1
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EMR. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024. [PMID: 39096127 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Chen Q, Wu B, Shi Z, Wang Y, Yuan Y, Chen X, Wang Y, Hu J, Mao L, Gao Y, Wu G. LncRNA H19 knockdown promotes neuropathologic and functional recovery via the Nrf2/HO-1 axis after traumatic brain injury. CNS Neurosci Ther 2024; 30:e14870. [PMID: 39049714 PMCID: PMC11269889 DOI: 10.1111/cns.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS Traumatic brain injury (TBI) stands as a significant concern in public health, frequently leading to enduring neurological deficits. Long non-coding RNA H19 (lncRNA H19) exerts a potential regulator role in the pathology of brain injury. This study investigates the effects of lncRNA H19 knockdown (H19-KD) on the pathophysiology of TBI and its potential neuroprotective mechanisms. METHODS Controlled cortical impact was employed to establish a stable TBI mouse model. The expression levels of various genes in perilesional cortex and striatum tissue after TBI was detected by RT-qPCR. AAV9-shRNA-H19 was injected into the lateral ventricle of mice to knockdown the expression of lncRNA H19. Various behavioral tests were performed to evaluate sensorimotor and cognitive functions after TBI. Immunofluorescence and Nissl staining were performed to assess brain tissue damage and neuroinflammation. The Nrf2 and HO-1 expression was performed by Western blot. RESULTS After TBI, the expression of lncRNA H19 was elevated in perilesional tissue and gradually reverted to baseline. Behavioral tests demonstrated that H19-KD significantly promoted the recovery of sensorimotor and cognitive functions after TBI. Besides, H19-KD reduced brain tissue loss, preserved neuronal integrity, and ameliorated white matter damage at the histological level. In addition, H19-KD restrained the pro-inflammatory and facilitated anti-inflammatory phenotypes of microglia/macrophages, attenuating the neuroinflammatory response after TBI. Furthermore, H19-KD promoted activation of the Nrf2/HO-1 axis after TBI, while suppression of Nrf2 partially abolished the neuroprotective effect. CONCLUSION H19-KD exerts neuroprotective effects after TBI in mice, partially mediated by the activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiankang Chen
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Biwu Wu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Ziyu Shi
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yana Wang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yiwen Yuan
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Xingdong Chen
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yuqing Wang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Jin Hu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Leilei Mao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Wu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Poddar J, Rangasamy SB, Pahan K. Therapeutic efficacy of cinnamein, a component of balsam of Tolu/Peru, in controlled cortical impact mouse model of TBI. Neurochem Int 2024; 176:105742. [PMID: 38641028 DOI: 10.1016/j.neuint.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.
Collapse
Affiliation(s)
- Jit Poddar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Suresh B Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Ma W, Geng Y, Liu Y, Pan H, Wang Q, Zhang Y, Wang L. The mechanisms of white matter injury and immune system crosstalk in promoting the progression of Parkinson's disease: a narrative review. Front Aging Neurosci 2024; 16:1345918. [PMID: 38863783 PMCID: PMC11165104 DOI: 10.3389/fnagi.2024.1345918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Parkinson's disease (PD) is neurodegenerative disease in middle-aged and elderly people with some pathological mechanisms including immune disorder, neuroinflammation, white matter injury and abnormal aggregation of alpha-synuclein, etc. New research suggests that white matter injury may be important in the development of PD, but how inflammation, the immune system, and white matter damage interact to harm dopamine neurons is not yet understood. Therefore, it is particularly important to delve into the crosstalk between immune cells in the central and peripheral nervous system based on the study of white matter damage in PD. This crosstalk could not only exacerbate the pathological process of PD but may also reveal new therapeutic targets. By understanding how immune cells penetrate through the blood-brain barrier and activate inflammatory responses within the central nervous system, we can better grasp the impact of structural destruction of white matter in PD and explore how this process can be modulated to mitigate or combat disease progression. Microglia, astrocytes, oligodendrocytes and peripheral immune cells (especially T cells) play a central role in its pathological process where these immune cells produce and respond to pro-inflammatory cytokines such as tumor necrosis factor (TNF-α), interleukin-1β(IL-1β) and interleukin-6(IL-6), and white matter injury causes microglia to become pro-inflammatory and release inflammatory mediators, which attract more immune cells to the damaged area, increasing the inflammatory response. Moreover, white matter damage also causes dysfunction of blood-brain barrier, allows peripheral immune cells and inflammatory factors to invade the brain further, and enhances microglia activation forming a vicious circle that intensifies neuroinflammation. And these factors collectively promote the neuroinflammatory environment and neurodegeneration changes of PD. Overall, these findings not only deepen our understanding of the complexity of PD, but also provide new targets for the development of therapeutic strategies focused on inflammation and immune regulation mechanisms. In summary, this review provided the theoretical basis for clarifying the pathogenesis of PD, summarized the association between white matter damage and the immune cells in the central and peripheral nervous systems, and then emphasized their potential specific mechanisms of achieving crosstalk with further aggravating the pathological process of PD.
Collapse
Affiliation(s)
- Wen Ma
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Yifan Geng
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Youhan Liu
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Huixin Pan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Yaohua Zhang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Liping Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| |
Collapse
|
5
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
6
|
Li Z, Yu S, Li L, Zhou C, Wang L, Tang S, Gu N, Zhang Z, Huang Z, Chen H, Tang W, Wang Y, Yang X, Sun X, Yan J. TREM2 alleviates white matter injury after traumatic brain injury in mice might be mediated by regulation of DHCR24/LXR pathway in microglia. Clin Transl Med 2024; 14:e1665. [PMID: 38649789 PMCID: PMC11035381 DOI: 10.1002/ctm2.1665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.
Collapse
Affiliation(s)
- Zhao Li
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Emergency DepartmentChengdu First People's HospitalChengduChina
| | - Shenghui Yu
- Emergency DepartmentChengdu First People's HospitalChengduChina
| | - Lin Li
- Department of NeurosurgeryChongqing University Cancer HospitalChongqingChina
| | - Chao Zhou
- Emergency DepartmentChengdu First People's HospitalChengduChina
| | - Lin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurosurgeryNanchong Central HospitalThe Second Clinical Medical College of North Sichuan Medical CollegeNanchongChina
| | - Shuang Tang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurosurgerySuining Central HospitalSuiningChina
| | - Nina Gu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhaosi Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhijian Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hong Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei Tang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yingwen Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaomin Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaochuan Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jin Yan
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
7
|
Ek L, Elwin M, Neander K. Neuropsychological longitudinal study of patients with low-grade gliomas: Cognitive impairment. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-11. [PMID: 38470840 DOI: 10.1080/23279095.2024.2325546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This study is part of a longitudinal research program, in which patients diagnosed with low-grade gliomas (LGG: n = 13), as well as healthy controls (n = 13), were consecutively recruited and neuropsychologically followed for 7 years. The patients are followed up regardless of variations in treatment. A composite score is used (Global Deficit Score: GDS) included cognitive measures where at least five patients had a negative change: information processing speed, speed of naming, construction ability, verbal fluency, non-verbal thinking, and immediate non-verbal memory. The most important finding in this 7-year follow-up study is that two-thirds of the patients developed cognitive impairment. The remaining third of the patients showed stability in their cognitive ability and were still alive 17 years after diagnosis. Younger patients with tumors in the right frontal or posterior regions showed a more favorable development. Patients with frontal tumors and a declined GDS show also significant changes in executive functions. Given the limited number, no firm conclusions can be drawn regarding the impact of tumor localization. The impact of LGG on cognition and the survival time after diagnosis varies considerably between patients. However, most of the patients (69%) showed cognitive impairment during the seven years we followed them.
Collapse
Affiliation(s)
- Lena Ek
- Department of Rehabilitation, Hässleholm Hospital, Hässleholm, Sweden
| | - Marie Elwin
- Faculty of Medicine and Health, University Health Care Research Centre, Örebro University, Örebro, Sweden
| | - Kerstin Neander
- Faculty of Medicine and Health, University Health Care Research Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Chen TC, Lo YC, Li SJ, Lin YC, Chang CW, Liang YW, Laiman V, Hsiao TC, Chuang HC, Chen YY. Assessing traffic-related air pollution-induced fiber-specific white matter degradation associated with motor performance declines in aged rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115373. [PMID: 37619400 DOI: 10.1016/j.ecoenv.2023.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/02/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Fine particulate matter (PM2.5) is thought to exacerbate Parkinson's disease (PD) in the elderly, and early detection of PD progression may prevent further irreversible damage. Therefore, we used diffusion tensor imaging (DTI) for probing microstructural changes after late-life chronic traffic-related PM2.5 exposure. Herein, 1.5-year-old Fischer 344 rats were exposed to clean air (control), high-efficiency particulate air (HEPA)-filtered ambient air (HEPA group), and ambient traffic-related PM2.5 (PM2.5 group, 9.933 ± 1.021 µg/m3) for 3 months. Rotarod test, DTI tractographic analysis, and immunohistochemistry were performed in the end of study period. Aged rats exposed to PM2.5 exhibited motor impairment with decreased fractional anisotropy and tyrosine hydroxylase expression in olfactory and nigrostriatal circuits, indicating disrupted white matter integrity and dopaminergic (DA) neuronal loss. Additionally, increased radial diffusivity and lower expression of myelin basic protein in PM2.5 group suggested ageing progression of demyelination exacerbated by PM2.5 exposure. Significant production of tumor necrosis factor-α was also observed after PM2.5 exposure, revealing potential inflammation of injury to multiple fiber tracts of DA pathways. Microstructural changes demonstrated potential links between PM2.5-induced inflammatory white matter demyelination and behavioral performance, with indication of pre-manifestation of DTI-based biomarkers for early detection of PD progression in the elderly.
Collapse
Affiliation(s)
- Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, Taipei Medical University, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta 55281, Indonesia
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Rd., Section 3, Wenshan Dist., Taipei 11696, Taiwan; National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK.
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan; Ph.D. Program in Medical Neuroscience, Taipei Medical University, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan.
| |
Collapse
|
9
|
White Matter Injury: An Emerging Potential Target for Treatment after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3842493. [PMID: 36798684 PMCID: PMC9928519 DOI: 10.1155/2023/3842493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) refers to vascular brain injury mainly from a ruptured aneurysm, which has a high lifetime risk and imposes a substantial burden on patients, families, and society. Previous studies on SAH mainly focused on neurons in gray matter (GM). However, according to literature reports in recent years, in-depth research on the mechanism of white matter (WM) is of great significance to injury and recovery after SAH. In terms of functional recovery after SAH, all kinds of cells in the central nervous system (CNS) should be protected. In other words, it is necessary to protect not only GM but also WM, not only neurons but also glial cells and axons, and not only for the lesion itself but also for the prevention and treatment of remote damage. Clarifying the mechanism of white matter injury (WMI) and repair after SAH is of great importance. Therefore, this present review systematically summarizes the current research on WMI after SAH, which might provide therapeutic targets for treatment after SAH.
Collapse
|
10
|
Wang Y, Yang X, Cao Y, Li X, Xu R, Yan J, Guo Z, Sun S, Sun X, Wu Y. Electroacupuncture promotes remyelination and alleviates cognitive deficit via promoting OPC differentiation in a rat model of subarachnoid hemorrhage. Metab Brain Dis 2023; 38:687-698. [PMID: 36383326 DOI: 10.1007/s11011-022-01102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebral vascular disease which causes neurological deficits including long-term cognitive deficit. Demyelination of white matter is correlated with cognitive deficit in SAH. Electroacupuncture (EA) is a traditional Chinese medical treatment which protects against cognitive deficit in varies of neurological diseases. However, whether EA exerts protective effect on cognitive function in SAH has not been investigated. The underlying mechanism of remyelination regulated by EA remains unclear. This study aimed to investigate the protective effects of EA on cognitive deficit in a rat model of SAH. SAH was induced in SD rats (n = 72) by endovascular perforation. Rats in EA group received EA treatment (10 min per day) under isoflurane anesthesia after SAH. Rats in SAH and sham groups received the same isoflurane anesthesia with no treatment. The mortality rate, neurological score, cognitive function, cerebral blood flow (CBF), and remyelination in sham, SAH and EA groups were assessed at 21 d after SAH.EA treatment alleviated cognitive deficits and myelin injury of rats compared with that in SAH group. Moreover, EA treatment enhanced remyelination in white matter and promoted the differentiation of OPCs after SAH. EA treatment inhibited the expression of Id2 and promoted the expression of SOX10 in oligodendrocyte cells. Additionally, the cerebral blood flow (CBF) of rats was increased by EA compared with that in SAH group. EA treatment exerts protective effect against cognitive deficit in the late phase of SAH. The underlying mechanisms involve promoting oligodendrocyte progenitor cell (OPC) differentiation and remyelination in white matter via regulating the expression of Id2 and SOX10. The improvement of CBF may also account for the protective effect of EA on cognitive function. EA treatment is a potential therapy for the treatment of cognitive deficit after SAH.
Collapse
Affiliation(s)
- Yingwen Wang
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China
| | - Xiaomin Yang
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China
| | - Yunchuan Cao
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China
| | - Xiaoguo Li
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China
| | - Rui Xu
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China
| | - Jin Yan
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China
| | - Zongduo Guo
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China.
| | - Yue Wu
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, NO.1 of Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
11
|
Ross DE, Seabaugh JD, Seabaugh JM, Alvarez C, Ellis LP, Powell C, Reese C, Cooper L, Shepherd K, Alzheimer's Disease Neuroimaging Initiative FT. Journey to the other side of the brain: asymmetry in patients with chronic mild or moderate traumatic brain injury. Concussion 2022; 8:CNC101. [PMID: 36874877 PMCID: PMC9979152 DOI: 10.2217/cnc-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/01/2022] [Indexed: 02/01/2023] Open
Abstract
Aim Patients with chronic mild or moderate traumatic brain injury have some regions of brain atrophy (including cerebral white matter) but even more regions of abnormal brain enlargement (including other cerebral regions). Hypothesis Ipsilateral injury and atrophy cause the eventual development of contralateral compensatory hypertrophy. Materials & methods 50 patients with mild or moderate traumatic brain injury were compared to 80 normal controls (n = 80) with respect to MRI brain volume asymmetry. Asymmetry-based correlations were used to test the primary hypothesis. Results The group of patients had multiple regions of abnormal asymmetry. Conclusion The correlational analyses supported the conclusion that acute injury to ipsilateral cerebral white matter regions caused atrophy, leading eventually to abnormal enlargement of contralateral regions due to compensatory hypertrophy.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - John D Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Jan M Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Claudia Alvarez
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA
| | - Laura Peyton Ellis
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA
| | - Christopher Powell
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23219, USA
| | - Christopher Reese
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, University of North Carolina at Wilmington, Wilmington, NC 28403, USA
| | - Leah Cooper
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, James Madison University, Harrisonburg, VA 22807, USA
| | - For The Alzheimer's Disease Neuroimaging Initiative
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA.,Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23219, USA.,Neuroscience Department, University of North Carolina at Wilmington, Wilmington, NC 28403, USA.,Neuroscience Department, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.,Neuroscience Department, James Madison University, Harrisonburg, VA 22807, USA
| |
Collapse
|
12
|
Wang ML, Wei XE, Yu MM, Li WB. Cognitive impairment in mild traumatic brain injury: a diffusion kurtosis imaging and volumetric study. Acta Radiol 2022; 63:504-512. [PMID: 33641452 DOI: 10.1177/0284185121998317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND A significant number of patients with mild traumatic brain injury (mTBI) would experience cognitive deficit. PURPOSE To investigate the brain structural changes in sub-acute mTBI by diffusion kurtosis imaging (DKI) and volumetric analysis, and to assess the relationship between brain structural changes and cognitive functions. MATERIAL AND METHODS A total of 23 patients with sub-acute mTBI and 24 control participants were recruited. All the participants underwent examinations of neuropsychological tests, DKI, and magnetic resonance imaging (MRI)-based morphological scans. Images were investigated using whole brain-based analysis and further regions of interest-based analysis for subcortical nuclei. The neuropsychological tests were compared between the mTBI and the control group. Correlation analysis was performed to examine the relationship between gray matter (GM) volume, DKI parameters, and cognitive functions. RESULTS Compared with control participants, mTBI patients performed worse in the domains of verbal memory, attention and executive function (P < 0.05). No regional GM volume differences were observed between the mTBI and control groups (P > 0.05). Using DKI, patients with mTBI showed lower mean kurtosis (MK) in widespread white matter (WM) regions and several subcortical nuclei (P < 0.05), and higher mean diffusivity (MD) in the right pallidum (P < 0.05). Lower MK value of multiple WM regions and several subcortical nuclei correlated with cognitive impairment (P < 0.05). CONCLUSION DKI was sensitive in detecting brain microstructural changes in patients with sub-acute mTBI showing lower MK value in widespread WM regions and several subcortical nuclei, which were statistically associated with cognitive deficits.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Meng-Meng Yu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wen-Bin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Imaging center, Kashgar Prefecture Second People’s Hospital, Kashgar, PR China
| |
Collapse
|
13
|
Ved R, Manivannan S, Tasker I, Zaben M. High mobility group box protein 1 and white matter injury following traumatic brain injury: perspectives on mechanisms and therapeutic strategies. Neural Regen Res 2022; 17:1739-1740. [PMID: 35017426 PMCID: PMC8820704 DOI: 10.4103/1673-5374.332135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ronak Ved
- The BRAIN Unit, Neuroscience and Mental Health Research Institute, (NMHRI) School of Medicine, Cardiff University, Cardiff, UK
| | - Susruta Manivannan
- The BRAIN Unit, Neuroscience and Mental Health Research Institute, (NMHRI) School of Medicine, Cardiff University, Cardiff, UK
| | - Imogen Tasker
- School of Biomedical Sciences, University of Birmingham, Birmingham, UK
| | - Malik Zaben
- The BRAIN Unit, Neuroscience and Mental Health Research Institute, (NMHRI) School of Medicine, Cardiff University, Cardiff, UK,Correspondence to: Malik Zaben, .
| |
Collapse
|
14
|
Chen H, Zhou C, Zheng J, Zhang Z, Deng Y, Cheng C, Guo Z, Huo G, Yin C, Sun X. PTEN and AKT/GSK-3β/CRMP-2 signaling pathway are involved in neuronal apoptosis and axonal injury in early brain injury after SAH in rats. Genes Dis 2022; 9:252-267. [PMID: 35005122 PMCID: PMC8720672 DOI: 10.1016/j.gendis.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022] Open
Abstract
In early brain injury (EBI) after subarachnoid hemorrhage (SAH), white matter (WM) axonal injury plays a key role in the prognosis of the disease. The purpose of this study was to investigate the effects of phosphatase and tensin homolog deleted on chromosome ten (PTEN) on axonal injury and neuronal apoptosis post-SAH in rats and to find its underlying mechanism. Adeno-associated virus was injected into the lateral ventricle to suppress or promote PTEN. Neural function post-SAH in animals was determined by the modified Garcia score, beam balance, and Rotarod test, and the blood–brain barrier disruption was assessed by the brain water content. Axonal injury post-SAH was observed by TEM and determined by IF, and neuron apoptosis was measured by TUNEL staining. The mechanism was analyzed by Western blot to detect p-PTEN/PTEN, p-AKT/AKT, p-GSK-3β/GSK-3β, p-CRMP-2/CRMP-2, axonal injury marker β-APP and pro- and anti-apoptosis proteins, including Bax and Bcl-2, expression. We found 1. After knocking down PTEN, neuronal apoptosis and axonal injury were alleviated, and nerve function and blood–brain barrier were protected; accordingly, after overexpression of PTEN, neuronal apoptosis and axon damage were aggravated, and nerve function damage and blood–brain barrier damage were increased. 2. PTEN and AKT/GSK-3β/CRMP-2 pathway were jointly involved in regulating neuronal apoptosis and WM axon injury after SAH. According to our research, PTEN was a negative factor of EBI, and together with the AKT/GSK-3β/CRMP-2 signaling pathway aggravates neuronal apoptosis and WM axon damage after SAH. Inhibition of PTEN expression may become a new target for SAH treatment.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Zhou
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jianfeng Zheng
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaosi Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yongbing Deng
- Department of Neurosurgery of the Chongqing Emergency Medical Center, Chongqing 400014, PR China
| | - Chongjie Cheng
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zongduo Guo
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Gang Huo
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Xiaochuan Sun
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
15
|
Ross DE, Seabaugh JD, Seabaugh JM, Plumley J, Ha J, Burton JA, Vandervaart A, Mischel R, Blount A, Seabaugh D, Shepherd K, Barcelona J, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal longitudinal brain volume enlargement more than atrophy. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211018049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Many studies have found brain atrophy in patients with traumatic brain injury (TBI), but most of those studies examined patients with moderate or severe TBI. A few recent studies in patients with chronic mild or moderate TBI found abnormally large brain volume. Some of these studies used NeuroQuant®, FDA-cleared software for measuring MRI brain volume. It is not known if the abnormal enlargement occurs before or after injury. The purpose of the current study was to test the hypothesis that it occurs after injury. Methods 55 patients with chronic mild or moderate TBI were compared to NeuroQuant® normal controls ( n > 4000) with respect to MRI brain volume change from before injury (time 0 [t0], estimated volume) to after injury (t1, measured volume). A subset of 36 patients were compared to the normal controls with respect to longitudinal change of brain volume after injury from t1 to t2. Results The patients had abnormally fast increase of brain volume for multiple brain regions, including whole brain, cerebral cortical gray matter, and subcortical regions. Discussion This is the first report of extensive abnormal longitudinal brain volume enlargement in patients with TBI. In particular, the findings suggested that the previously reported findings of cross-sectional brain volume abnormal enlargement were due to longitudinal enlargement after, not before, injury. Abnormal longitudinal enlargement of the posterior cingulate cortex correlated with neuropathic headaches, partially replicating a previously reported finding that was associated with neuroinflammation.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, USA
| | | | | | | | - Junghoon Ha
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Jason A Burton
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | | - Ryan Mischel
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Alyson Blount
- Randolph Macon College, Undergraduate Program, Ashland, USA
| | | | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- James Madison University, Undergraduate Program, Harrisonburg, USA
| | | | - Alfred L Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | |
Collapse
|
16
|
Tucker LB, Fu AH, McCabe JT. Hippocampal-Dependent Cognitive Dysfunction following Repeated Diffuse Rotational Brain Injury in Male and Female Mice. J Neurotrauma 2021; 38:1585-1606. [PMID: 33622092 PMCID: PMC8126427 DOI: 10.1089/neu.2021.0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cognitive dysfunction is a common, often long-term complaint following acquired traumatic brain injury (TBI). Cognitive deficits suggest dysfunction in hippocampal circuits. The goal of the studies described here is to phenotype in both male and female mice the hippocampal-dependent learning and memory deficits resulting from TBI sustained by the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) device—a model that delivers both a contact–concussion injury as well as unrestrained rotational head movement. Mice sustained either sham procedures or four injuries (0.7 J, 24-h intervals). Spatial learning and memory skills assessed in the Morris water maze (MWM) approximately 3 weeks following injuries were significantly impaired by brain injuries; however, slower swimming speeds and poor performance on visible platform trials suggest that measurement of cognitive impairment with this test is confounded by injury-induced motor and/or visual impairments. A separate experiment confirmed hippocampal-dependent cognitive deficits with trace fear conditioning (TFC), a behavioral test less dependent on motor and visual function. Male mice had greater injury-induced deficits on both the MWM and TFC tests than female mice. Pathologically, the injury was characterized by white matter damage as observed by silver staining and glial fibrillary acidic protein (astrogliosis) in the optic tracts, with milder damage seen in the corpus callosum, and fimbria and brainstem (cerebral peduncles) of some animals. No changes in the density of GABAergic parvalbumin-expressing cells in the hippocampus, amygdala, or parietal cortex were found. This experiment confirmed significant sexually dimorphic cognitive impairments following a repeated, diffuse brain injury.
Collapse
Affiliation(s)
- Laura B Tucker
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda H Fu
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Kim YM, Kim HJ. Proteasome Inhibitor MG132 is Toxic and Inhibits the Proliferation of Rat Neural Stem Cells but Increases BDNF Expression to Protect Neurons. Biomolecules 2020; 10:biom10111507. [PMID: 33147870 PMCID: PMC7692322 DOI: 10.3390/biom10111507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of protein expression is essential for maintaining normal cell function. Proteasomes play important roles in protein degradation and dysregulation of proteasomes is implicated in neurodegenerative disorders. In this study, using a proteasome inhibitor MG132, we showed that proteasome inhibition reduces neural stem cell (NSC) proliferation and is toxic to NSCs. Interestingly, MG132 treatment increased the percentage of neurons in both proliferation and differentiation culture conditions of NSCs. Proteasome inhibition reduced B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio. In addition, MG132 treatment induced cAMP response element-binding protein phosphorylation and increased the expression of brain-derived neurotrophic factor transcripts and proteins. These data suggest that proteasome function is important for NSC survival and differentiation. Moreover, although MG132 is toxic to NSCs, it may increase neurogenesis. Therefore, by modifying MG132 chemical structure and developing none toxic proteasome inhibitors, neurogenic chemicals can be developed to control NSC cell fate.
Collapse
Affiliation(s)
| | - Hyun-Jung Kim
- Correspondence: ; Tel.: +82-2-820-5619; Fax: +82-2-816-7338
| |
Collapse
|
18
|
Yi SY, Stowe NA, Barnett BR, Dodd K, Yu JPJ. Microglial Density Alters Measures of Axonal Integrity and Structural Connectivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1061-1068. [PMID: 32507509 PMCID: PMC7709542 DOI: 10.1016/j.bpsc.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022]
Abstract
Diffusion tensor imaging (DTI) has fundamentally transformed how we interrogate diseases and disorders of the brain in neuropsychiatric illness. DTI and recently developed multicompartment diffusion-weighted imaging (MC-DWI) techniques, such as NODDI (neurite orientation dispersion and density imaging), measure diffusion anisotropy presuming a static neuroglial environment; however, microglial morphology and density are highly dynamic in psychiatric illness, and how alterations in microglial density might influence intracellular measures of diffusion anisotropy in DTI and MC-DWI brain microstructure is unknown. To address this question, DTI and MC-DWI studies of murine brains depleted of microglia were performed, revealing significant alterations in axonal integrity and fiber tractography in DTI and in commonly used MC-DWI models. With accumulating evidence of the role of microglia in neuropsychiatric illness, our findings uncover the unexpected contribution of microglia to measures of axonal integrity and structural connectivity and provide unanticipated insights into the potential influence of microglia in diffusion imaging studies of neuropsychiatric disease.
Collapse
Affiliation(s)
- Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas A Stowe
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Keith Dodd
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
19
|
Waits CMK, Bower A, Simms KN, Feldman BC, Kim N, Sergeant S, Chilton FH, VandeVord PJ, Langefeld CD, Rahbar E. A Pilot Study Assessing the Impact of rs174537 on Circulating Polyunsaturated Fatty Acids and the Inflammatory Response in Patients with Traumatic Brain Injury. J Neurotrauma 2020; 37:1880-1891. [PMID: 32253986 DOI: 10.1089/neu.2019.6734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in persons under age 45. The hallmark secondary injury profile after TBI involves dynamic interactions between inflammatory and metabolic pathways including fatty acids. Omega-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) have been shown to provide neuroprotective benefits by minimizing neuroinflammation in rodents. These effects have been less conclusive in humans, however. We postulate genetic variants influencing PUFA metabolism in humans could contribute to these disparate findings. Therefore, we sought to (1) characterize the circulating PUFA response and (2) evaluate the impact of rs174537 on inflammation after TBI. A prospective, single-center, observational pilot study was conducted to collect blood samples from Level-1 trauma patients (N = 130) on admission and 24 h post-admission. Plasma was used to quantify PUFA levels and inflammatory cytokines. Deoxyribonucleic acid was extracted and genotyped at rs174537. Associations between PUFAs and inflammatory cytokines were analyzed for all trauma cases and stratified by race (Caucasians only), TBI (TBI: N = 47; non-TBI = 83) and rs174537 genotype (GG: N = 33, GT/TT: N = 44). Patients with TBI had higher plasma DHA levels compared with non-TBI at 24 h post-injury (p = 0.013). The SNP rs174537 was associated with both PUFA levels and inflammatory cytokines (p < 0.05). Specifically, TBI patients with GG genotype exhibited the highest plasma levels of DHA (1.33%) and interleukin-8 (121.5 ± 43.3 pg/mL), which were in turn associated with poorer outcomes. These data illustrate the impact of rs174537 on the post-TBI response. Further work is needed to ascertain how this genetic variant directly influences inflammation after trauma.
Collapse
Affiliation(s)
- Charlotte Mae K Waits
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| | - Aaron Bower
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kelli N Simms
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| | - Bradford C Feldman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Nathan Kim
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Pamela J VandeVord
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| |
Collapse
|
20
|
Yuan J, Zhang J, Cao J, Wang G, Bai H. Geniposide Alleviates Traumatic Brain Injury in Rats Via Anti-Inflammatory Effect and MAPK/NF-kB Inhibition. Cell Mol Neurobiol 2020; 40:511-520. [PMID: 31677006 DOI: 10.1007/s10571-019-00749-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022]
Abstract
We aimed to investigate whether geniposide, a main component extracted from Gardenia jasminoides Ellis fruit, could exert neuroprotective functions against traumatic brain injury (TBI). Enzyme-linked immunosorbent assay (ELISA) was used for detection of plasma cytokines. Real-time polymerase chain reaction (RT-PCR) was employed for measurements of mRNA levels of cytokines. Neurological outcomes were evaluated by modified neurological severity score (mNSS) and Rota-Rod. Blood-brain barrier (BBB) integrity and brain edema were assessed. Protein expression was tested by Western blot. The plasma levels of interleukin (IL)-1β, IL-6, IL-8 and IL-10 were all elevated in patients with TBI compared to those of healthy controls. TBI rats treated with geniposide showed lower mNSS and longer fall latency time than untreated TBI rats. BBB integrity was maintained and brain edema was reduced by geniposide treatment in TBI rats. Plasma levels of IL-1β, IL-6 and IL-8 were significantly repressed by geniposide treatment in TBI rats, whereas IL-10 level was upregulated. mRNA expression levels of these cytokines in the brain tissues of TBI rats exhibited the same trends of changes. By testing p38 mitogen-activated protein kinase and NF-κB p65 activities, it was observed that phosphorylated (p)-p38 and p-p65 were dramatically inhibited by geniposide. In conclusion, geniposide exerts neuroprotective functions against TBI by inhibiting p-p38 and p-p65.
Collapse
Affiliation(s)
- Jianwei Yuan
- Heze Municipal Hospital of Shandong Province, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China
| | - Jinghua Zhang
- Heze Medical College, No. 1950 University Road, Mudan District, Heze, 274000, Shandong, China
| | - Juan Cao
- Heze Medical College, No. 1950 University Road, Mudan District, Heze, 274000, Shandong, China
| | - Guangxing Wang
- Heze Municipal Hospital of Shandong Province, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China
| | - Hansheng Bai
- Heze Municipal Hospital of Shandong Province, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China.
| |
Collapse
|
21
|
Losurdo M, Davidsson J, Sköld MK. Diffuse Axonal Injury in the Rat Brain: Axonal Injury and Oligodendrocyte Activity Following Rotational Injury. Brain Sci 2020; 10:E229. [PMID: 32290212 PMCID: PMC7225974 DOI: 10.3390/brainsci10040229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) commonly results in primary diffuse axonal injury (DAI) and associated secondary injuries that evolve through a cascade of pathological mechanisms. We aim at assessing how myelin and oligodendrocytes react to head angular-acceleration-induced TBI in a previously described model. This model induces axonal injuries visible by amyloid precursor protein (APP) expression, predominantly in the corpus callosum and its borders. Brain tissue from a total of 27 adult rats was collected at 24 h, 72 h and 7 d post-injury. Coronal sections were prepared for immunohistochemistry and RNAscope® to investigate DAI and myelin changes (APP, MBP, Rip), oligodendrocyte lineage cell loss (Olig2), oligodendrocyte progenitor cells (OPCs) (NG2, PDGFRa) and neuronal stress (HSP70, ATF3). Oligodendrocytes and OPCs numbers (expressed as percentage of positive cells out of total number of cells) were measured in areas with high APP expression. Results showed non-statistically significant trends with a decrease in oligodendrocyte lineage cells and an increase in OPCs. Levels of myelination were mostly unaltered, although Rip expression differed significantly between sham and injured animals in the frontal brain. Neuronal stress markers were induced at the dorsal cortex and habenular nuclei. We conclude that rotational injury induces DAI and neuronal stress in specific areas. We noticed indications of oligodendrocyte death and regeneration without statistically significant changes at the timepoints measured, despite indications of axonal injuries and neuronal stress. This might suggest that oligodendrocytes are robust enough to withstand this kind of trauma, knowledge important for the understanding of thresholds for cell injury and post-traumatic recovery potential.
Collapse
Affiliation(s)
- Michela Losurdo
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden;
- Department of Molecular Medicine, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Johan Davidsson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Mattias K. Sköld
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden;
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
22
|
Zhu Z, Chuckowree JA, Musgrove R, Dickson TC, Blizzard CA. The pathologic outcomes and efficacy of epothilone treatment following traumatic brain injury is determined by age. Neurobiol Aging 2020; 93:85-96. [PMID: 32480164 DOI: 10.1016/j.neurobiolaging.2020.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) can affect individuals at any age, with the potential of causing lasting neurologic consequences. The lack of effective therapeutic solutions and recommendations for patients that acquire a TBI can be attributed, at least in part, to an inability to confidently predict long-term outcomes following TBI, and how the response of the brain differs across the life span. The purpose of this study was to determine how age specifically affects TBI outcomes in a preclinical model. Male Thy1-YFPH mice, that express yellow fluorescent protein in the cytosol of a subset of Layer V pyramidal neurons in the neocortex, were subjected to a lateral fluid percussion injury over the right parietal cortex at distinct time points throughout the life span (1.5, 3, and 12 months of age). We found that the degree of neuronal injury, astrogliosis, and microglial activation differed depending on the age of the animal when the injury occurred. Furthermore, age affected the initial injury response and how it resolved over time. Using the microtubule stabilizing agent Epothilone D, to potentially protect against these pathologic outcomes, we found that the neuronal response was different depending on age. This study clearly shows that age must be taken into account in neurologic studies and preclinical trials involving TBI, and that future therapeutic interventions must be tailored to age.
Collapse
Affiliation(s)
- Zhendan Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ruth Musgrove
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
23
|
Cheng H, Deaton LM, Qiu M, Ha S, Pacoma R, Lao J, Tolley V, Moran R, Keeton A, Lamb JR, Fathman J, Walker JR, Schumacher AM. Tau overexpression exacerbates neuropathology after repeated mild head impacts in male mice. Neurobiol Dis 2019; 134:104683. [PMID: 31765727 DOI: 10.1016/j.nbd.2019.104683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) can lead to development of chronic traumatic encephalopathy (CTE), which is characterized by progressive neurodegeneration with presence of white matter damage, gliosis and hyper-phosphorylated tau. While animal models of rmTBI have been documented, few characterize the molecular pathogenesis and expression profiles of relevant injured brain regions. Additionally, while the usage of transgenic tau mice in rmTBI is prevalent, the effects of tau on pathological outcomes has not been well studied. Here we characterized a 42-impact closed-head rmTBI paradigm on 3-4 month old male C57BL/6 (WT) and Tau-overexpressing mice (Tau58.4). This injury paradigm resulted in chronic gliosis, T-cell infiltration, and demyelination of the optic nerve and associated white matter tracts at 1-month post-injury. At 3-months post-injury, Tau58.4 mice showed progressive neuroinflammation and neurodegeneration in multiple brain regions compared to WT mice. Corresponding to histopathology, RNAseq of the optic nerve tract at 1-month post-injury showed significant upregulation of inflammatory pathways and downregulation of myelin synthetic pathways in both genotypes. However, Tau58.4 mice showed additional changes in neurite development, protein processing, and cell stress. Comparisons with published transcriptomes of human Alzheimer's Disease and CTE revealed common signatures including neuroinflammation and downregulation of protein phosphatases. We next investigated the demyelination and T-cell infiltration phenotypes to determine whether these offer potential avenues for therapeutic intervention. Tau58.4 mice were treated with the histamine H3 receptor antagonist GSK239512 for 1-month post-injury to promote remyelination of white matter lesions. This restored myelin gene expression to sham levels but failed to repair the histopathologic lesions. Likewise, injured T-cell-deficient Rag2/Il2rg (R2G2) mice also showed evidence for inflammation and loss of myelin. However, unlike immune-competent mice, R2G2 mice had altered myeloid cell gene expression and fewer demyelinated lesions. Together this data shows that rmTBI leads to chronic white matter inflammatory demyelination and axonal loss exacerbated by human tau overexpression but suggests that immune-suppression and remyelination alone are insufficient to reverse damage.
Collapse
Affiliation(s)
- Hank Cheng
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Lisa M Deaton
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Minhua Qiu
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Sukwon Ha
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Reynand Pacoma
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Jianmin Lao
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Valerie Tolley
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Rita Moran
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Amber Keeton
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - John R Lamb
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA
| | - John Fathman
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - John R Walker
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Andrew M Schumacher
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| |
Collapse
|
24
|
Li L, Chopp M, Ding G, Davoodi-Bojd E, Li Q, Mahmood A, Xiong Y, Jiang Q. Diffuse white matter response in trauma-injured brain to bone marrow stromal cell treatment detected by diffusional kurtosis imaging. Brain Res 2019; 1717:127-135. [PMID: 31009610 PMCID: PMC6571170 DOI: 10.1016/j.brainres.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Diffuse white matter (WM) response to traumatic brain injury (TBI) and transplantation of human bone marrow stromal cells (hMSCs) after the injury were non-invasively and dynamically investigated. Male Wistar rats (300-350 g) subjected to TBI were intravenously injected with 1 ml of saline (n = 10) or with hMSCs in suspension (∼3 × 106 hMSCs, n = 10) 1-week post-TBI. MRI measurements of T2-weighted imaging and diffusional kurtosis imaging (DKI) were acquired on all animals at multiple time points up to 3-months post-injury. Functional outcome was assessed using the Morris water maze test. DKI-derived metrics of fractional anisotropy (FA), axonal water fraction (AWF) and radial kurtosis (RK) longitudinally reveal an evolving pattern of structural alteration post-TBI occurring in the brain region remote from primary impact site. The progressive structural change is characterized by gradual disruption of WM integrity at an early stage (weeks post-TBI), followed by spontaneous recovery at a later stage (months post-TBI). Transplantation of hMSCs post-TBI promotes this structural plasticity as indicated by significantly increased FA and AWF in conjunction with substantially elevated RK at the later stage. Our long-term imaging data demonstrate that hMSC therapy leads to modified temporal profiles of these metrics, inducing an earlier presence of enhanced structural remodeling, which may contribute to improved functional recovery.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
25
|
Kinder HA, Baker EW, Howerth EW, Duberstein KJ, West FD. Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:2810-2826. [PMID: 31084390 DOI: 10.1089/neu.2019.6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs (n = 5), TBI pigs (n = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
26
|
Tucker LB, Velosky AG, Fu AH, McCabe JT. Chronic Neurobehavioral Sex Differences in a Murine Model of Repetitive Concussive Brain Injury. Front Neurol 2019; 10:509. [PMID: 31178814 PMCID: PMC6538769 DOI: 10.3389/fneur.2019.00509] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) resulting from repeated head trauma is frequently characterized by diffuse axonal injury and long-term motor, cognitive and neuropsychiatric symptoms. Given the delay, often decades, between repeated head traumas and the presentation of symptoms in TBI patients, animal models of repeated injuries should be studied longitudinally to properly assess the longer-term effects of multiple concussive injuries on functional outcomes. In this study, male and cycling female C57BL/6J mice underwent repeated (three) concussive brain injuries (rCBI) delivered via a Leica ImpactOne cortical impact device and were assessed chronically on motor (open field and rotarod), cognitive (y-maze and active place avoidance), and neuropsychiatric (marble-burying, elevated zero maze and tail suspension) tests. Motor deficits were significant on the rotarod on the day following the injuries, and slight impairment remained for up to 6 months. All mice that sustained rCBI had significant cognitive deficits on the active place avoidance test and showed greater agitation (less immobility) in the tail suspension test. Only injured male mice were significantly hyperactive in the open field, and had increased time spent in the open quadrants of the elevated zero maze. One year after the injuries, mice of both sexes exhibited persistent pathological changes by the presence of Prussian blue staining (indication of prior microbleeds), primarily in the cortex at the site of the injury, and increased GFAP staining in the perilesional cortex and axonal tracts (corpus callosum and optic tracts). These data demonstrate that a pathological phenotype with motor, cognitive, and neuropsychiatric symptoms can be observed in an animal model of rCBI for at least one year post-injury, providing a pre-clinical setting for the study of the link between multiple brain injuries and neurodegenerative disorders. Furthermore, this is the first study to include both sexes in a pre-clinical long-term rCBI model, and female mice are less impaired functionally than males.
Collapse
Affiliation(s)
- Laura B Tucker
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Amanda H Fu
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T McCabe
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
27
|
Yu M, Yang D, Wang M, Wei X, Li W. Early stage of diffusional kurtosis imaging and dynamic contrast-enhanced magnetic resonance imaging correlated with long-term neurocognitive function after experimental traumatic brain injury. Neurosci Lett 2019; 705:206-211. [PMID: 31005651 DOI: 10.1016/j.neulet.2019.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Development of a reliable biomarker for prognostic monitoring of cognitive impairment after traumatic brain injury (TBI) is of great importance. The aim of the study was to explore the value of early diffusional kurtosis imaging (DKI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in evaluation of chronic cognitive function after TBI. MRI was performed on TBI and control rats at 7 days post-injury. MRI parameters were measured in bilateral cortex, hippocampus, thalamus and corpus callosum (CC). All the rats underwent Morris water maze (MWM) at 6 months after injury. Immunohistochemistry (IHC) analysis of neuron [NeuN], astroglia [GFAP], microglia [Iba-1], and myelin [MBP] was performed after the MWM test. Our study revealed that, TBI group showed higher volume transfer coefficient (Ktrans) value in ipsilateral cortex (P < 0.0001) and no detectable changes in other regions-of-interest (ROIs), compared with control group. DKI showed higher MK in all ipsilateral ROIs (P < 0.05), higher MD in ipsilateral cortex, hippocampus and CC (P < 0.05 for all) in TBI group. TBI group had worse performance in MWM test at 6 months post-injury(P < 0.05). IHC analysis showed lower NeuN, and higher GFAP and Iba-1 in all ipsilateral ROIs (P < 0.05) in TBI rats. NeuN, and GFAP and Iba-1 correlated significantly with MK value in ipsilateral regions of cortex. The MK value of ipsilateral cortex and CC and Ktrans value of ipsilateral cortex also correlated significantly with time in the target quadrant. Therefore, our study indicated that early DKI and DCE-MRI could be used to assess the microstructural changes associated with long-term cognitive outcome following TBI.
Collapse
Affiliation(s)
- Mengmeng Yu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mingliang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaoer Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wenbin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China; Imaging Center, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang, 844000, China.
| |
Collapse
|
28
|
Yang WC, Wang Q, Chi LT, Wang YZ, Cao HL, Li WZ. Therapeutic hypercapnia reduces blood-brain barrier damage possibly via protein kinase Cε in rats with lateral fluid percussion injury. J Neuroinflammation 2019; 16:36. [PMID: 30760300 PMCID: PMC6375143 DOI: 10.1186/s12974-019-1427-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background This study investigated whether therapeutic hypercapnia (TH) ameliorated blood–brain barrier (BBB) damage and improved the neurologic outcome in a rat model of lateral fluid percussion injury (FPI), and explored the possible underlying mechanism. Methods Rats underwent lateral FPI and received inhalation of 30%O2–70%N2 or 30%O2–N2 plus CO2 to maintain arterial blood CO2 tension (PaCO2) between 80 and 100 mmHg for 3 h. To further explore the possible mechanisms for the protective effects of TH, a PKC inhibitor staurosporine or PKCαβ inhibitor GÖ6976 was administered via intracerebral ventricular injection. Results TH significantly improved neurological function 24 h, 48 h, 7 d, and 14 d after FPI. The wet/dry ratio, computed tomography values, Evans blue content, and histological lesion volume were significantly reduced by TH. Moreover, numbers of survived neurons and the expression of tight junction proteins (ZO-1, occludin, and claudin-5) were significantly elevated after TH treatment at 48-h post-FPI. TH significantly increased the expression of protein kinase Cε (PKCε) at 48-h post-FPI, but did not significantly change the expression of PKCα and PKCβII. PKC inhibitor staurosporine (but not the selective PKCαβ inhibitor-GÖ6976) inhibited the protective effect of TH. Conclusions Therapeutic hypercapnia is a promising candidate that should be further evaluated for clinical treatment. It not only protects the traumatic penumbra from secondary injury and improves histological structure but also maintains the integrity of BBB and reduces neurologic deficits after trauma in a rat model of FPI.
Collapse
Affiliation(s)
- Wan-Chao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lai-Ting Chi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue-Zhen Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Ling Cao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Zhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China. .,Anesthesiology Key Laboratory, Education Department, Harbin Medical University, No. 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
29
|
Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J, Wu P, Xu W, Zuo Y, Peng J, Zuo G, Chen L, Tang J, Zhang JH, Jiang Y. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol 2019; 21:101121. [PMID: 30703614 PMCID: PMC6351270 DOI: 10.1016/j.redox.2019.101121] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
White matter injury (WMI) is associated with motor deficits and cognitive dysfunctions in subarachnoid hemorrhage (SAH) patients. Therapeutic strategy targeting WMI would likely improve the neurological outcomes after SAH. Low-density lipoprotein receptor-related protein-1 (LRP1), a scavenger receptor of apolipoprotein E (apoE), is able to modulate microglia polarization towards anti-inflammatory M2 phenotypes during inflammatory and oxidative insult. In the present study, we investigated the effects of LRP1 activation on WMI and underlying mechanisms of M2 microglial polarization in a rat model of SAH. Two hundred and seventeen male Sprague Dawley rats (weight 280-330 g) were used. SAH was induced by endovascular perforation. LPR1 ligand, apoE-mimic peptide COG1410 was administered intraperitoneally. Microglial depletion kit liposomal clodronate (CLP), LPR1 siRNA or PI3K inhibitor were administered intracerebroventricularly. Post-SAH assessments included neurobehavioral tests, brain water content, immunohistochemistry, Golgi staining, western blot and co-immunoprecipitation. SAH induced WMI shown as the accumulation of amyloid precursor protein and neurofilament heavy polypeptide as well as myelin loss. Microglial depletion by CLP significantly suppressed WMI after SAH. COG1410 reduced brain water content, increased the anti-inflammatory M2 microglial phenotypes, attenuated WMI and improved neurological function after SAH. LRP1 was bound with endogenous apoE and intracellular adaptor protein Shc1. The benefits of COG1410 were reversed by LPR1 siRNA or PI3K inhibitor. LRP1 activation attenuated WMI and improved neurological function by modulating M2 microglial polarization at least in part through Shc1/PI3K/Akt signaling in a rat model of SAH. The apoE-mimic peptide COG1410 may serve as a promising treatment in the management of SAH patients.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Pei Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuchun Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
30
|
Howell S, Griesbach GS. The interplay between neuroendocrine and sleep alterations following traumatic brain injury. NeuroRehabilitation 2019; 43:327-345. [PMID: 30347624 DOI: 10.3233/nre-182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sleep and endocrine disruptions are prevalent after traumatic brain injury (TBI) and are likely to contribute to morbidity. OBJECTIVE To describe the interaction between sleep and hormonal regulation following TBI and elucidate the impact that alterations of these systems have on cognitive responses during the posttraumatic chronic period. METHODS Review of preclinical and clinical literature describing long-lasting endocrine dysregulation and sleep alterations following TBI. The bidirectional relationship between sleep and hormones is described. Literature describing co-occurrence between sleep-wake disturbances and hormonal dysregulation will be presented. Review of literature describing cognitive effects of seep and hormones. The cognitive and functional impact of sleep disturbances and hormonal dysregulation is discussed within the context of TBI. RESULTS/CONCLUSIONS Sleep and hormonal alterations impact cognitive and functional outcome after TBI. Diagnosis and treatment of these disturbances will impact recovery following TBI and should be considered in the post-acute rehabilitative setting.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Encino, CA, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
31
|
Ketamine Alters Hippocampal Cell Proliferation and Improves Learning in Mice after Traumatic Brain Injury. Anesthesiology 2019; 129:278-295. [PMID: 29734230 DOI: 10.1097/aln.0000000000002197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-D-aspartate-type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice. METHODS Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery. RESULTS Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice. CONCLUSIONS Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine administration after traumatic brain injury in mice. Future studies are needed to determine generalizability and mechanism.
Collapse
|
32
|
Wang ML, Yu MM, Yang DX, Liu YL, Wei XE, Li WB. Diffusion Kurtosis Imaging Characterizes Brain Microstructural Changes Associated with Cognitive Impairment in a Rat Model of Chronic Traumatic Brain Injury. Neuroscience 2018; 392:180-189. [PMID: 30278249 DOI: 10.1016/j.neuroscience.2018.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 01/26/2023]
Abstract
This study aims to investigate the value of diffusion kurtosis imaging (DKI) in assessing microstructural changes associated with cognitive impairment in chronic traumatic brain injury (TBI). At 7 months, six TBI rats and six control rats underwent Morris water maze (MWM) tests, followed by DKI examinations. DKI parameters were measured in bilateral cortex, hippocampus, and callosum. Brain immunohistochemistry (IHC) analysis of neuron [neuron-specific nuclear protein (NeuN)], astroglia [glial fibrillary acidic protein (GFAP)], microglia [ionized calcium binding adaptor molecule 1 (Iba-1)], and myelin [myelin basic protein (MBP)] was performed in the same area as DKI parameter. The DKI parameters, IHC results, and MWM results were compared between TBI and control groups. Correlation analysis was performed to analyze the relationship between DKI parameters and IHC and MWM results. TBI group had worse performance in MWM test. DKI showed higher mean diffusion (MD) in all ipsilateral regions of interest (ROIs), and lower mean kurtosis (MK) in ipsilateral cortex and callosum in TBI group (P < 0.05). TBI group also showed lower IHC staining of NeuN, and higher staining of Iba-1 and MBP in all ipsilateral ROIs (P < 0.05). Further correlational study showed a positive relationship between MK and NeuN, MD and MBP in ipsilateral cortex, and a negative relationship between MK and Iba-1, MBP in ipsilateral cortex and hippocampus (P < 0.05). The MK in ipsilateral cortex and hippocampus were also correlated with MWM test results (P < 0.05). Our study suggests that DKI could be used to assess the microstructural changes associated with cognitive impairment in chronic TBI.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Meng-Meng Yu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Dian-Xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Ying-Liang Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Wen-Bin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China; Imaging Center, Kashgar Prefecture Second People's Hospital, No. 1 Jiankang Road, Kashgar 844000, China.
| |
Collapse
|
33
|
Wang ML, Yu MM, Yang DX, Liu YL, Wei XE, Li WB. Longitudinal Microstructural Changes in Traumatic Brain Injury in Rats: A Diffusional Kurtosis Imaging, Histology, and Behavior Study. AJNR Am J Neuroradiol 2018; 39:1650-1656. [PMID: 30049720 DOI: 10.3174/ajnr.a5737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/02/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury is a major public health problem worldwide. Accurately evaluating the brain microstructural changes in traumatic brain injury is crucial for the treatment and prognosis assessment. This study aimed to assess the longitudinal brain microstructural changes in traumatic brain injury in the rat using diffusional kurtosis imaging. MATERIALS AND METHODS Diffusional kurtosis imaging was performed in a group of 5 rats at preinjury and 3, 14, and 28 days after traumatic brain injury. The diffusional kurtosis imaging parameters were measured in the bilateral cortex, hippocampus, and corpus callosum. Another 4 groups of 5 rats were used in brain immunohistochemistry analysis of neuron (neuron-specific nuclear protein [NeuN]), astroglia (glial fibrillary acidic protein [GFAP]), microglia (ionized calcium binding adaptor molecule 1 [Iba-1]), and myelin (myelin basic protein [MBP]) in the same area as the diffusional kurtosis imaging parameter measurements. Furthermore, 2 groups of 6 rats underwent a Morris water maze test at 28 days after traumatic brain injury. The diffusional kurtosis imaging parameters, immunohistochemistry results, and Morris water maze test results were compared longitudinally or between traumatic brain injury and control groups. RESULTS Compared with baseline, traumatic brain injury in the rat showed higher mean kurtosis and mean diffusivity values in the ipsilateral perilesional cortex and hippocampus and lower fractional anisotropy values in the corpus callosum (P < .05). The traumatic brain injury group showed higher staining of GFAP and Iba-1 and lower immunohistochemistry staining of NeuN and MBP in all ipsilateral ROIs (P < .05). There was no significant difference in the contralateral ROIs in diffusional kurtosis imaging parameters or immunohistochemistry results. The Morris water maze test revealed lower platform crossing times in the probe test (P < .05). CONCLUSIONS Our study indicated that there were longitudinal changes in diffusional kurtosis imaging parameters, accompanied by multiple pathologic changes at different time points following traumatic brain injury, and that mean kurtosis is more sensitive to detect microstructural changes, especially in gray matter, than mean diffusivity and fractional anisotropy.
Collapse
Affiliation(s)
- M-L Wang
- From the Departments of Radiology (M.-L.W., M.-M.Y., X.-E.W., W.-B.L.)
| | - M-M Yu
- From the Departments of Radiology (M.-L.W., M.-M.Y., X.-E.W., W.-B.L.)
| | - D-X Yang
- Neurosurgery (D.-X.Y., Y.-L.L.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y-L Liu
- Neurosurgery (D.-X.Y., Y.-L.L.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X-E Wei
- From the Departments of Radiology (M.-L.W., M.-M.Y., X.-E.W., W.-B.L.)
| | - W-B Li
- From the Departments of Radiology (M.-L.W., M.-M.Y., X.-E.W., W.-B.L.)
- Imaging Center (W.-B.L.), Kashgar Prefecture Second People's Hospital, Kashgar, China
| |
Collapse
|
34
|
Filley CM, Kelly JP. White Matter and Cognition in Traumatic Brain Injury. J Alzheimers Dis 2018; 65:345-362. [DOI: 10.3233/jad-180287] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christopher M. Filley
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| | - James P. Kelly
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
35
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
36
|
Devoto C, Arcurio L, Fetta J, Ley M, Rodney T, Kanefsky R, Gill J. Inflammation Relates to Chronic Behavioral and Neurological Symptoms in Military Personnel with Traumatic Brain Injuries. Cell Transplant 2018; 26:1169-1177. [PMID: 28933225 PMCID: PMC5657728 DOI: 10.1177/0963689717714098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies have shown that the presence of acute inflammation during recovery is indicative of poor outcomes after a traumatic brain injury (TBI); however, the role of chronic inflammation in predicting post-TBI-related symptoms remains poorly understood. The purpose of this study was to compare inflammatory biomarkers (tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-10) in active duty personnel who either sustained or did not sustain a TBI. Service members were also assessed for post-traumatic stress disorder (PTSD), depression, and quality of life through self-reported measures. IL-6 and TNF-α concentrations were greater in the TBI group than in the control group. Of those with a TBI, IL-6 and TNF-α concentrations were greater in the high-PTSD group than the low-PTSD group. No significant differences were found in IL-10 or the IL-6/IL-10 ratios between those with low and high PTSD. Exploratory factor analysis was conducted to describe the latent structure of variables relating to emotional and physical health (i.e., Short Form 36 subcomponents, etc.) and their relationships within the TBI group with inflammatory cytokines. Four symptom profiles were found, with the third component most relating to PTSD and depression symptoms and high inflammation. This study indicates that the comorbidity of TBI and PTSD is associated with inflammation in a military sample, emphasizing the necessity for intervention in order to mitigate the risks associated with inflammation.
Collapse
Affiliation(s)
- Christina Devoto
- 1 National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Lindsay Arcurio
- 1 National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Joseph Fetta
- 1 National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Mary Ley
- 1 National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Tamar Rodney
- 2 Johns Hopkins University, School of Nursing, Baltimore, MD, USA
| | - Rebekah Kanefsky
- 1 National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Jessica Gill
- 1 National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| |
Collapse
|
37
|
Rodriguez-Grande B, Obenaus A, Ichkova A, Aussudre J, Bessy T, Barse E, Hiba B, Catheline G, Barrière G, Badaut J. Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. Glia 2018; 66:1663-1677. [DOI: 10.1002/glia.23336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Beatriz Rodriguez-Grande
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Andre Obenaus
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda California
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences; UC Riverside; Riverside California
- Department of Pediatrics; University of California, Irvine; Irvine California
| | - Aleksandra Ichkova
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Justine Aussudre
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Thomas Bessy
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Elodie Barse
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Bassem Hiba
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Gwénaëlle Catheline
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Grégory Barrière
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Jerome Badaut
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
38
|
Mattugini N, Merl-Pham J, Petrozziello E, Schindler L, Bernhagen J, Hauck SM, Götz M. Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia 2018; 66:1644-1662. [PMID: 29573353 DOI: 10.1002/glia.23329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury frequently affects the cerebral cortex, yet little is known about the differential effects that occur if only the gray matter (GM) is damaged or if the injury also involves the white matter (WM). To tackle this important question and directly compare similarities and differences in reactive gliosis, we performed stab wound injury affecting GM and WM (GM+) and one restricted to the GM (GM-) in the adult murine cerebral cortex. First, we examined glial reactivity in the regions affected (WM and GM) and determined the influence of WM injury on reactive gliosis in the GM comparing the same area in the two injury paradigms. In the GM+ injury microglia proliferation is increased in the WM compared with GM, while proliferating astrocytes are more abundant in the GM than in the WM. Interestingly, WM lesion exerted a strong influence on the proliferation of the GM glial cells that was most pronounced at early stages, 3 days post lesion. While astrocyte proliferation was increased, NG2 glia proliferation was decreased in the GM+ compared with GM- lesion condition. Importantly, these differences were not observed when a lesion of the same size affected only the GM. Unbiased proteomic analyses further corroborate our findings in support of a profound difference in GM reactivity when WM is also injured and revealed MIF as a key regulator of NG2 glia proliferation.
Collapse
Affiliation(s)
- Nicola Mattugini
- Physiological Genomics, Biomedical center (BMC), Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Graduate School of Systemic Neurosciences Ludwig-Maximilians University (LMU), Großhaderner Str. 2, Planegg/Martinsried, 82152, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Ludwig-Maximilians-University (LMU), Großhadernerstr. 9, Planegg/Martinsried, 82152, Germany
| | - Lisa Schindler
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, 81377, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, 81377, Germany.,SyNergy Excellence Cluster, Munich, 81377, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical center (BMC), Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,SyNergy Excellence Cluster, Munich, 81377, Germany
| |
Collapse
|
39
|
Neuroprotective effects of pifithrin-α against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci Rep 2018; 8:2368. [PMID: 29402897 PMCID: PMC5799311 DOI: 10.1038/s41598-018-19654-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Cortical and hippocampal neuronal damages caused by traumatic brain injury (TBI) are associated with motor and cognitive impairments; however, only little attention paid to the striatal damage. It is known that the p53 tumor-suppressor transcription factor participated in TBI-induced secondary brain damage. We investigated how the p53 inactivator pifithrin (PFT)-α affected TBI-induced striatal neuronal damage at 24 h post-injury. Sprague-Dawley rats subjected to a controlled cortical impact were used as TBI models. We observed that p53 mRNA significantly increased, whereas p53 protein expression was distributed predominantly in neurons but not in glia cells in striatum after TBI. PFT-α improved motor deficit following TBI. PFT-α suppressed TBI-induced striatal glial activation and expression of proinflammatory cytokines. PFT-α alleviated TBI-induced oxidative damage TBI induced autophagy was evidenced by increased protein expression of Beclin-1 and shift of microtubule-associated light chain (LC)3-I to LC3-II, and decreased p62. These effects were reduced by PFT-α. Post-injury PFT-α treatment reduced the number of degenerating (FJC-positive) and apoptotic neurons. Our results suggest that PFT-α may provide neuroprotective effects via p53-dependent or -independent mechanisms depending on the cell type and timing after the TBI and can possibly be developed into a novel therapy to ameliorate TBI-induced neuronal damage.
Collapse
|
40
|
Xu J, Long H, Chen W, Cheng X, Yu H, Huang Y, Wang X, Li F. Ultrastructural Features of Neurovascular Units in a Rat Model of Chronic Compressive Spinal Cord Injury. Front Neuroanat 2018; 11:136. [PMID: 29375327 PMCID: PMC5767600 DOI: 10.3389/fnana.2017.00136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic spinal cord compression is the most common cause of spinal cord impairment worldwide. Objective of this study is to assess the ultrastructural features of the neurovascular unit (NVU) in a rat model of chronic compressive spinal cord injury, 24 SD rats were divided into two groups: the control group (n = 12), and the compression group (n = 12). A C6 semi-laminectomy was performed in the control group, whereas a water-absorbent polyurethane polymer was implanted into the C6 epidural space in the compression group. The Basso Beattie Bresnahan (BBB) scores and the somatosensory evoked potentials (SEP) were used to evaluate neurological functions. Transmission Electron Microscopy (TEM) was performed to investigate the change of NVU at the 28th day after modeling. Compared with the control group, the compression group shows a significant reduction (P < 0.05) of BBB score and a significant severity (P < 0.05) of abnormal SEP. TEM results of the compression group showed a striking increase in endothelial caveolae and vacuoles; a number of small spaces in tight junctions; a significant increase in pericyte processing area and vessel coverage; an expansion of the basement membrane region; swollen astrocyte endfeet and mitochondria; and the degeneration of neurons and axons. Our study revealed that damage to NVU components occurred followed by chronic compressive spinal cord injury. Several compensatory changes characterized by thicker endothelium, expansive BM, increased pericyte processing area and vessel coverage were also observed.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenli Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Haoyang Yu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yangliang Huang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fobao Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
41
|
Salman MM, Kitchen P, Woodroofe MN, Bill RM, Conner AC, Heath PR, Conner MT. Transcriptome Analysis of Gene Expression Provides New Insights into the Effect of Mild Therapeutic Hypothermia on Primary Human Cortical Astrocytes Cultured under Hypoxia. Front Cell Neurosci 2017; 11:386. [PMID: 29311824 PMCID: PMC5735114 DOI: 10.3389/fncel.2017.00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023] Open
Abstract
Hypothermia is increasingly used as a therapeutic measure to treat brain injury. However, the cellular mechanisms underpinning its actions are complex and are not yet fully elucidated. Astrocytes are the most abundant cell type in the brain and are likely to play a critical role. In this study, transcriptional changes and the protein expression profile of human primary cortical astrocytes cultured under hypoxic conditions for 6 h were investigated. Cells were treated either with or without a mild hypothermic intervention 2 h post-insult to mimic the treatment of patients following traumatic brain injury (TBI) and/or stroke. Using human gene expression microarrays, 411 differentially expressed genes were identified following hypothermic treatment of astrocytes following a 2 h hypoxic insult. KEGG pathway analysis indicated that these genes were mainly enriched in the Wnt and p53 signaling pathways, which were inhibited following hypothermic intervention. The expression levels of 168 genes involved in Wnt signaling were validated by quantitative real-time-PCR (qPCR). Among these genes, 10 were up-regulated and 32 were down-regulated with the remainder unchanged. Two of the differentially expressed genes (DEGs), p38 and JNK, were selected for validation at the protein level using cell based ELISA. Hypothermic intervention significantly down-regulated total protein levels for the gene products of p38 and JNK. Moreover, hypothermia significantly up-regulated the phosphorylated (activated) forms of JNK protein, while downregulating phosphorylation of p38 protein. Within the p53 signaling pathway, 35 human apoptosis-related proteins closely associated with Wnt signaling were investigated using a Proteome Profiling Array. Hypothermic intervention significantly down-regulated 18 proteins, while upregulating one protein, survivin. Hypothermia is a complex intervention; this study provides the first detailed longitudinal investigation at the transcript and protein expression levels of the molecular effects of therapeutic hypothermic intervention on hypoxic human primary cortical astrocytes. The identified genes and proteins are targets for detailed functional studies, which may help to develop new treatments for brain injury based on an in-depth mechanistic understanding of the astrocytic response to hypoxia and/or hypothermia.
Collapse
Affiliation(s)
- Mootaz M Salman
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Philip Kitchen
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - M Nicola Woodroofe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Matthew T Conner
- Research Institute of Health Sciences, Wolverhampton School of Sciences, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
42
|
Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 2017; 9:393-416. [PMID: 29151229 DOI: 10.1007/s12975-017-0588-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Secondary brain damage following initial brain damage in traumatic brain injury (TBI) is a major cause of adverse outcomes. There are many gaps in TBI research and a lack of therapy to limit debilitating outcomes in TBI or enhance the neurogenesis, despite pre-clinical and clinical research performed in TBI. Females show harmful outcomes against brain damage including TBI less than males, independent of different TBI occurrence. A significant reduction in secondary brain damage and improvement in neurologic outcome post-TBI has been reported following the use of progesterone and estrogen in many experimental studies. Although useful features of sex steroids including progesterone have been identified in TBI clinical trials I and II, clinical trials III have been unsuccessful. This review article focuses on evidence of secondary injury mechanisms and neuroprotective effects of estrogen and progesterone in TBI. Understanding these mechanisms may enable researchers to achieve greater success in TBI clinical studies. It seems that the design of clinical studies should be revised due to translation loss of animal studies to clinical studies. The heterogeneous and complex nature of TBI, the endogenous levels of sex hormones at the time of taking these hormones, the therapeutic window of the drug, the dosage of the drug, the selection of appropriate targets in evaluation, the determination of responsive population, gender and age based on animal studies should be considered in the design of TBI human studies in future.
Collapse
|
43
|
Kaplan GB, Leite-Morris KA, Wang L, Rumbika KK, Heinrichs SC, Zeng X, Wu L, Arena DT, Teng YD. Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma 2017; 35:210-225. [PMID: 29017388 DOI: 10.1089/neu.2016.4953] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.
Collapse
Affiliation(s)
- Gary B Kaplan
- 1 Mental Health Service , VA Boston Healthcare System, Brockton, Massachusetts.,2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts
| | - Kimberly A Leite-Morris
- 2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts.,4 Research Service, VA Boston Healthcare System , Jamaica Plain, Massachusetts
| | - Lei Wang
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Kendra K Rumbika
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Stephen C Heinrichs
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Xiang Zeng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Liquan Wu
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Danielle T Arena
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Yang D Teng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
44
|
Abstract
Conventional imaging findings in patients with cerebral concussion and chronic traumatic encephalopathy are absent or subtle in the majority of cases. The most common abnormalities include cerebral volume loss, enlargement of the cavum of the septum pellucidum, cerebral microhemorrhages, and white matter signal abnormalities, all of which have poor sensitivity and specificity. Advanced imaging modalities, such as diffusion tensor imaging (DTI), blood oxygen level dependent functional MR Imaging (BOLD fMRI), MR spectroscopy, perfusion imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetoencephalography detect physiologic abnormalities in symptomatic patients and, although currently in the investigation phase, may become useful in the clinical arena.
Collapse
Affiliation(s)
- Eliana Bonfante
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street MSB 2130B, Houston, TX 77030, USA.
| | - Roy Riascos
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street MSB 2130B, Houston, TX 77030, USA
| | - Octavio Arevalo
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street MSB 2130B, Houston, TX 77030, USA
| |
Collapse
|
45
|
Taib T, Leconte C, Van Steenwinckel J, Cho AH, Palmier B, Torsello E, Lai Kuen R, Onyeomah S, Ecomard K, Benedetto C, Coqueran B, Novak AC, Deou E, Plotkine M, Gressens P, Marchand-Leroux C, Besson VC. Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice. PLoS One 2017; 12:e0184811. [PMID: 28910378 PMCID: PMC5599047 DOI: 10.1371/journal.pone.0184811] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
Traumatic brain injury (TBI) results in white matter injury (WMI) that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i) neuroinflammation, (ii) WMI and (iii) behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i) For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii) Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii) TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model of mild TBI. This model could help to validate a pharmacological strategy to prevent post-traumatic WMI and behavioral disorders following mild TBI.
Collapse
Affiliation(s)
- Toufik Taib
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claire Leconte
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Angelo H. Cho
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bruno Palmier
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Egle Torsello
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rene Lai Kuen
- Cellular and Molecular Imaging Platform, CRP2, UMS 3612 CNRS, US25 INSERM, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Somfieme Onyeomah
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Karine Ecomard
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Benedetto
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bérard Coqueran
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Catherine Novak
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Edwige Deou
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Plotkine
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre Gressens
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie C. Besson
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
46
|
Vellmer S, Tonoyan AS, Suter D, Pronin IN, Maximov II. Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas. Z Med Phys 2017; 28:14-24. [PMID: 28532604 DOI: 10.1016/j.zemedi.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/21/2017] [Accepted: 04/20/2017] [Indexed: 01/06/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) is a powerful tool in clinical applications, in particular, in oncology screening. dMRI demonstrated its benefit and efficiency in the localisation and detection of different types of human brain tumours. Clinical dMRI data suffer from multiple artefacts such as motion and eddy-current distortions, contamination by noise, outliers etc. In order to increase the image quality of the derived diffusion scalar metrics and the accuracy of the subsequent data analysis, various pre-processing approaches are actively developed and used. In the present work we assess the effect of different pre-processing procedures such as a noise correction, different smoothing algorithms and spatial interpolation of raw diffusion data, with respect to the accuracy of brain glioma differentiation. As a set of sensitive biomarkers of the glioma malignancy grades we chose the derived scalar metrics from diffusion and kurtosis tensor imaging as well as the neurite orientation dispersion and density imaging (NODDI) biophysical model. Our results show that the application of noise correction, anisotropic diffusion filtering, and cubic-order spline interpolation resulted in the highest sensitivity and specificity for glioma malignancy grading. Thus, these pre-processing steps are recommended for the statistical analysis in brain tumour studies.
Collapse
Affiliation(s)
- Sebastian Vellmer
- Experimental Physics III, TU Dortmund University, Dortmund, Germany.
| | | | - Dieter Suter
- Experimental Physics III, TU Dortmund University, Dortmund, Germany
| | | | - Ivan I Maximov
- Experimental Physics III, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
47
|
Establishing the ferret as a gyrencephalic animal model of traumatic brain injury: Optimization of controlled cortical impact procedures. J Neurosci Methods 2017; 285:82-96. [PMID: 28499842 DOI: 10.1016/j.jneumeth.2017.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Although rodent TBI studies provide valuable information regarding the effects of injury and recovery, an animal model with neuroanatomical characteristics closer to humans may provide a more meaningful basis for clinical translation. The ferret has a high white/gray matter ratio, gyrencephalic neocortex, and ventral hippocampal location. Furthermore, ferrets are amenable to behavioral training, have a body size compatible with pre-clinical MRI, and are cost-effective. NEW METHODS We optimized the surgical procedure for controlled cortical impact (CCI) using 9 adult male ferrets. We used subject-specific brain/skull morphometric data from anatomical MRIs to overcome across-subject variability for lesion placement. We also reflected the temporalis muscle, closed the craniotomy, and used antibiotics. We then gathered MRI, behavioral, and immunohistochemical data from 6 additional animals using the optimized surgical protocol: 1 control, 3 mild, and 1 severely injured animals (surviving one week) and 1 moderately injured animal surviving sixteen weeks. RESULTS The optimized surgical protocol resulted in consistent injury placement. Astrocytic reactivity increased with injury severity showing progressively greater numbers of astrocytes within the white matter. The density and morphological changes of microglia amplified with injury severity or time after injury. Motor and cognitive impairments scaled with injury severity. COMPARISON WITH EXISTING METHOD(S) The optimized surgical methods differ from those used in the rodent, and are integral to success using a ferret model. CONCLUSIONS We optimized ferret CCI surgery for consistent injury placement. The ferret is an excellent animal model to investigate pathophysiological and behavioral changes associated with TBI.
Collapse
|
48
|
Lucke-Wold BP, Turner RC, Logsdon AF, Rosen CL, Qaiser R. Blast Scaling Parameters: Transitioning from Lung to Skull Base Metrics. JOURNAL OF SURGERY AND EMERGENCY MEDICINE 2017; 1. [PMID: 28386605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Neurotrauma from blast exposure is one of the single most characteristic injuries of modern warfare. Understanding blast traumatic brain injury is critical for developing new treatment options for warfighters and civilians exposed to improvised explosive devices. Unfortunately, the pre-clinical models that are widely utilized to investigate blast exposure are based on archaic lung based parameters developed in the early 20th century. Improvised explosive devices produce a different type of injury paradigm than the typical mortar explosion. Protective equipment for the chest cavity has also improved over the past 100 years. In order to improve treatments, it is imperative to develop models that are based more on skull-based parameters. In this mini-review, we discuss the important anatomical and biochemical features necessary to develop a skull-based model.
Collapse
Affiliation(s)
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | | | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
49
|
Leaw B, Zhu D, Tan J, Muljadi R, Saad MI, Mockler JC, Wallace EM, Lim R, Tolcos M. Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury. Stem Cell Res Ther 2017; 8:46. [PMID: 28241859 PMCID: PMC5330154 DOI: 10.1186/s13287-017-0496-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human amnion epithelial cells (hAECs) are clonogenic and have been proposed to reduce inflammatory-induced tissue injury. Perturbation of the immune response is implicated in the pathogenesis of perinatal brain injury; modulating this response could thus be a novel therapy for treating or preventing such injury. The immunomodulatory properties of hAECs have been shown in other animal models, but a detailed investigation of the effects on brain immune cells following injury has not been undertaken. Here, we investigate the effects of hAECs on microglia, the first immune responders to injury within the brain. METHODS We generated a mouse model combining neonatal inflammation and perinatal hyperoxia, both of which are risk factors associated with perinatal brain injury. On embryonic day 16 we administered lipopolysaccharide (LPS), or saline (control), intra-amniotically to C57Bl/6 J mouse pups. On postnatal day (P)0, LPS pups were placed in hyperoxia (65% oxygen) and control pups in normoxia for 14 days. Pups were given either hAECs or saline intravenously on P4. RESULTS At P14, relative to controls, LPS and hyperoxia pups had reduced body weight, increased density of apoptotic cells (TUNEL) in the cortex, striatum and white matter, astrocytes (GFAP) in the white matter and activated microglia (CD68) in the cortex and striatum, but no change in total microglia density (Iba1). hAEC administration rescued the decreased body weight and reduced apoptosis and astrocyte areal coverage in the white matter, but increased the density of total and activated microglia. We then stimulated primary microglia (CD45lowCD11b+) with LPS for 24 h, followed by co-culture with hAEC conditioned medium for 48 h. hAEC conditioned medium increased microglial phagocytic activity, decreased microglia apoptosis and decreased M1 activation markers (CD86). Stimulating hAECs for 24 h with LPS did not alter release of cytokines known to modulate microglia activity. CONCLUSIONS These data demonstrate that hAECs can directly immunomodulate brain microglia, probably via release of trophic factors. This observation offers promise that hAECs may afford therapeutic utility in the management of perinatal brain injury.
Collapse
Affiliation(s)
- Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
| | - Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
| | - Jean Tan
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
| | - Ruth Muljadi
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
| | - Mohamed I. Saad
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
| | - Joanne C. Mockler
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168 Australia
| | - Euan M. Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168 Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168 Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168 Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168 Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
50
|
Yu F, Shukla DK, Armstrong RC, Marion CM, Radomski KL, Selwyn RG, Dardzinski BJ. Repetitive Model of Mild Traumatic Brain Injury Produces Cortical Abnormalities Detectable by Magnetic Resonance Diffusion Imaging, Histopathology, and Behavior. J Neurotrauma 2016; 34:1364-1381. [PMID: 27784203 PMCID: PMC5385606 DOI: 10.1089/neu.2016.4569] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noninvasive detection of mild traumatic brain injury (mTBI) is important for evaluating acute through chronic effects of head injuries, particularly after repetitive impacts. To better detect abnormalities from mTBI, we performed longitudinal studies (baseline, 3, 6, and 42 days) using magnetic resonance diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) in adult mice after repetitive mTBI (r-mTBI; daily × 5) or sham procedure. This r-mTBI produced righting reflex delay and was first characterized in the corpus callosum to demonstrate low levels of axon damage, astrogliosis, and microglial activation, without microhemorrhages. High-resolution DTI-DKI was then combined with post-imaging pathological validation along with behavioral assessments targeted for the impact regions. In the corpus callosum, only DTI fractional anisotropy at 42 days showed significant change post-injury. Conversely, cortical regions under the impact site (M1–M2, anterior cingulate) had reduced axial diffusivity (AD) at all time points with a corresponding increase in axial kurtosis (Ka) at 6 days. Post-imaging neuropathology showed microglial activation in both the corpus callosum and cortex at 42 days after r-mTBI. Increased cortical microglial activation correlated with decreased cortical AD after r-mTBI (r = −0.853; n = 5). Using Thy1-YFP-16 mice to fluorescently label neuronal cell bodies and processes revealed low levels of axon damage in the cortex after r-mTBI. Finally, r-mTBI produced social deficits consistent with the function of this anterior cingulate region of cortex. Overall, vulnerability of cortical regions is demonstrated after mild repetitive injury, with underlying differences of DTI and DKI, microglial activation, and behavioral deficits.
Collapse
Affiliation(s)
- Fengshan Yu
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Dinesh K Shukla
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Department of Psychiatry, University of Maryland School of Medicine , Baltimore, Maryland
| | - Regina C Armstrong
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Christina M Marion
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Kryslaine L Radomski
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Reed G Selwyn
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,6 Department of Radiology, University of New Mexico , Albuquerque, New Mexico
| | - Bernard J Dardzinski
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,4 Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|