 PMCID: PMC7789750 DOI: 10.1186/s13068-020-01868-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Heterotrophic cultivation of microalgae has been proposed as a viable alternative method for novel high-value biomolecules, enriched biomass, and biofuel production because of their allowance of high cell density levels, as well as simple production technology. Tetradesmus bernardii, a newly isolated high-yielding oleaginous microalga under photoautotrophic conditions, is able to grow heterotrophically, meaning that it can consume organic carbon sources in dark condition. We investigated the effect of different carbon/nitrogen (C/N) ratios on the growth and lipid accumulation of T. bernardii in heterotrophic batch culture under two nitrogen sources (NaNO3 and CO(NH2)2). In addition, we conducted time-resolved transcriptome analysis to reveal the metabolic mechanism of T. bernardii in heterotrophic culture. RESULTS T. bernardii can accumulate high biomass concentrations in heterotrophic batch culture where the highest biomass of 46.09 g/L was achieved at 100 g/L glucose concentration. The rate of glucose to biomass exceeded 55% when the glucose concentration was less than 80 g/L, and the C/N ratio was 44 at urea treatment. The culture was beneficial to lipid accumulation at a C/N ratio between 110 and 130. NaNO3 used as a nitrogen source enhanced the lipid content more than urea, and the highest lipid content was 45% of dry weight. We performed RNA-seq to analyze the time-resolved transcriptome of T. bernardii. As the nitrogen was consumed in the medium, nitrogen metabolism-related genes were significantly up-regulated to speed up the N metabolic cycle. As chloroplasts were destroyed in the dark, the metabolism of cells was transferred from chloroplasts to cytoplasm. However, storage of carbohydrate in chloroplast remained active, mainly the synthesis of starch, and the precursor of starch synthesis in heterotrophic culture may largely come from the absorption of organic carbon source (glucose). With regard to lipid metabolism, the related genes of fatty acid synthesis in low nitrogen concentration increased gradually with the extension of cultivation time. CONCLUSION T. bernardii exhibited rapid growth and high lipid accumulation in heterotrophic culture. It may be a potential candidate for biomass and biofuel production. Transcriptome analysis showed that multilevel regulation ensured the conversion from carbon to the synthesis of carbohydrate and lipid.
Collapse
Affiliation(s)
- Baoyan Gao
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Feifei Wang
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Luodong Huang
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuming Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chengwu Zhang
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
47
|
Abstract
The microbiological production of isocitric acid (ICA) is more preferable for its application in medicine and food, because the resulting product contains only the natural isomer—threo-DS. The aim of the present work was to study ICA production by yeast using sunflower oil as carbon source. 30 taxonomically different yeast strains were assessed for their capability for ICA production, and Y. lipolytica VKM Y-2373 was selected as a promising producer. It was found that ICA production required: the limitation of Y. lipolytica growth by nitrogen, phosphorus, sulfur or magnesium, and an addition of iron, activating aconitate hydratase, a key enzyme of isocitrate synthesis. Another regulatory approach capable to shift acid formation to a predominant ICA synthesis is the use of inhibitors (itaconic and oxalic acids), which blocks the conversion of isocitrate at the level of isocitrate lyase. It is recommended to cultivate Y. lipolytica VKM Y-2373 under nitrogen deficiency conditions with addition of 1.5 mg/L iron and 30 mM itaconic acid. Such optimized nutrition medium provides 70.6 g/L ICA with a ratio between ICA and citric acid (CA) equal 4:1, a mass yield (YICA) of 1.25 g/g and volume productivity (QICA) of 1.19 g/L·h.
Collapse
|
48
|
Evaluating the Potential of Rhodosporidium toruloides-1588 for High Lipid Production Using Undetoxified Wood Hydrolysate as a Carbon Source. ENERGIES 2020. [DOI: 10.3390/en13225960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study aims to explore microbial lipid production using an abundant and low-cost lignocellulosic biomass derived from forestry residues. Sugar-rich undetoxified hydrolysate was prepared using hardwood and softwood sawdust and used for lipid production as a carbon source from an oleaginous yeast, Rhodosporidium toruloides-1588. The maximum biomass obtained was 17.09 and 19.56 g/L in hardwood and softwood hydrolysate, respectively. Sugar consumption in both hydrolysates was >95%, with a maximum lipid accumulation of 36.68% at 104 h and 35.24% at 96 h. Moreover, R. toruloides-1588 exhibited tolerance to several toxic compounds such as phenols, organic acids and furans present in hydrolysates. The lipid characterization showed several monosaturated and polyunsaturated fatty acids, making it a potential feedstock for biofuels and oleochemicals production. This study confirms the credibility of R. toruloides-1588 as a suitable lipid producer using hydrolysates from forestry residues as a substrate. Additionally, lipids obtained from R. toruloides-1588 could be a potential feedstock for advanced biofuel production as well as for food and pharmaceutical applications.
Collapse
|
49
|
Sarris D, Philippoussis A, Mallouchos A, Diamantopoulou P. Valorization of low-cost, carbon-rich substrates by edible ascomycetes and basidiomycetes grown on liquid cultures. FEMS Microbiol Lett 2020; 367:5923550. [PMID: 33053163 DOI: 10.1093/femsle/fnaa168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Three ascomycetes (Morchella vulgaris AMRL 36, M. elata AMRL 63, Tuber aestivum AMRL 364) and four basidiomycetes strains (Lentinula edodes AMRL 124 and 126, Agaricus bisporus AMRL 208 and 209) were screened for their ability to grow on liquid static flask cultures of glucose, glycerol, molasses and waste flour-rich hydrolysates with C/N ratio of 20 and produce biomass, exopolysaccharides and lipids. The profile of lipid fatty acids was also assessed. Selected strains were furthermore cultivated in C/N = 50. Results showed that substrate consumption, biomass formation and secondary metabolites production were strain, substrate and C/N ratio dependent. The maximum biomass (X), lipid (L) and exopolysaccharides (EPS) values noted were Xmax = 25.2 g/L (C/N = 20; molasses) and Lmax = 6.51 g/L (C/N = 50; rice cereal hydrolysates) by T. aestivum strain AMRL 364 and EPSmax = 2.41 g/L by M. elata strain AMRL 63 (C/N = 50; molasses), respectively. When C/N ratio of 50 was applied, biomass, lipid production and substrate consumption seem to be negatively affected in most of the trials. The adaptation and capability of the mushroom strains to be cultivated on substrates based on agro-industrial waste streams and infant food of expired shelf date offers the opportunity to set a circular oriented bioprocess.
Collapse
Affiliation(s)
- Dimitris Sarris
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Myrina 81400, Lemnos, Greece
| | - Antonios Philippoussis
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Iera Odos 75, Athens 11855, Greece
| | - Panagiota Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece
| |
Collapse
|
50
|
Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217698] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microorganisms capable of accumulating lipids in high percentages, known as oleaginous microorganisms, have been widely studied as an alternative for producing oleochemicals and biofuels. Microbial lipid, so-called Single Cell Oil (SCO), production depends on several growth parameters, including the nature of the carbon substrate, which must be efficiently taken up and converted into storage lipid. On the other hand, substrates considered for large scale applications must be abundant and of low acquisition cost. Among others, lignocellulosic biomass is a promising renewable substrate containing high percentages of assimilable sugars (hexoses and pentoses). However, it is also highly recalcitrant, and therefore it requires specific pretreatments in order to release its assimilable components. The main drawback of lignocellulose pretreatment is the generation of several by-products that can inhibit the microbial metabolism. In this review, we discuss the main aspects related to the cultivation of oleaginous microorganisms using lignocellulosic biomass as substrate, hoping to contribute to the development of a sustainable process for SCO production in the near future.
Collapse
|