1
|
McSteen BW, Ying XH, Lucero C, Jesudian AB. Viral etiologies of acute liver failure. World J Virol 2024; 13:97973. [PMID: 39323454 PMCID: PMC11401000 DOI: 10.5501/wjv.v13.i3.97973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Acute liver failure (ALF) is a rare cause of liver-related mortality worldwide, with an estimated annual global incidence of more than one million cases. While drug-induced liver injury, including acetaminophen toxicity, is the leading cause of ALF in the Western world, viral infections remain a significant cause of ALF and the most common cause in many developing nations. Given the high mortality rates associated with ALF, healthcare providers should be aware of the broad range of viral infections that have been implicated to enable early diagnosis, rapid treatment initiation when possible, and optimal management, which may include liver transplantation. This review aims to provide a summary of viral causes of ALF, diagnostic approaches, treatment options, and expected outcomes.
Collapse
Affiliation(s)
- Brian W McSteen
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Xiao-Han Ying
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Catherine Lucero
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| | - Arun B Jesudian
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| |
Collapse
|
2
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
3
|
Baudi I, Isogawa M, Moalli F, Onishi M, Kawashima K, Ishida Y, Tateno C, Sato Y, Harashima H, Ito H, Ishikawa T, Wakita T, Iannacone M, Tanaka Y. Interferon signaling suppresses the unfolded protein response and induces cell death in hepatocytes accumulating hepatitis B surface antigen. PLoS Pathog 2021; 17:e1009228. [PMID: 33979382 PMCID: PMC8143404 DOI: 10.1371/journal.ppat.1009228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Virus infection, such as hepatitis B virus (HBV), occasionally causes endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is counteractive machinery to ER stress, and the failure of UPR to cope with ER stress results in cell death. Mechanisms that regulate the balance between ER stress and UPR are poorly understood. Type 1 and type 2 interferons have been implicated in hepatic flares during chronic HBV infection. Here, we examined the interplay between ER stress, UPR, and IFNs using transgenic mice that express hepatitis B surface antigen (HBsAg) (HBs-Tg mice) and humanized-liver chimeric mice infected with HBV. IFNα causes severe and moderate liver injury in HBs-Tg mice and HBV infected chimeric mice, respectively. The degree of liver injury is directly correlated with HBsAg levels in the liver, and reduction of HBsAg in the transgenic mice alleviates IFNα mediated liver injury. Analyses of total gene expression and UPR biomarkers' protein expression in the liver revealed that UPR is induced in HBs-Tg mice and HBV infected chimeric mice, indicating that HBsAg accumulation causes ER stress. Notably, IFNα administration transiently suppressed UPR biomarkers before liver injury without affecting intrahepatic HBsAg levels. Furthermore, UPR upregulation by glucose-regulated protein 78 (GRP78) suppression or low dose tunicamycin alleviated IFNα mediated liver injury. These results suggest that IFNα induces ER stress-associated cell death by reducing UPR. IFNγ uses the same mechanism to exert cytotoxicity to HBsAg accumulating hepatocytes. Collectively, our data reveal a previously unknown mechanism of IFN-mediated cell death. This study also identifies UPR as a potential target for regulating ER stress-associated cell death.
Collapse
Affiliation(s)
- Ian Baudi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Federica Moalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaya Onishi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yuji Ishida
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Japan
| | - Chise Tateno
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Japan
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Ishikawa
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Chen Y, Hao X, Sun R, Wei H, Tian Z. Natural Killer Cell-Derived Interferon-Gamma Promotes Hepatocellular Carcinoma Through the Epithelial Cell Adhesion Molecule-Epithelial-to-Mesenchymal Transition Axis in Hepatitis B Virus Transgenic Mice. Hepatology 2019; 69:1735-1750. [PMID: 30329167 DOI: 10.1002/hep.30317] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) is a major risk factor for development of hepatocellular carcinoma (HCC), at least partially due to dysfunctional anti-HBV adaptive immunity; however, the role of innate immune response to HBV in this process is not well understood. In this study, low-dose polyinosinic:polycytidylic acid (poly [I:C]), a natural killer (NK) cell activator (3 μg/g body weight, twice/week for 8 weeks), induced HCC in HBV transgenic (HBs-Tg) mice, with an incidence of 100% after 6 months, while HBs-Tg mice without treatment only had HCC with an incidence of 16.7%. In HBs-Tg mice, poly (I:C) induced liver inflammation with markedly increased infiltrating lymphocytes, along with the concurrently increased apoptosis and proliferation of hepatocytes, leading to the accelerated epithelial-to-mesenchymal transition (EMT) of hepatocytes shown by increased expression of the typical transcriptional factors (Slug, Twist, and mothers against decapentaplegic-interacting protein 1) and phenotypic proteins (vimentin and chemokine [C-X-C motif] receptor 4). The EMT and tumorigenesis in this model depended on the presence of NK cells because depletion of these cells significantly reduced the HCC rate to 28.6%. Further, intrahepatic NK cells highly expressed interferon-gamma (IFN-γ), anti-IFN-γ neutralizing monoclonal antibody might obviously alleviate the hepatitis, and hepatocyte-specific IFN-γ overexpression promoted HCC. Moreover, IFN-γ deficiency in HBs-Tg mice prevented HCC occurring, though hepatic NK cells existed and could be activated, suggesting the critical role of IFN-γ in NK cell-mediated tumorigenesis. In an in vitro experiment, IFN-γ up-regulated epithelial cell adhesion molecule (EpCAM) expression through phosphorylated signal transducer and activator of transcription (p-STAT1) pathway, which was followed by EMT, and p-STAT1 inhibitor might absolutely abolish the expression of EpCAM and EMT in HBV surface antigen-positive hepatocytes. Conclusion: This work demonstrates that NK cell-derived IFN-γ promotes HCC through the EpCAM-EMT axis in HBs-Tg mice, revealing the importance of innate immunity in pathogenesis of HBV-associated HCC.
Collapse
Affiliation(s)
- Yongyan Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, and Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiaolei Hao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, and Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, and Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, and Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, and Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nat Commun 2019; 10:221. [PMID: 30644386 PMCID: PMC6333806 DOI: 10.1038/s41467-018-08096-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B virus (HBV) can induce chronic inflammation, cirrhosis, and eventually hepatocellular carcinoma (HCC). Despite evidence suggesting a link between adaptive immunity and HBV-related diseases in humans, the immunopathogenic mechanisms involved are seldom described. Here we show that expression of TIGIT, a promising immune checkpoint in tumor immunotherapy, increases with age on hepatic CD8+ T cells in HBsAg-transgenic (HBs-tg) mice whose adaptive immune system is tolerant to HBsAg. TIGIT blockade or deficiency leads to chronic hepatitis and fibrosis, along with the emergence of functional HBsAg-specific cytotoxic T lymphocytes (CTLs), suggesting adaptive immune tolerance could be broken by TIGIT blockade or deficiency. Importantly, HBsAg vaccination further induces nonresolving inflammation and HCC in a CD8+ T cell-dependent manner in TIGIT-blocked or -deficient HBs-tg mice. Therefore, CD8+ T cells play an important role in adaptive immunity-mediated tumor progression and TIGIT is critical in maintenance of liver tolerance by keeping CTLs in homeostatic balance. Chronic hepatitis B virus (HBV) infection is a risk factor for hepatocellular carcinoma (HCC) and is associated with immune tolerance to HBV. Here the authors show, in a transgenic mouse model, that rescuing T cells function via inhibition of co-inhibitory receptor TIGIT results in HCC development via supporting inflammation.
Collapse
|
6
|
Meng Z, Wang J, Yuan Y, Cao G, Fan S, Gao C, Wang L, Li Z, Wu X, Wu Z, Zhao L, Yin Z. γδ T cells are indispensable for interleukin-23-mediated protection against Concanavalin A-induced hepatitis in hepatitis B virus transgenic mice. Immunology 2017; 151:43-55. [PMID: 28092402 DOI: 10.1111/imm.12712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus surface antigen (HBsAg) carriers are highly susceptible to liver injury triggered by environmental biochemical stimulation. Previously, we have reported an inverse correlation between γδ T cells and liver damage in patients with hepatitis B virus (HBV). However, whether γδ T cells play a role in regulating the hypersensitivity of HBsAg carriers to biochemical stimulation-induced hepatitis is unknown. In this study, using HBV transgenic (HBs-Tg) and HBs-Tg T-cell receptor-δ-deficient (TCR-δ-/- ) mice, we found that mice genetically deficient in γδ T cells exhibited more severe liver damage upon Concanavalin A (Con A) treatment, as indicated by substantially higher serum alanine aminotransferase levels, further elevated interferon-γ (IFN-γ) levels and more extensive necrosis. γδ T-cell deficiency resulted in elevated IFN-γ in CD4+ T cells but not in natural killer or natural killer T cells. The depletion of CD4+ T cells and neutralization of IFN-γ reduced liver damage in HBs-Tg and HBs-Tg-TCR-δ-/- mice to a similar extent. Further investigation revealed that HBs-Tg mice showed an enhanced interleukin-17 (IL-17) signature. The administration of exogenous IL-23 enhanced IL-17A production from Vγ4 γδ T cells and ameliorated liver damage in HBs-Tg mice, but not in HBs-Tg-TCR-δ-/- mice. In summary, our results demonstrated that γδ T cells played a protective role in restraining Con A-induced hepatitis by inhibiting IFN-γ production from CD4+ T cells and are indispensable for IL-23-mediated protection against Con A-induced hepatitis in HBs-Tg mice. These results provided a potential therapeutic approach for treating the hypersensitivity of HBV carriers to biochemical stimulation-induced liver damage.
Collapse
Affiliation(s)
- Ziyu Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingya Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yifang Yuan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guangchao Cao
- The first Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Shuobing Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zheng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoli Wu
- Tianjin Engineering Centre of Micro-Nano Biomaterials and Detection-Treatment Technology, College of Life Sciences, Tianjin University, Tianjin, China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,The first Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Wang Q, Luan W, Warren L, Fiel MI, Blank S, Kadri H, Tuvin D, Hiotis SP. Serum hepatitis B surface antigen correlates with tissue covalently closed circular DNA in patients with hepatitis B-associated hepatocellular carcinoma. J Med Virol 2015; 88:244-51. [DOI: 10.1002/jmv.24326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Qin Wang
- Department of Surgery; The Icahn School of Medicine at Mount Sinai; New York City New York
| | - Wei Luan
- Department of Surgery; The Icahn School of Medicine at Mount Sinai; New York City New York
| | - Leslie Warren
- Department of Surgery; The Icahn School of Medicine at Mount Sinai; New York City New York
| | - M. Isabel Fiel
- Department of Pathology; The Icahn School of Medicine at Mount Sinai; New York City New York
| | - Sima Blank
- Department of Surgery; The Icahn School of Medicine at Mount Sinai; New York City New York
| | - Hena Kadri
- Department of Surgery; The Icahn School of Medicine at Mount Sinai; New York City New York
| | - Daniel Tuvin
- Department of Surgery; The Icahn School of Medicine at Mount Sinai; New York City New York
| | - Spiros P. Hiotis
- Department of Surgery; The Icahn School of Medicine at Mount Sinai; New York City New York
| |
Collapse
|
8
|
Banerjee P, Mondal RK, Nandi M, Ghosh S, Khatun M, Chakraborty N, Bhattacharya S, RoyChoudhury A, Banerjee S, Santra A, Sil S, Chowdhury A, Bhaumik P, Datta S. A rare HBV subgenotype D4 with unique genomic signatures identified in north-eastern India--an emerging clinical challenge? PLoS One 2014. [PMID: 25295865 DOI: 10.1371/journal.pone.0109425.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS HBV has been classified into ten genotypes (A-J) and multiple subgenotypes, some of which strongly influence disease outcome and their distribution also correlate with human migration. HBV infection is highly prevalent in India and its diverse population provides an excellent opportunity to study the distinctiveness of HBV, its evolution and disease biology in variegated ethnic groups. The North-East India, having international frontiers on three sides, is one of the most ethnically and linguistically diverse region of the country. Given the paucity of information on molecular epidemiology of HBV in this region, the study aimed to carry out an in-depth genetic characterization of HBV prevailing in North-East state of Tripura. METHODS From sera of chronically HBV infected patients biochemical/serological tests, HBV DNA quantification, PCR-amplification, sequencing of PreS/S or full-length HBV genomes were done. HBV genotype/subgenotype determination and sequence variability were assessed by MEGA5-software. The evolutionary divergence times of different HBV subgenotypes were estimated by DNAMLK/PHYLIP program while jpHMM method was used to detect any recombination event in HBV genomes. RESULTS HBV genotypes D (89.5%), C (6.6%) and A (3.9%) were detected among chronic carriers. While all HBV/A and HBV/C isolates belonged to subgenotype-A1 and C1 respectively, five subgenotypes of HBV/D (D1-D5) were identified including the first detection of rare D4. These non-recombinant Indian D4 (IndD4) formed a distinct phylogenetic clade, had 2.7% nucleotide divergence and recent evolutionary radiation than other global D4. Ten unique amino acids and 9 novel nucleotide substitutions were identified as IndD4 signatures. All IndD4 carried T120 and R129 in ORF-S that may cause immune/vaccine/diagnostic escape and N128 in ORF-P, implicated as compensatory Lamivudine resistance mutation. CONCLUSIONS IndD4 has potential to undermine vaccination programs or anti-viral therapy and its introduction to North-East India is believed to be linked with the settlement of ancient Tibeto-Burman migrants from East-Asia.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Rajiv Kumar Mondal
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Madhuparna Nandi
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sumantra Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mousumi Khatun
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | | | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amal Santra
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
9
|
Banerjee P, Mondal RK, Nandi M, Ghosh S, Khatun M, Chakraborty N, Bhattacharya S, RoyChoudhury A, Banerjee S, Santra A, Sil S, Chowdhury A, Bhaumik P, Datta S. A rare HBV subgenotype D4 with unique genomic signatures identified in north-eastern India--an emerging clinical challenge? PLoS One 2014; 9:e109425. [PMID: 25295865 PMCID: PMC4190083 DOI: 10.1371/journal.pone.0109425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/31/2014] [Indexed: 01/01/2023] Open
Abstract
Background/Aims HBV has been classified into ten genotypes (A–J) and multiple subgenotypes, some of which strongly influence disease outcome and their distribution also correlate with human migration. HBV infection is highly prevalent in India and its diverse population provides an excellent opportunity to study the distinctiveness of HBV, its evolution and disease biology in variegated ethnic groups. The North-East India, having international frontiers on three sides, is one of the most ethnically and linguistically diverse region of the country. Given the paucity of information on molecular epidemiology of HBV in this region, the study aimed to carry out an in-depth genetic characterization of HBV prevailing in North-East state of Tripura. Methods From sera of chronically HBV infected patients biochemical/serological tests, HBV DNA quantification, PCR-amplification, sequencing of PreS/S or full-length HBV genomes were done. HBV genotype/subgenotype determination and sequence variability were assessed by MEGA5-software. The evolutionary divergence times of different HBV subgenotypes were estimated by DNAMLK/PHYLIP program while jpHMM method was used to detect any recombination event in HBV genomes. Results HBV genotypes D (89.5%), C (6.6%) and A (3.9%) were detected among chronic carriers. While all HBV/A and HBV/C isolates belonged to subgenotype-A1 and C1 respectively, five subgenotypes of HBV/D (D1–D5) were identified including the first detection of rare D4. These non-recombinant Indian D4 (IndD4) formed a distinct phylogenetic clade, had 2.7% nucleotide divergence and recent evolutionary radiation than other global D4. Ten unique amino acids and 9 novel nucleotide substitutions were identified as IndD4 signatures. All IndD4 carried T120 and R129 in ORF-S that may cause immune/vaccine/diagnostic escape and N128 in ORF-P, implicated as compensatory Lamivudine resistance mutation. Conclusions IndD4 has potential to undermine vaccination programs or anti-viral therapy and its introduction to North-East India is believed to be linked with the settlement of ancient Tibeto-Burman migrants from East-Asia.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Rajiv Kumar Mondal
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Madhuparna Nandi
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sumantra Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mousumi Khatun
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | | | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amal Santra
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
- * E-mail:
| |
Collapse
|
10
|
Coexistence of hepatitis B virus quasispecies enhances viral replication and the ability to induce host antibody and cellular immune responses. J Virol 2014; 88:8656-66. [PMID: 24850745 DOI: 10.1128/jvi.01123-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) quasispecies contain a large number of variants that serve as a reservoir for viral selection under antiviral treatment and the immune response, leading to the acute exacerbation and subsequent development of liver failure. However, there is no clear experimental evidence for a significant role of HBV quasispecies in viral pathogenesis. In the present study, HBV sequences were amplified from a patient with severe liver disease and used for construction of HBV replication-competent plasmids. Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining were performed to analyze the expression, secretion, and subcellular localization of viral proteins in vitro. Viral replication intermediates were detected by Southern blotting. HBV gene expression and replication and the induction of specific immune responses in an HBV hydrodynamic injection (HI) mouse model were investigated. The results demonstrated that two naturally occurring HBV variants, SH and SH-DPS, were identified. The variant SH-DPS expressed only a nonexportable hepatitis B virus surface antigen (HBsAg) with abnormal intracellular accumulation. The coexistence of the HBV variants at a ratio of 1 to 4 (SH to SH-DPS) increased HBV replication. Significantly stronger intrahepatic cytotoxic T lymphocyte (CTL) responses and antibody responses specific to HBsAg were induced in mice by the HBV variants when coapplied by HI. These findings uncovered an unexpected aspect of HBV quasispecies: the coexistence of different variants can significantly modulate specific host immune responses, representing a novel mechanism for the immunopathogenesis of HBV infection. IMPORTANCE Hepatitis B virus (HBV) is an important human pathogen. HBV quasispecies with genetically heterogenous variants are thought to play a role in the progression of HBV-associated liver diseases. So far, direct evidence is available in only a few cases to confirm the proposed role of HBV variants in the pathogenesis. We report here that the coexistence of two naturally occurring HBV variants at a ratio of 1 to 4 increased HBV replication and induced significantly stronger intrahepatic cytotoxic T lymphocyte responses and antibody responses specific to HBV surface antigen (HBsAg) in mice. Our discovery uncovered an unexpected aspect of HBV quasispecies: the coexistence of different variants can significantly modulate specific host immune responses and may enhance immune-mediated liver damage under some circumstances, representing a novel mechanism for the immunopathogenesis of HBV infection.
Collapse
|
11
|
Ohtaki H, Ito H, Ando K, Ishikawa T, Hoshi M, Ando T, Takamatsu M, Hara A, Moriwaki H, Saito K, Seishima M. Kynurenine production mediated by indoleamine 2,3-dioxygenase aggravates liver injury in HBV-specific CTL-induced fulminant hepatitis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1464-71. [PMID: 24768802 DOI: 10.1016/j.bbadis.2014.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED Indoleamine 2,3-dioxygenase (IDO), an enzyme that is ubiquitously distributed in mammalian tissues and cells, converts tryptophan to kynurenine, and is also known as a key molecule that promotes apoptosis in lymphocytes and neurons. In this study, we established hepatitis B virus (HBV)-transgenic (Tg)/IDO-knockout (KO) mice and examined the influence of IDO in a murine fulminant hepatitis model induced by HBV-specific cytotoxic T lymphocytes (CTL). An increase of IDO expression in the livers of HBV-Tg/IDO-wild-type (WT) mice administered HBV-specific CTL was confirmed by real-time polymerase chain reaction, western blotting, and evaluating IDO activity. Plasma alanine aminotransferase (ALT) levels in HBV-Tg/IDO-KO mice after HBV-specific CTL injection significantly decreased compared with those in HBV-Tg/IDO-WT mice. An inhibitor of IDO, 1-methyl-d-tryptophan (1-MT), could also attenuated the observed liver injury induced by this HBV-specific CTL. The expression levels of cytokine and chemokine mRNAs in the livers of HBV-Tg/IDO-WT mice were higher than those in the livers of HBV-Tg/IDO-KO mice. The administration of kynurenine aggravated the liver injury in HBV-Tg/IDO-KO mice injected with HBV-specific CTL. Simultaneous injection of recombinant murine interferon (IFN-γ) and kynurenine also increased the ALT levels in HBV-Tg/IDO-KO mice. The liver injury induced by IFN-γ and kynurenine was improved in HBV-Tg/tumor necrosis factor-α-KO mice. CONCLUSION Kynurenine and IFN-γ induced by the administration with HBV-specific CTL are cooperatively involved in the progression of liver injury in acute hepatitis model. Our results may lead to a new therapy for the acute liver injury caused by HBV infection.
Collapse
Affiliation(s)
- Hirofumi Ohtaki
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kazuki Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tetsuya Ishikawa
- Department of Medical Technology, Nagoya University School of Health Sciences, 1-20 Daikominami-1-chome, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Masato Hoshi
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Manabu Takamatsu
- Department of Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hisataka Moriwaki
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Kuniaki Saito
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
12
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Long-Term Follow-up of Children With Postnatal Immunoprophylaxis Failure Who Were Infected With Hepatitis B Virus Surface Antigen Gene Mutant. J Infect Dis 2013; 207:1047-57. [DOI: 10.1093/infdis/jis943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Huang CH, Yuan Q, Chen PJ, Zhang YL, Chen CR, Zheng QB, Yeh SH, Yu H, Xue Y, Chen YX, Liu PG, Ge SX, Zhang J, Xia NS. Influence of mutations in hepatitis B virus surface protein on viral antigenicity and phenotype in occult HBV strains from blood donors. J Hepatol 2012; 57:720-9. [PMID: 22634131 DOI: 10.1016/j.jhep.2012.05.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/26/2012] [Accepted: 05/12/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS This study aimed at investigating mutations in the hepatitis B surface protein (HBsAg) in occult hepatitis B virus (HBV) infection (OBI) and their influence on viral antigenicity and phenotype. METHODS The characteristics of 61 carriers with OBI (OBI group), 153 HBsAg(+) carriers with serum HBsAg ≤ 100 IU/ml (HBsAg-L group) and 54 carriers with serum HBsAg >100 IU/ml (HBsAg-H group) from 38,499 blood donors were investigated. Mutations in the major hydrophilic region (MHR) of the viral sequences were determined. Thirteen representative MHR mutations observed in OBI sequences were antigenically characterized with a panel of monoclonal antibodies (MAbs) and commercial HBsAg immunoassays and functionally characterized in HuH7 cells and hydrodynamically injected mice. RESULTS Of 61 OBI sequences, 34 (55.7%) harbored MHR mutations, which was significantly higher than the frequency in either the HBsAg-L (34.0%, p=0.003) or the HBsAg-H group (17.1%, p<0.001). Alterations in antigenicity induced by the 13 representative MHR mutations identified in the OBI group were assessed by reacting recombinant HBV mutants with 30 different MAbs targeting various epitopes. Four out of the 13 mutations (C124R, C124Y, K141E, and D144A) strongly decreased the analytical sensitivity of seven commercial HBsAg immunoassays, and 10 (G119R, C124Y, I126S, Q129R, S136P, C139R, T140I, K141E, D144A, and G145R) significantly impaired virion and/or S protein secretion in both HuH7 cells and mice. CONCLUSIONS MHR mutations alter antigenicity and impair virion secretion, both of which may contribute to HBsAg detection failure in individuals with OBI.
Collapse
Affiliation(s)
- Cheng-Hao Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, Fujian Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. Semin Immunopathol 2012; 35:23-38. [PMID: 22814721 DOI: 10.1007/s00281-012-0331-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the main causes of chronic liver diseases. Whether HBV infection is cleared or persists is determined by both viral factors and host immune responses. It becomes clear that innate immunity is of importance in protecting the host from HBV infection and persistence. However, HBV develops strategies to suppress the antiviral immune responses. A combined therapeutic strategy with both viral suppression and enhancement of antiviral immune responses is needed for effective long-term clearance and cure for chronic HBV infection. We and others confirmed that bifunctional siRNAs with both gene silencing and innate immune activation properties are beneficial for inhibition of HBV and represent a potential approach for treatment of viral infection. Understanding the nature of liver innate immunity and their roles in chronic HBV progression and HBV clearance may aid in the design of novel therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
16
|
Chang CP, Yang MC, Lei HY. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption. PLoS One 2011; 6:e28323. [PMID: 22163006 PMCID: PMC3230628 DOI: 10.1371/journal.pone.0028323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/05/2011] [Indexed: 12/11/2022] Open
Abstract
Interferon-gamma (IFN-γ), a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A) can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP) is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1) translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ−/− mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.
Collapse
Affiliation(s)
- Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infectious Disease and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chen Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infectious Disease and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Ryu HJ, Kim DY, Park JY, Chang HY, Lee MH, Han KH, Chon CY, Ahn SH. Clinical features and prognosis of hepatocellular carcinoma with respect to pre-S deletion and basal core promoter mutations of hepatitis B virus Genotype C2. J Med Virol 2011; 83:2088-95. [DOI: 10.1002/jmv.22238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhang G, Li Z, Han Q, Li N, Zhu Q, Li F, Lv Y, Chen J, Lou S, Liu Z. Altered TNF-α and IFN-γ levels associated with PD1 but not TNFA polymorphisms in patients with chronic HBV infection. INFECTION GENETICS AND EVOLUTION 2011; 11:1624-30. [PMID: 21712100 DOI: 10.1016/j.meegid.2011.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/31/2011] [Accepted: 06/07/2011] [Indexed: 02/06/2023]
Abstract
Production of tumor necrosis factor (TNF)-α and interferon (IFN)-γ, two important cytokines involved in the immune responses to hepatitis B virus (HBV) infection, may be influenced by gene polymorphisms of TNFA and PD1. This study determined the associations of serum TNF-α and IFN-γ levels with TNFA promoter -308 G/A and -238 G/A and PD1 -606 G/A and +8669 G/A polymorphisms in chronic HBV patients and healthy controls. The results showed that TNFA polymorphisms had no association with TNF-α and IFN-γ levels. However, patients with PD1 -606 AA genotype had lower TNF-α and IFN-γ levels. HBV infection in patients with PD1 +8669 GG genotype altered TNF-α to higher levels compared with controls. HBV patients with PD1 -606A/+8669A or -606G/+8669A haplotype tended to have significantly lower or higher TNF-α and IFN-γ levels, respectively. Combined with the lower frequency of PD1 +8669 GG genotype in HBV patients and the minor contribution of PD1 -606 G allele to the protective role of PD1 +8669 G allele, it is indicated that PD1 -606 G allele in a haplotype with PD1 +8669 G allele may have strong inhibitory effect on programmed cell death-1 (PD-1) function and thus reduce its negative impact on T-cell activation and function, leading to higher cytokines secretion and exhibiting a protective role, while the minor predisposing role of PD1 -606 AA genotype to chronic HBV infection may be incurred by decreasing the inhibitory effect on PD-1 function.
Collapse
Affiliation(s)
- Guoyu Zhang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang J, Zhao W, Cheng L, Guo M, Li D, Li X, Tan Y, Ma S, Li S, Yang Y, Chen L, Wang S. CD137-mediated pathogenesis from chronic hepatitis to hepatocellular carcinoma in hepatitis B virus-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:7654-62. [PMID: 21059892 DOI: 10.4049/jimmunol.1000927] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is characterized by sustained liver inflammation with an influx of lymphocytes, which contributes to the development of cirrhosis and hepatocellular carcinoma. The mechanisms underlying this immune-mediated hepatic pathogenesis remain ill defined. We report in this article that repetitive infusion of anti-CD137 agonist mAb in HBV-transgenic mice closely mimics this process by sequentially inducing hepatitis, fibrosis, cirrhosis, and, ultimately, liver cancer. CD137 mAb initially triggers hepatic inflammatory infiltration due to activation of nonspecific CD8(+) T cells with memory phenotype. CD8(+) T cell-derived IFN-γ plays a central role in the progression of chronic liver diseases by actively recruiting hepatic macrophages to produce fibrosis-promoting cytokines and chemokines, including TNF-α, IL-6, and MCP-1. Importantly, the natural ligand of CD137 was upregulated significantly in circulating CD14(+) monocytes in patients with chronic hepatitis B infection and closely correlated with development of liver cirrhosis. Thus, sustained CD137 stimulation may be a contributing factor for liver immunopathology in chronic HBV infection. Our studies reveal a common molecular pathway that is used to defend against viral infection but also causes chronic hepatic diseases.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Graduate University, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ito H, Ando K, Ishikawa T, Seishima M. Role of tumor necrosis factor-.ALPHA. in acute hepatitis B virus infection. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Hepatitis B and C in hematopoietic stem cell transplant. Mediterr J Hematol Infect Dis 2009; 1:e2009016. [PMID: 21415955 PMCID: PMC3033124 DOI: 10.4084/mjhid.2009.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/02/2009] [Indexed: 02/08/2023] Open
Abstract
Although the risk of acquisition of hepatitis B or hepatitis C virus through blood products has considerably reduced since the last decade, some infected patients are candidates to stem cell transplantation. Others may have no alternative than an infected donor. In all these cases, recipients of transplant are prone to short and long term liver complications. The evolution of liver tests under chemotherapy before transplant may give useful information to anticipate on the risk of hepatitis reactivation after transplant, both for HBv and HCv. More than sixty percent of the patients who are HBsAg-positive before transplant reactivate after transplant, and 3% develop acute severe liver failure. Because both viral replication and immune reconstitution are the key factors for reactivation, it is crucial to closely follow liver function tests and viral load during the first months of transplant, and to pay a special attention in slowly tapering the immunosuppression in these patients. Lamivudine reduces HBv viremia, but favors the emergence of HBv polymerase gene mutants and should be individually discussed. Both in case of HBv or HCv hepatitis reactivation with ALT ≥ 10N concomitantly to an increase in viral load at time of immune reconstitution, steroids should be given. In case there is no alternative than a HBv or HCv positive geno-identical donor, the risk of viral hepatitis, including acute liver failure and late complications, should be balanced with the benefit of transplant in a given situation.
Collapse
|
22
|
Shiraki M, Terakura Y, Iwasa J, Shimizu M, Miwa Y, Murakami N, Nagaki M, Moriwaki H. Elevated serum tumor necrosis factor-alpha and soluble tumor necrosis factor receptors correlate with aberrant energy metabolism in liver cirrhosis. Nutrition 2009; 26:269-75. [PMID: 19695831 DOI: 10.1016/j.nut.2009.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/22/2009] [Accepted: 04/22/2009] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Protein-energy malnutrition is frequently observed in patients with liver cirrhosis and is associated with their poor prognosis. Tumor necrosis factor-alpha (TNF-alpha) is elevated in those patients and may contribute to the alterations of energy metabolism. Our aim was to characterize the aberrant energy metabolism in cirrhotic patients with regard to TNF-alpha. METHODS Twenty-four patients (mean age 65 +/- 6 y) with viral liver cirrhosis who did not have hepatocellular carcinoma or acute infections were studied. Twelve healthy volunteers were recruited after matching for age, gender, and body mass index with the patients and served as controls (59 +/- 8 y). Serum levels of TNF-alpha, soluble 55-kDa TNF receptor (sTNF-R55), soluble 75-kDa TNF receptor (sTNF-R75), and leptin were determined by immunoassay. Substrate oxidation rates of carbohydrate and fat were estimated by indirect calorimetry after overnight bedrest and fasting. RESULTS In cirrhotic patients, serum levels of TNF-alpha, sTNF-R55, and sTNF-R75 were significantly higher than those in the controls and correlated with the increasing grade of disease severity as defined by Child-Pugh classification. Serum leptin concentration was not different between cirrhotics and controls but correlated with their body mass index. The decrease in substrate oxidation rate of carbohydrate and the increase in substrate oxidation rate of fat significantly correlated with serum TNF-alpha, sTNF-R55, and sTNF-R75 concentrations. CONCLUSION Tumor necrosis factor-alpha might be associated with the aberrant energy metabolism in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Makoto Shiraki
- Department of Internal Medicine, Gifu University School of Medicine, Yanagido, Gifu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Iwamoto N, Ito H, Ando K, Ishikawa T, Hara A, Taguchi A, Saito K, Takemura M, Imawari M, Moriwaki H, Seishima M. Upregulation of indoleamine 2,3-dioxygenase in hepatocyte during acute hepatitis caused by hepatitis B virus-specific cytotoxic T lymphocytes in vivo. Liver Int 2009; 29:277-83. [PMID: 18397228 DOI: 10.1111/j.1478-3231.2008.01748.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Indoleamine-2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme inducing suppression of T-cell function and immune tolerance. In hepatitis B virus (HBV) transgenic (Tg) mice, the adoptive transfer of HBV-specific cytotoxic T lymphocytes (CTL) causes a necroinflammatory liver disease that is histologically similar to acute viral hepatitis in man. The present study aimed to determine IDO expression in the liver and hepatocytes during an acute hepatitis model. METHODS Serum l-kynurenine (l-Kyn) concentration in HBV Tg mice administered with HBV-specific CTL was measured over time, together with serum levels of alanine aminotransferase (ALT). Furthermore, we examined the expression of IDO in the total liver and isolated hepatocytes of HBV Tg mice after CTL injection using immunohistochemical analysis and reverse-transcription polymerase chain reaction (PCR). RESULTS In HBV Tg mice, HBV-specific CTL induced, over the course of several days, a chronic increase in serum l-Kyn levels, which was associated with a sustained enhancement of liver IDO activity. In particular, IDO expression was enhanced in the liver parenchymal cells (hepatocytes) after HBV-specific CTL injection both in immunohistochemical analysis and in reverse-transcription PCR. Moreover, murine recombinant interferon-gamma (IFN-gamma) directly increased the IDO expression in primary hepatocytes in vitro. CONCLUSIONS Cytotoxic T lymphocytes transduction results in the upregulation of IDO, which might downregulate T-cell responsiveness. Our findings provide evidence that hepatocyte itself expresses IDO and increases levels of l-Kyn in the blood in acute lethal hepatitis of mice. These data indicate that HBV infection facilitates the induction of IDO in response to proinflammatory cytokines, particularly IFN-gamma.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol 2009; 43:182-90. [PMID: 18633332 DOI: 10.1097/mcg.0b013e3181624464] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GOALS This study attempts to determine expressions of intrahepatic proinflammatory and anti-inflammatory cytokines and their secreting immunocytes to evaluate their roles in the pathogenesis of acute-on-chronic liver failure (ACLF) in chronically hepatitis B virus (HBV)-infected patients. BACKGROUND ACLF generally affects patients with established, compensated chronic liver diseases who develop an acute deterioration in liver function. In China, HBV-associated ACLF patients account for more than 80% of ACLF patients owing to a high prevalence of chronic HBV infection. Clinical observation showed that the deterioration of this disease may correlate with host immune responses, but related underlying mechanism remains largely unknown. STUDY In situ expressions of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), interleukin-10 (IL-10), and their secreting CD4, CD8 T cells, and Kupffer cells (KCs) were analyzed in the livers of patients with ACLF, chronic hepatitis B (CHB), and normal controls (NC) using immunohistochemistry. RESULTS Intrahepatic proinflammatory IFN-gamma and TNF-alpha expressions were markedly up-regulated in ACLF compared with CHB and NC. However, similar anti-inflammatory IL-10 expressions were observed in ACLF and CHB. IFN-gamma overexpression correlated significantly with increased CD4 and CD8 T-cell accumulation. TNF-alpha up-regulation also correlated significantly with increased KCs. CONCLUSIONS The imbalanced expression of proinflammatory and anti-inflammatory cytokines and increased accumulation of CD4, CD8 T cells, and KCs may contribute to immunopathogenesis in HBV-infected ACLF.
Collapse
|
25
|
Ito H, Ando K, Ishikawa T, Saito K, Takemura M, Imawari M, Moriwaki H, Seishima M. Role of TNF-α Produced by Nonantigen-Specific Cells in a Fulminant Hepatitis Mouse Model. THE JOURNAL OF IMMUNOLOGY 2008; 182:391-7. [DOI: 10.4049/jimmunol.182.1.391] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Ito H, Ando K, Ishikawa T, Nakayama T, Taniguchi M, Saito K, Imawari M, Moriwaki H, Yokochi T, Kakumu S, Seishima M. Role of Valpha14+ NKT cells in the development of Hepatitis B virus-specific CTL: activation of Valpha14+ NKT cells promotes the breakage of CTL tolerance. Int Immunol 2008; 20:869-79. [PMID: 18487227 DOI: 10.1093/intimm/dxn046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CTLs are thought to be major effectors for clearing viruses in acute infections including hepatitis B virus (HBV). Persistent HBV infection is characterized by a lack of or a weak CTL response to HBV, which is thought to reflect tolerance to HBV antigens. In the present study, we found that alpha-galactosylceramide (alpha-GalCer), a ligand for Valpha14-positive NKT cells, strongly enhanced the induction and proliferation of HBV-specific CTLs by HBsAg. In HBsAg transgenic mice, which are thought to be tolerant to HBV-encoded antigens, administration of HBsAg or alpha-GalCer alone failed to induce HBsAg-specific CTLs, but they were induced by co-administration of both compounds. Furthermore, by limiting dilution analysis, we confirmed the existence of HBsAg-specific CTL precursors in the HBsAg transgenic mice immunized with HBsAg and alpha-GalCer. A blocking experiment using antibodies to cytokines and CD40 ligand showed that IL-2 and CD40-CD40L interaction mediate the enhancement of CTL induction caused by alpha-GalCer through NKT cell activation. Our results may open up a new method for clearing the virus from patients with persistent HBV infection.
Collapse
Affiliation(s)
- Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Halverscheid L, Mannes NK, Weth R, Kleinschmidt M, Schultz U, Reifenberg K, Schirmbeck R, Nassal M, Blum HE, Reimann J, Geissler M. Transgenic mice replicating hepatitis B virus but lacking expression of the major HBsAg. J Med Virol 2008; 80:583-90. [PMID: 18297704 DOI: 10.1002/jmv.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B Virus (HBV) transgenic mice replicating the viral genome at high level but lacking expression of the small envelope protein (HBsAg) have been produced using a terminally redundant viral DNA construct (HBV 1.4). The generation of viable infectious progeny was dependent on sex and age of mice. Viral mRNA was abundant in liver and kidneys and at low levels in other organs of the mice. No viral particles or HBV envelope proteins could be detected in sera of mice. Despite expression of non-secreted LHBs and MHBs proteins in the liver, there was no accumulation of viral particles in the endoplasmic reticulum of hepatocytes and no necroinflammatory hepatitis was observed. Therefore, these mice represent an excellent model for studies of the role of HBsAg in viral assembly, antiviral immune responses, the further understanding of HBV immunopathogenesis, and the development of antiviral vaccines.
Collapse
|
28
|
Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci U S A 2007; 104:18187-92. [PMID: 17991774 DOI: 10.1073/pnas.0708968104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepadnavirus that is a major cause of acute and chronic hepatitis in humans. Hepatitis B viral infection itself is noncytopathic, and it is the immune response to the viral antigens that is thought to be responsible for hepatic pathology. Previously, we developed a transgenic mouse model of primary HBV infection and demonstrated that the acute liver injury is mediated by nonclassical natural killer (NK)T cells, which are CD1d-restricted, but nonreactive to alpha-GalCer. We now demonstrate a role for NKG2D and its ligands in this nonclassical NKT cell-mediated immune response to hepatitis B virus and in the subsequent acute hepatitis that ensues. Surface expression of NKG2D and one of its ligands (retinoic acid early inducible-1 or RAE-1) are modulated in an HBV-dependent manner. Furthermore, blockade of an NKG2D-ligand interaction completely prevents the HBV- and CD1d-dependent, nonclassical NKT cell-mediated acute hepatitis and liver injury. This study has major implications for understanding activation of NKT cells and identifies a potential therapeutic target in treating hepatitis B viral infection.
Collapse
|
29
|
Abstract
The hepatitis B virus (HBV) is an enveloped, hepatotrophic, oncogenic hepadnavirus that is noncytopathic for hepatocytes. HBV infection results in a variety of outcomes that are determined by the quality, quantity, and kinetics of the host innate and adaptive immune responses. Whether HBV infection is cleared or persists as a progressive or nonprogressive liver disease is determined by both viral and host factors. Replicative intermediates can persist in the liver under immunologic control after resolution of acute or chronic hepatitis B, conferring a risk for reactivation following a course of immunosuppression or chemotherapy.
Collapse
Affiliation(s)
- John M Vierling
- Baylor College of Medicine, 1709 Dryden, Suite 1500, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology 2007; 46:706-15. [PMID: 17626270 DOI: 10.1002/hep.21872] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED The innate immunopathogenesis responsible for the susceptibility to hepatocyte injury in chronic hepatitis B surface antigen carriers is not well defined. In this study, hepatitis B virus (HBV) transgenic mice (named HBs-Tg) were oversensitive to liver injury after immunologic [polyinosinic:polycytidylic acid or concanavalin A (ConA)] or chemical (CCl4) triggering. It was then found that the nonhepatotoxic low dose of ConA for wild-type mice induced severe liver injury in HBs-Tg mice, which was dependent on the accumulated intraheptic natural killer (NK) cells. Expressions of NKG2D ligands (Rae-1 and Mult-1) in hepatocytes were markedly enhanced upon ConA stimulation in HBs-Tg mice, which greatly activated hepatic NK cells via NKG2D/Rae-1 or Mult-1 recognition. Interestingly, the presence of NK T cells was necessary for NK cell activation and worked as positive helper cell possibly by producing interferon-gamma and interleukin-4 in this process. CONCLUSION Our findings for the first time suggested the critical role of NKG2D recognition of hepatocytes by NK cells in oversensitive liver injury during chronic HBV infection.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | | | |
Collapse
|
31
|
Chen Y, Sun R, Jiang W, Wei H, Tian Z. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell- and IFN-gamma-dependent manner. J Hepatol 2007; 47:183-90. [PMID: 17448568 DOI: 10.1016/j.jhep.2007.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/12/2007] [Accepted: 02/22/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS The role of natural killer (NK) cells in the development of hepatitis B virus (HBV)-associated liver injury remains obscure. In this study, we elucidated the role of NK cells in liver injury of HBsAg transgenic mice (HBs-B6), a mimic of human healthy chronic HBsAg carriers, triggered by polyinosinic:polycytidylic acid [Poly(I:C)]. METHODS HBs-B6 or wild B6 mice were intraperitoneally injected with Poly(I:C) at different doses. Liver injury was evaluated by serum transaminase activity and histopathologic changes. RESULTS HBs-B6 mice were over-sensitive to Poly(I:C)-induced liver injury, which was absolutely dependent on the presence of NK cells and IFN-gamma produced by intrahepatic NK cells. Much stronger IFN-gamma receptor expression was observed on hepatocytes of HBs-B6 mice, which was significantly enhanced by Poly(I:C) injection. Treatment with IFN-gammain vitro triggered much higher activation of downstream signals (pSTAT1-IRF-1) in hepatocytes of HBs-B6 mice. Depletion of Kupffer cells and neutralization of endogenous IL-12 did not affect Poly(I:C)-induced over-sensitive liver injury in HBs-B6 mice. CONCLUSIONS NK cells played a critical role in an IFN-gamma dependent, Kupffer cell- and IL-12-independent manner in over-sensitive liver injury triggered by Poly(I:C) in murine chronic HBsAg carriers.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei City, Anhui 230027, PR China
| | | | | | | | | |
Collapse
|
32
|
Satake S, Nagaki M, Kimura K, Moriwaki H. Inhibition of nuclear factor-kappa B induces inflammatory cell migration and exacerbates severe liver injury in hepatitis B virus transgenic mice. Hepatol Res 2007; 37:524-30. [PMID: 17539995 DOI: 10.1111/j.1872-034x.2007.00083.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM Nuclear factor-kappa B (NF-kappaB) has a central role in co-ordinating the expression of a wide variety of genes that control the immune response and it is also recognized as an antiapoptotic transcription factor. In this study, we focused on the role of the NF-kappaB signaling pathway in liver injury induced in hepatitis B virus (HBV) transgenic mice. METHODS A fulminant hepatitis model was created in mice by the adoptive transfer of antigen-specific cytotoxic T lymphocytes (CTLs) into HBV transgenic mice. We used an adenovirus expressing a mutant form of the IkappaB super-repressor (Ad5IkappaB), an NF-kappaB inhibitor, to inhibit the NF-kappaB signaling pathway. RESULTS We observed that pretreatment with Ad5IkappaB increased the migration of inflammatory cells into the liver 6-24 h after a single intravenous injection of antigen-specific CTLs, in comparison to pretreatment with a control adenovirus. We also demonstrated that the presence of the NF-kappaB inhibitor exacerbated severe liver injury and hepatocellular apoptosis 24 h after the injection of the antigen-specific CTLs. CONCLUSION These results suggest that the inhibition of NF-kappaB activity induces severe fulminant hepatitis in HBV transgenic mice.
Collapse
Affiliation(s)
- Shinichi Satake
- Department of Gastroenterology, Gifu Univeristy Graduate School of Medicine, Gifu, Japan
| | | | | | | |
Collapse
|
33
|
Dong Z, Zhang J, Sun R, Wei H, Tian Z. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice. Hepatology 2007; 45:1400-12. [PMID: 17523147 DOI: 10.1002/hep.21597] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED A fraction of HBV carriers have a risk to develop liver cancer. Because liver possesses a strong regeneration capability, surgical resection of cancerous liver or transplantation with healthy liver is an alternate choice for HBV-caused hepatocarcinoma therapy. How HBV infection affects the regeneration of hepatectomized or transplanted liver remains elusive. We report that partial hepatectomy (PHx)-induced liver regeneration was reduced in HBV transgenic (HBV-tg) mice, a model of human HBV infection. PHx markedly triggered natural killer T (NKT) cell accumulation in the hepatectomized livers of HBV-tg mice, simultaneously with enhanced interferon gamma (IFN-gamma) production and CD69 expression on hepatic NKT cells at the early stage of liver regeneration. The impairment of liver regeneration in HBV-tg mice was largely ameliorated by NKT cell depletion, but not by natural killer (NK) cell depletion. Blockage of CD1d-NKT cell interaction considerably alleviated NKT cell activation and their inhibitory effect on regenerating hepatocytes. Neutralization of IFN-gamma enhanced bromodeoxyuridine incorporation in HBV-tg mice after PHx, and IFN-gamma mainly induced hepatocyte cell cycle arrest. Adoptive transfer of NKT cells from regenerating HBV-tg liver, but not from normal mice, could inhibit liver regeneration in recipient mice. CONCLUSION Activated NKT cells negatively regulate liver regeneration of HBV-tg mice in the PHx model.
Collapse
Affiliation(s)
- Zhongjun Dong
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
34
|
Lee LP, Dai CY, Chuang WL, Chang WY, Hou NJ, Hsieh MY, Lin ZY, Chen SC, Hsieh MY, Wang LY, Chen TJ, Yu ML. Comparison of liver histopathology between chronic hepatitis C patients and chronic hepatitis B and C-coinfected patients. J Gastroenterol Hepatol 2007; 22:515-7. [PMID: 17376043 DOI: 10.1111/j.1440-1746.2006.04547.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of the present study was to compare the histological characteristics of livers between chronic hepatitis C (CHC) patients with and without hepatitis B virus (HBV) coinfection. METHODS A total of 336 CHC patients (male/female: 204/132, mean age: 46.1 +/- 11.7 years) were enrolled in the study; 32 patients (9.8%) were positive for hepatitis B surface antigen (HBsAg). The histological characteristics of livers were described according to the Knodell and Scheuer scoring system. RESULTS The proportion of non-intralobular necrosis (score 0) was significantly lower and the mean intralobular necrosis score was higher among CHC patients with HBV coinfection than those without coinfection (43.8% vs 64.5%; 0.84 +/- 1.05 vs 0.53 +/- 0.89). The epidemiological and virological parameters, and other histological scores (periportal necrosis, portal inflammation, total necroinflammation and fibrosis) were not significantly different between these two groups. CONCLUSION Chronic hepatitis C patients with HBV coinfection tend to have more severe intralobular necrosis than those with isolated HCV infection.
Collapse
Affiliation(s)
- Li-Po Lee
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reifenberg K, Hildt E, Lecher B, Wiese E, Nusser P, Ott S, Yamamura KI, Rutter G, Löhler J. IFNgamma expression inhibits LHBs storage disease and ground glass hepatocyte appearance, but exacerbates inflammation and apoptosis in HBV surface protein-accumulating transgenic livers. Liver Int 2006; 26:986-93. [PMID: 16953839 DOI: 10.1111/j.1478-3231.2006.01317.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIMS Interferon gamma (IFNgamma) controls hepatitis B virus replication. As systemic application may cause severe adverse effects, approaches of liver-directed IFNgamma gene therapy may represent an attractive alternative for treatment of chronic viral hepatitis B and thus needs testing in vivo in suitable animal models. METHODS We therefore crossbred Alb-1HBV transgenic mice overexpressing the large HBV surface protein (LHBs) in their livers and developing LHBs storage disease and ground glass hepatocyte appearance with SAP-IFNgamma transgenic animals previously shown to exhibit constitutive hepatic IFNgamma expression, and analyzed the resulting double-transgenic offspring. RESULTS We found that IFNgamma coexpression significantly reduced hepatic LHBs expression and thereby inhibited hepatocellular LHBs storage disease and ground glass hepatocyte appearance. The beneficial antiviral IFNgamma effects as observed in Alb1-HBV SAP-IFNgamma double-transgenic livers were associated with significantly elevated serum ALT concentrations, massive mononuclear cell infiltrates, appearance of Councilman bodies, and increased alpha-PARP (poly(ADP-ribose) polymerase cleavage). CONCLUSIONS Exacerbation of hepatic necroinflammation and increased hepatocellular apoptosis rate in IFNgamma-expressing Alb1-HBV transgenic livers suggest that special precautions be taken for testing approaches of liver-specific IFNgamma expression in patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Kurt Reifenberg
- Central Laboratory Animal Facility, University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Märschenz S, Endres AS, Brinckmann A, Heise T, Kristiansen G, Nürnberg P, Krüger DH, Günther S, Meisel H. Functional analysis of complex hepatitis B virus variants associated with development of liver cirrhosis. Gastroenterology 2006; 131:765-80. [PMID: 16952546 DOI: 10.1053/j.gastro.2006.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 06/08/2006] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Development of cirrhosis in renal transplant recipients with chronic hepatitis B is associated with the accumulation of complex hepatitis B virus (HBV) variants carrying deletions in the C gene and/or preS region and deletions/insertions in the core promoter. Here, we characterized for the first time the phenotype of these complex HBV variants. METHODS Representative full-length genomes of the HBV variants that were isolated and cloned from serum and liver of an immunosuppressed renal transplant recipient before and during end-stage liver disease were transfected into the human hepatoma cell line HuH7 and functionally analyzed. RESULTS The variant genomes showed considerably reduced levels of precore and surface messenger RNA (mRNA) and of the major spliced pregenomic RNA, an increased level of pregenomic RNA, and a partial or complete defect in hepatitis B e antigen, core, and surface protein expression/secretion. Very low amounts of variant core protein with internal deletion were detectable. Reduced hepatitis B surface antigen secretion of some variants correlated with aberrant localization of surface proteins in endoplasmic reticulum. Despite the defects in viral protein expression, enhanced replication and enrichment in competition to wild-type HBV were observed. Enhanced reverse transcription and possibly increased levels of pregenomic RNA seem to be responsible for this effect. CONCLUSIONS Development of cirrhosis is associated with accumulation of complex variants, which exhibit a drastically altered phenotype combining enhanced replication with defects in protein expression. This phenotype appears to be based on the major mutations in the core promoter and C gene but is considerably influenced by additional mutations throughout the genome.
Collapse
Affiliation(s)
- Stefanie Märschenz
- Institut für Virologie (Helmut-Ruska-Haus), Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Hepatocytes contain abundant endoplasmic reticulum (ER) which is essential for protein metabolism and stress signaling. Hepatic viral infections, metabolic disorders, mutations of genes encoding ER-resident proteins, and abuse of alcohol or drugs can induce ER stress. Liver cells cope with ER stress by an adaptive protective response termed unfolded protein response (UPR), which includes enhancing protein folding and degradation in the ER and down-regulating overall protein synthesis. When the UPR adaptation to ER stress is insufficient, the ER stress response unleashes pathological consequences including hepatic fat accumulation, inflammation and cell death which can lead to liver disease or worsen underlying causes of liver injury, such as viral or diabetes-obesity-related liver disease.
Collapse
Affiliation(s)
- Cheng Ji
- Gastroenterology/Liver Division, Keck School of Medicine and the Research Center for Liver Disease, University of Southern California and the USC-UCLA Research Center for Alcoholic Liver and Pancreatic Disease, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
38
|
Takai S, Kimura K, Nagaki M, Satake S, Kakimi K, Moriwaki H. Blockade of neutrophil elastase attenuates severe liver injury in hepatitis B transgenic mice. J Virol 2006; 79:15142-50. [PMID: 16306586 PMCID: PMC1315990 DOI: 10.1128/jvi.79.24.15142-15150.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Serine proteinases produced by polymorphonuclear neutrophils play important roles in neutrophil-mediated tissue injury at inflammatory sites. Although neutrophil recruitment to the liver has been shown to be involved in the exacerbation of liver inflammation, the function of neutrophil elastase (NE) in liver injury remains unclear. Here, we found that administration of an NE inhibitor (NEI) reduced serum alanine aminotransferase (sALT) activity and inflammatory cell infiltration into the liver from 8 to 24 h after injection of antigen-specific cytotoxic T lymphocytes (CTLs) into hepatitis B virus transgenic mice. Furthermore, the NEI treatment reduced the expressions of inflammatory cytokines and chemokines in the liver and tumor necrosis factor alpha production by macrophages. In addition, the NEI treatment suppressed the mRNA expressions of CC chemokine ligand 3 (CCL-3), CCL-4, and macrophage inflammatory protein 2 (MIP-2) in neutrophils in the liver at 8 h after the CTL injection. In support of these results, we confirmed that administration of anti-CCL-3, anti-CCL-4, and anti-MIP-2 monoclonal antibodies suppressed sALT activity and leukocyte migration into the liver. In conclusion, the present results suggest that NE contributes to the early step of the inflammatory cascade in acute viral hepatitis and that NEIs may have potential as therapeutic drugs against acute severe viral hepatitis.
Collapse
Affiliation(s)
- Shinji Takai
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu-shi, Gifu 501-1194, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Chua PK, Wang RYL, Lin MH, Masuda T, Suk FM, Shih C. Reduced secretion of virions and hepatitis B virus (HBV) surface antigen of a naturally occurring HBV variant correlates with the accumulation of the small S envelope protein in the endoplasmic reticulum and Golgi apparatus. J Virol 2005; 79:13483-96. [PMID: 16227269 PMCID: PMC1262590 DOI: 10.1128/jvi.79.21.13483-13496.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We identified two novel naturally occurring mutations (W74L and L77R) in the small S envelope protein of hepatitis B virus (HBV). Mutation L77R alone resulted in >10-fold-reduced secretion of virions. In addition, the 2.8-fold reduction of the extracellular HBV surface antigen (HBsAg) of mutant L77R from transfected Huh7 cells appeared to be correlated with a 1.7-fold reduction of intracellular HBsAg, as measured by enzyme-linked immunosorbent assay (ELISA). Surprisingly, opposite to the ELISA results, Western blot analysis revealed a near-10-fold-increased level of the intracellular mutant small S envelope protein. The discrepancy between ELISA and Western blot data was due to significant accumulation of the mutant L77R HBsAg in the intracellular pellet fraction. In contrast to HBsAg, the secretion of HBeAg was normal in L77R-transfected cells. The wild-type HBsAg was usually more diffuse and evenly distributed in the cytoplasm, often outside the perinuclear endoplasmic reticulum (ER) and Golgi apparatus, as observed by immunofluorescence assay. In contrast, the L77R mutant HBsAg tends to be highly restricted within the ER and Golgi, often accumulated in the Golgi compartments distal from the nucleus. The almost exclusive retention in the ER-Golgi of L77R HBsAg was similar to what was observed when the large envelope protein was overexpressed. These multiple aberrant phenotypes of mutant L77R can be corrected by a second naturally occurring S envelope mutation, W74L. Despite the accumulation of L77R HBsAg in ER-Golgi of transfected Huh7 cells, we detected no increase in Grp78 mRNA and proteins, which are common markers for ER stress response.
Collapse
Affiliation(s)
- Pong Kian Chua
- Institute for Human Infections and Immunology, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | |
Collapse
|
40
|
Inui T, Nakashima H, Habu Y, Nakagawa R, Fukasawa M, Kinoshita M, Shinomiya N, Seki S. Neutralization of tumor necrosis factor abrogates hepatic failure induced by alpha-galactosylceramide without attenuating its antitumor effect in aged mice. J Hepatol 2005; 43:670-8. [PMID: 15922476 DOI: 10.1016/j.jhep.2005.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 01/06/2005] [Accepted: 02/16/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The functions of mouse liver NK1.1+ T (NKT) cells stimulated with alpha-galactosylceramide (alpha-GalCer) are enhanced age dependently, and the antitumor and anti-metastatic effect in the liver is dependent on IFN-gamma. However, hepatic injury is independent of IFN-gamma and Fas/Fas-ligand dependent. The aim of this study is to investigate how tumor necrosis factor is involved in the alpha-GalCer-mediated immune phenomena. METHODS C57BL/6 mice were intraperitoneally treated with anti-TNF antibody 1 h before alpha-GalCer injection, and Fas-ligand expression of NKT cells, the serum ALT levels and histopathological findings of the liver, kidney and lung and mortality after alpha-GalCer injection were evaluated. IFN-gamma production and antitumor immunity in the liver after the intravenous injection of EL-4 cells were also assessed. RESULTS Serum TNF levels after alpha-GalCer injection increased age dependently in mice. Anti-TNF Ab reduced Fas-ligand (Fas-L) expression of NKT cells while it completely inhibited organ injuries induced by alpha-GalCer and thereby reduced the mortality of old mice, whereas it did not affect the IFN-gamma production from NKT cells, the antitumor immunity in the liver nor the mouse survival after EL-4 injection. CONCLUSIONS NKT cells activated by alpha-galactosylceramide participated in either antitumor immunity or hepatic injury using IFN-gamma and TNF/Fas-L, respectively.
Collapse
Affiliation(s)
- Takuo Inui
- Department of Microbiology, National Defense Medical College, Namiki, Tokorozawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang TJ, Lu CC, Tsai JC, Yao WJ, Lu X, Lai MD, Liu HS, Shiau AL. Novel Autoregulatory Function of Hepatitis B Virus M Protein on Surface Gene Expression. J Biol Chem 2005; 280:27742-54. [PMID: 15899887 DOI: 10.1074/jbc.m502209200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hepatitis B virus surface gene consists of a single open reading frame divided into three coding regions: pre-S1, pre-S2, and S. By alternate translation at each of the three initiation codons, L, M, and S proteins can be synthesized. Studies have shown that M protein is not essential for viral replication, virion morphogenesis, or in vitro infectivity. In this study, we show that native M protein can regulate surface gene expression at the transcriptional level. The regulatory effect of M protein is mediated through the CCAAT box within the S promoter. Deletion mapping analysis indicated that the transactivating effect of M protein is mediated through amino acids 1-57 of M protein (the MHBs(au) domain), although its maximal transactivation activity coincides with that of the pre-S2 domain. This conclusion is supported by the fact that disruption of the putative V8 protease site at the pre-S2/S domain junction not only rendered M protein incapable of transactivating the S promoter but also inactivated its nuclear translocation potential. Immunoprecipitation and immunoblot experiments demonstrated that pre-S2 interacts with the three subunits of the CCAAT box-binding factor/nuclear factor Y, the cognate binding protein of the CCAAT box. These results demonstrate and define a novel regulatory role of M protein, which, under natural conditions, may undergo a proteolytic process to generate an MHBs(au) species that will be translocated inside the nucleus, where it will interact with the CCAAT box-binding factor to regulate surface gene expression. Because the CCAAT box is located at a fixed position within numerous promoters, these observations might provide a plausible explanation for hepatitis B virus-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Tsurng-Juhn Huang
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lambert C, Prange R. Development and characterization of a 293 cell line with regulatable expression of the hepatitis B virus large envelope protein. J Virol Methods 2004; 121:181-90. [PMID: 15381355 DOI: 10.1016/j.jviromet.2004.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 06/16/2004] [Accepted: 06/21/2004] [Indexed: 11/23/2022]
Abstract
During the life cycle of hepatitis B virus (HBV) the large L envelope protein plays a pivotal role that is related to its peculiar dual transmembrane topology. To study the complex structure and diverse functions of L under regulated conditions of production, a human 293 cell line stably expressing L under the control of the ecdysone-inducible promoter was generated. Cells demonstrated stringent dose- and time-dependent kinetics of induction with undetectable background expression in the absence of the inducer. Temporal control of L expression allowed to trace (i) its posttranslational reorientation resulting in the mixed topology; (ii) its spatial redistribution from the endoplasmic reticulum to Golgi-like structures; and (iii) its intracellular retention in a membrane-associated configuration. On regulated overproduction, L blocked the secretion of HBV small envelope polypeptides without impairing the cell secretory apparatus. Despite the continuous high-level storage of L within the 293 cell line, no cytopathic effects could be detected. This is in contrast to ground-glass hepatocytes of chronic HBV carriers and HBV transgenic mice and may imply that the intracellular storage of L is particularly damaging to the liver cell.
Collapse
Affiliation(s)
- Carsten Lambert
- Department of Medical Microbiology and Hygiene, University of Mainz, Augustusplatz, 55101 Mainz, Germany
| | | |
Collapse
|
43
|
Nakamoto Y, Suda T, Momoi T, Kaneko S. Different procarcinogenic potentials of lymphocyte subsets in a transgenic mouse model of chronic hepatitis B. Cancer Res 2004; 64:3326-33. [PMID: 15126377 DOI: 10.1158/0008-5472.can-03-3817] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The immune response to hepatitis viruses is believed to be involved in the development of chronic hepatitis; however, its pathogenetic potential has not been clearly defined. The current study, using a transgenic mouse model of chronic hepatitis B, was designed to determine the relative contributions of the immune cell subsets to the progression of liver disease that induces hepatocellular carcinogenesis. Hepatitis B virus transgenic mice were adoptively transferred with CD4+ and CD8+ T cell-enriched or -depleted and B cell-depleted splenocytes obtained from hepatitis B surface antigen-primed, syngeneic nontransgenic donors. The resultant liver disease, hepatocyte apoptosis, regeneration, and tumor development were assessed and compared with the manifestations in mice that had received unfractionated spleen cells. Transfer of CD8(+)-enriched splenocytes caused prolonged disease kinetics, and a marked increase in the extent of hepatocyte apoptosis and regeneration. In 12 of 14 mice the transfer resulted in multiple hepatocellular carcinomas (HCCs) comparable with the manifestations seen in the mice transferred with total splenocytes. In contrast, mice that had received CD4(+)-enriched cells demonstrated lower levels of liver disease and developed fewer incidences of HCC (4 of 17). The experiment also revealed that all of the groups of mice complicated with HCC developed comparable mean numbers and sizes of tumors. B-cell depletion had no effect on disease kinetics in this model. Taken together, these results demonstrate that the pathogenetic events induced by CD8+ T-cell subset are primarily responsible for the induction of chronic liver disease that increases tumor incidence, suggesting their potential in triggering the process of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yasunari Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | |
Collapse
|
44
|
Ben-Ari Z, Mor E, Papo O, Kfir B, Sulkes J, Tambur AR, Tur-Kaspa R, Klein T. Cytokine gene polymorphisms in patients infected with hepatitis B virus. Am J Gastroenterol 2003; 98:144-50. [PMID: 12526950 DOI: 10.1111/j.1572-0241.2003.07179.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Cytokines play a key role in the regulation of the immune response. The maximal capacity of cytokine production varies among individuals and correlates with the polymorphism in the cytokine gene promoters. The aim of this study was to characterize gene polymorphism in patients with chronic hepatitis B virus (HBV) infection and to determine the different patterns in patient subgroups. METHODS The study population consisted of 77 patients with chronic HBV infection (23 low-level HBV replicative carriers, 23 compensated high-level HBV replicative carriers, 21 decompensated liver transplant candidates, and 10 patients with documented hepatocellular carcinoma). The genetic profile of five cytokines was analyzed by polymerase chain reaction-sequence-specific primer (SSP), and subjects were genotyped as high or low producers of tumor necrosis factor-alpha and interleukin (IL)-6, and as high, intermediate, or low producers of transforming growth factor-beta(1), interferon (IFN)-gamma, and IL-10 based on single nucleotide substitutions. The control group included 10 healthy individuals who recovered from HBV infection and 48 healthy controls. RESULTS A highly statistically significant difference in the distribution of the IFN-gamma gene polymorphism (at position +879) was observed between patients with chronic HBV infection and controls. The majority of the patients (65.2%) exhibited the potential to produce low levels of IFN-gamma (A/A genotype) compared with 37.5% of the control group (p = 0.003). Healthy individuals who recovered from HBV infection had a similar distribution of IFN-gamma gene polymorphism as the healthy controls. No statistically significant difference in IFN-gamma production was found between patients with low- and high-level HBV replication and between compensated and decompensated patients. There was also no statistically significant difference in the genetic ability to produce tumor necrosis factor-alpha (at position -308), IL-6 (at position -174), IL-10 (at position -1082, -819, and -592), and transforming growth factor-beta(1) (at position +10 and +25). CONCLUSION These findings suggest an association between the genetic ability to produce low levels of IFN-gamma and the susceptibility to develop chronic HBV infection.
Collapse
Affiliation(s)
- Ziv Ben-Ari
- The Liver Institute, Department of Medicine D, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Inui T, Nakagawa R, Ohkura S, Habu Y, Koike Y, Motoki K, Kuranaga N, Fukasawa M, Shinomiya N, Seki S. Age-associated augmentation of the synthetic ligand- mediated function of mouse NK1.1 ag(+) T cells: their cytokine production and hepatotoxicity in vivo and in vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6127-32. [PMID: 12444115 DOI: 10.4049/jimmunol.169.11.6127] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that the direct antitumor effectors in the liver induced by alpha-galactosylceramide (alpha-GalCer) are NK cells that are activated by the IFN-gamma produced from NK1.1 Ag(+) T cells (NKT cells) specifically stimulated with alpha-GalCer, whereas NKT cells cause hepatocyte injury through the Fas-Fas ligand pathway. In the present study, we investigated how mouse age affects the alpha-GalCer-induced effect using young (6-wk-old), middle-aged (30-wk-old), and old (75-wk-old) mice. The serum IFN-gamma and IL-4 concentrations as well as alanine aminotransferase levels after the alpha-GalCer injection increased in an age-dependent manner. An alpha-GalCer injection also induced an age-dependent increase in the Fas ligand expression on liver NKT cells. Under the stimulus of alpha-GalCer in vitro, the liver mononuclear cells from old and middle-aged mice showed vigorous proliferation, remarkable antitumor cytotoxicity, and enhanced production of both IFN-gamma and IL-4 in comparison to those of young mice, all of which were mediated mainly by NK1.1(+) cells. Furthermore, liver mononuclear cells from old mice stimulated with alpha-GalCer showed a more potent Fas-Fas ligand-mediated cytotoxicity against primary cultured hepatocytes than did those from young mice. Most alpha-GalCer-injected old mice, but no young mice, died, while anti-IFN-gamma Ab pretreatment completely inhibited mouse mortality. However, alpha-GalCer-induced hepatic injury did not improve at all by anti-IFN-gamma Ab treatment, and the Fas-ligand expression of liver NKT cells did not change. Taken together, the synthetic ligand-mediated function of NKT cells is age-dependently up-regulated, and the produced IFN-gamma is responsible for alpha-GalCer-induced antitumor immunity and the mouse mortality, while hepatic injury was unexpectedly found to be independent of IFN-gamma.
Collapse
Affiliation(s)
- Takuo Inui
- Department of Microbiology, National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lau JYN, Tam RC, Liang TJ, Hong Z. Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology 2002; 35:1002-9. [PMID: 11981750 DOI: 10.1053/jhep.2002.32672] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Johnson Y N Lau
- Research and Development, ICN Pharmaceuticals Inc., Costa Mesa, CA 92626, USA.
| | | | | | | |
Collapse
|
47
|
Martin NC, McCullough CT, Bush PG, Sharp L, Hall AC, Harrison DJ. Functional analysis of mouse hepatocytes differing in DNA content: volume, receptor expression, and effect of IFNgamma. J Cell Physiol 2002; 191:138-44. [PMID: 12064456 DOI: 10.1002/jcp.10057] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polyploidy and binuclearity are characteristics of the mammalian liver. Increasing polyploidisation occurs with age and after administration of various drugs and chemicals. This study was designed to examine the function of ploidy by addressing several questions: (1) Does the increase in size of polyploid hepatocytes have any physiological function by altering surface receptor expression such as intercellular adhesion molecule-1 (ICAM-1, CD54) or IFNgammaR? and (2) Do polyploid cells respond differently to inflammatory cytokines such as interferon gamma (IFNgamma)? We have developed a method to accurately measure the volume of live isolated hepatocytes using confocal microscopy and image analysis. Using flow cytometry, we have shown that the expression of ICAM-1 increases with increasing DNA content and IFNgammaR is not detectable on isolated mouse hepatocytes. Diploid (2n), tetraploid (4n) and octoploid (8n) hepatocytes were found to be equally susceptible to IFNgamma-induced apoptosis in vitro. Although the function of polyploidy remains unanswered, we have described some of the characteristics of polyploidy in isolated hepatocytes and in vitro.
Collapse
Affiliation(s)
- Nicola C Martin
- Department of Pathology, University of Edinburgh, Medical School, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Trobonjaca Z, Kröger A, Stober D, Leithäuser F, Möller P, Hauser H, Schirmbeck R, Reimann J. Activating immunity in the liver. II. IFN-beta attenuates NK cell-dependent liver injury triggered by liver NKT cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3763-70. [PMID: 11937527 DOI: 10.4049/jimmunol.168.8.3763] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dendritic cell (DC)-dependent activation of liver NKT cells triggered by a single i.v. injection of a low dose (10-100 ng/mouse) of alpha-galactosyl ceramide (alphaGalCer) into mice induces liver injury. This response is particularly evident in HBs-tg B6 mice that express a transgene-encoded hepatitis B surface Ag in the liver. Liver injury following alphaGalCer injection is suppressed in mice depleted of NK cells, indicating that NK cells play a role in NK T cell-initiated liver injury. In vitro, liver NKT cells provide a CD80/86-dependent signal to alphaGalCer-pulsed liver DC to release IL-12 p70 that stimulates the IFN-gamma response of NKT and NK cells. Adoptive transfer of NKT cell-activated liver DC into the liver of nontreated, normal (immunocompetent), or immunodeficient (RAG(-/-) or HBs-tg/RAG(-/-)) hosts via the portal vein elicited IFN-gamma responses of liver NK cells in situ. IFN-beta down-regulates the pathogenic IL-12/IFN-gamma cytokine cascade triggered by NKT cell/DC/NK cell interactions in the liver. Pretreating liver DC in vitro with IFN-beta suppressed their IL-12 (but not IL-10) release in response to CD40 ligation or specific (alphaGalCer-dependent) interaction with liver NKT cells and down-regulated the IFN-gamma response of the specifically activated liver NKT cells. In vivo, IFN-beta attenuated the NKT cell-triggered induction of liver immunopathology. This study identifies interacting subsets of the hepatic innate immune system (and cytokines that up- and down-regulate these interactions) activated early in immune-mediated liver pathology.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD/physiology
- B7-1 Antigen/physiology
- B7-2 Antigen
- Cells, Cultured
- Coculture Techniques
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Galactosylceramides/administration & dosage
- Galactosylceramides/pharmacology
- Immunosuppressive Agents/pharmacology
- Injections, Intravenous
- Interferon-beta/pharmacology
- Interleukin-12/antagonists & inhibitors
- Interleukin-12/metabolism
- Interleukin-12/physiology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/immunology
- Liver/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Zlatko Trobonjaca
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16:583-94. [PMID: 11970881 DOI: 10.1016/s1074-7613(02)00305-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NKT cells are specialized cells of the immune system that bear both T cell and NK cell markers. Classical NKT cells display TCRs of restricted heterogeneity (Valpha14-Jalpha281) and recognize lipid antigens (e.g., alpha-galactosyl ceramide) presented by nonpolymorphic CD1 molecules. Recently, other nonclassical NKT subsets have been recognized, including NKT cells not reactive with CD1d-alpha-galactosyl ceramide complexes. The biological functions of these cells are unknown. Here, we show that nonclassical NKT cells that are CD1d restricted but nonreactive to alpha-GalCer are activated in response to hepatocytes expressing hepatitis B viral antigens in a transgenic mouse model of acute hepatitis B virus infection. Our results document the first in vivo function for such nonclassical NKT cells and suggest a role for these cells in the host response to HBV infection.
Collapse
MESH Headings
- Acute Disease
- Adoptive Transfer
- Animals
- Antigens, CD1/immunology
- Antigens, CD1d
- Antigens, Viral/genetics
- Disease Models, Animal
- Female
- Galactosylceramides/immunology
- Hepatitis B/immunology
- Hepatitis B e Antigens/genetics
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/immunology
- Homeodomain Proteins/genetics
- Humans
- Killer Cells, Natural/immunology
- Liver/cytology
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Spleen/cytology
- T-Lymphocyte Subsets/immunology
- Transgenes
- Virus Replication
Collapse
Affiliation(s)
- Jody L Baron
- Department of Microbiology/Immunology, Howard Hughes Medical Institute, University of California Medical Center, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
50
|
Fiorentini S, De Panfilis G, Pasolini G, Bonfanti C, Caruso A. A partially humanized monoclonal antibody to human IFN-gamma inhibits cytokine effects both in vitro and in vivo. Scand J Immunol 2002; 55:284-92. [PMID: 11940235 DOI: 10.1046/j.1365-3083.2002.01039.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse monoclonal antibody (MoAb) IGMB17 (muIGMB17) is a high-affinity antibody- neutralizing human interferon (IFN)-gamma and, accordingly, is a potential therapeutic agent for patients suffering from various diseases in which the cytokine is abnormally expressed. The clinical usefulness of mouse antibodies is limited, however, owing to their immunogenicity in humans. MuIGMB17 antibody was partially humanized by engrafting a small portion of mouse light chain (LC) in a human framework and by engineering its heavy chain (HC) in a chimeric version. The engineered IGMB17 (huIGMB17) was able to replicate a range of functional properties of the original muIGMB17, namely, specific binding to IFN-gamma, inhibition of histocompatibility complex (HLA-DR) expression in response to IFN-gamma induction, reversion of IFN-gamma antiproliferative activity on sensitive cell lines. We have hypothesized that as huIGMB17 was able to block IFN-gamma binding to its receptor as well as its murine counterpart, huIGMB17 could neutralize all cytokine activity, also in vivo. Indeed huIGMB17 was capable of interfering with delayed-type hypersensitivity reaction in humans, thus demonstrating its effectiveness in neutralizing IFN-gamma-mediated reactions in vivo.
Collapse
Affiliation(s)
- S Fiorentini
- University of Brescia Medical School, Spedali Civili, piazzale Spedali Civili, Brescia, Italy
| | | | | | | | | |
Collapse
|