1
|
Reichert H, Macleod A, Sharkey L, Peterson C. The peculiar clinical presentation and diagnostic results of a case of widely metastatic cholangiocellular carcinoma in a Siberian Husky dog. Top Companion Anim Med 2024; 63:100923. [PMID: 39393674 DOI: 10.1016/j.tcam.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/05/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
A six-year-old spayed female Siberian Husky dog was evaluated for acute cervical pain and ataxia, respiratory changes, and a two-month history of weight loss. Antemortem diagnostics included complete physical and neurologic examination, complete blood count, serum biochemistry, cervical and thoracic radiographs, abdominal ultrasound (AUS), and splenic and lymph node cytology. Abnormalities included C6-T2 myelopathy, mildly elevated hepatocellular enzymes, sternal lymphadenopathy, ill-defined hepatosplenic nodules, and multifocal lymphadenopathy, with concern for metastatic carcinoma cytologically. Humane euthanasia was elected, and a diagnostic necropsy was performed. Tissues were formalin-fixed and routinely processed before hematoxylin and eosin staining. Affected hepatic tissues were further evaluated by trichrome staining and immunolabeling for cytokeratins 7 and 19 (CK7 and CK19). Expanding and compressing the left lateral liver lobe was a large, infiltrative, tan-yellow, umbilicated mass. The remainder of the hepatic parenchyma contained up to 100 additional similarly appearing intrahepatic masses, and additional masses were observed grossly within the gallbladder, spleen, mesentery, urinary bladder, diaphragm, lungs, pleura, and sternal lymph nodes. Histology of the primary and metastatic lesions was consistent with cholangiocellular carcinoma (CC) with varying degrees of anaplasia, and a marked scirrhous response was confirmed with trichrome staining. The primary hepatic mass was CK19+/CK7- with immunolabeling. Cervical pain represents an atypical presentation for widely metastatic CC and is a suspected sequel of vertebral metastasis or embolic spinal disease. The primary hepatic mass was not captured by routine AUS, and immunolabeling of the primary lesion was negative for CK7 expression, highlighting challenges to antemortem diagnostics and poor cellular differentiation, respectively.
Collapse
Affiliation(s)
- Hannah Reichert
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Alexandra Macleod
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Leslie Sharkey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Cornelia Peterson
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|
2
|
Neuzillet C, Decraecker M, Larrue H, Ntanda-Nwandji LC, Barbier L, Barge S, Belle A, Chagneau C, Edeline J, Guettier C, Huguet F, Jacques J, Le Bail B, Leblanc S, Lewin M, Malka D, Ronot M, Vendrely V, Vibert É, Bureau C, Bourliere M, Ganne-Carrie N, Blanc JF. Management of intrahepatic and perihilar cholangiocarcinomas: Guidelines of the French Association for the Study of the Liver (AFEF). Liver Int 2024; 44:2517-2537. [PMID: 38967424 DOI: 10.1111/liv.15948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 07/06/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common malignant primary liver cancer. iCCA may develop on an underlying chronic liver disease and its incidence is growing in relation with the epidemics of obesity and metabolic diseases. In contrast, perihilar cholangiocarcinoma (pCCA) may follow a history of chronic inflammatory diseases of the biliary tract. The initial management of CCAs is often complex and requires multidisciplinary expertise. The French Association for the Study of the Liver wished to organize guidelines in order to summarize the best evidence available about several key points in iCCA and pCCA. These guidelines have been elaborated based on the level of evidence available in the literature and each recommendation has been analysed, discussed and voted by the panel of experts. They describe the epidemiology of CCA as well as how patients with iCCA or pCCA should be managed from diagnosis to treatment. The most recent developments of personalized medicine and use of targeted therapies are also highlighted.
Collapse
Affiliation(s)
- Cindy Neuzillet
- GI Oncology, Medical Oncology Department, Institut Curie, Versailles Saint-Quentin University, Paris Saclay University, Saint-Cloud, France
| | - Marie Decraecker
- Oncology Digestive Unit, INSERM U1312, University Hospital of Bordeaux, Bordeaux, France
| | - Hélène Larrue
- Department of Hepatology, University Hospital, Toulouse III-Paul Sabatier University, Toulouse, France
| | | | - Louise Barbier
- New Zealand Liver Transplant Unit and HPB Surgery, Te Toka Tumai, University of Auckland, Auckland, New Zealand
| | - Sandrine Barge
- Centre Hospitalier Intercommunal Créteil-CHI Créteil, Créteil, France
| | - Arthur Belle
- Department of Gastroenterology and Digestive Oncology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Julien Edeline
- Department of Medical Oncology, CLCC Eugène Marquis, COSS-UMR S1242, INSERM, Univ Rennes, Rennes, France
| | - Catherine Guettier
- Department of Pathology, APHP University Paris Saclay, Hôpital Bicetre, Paris, France
| | - Florence Huguet
- Radiation Oncology Department, Tenon Hospital, APHP-Sorbonne University, Paris, France
| | | | - Brigitte Le Bail
- Pathology Department, University Hospital of Bordeaux, Bordeaux, France
| | - Sarah Leblanc
- Gastroenterology Department, Private Hospital Jean Mermoz, Ramsay Santé, Lyon, France
| | - Maïté Lewin
- Service de Radiologie, AP-HP-Université Paris Saclay Hôpital Paul Brousse, Villejuif, France
| | - David Malka
- Medical Oncology Department, Institut Mutualiste Monsouris, Paris, France
| | - Maxime Ronot
- Department of Radiology, Beaujon Hospital, APHP Nord Clichy, University Paris Cité, CRI UMR, Paris, France
| | | | - Éric Vibert
- Centre Hepato-Biliaire, AP-HP-Université Paris Saclay Hôpital Paul Brousse, Villejuif, France
| | - Christophe Bureau
- Department of Hepatology, University Hospital, Toulouse III-Paul Sabatier University, Toulouse, France
| | | | | | - Jean-Frédéric Blanc
- Oncology Digestive Unit, INSERM U1312, University Hospital of Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Xu S, Cao L, Chen R, Ye C, Li Q, Jiang Q, Yan F, Wan M, Zhang X, Ruan J. Differential isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 mutation-related landscape in intrahepatic cholangiocarcinoma. Oncologist 2024; 29:e1061-e1072. [PMID: 38842680 PMCID: PMC11299938 DOI: 10.1093/oncolo/oyae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Patients with intrahepatic cholangiocarcinoma (ICC) are prone to recurrence and poor survival. Targeted therapy related to isocitrate dehydrogenase (IDH) is an extremely important treatment. IDH1 and IDH2 mutations are generally thought to have similar effects on the tumor landscape. However, it is doubtful whether these 2 mutations have exactly the same effects on tumor cells and the tumor microenvironment. METHODS All collected tumor samples were subjected to simultaneous whole-exon sequencing and proteome sequencing. RESULTS IDH1 mutations accounted for 12.2%, and IDH2 mutations accounted for 5.5%, all missense mutations. Tumors with IDH mutations had lower proportions of KRAS and TP53 mutations. Mutated genes were obviously enriched in the kinase pathway in the tumors with IDH2 mutations. The signaling pathways were mainly enriched in the activation of cellular metabolic activities and an increase of inhibitory immune cells in the tumors with IDH mutations. Moreover, tumors had unique enrichment in DNA repair in IDH1 mutants and secretion of biological molecules in IDH2 mutants. Inhibitory immune cells might be more prominent in IDH2 mutants, and the expression of immune checkpoints PVR and HLA-DQB1 was more prominent in IDH1 mutants. IDH mutants were more related to metabolism-related and inflammation-immune response clusters, and some belonged to the DNA replication and repair cluster. CONCLUSIONS These results revealed the differential IDH1 and IDH2 mutation-related landscapes, and we have provided an important reference database to guide ICC treatment.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, People’s Republic of China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Feifei Yan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
4
|
Lewinska M, Zhuravleva E, Satriano L, Martinez MB, Bhatt DK, Oliveira DVNP, Antoku Y, Keggenhoff FL, Castven D, Marquardt JU, Matter MS, Erler JT, Oliveira RC, Aldana BI, Al-Abdulla R, Perugorria MJ, Calvisi DF, Perez LA, Rodrigues PM, Labiano I, Banales JM, Andersen JB. Fibroblast-Derived Lysyl Oxidase Increases Oxidative Phosphorylation and Stemness in Cholangiocarcinoma. Gastroenterology 2024; 166:886-901.e7. [PMID: 38096955 DOI: 10.1053/j.gastro.2023.11.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND & AIMS Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.
Collapse
Affiliation(s)
- Monika Lewinska
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Ekaterina Zhuravleva
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Letizia Satriano
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Marta B Martinez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Deepak K Bhatt
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Douglas V N P Oliveira
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Yasuko Antoku
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Friederike L Keggenhoff
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Darko Castven
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Jens U Marquardt
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Matthias S Matter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Janine T Erler
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Rui C Oliveira
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Diego F Calvisi
- University of Regensburg, Institute of Pathology, Regensburg, Germany
| | - Luis Arnes Perez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Ito T, Ishii T, Takeda H, Sumiyoshi S, Tomofuji K, Wakama S, Makino K, Horie H, Kumagai K, Takai A, Uebayashi EY, Ogiso S, Fukumitsu K, Haga H, Seno H, Hatano E. Comprehensive analyses of the clinicopathological features and genomic mutations of combined hepatocellular-cholangiocarcinoma. Hepatol Res 2024; 54:103-115. [PMID: 37699724 DOI: 10.1111/hepr.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
AIM Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer that has two different tumor phenotypes in a single tumor nodule. The relationship between genetic mutations and clinicopathological features of cHCC-CCA remains to be elucidated. METHODS Whole-exome sequencing analyses were carried out in 13 primary and 2 recurrent cHCC-CCAs. The whole-exome analyses and clinicopathological information were integrated. RESULTS TP53 was the most frequently mutated gene in this cohort, followed by BAP1, IDH1/2, and NFE2L2 mutations in multiple cases. All tumors with diameters <3 cm had TP53 mutations. In contrast, six of seven tumors with diameters ≥3 cm did not have TP53 mutations, but all seven tumors had mutations in genes associated with various pathways, including Wnt, RAS/PI3K, and epigenetic modulators. In the signature analysis, the pattern of mutations shown in the TP53 mutation group tended to be more similar to HCC than the TP53 nonmutation group. Mutations in recurrent cHCC-CCA tumors were frequently identical to those in the primary tumor, suggesting that those tumors originated from identical clones of the primary cHCC-CCA tumors. Recurrent and co-occurrent HCC tumors in the same patients with cHCC-CCA had either common or different mutation patterns from the primary cHCC-CCA tumors in each case. CONCLUSIONS The study suggested that there were two subtypes of cHCC-CCA, one involving TP53 mutations in the early stage of the carcinogenic process and the other not involving such mutations. The comparison of the variants between primary and recurrent tumors suggested that cHCC-CCA was derived from an identical clone.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Katsuhiro Tomofuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Wakama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Makino
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Horie
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Kyoto Katsura Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Li Z, Huang N, Du Q, Huang W, Wang B, Wang B, Shen G, Zhang H, Shi S, Wang L. Role of immunophenotypic characterisation in prognostic subtyping of intrahepatic cholangiocarcinoma. Pathology 2023; 55:979-988. [PMID: 37858435 DOI: 10.1016/j.pathol.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 07/23/2023] [Indexed: 10/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is classified by the 5th WHO classification of tumours of the digestive system as large duct type (LDT) and small duct type (SDT), based on the anatomical location, morphological appearances, immunophenotype, and gene events. We evaluated the subtyping system using real-world data and established a supplementary method using immunohistochemical (IHC) detection. We retrospectively investigated 190 cases of surgically resected iCCA and classified them according to histological evaluations and gene detection. The prognostic value of the IHC markers were evaluated according to the relapse-free survival (RFS) and overall survival (OS). Basic histological classification was insufficient, with 61 cases classified as uncertain. This method showed no prognostic value for RFS or OS. The four-marker IHC detection, including EMA, S100P, N-cadherin, and CRP, which classified 68 cases as LDT, 108 cases as SDT, and 14 cases as uncertain, was highly efficient in subtyping and prognosis. The seven-marker method, including CD56, MUC5AC and MUC6, was consistent with the four-marker method. FGFR2 gene fusion was exclusively detected in 20 cases of SDT iCCA, according to the four- and seven-marker IHC detection. This novel method of iCCA classification exhibited diagnostic, prognostic and therapeutic value in clinical practice.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Du
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Huang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingning Wang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guihua Shen
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haifeng Zhang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Gehl V, O'Rourke CJ, Andersen JB. Immunogenomics of cholangiocarcinoma. Hepatology 2023:01515467-990000000-00649. [PMID: 37972940 DOI: 10.1097/hep.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.
Collapse
Affiliation(s)
- Virag Gehl
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
9
|
Li Y, Tan C, Yin X, Zhu S, Cai R, Liao C, Wu Y, Zeng Q, Cai C, Xie W, He X, Wen H, Lin G, He Q, He T, Gu P, Liu C. Mutational spectrum for guiding the decision of adjuvant treatment in patients with resected biliary tract carcinoma. Cancer Med 2023; 12:16076-16086. [PMID: 37341068 PMCID: PMC10469713 DOI: 10.1002/cam4.6261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Systemic chemotherapy or chemoradiation therapy has proven to be effective in treating advanced biliary tract carcinoma (BTC). However, its efficacy in the adjuvant setting remains controversial. Therefore, this study aimed to determine the prognostic significance of genomic biomarkers in resected BTC and their potential role in stratifying patients for adjuvant treatment. METHODS We retrospectively reviewed 113 BTC patients who underwent curative-intent surgery and had available tumor sequencing data. Disease-free survival (DFS) was the primary outcome examined and univariate analysis was used to identify gene mutations with prognostic value. Favorable and unfavoratble gene subsets were distinguished from the selected genes through grouping, respectively. Multivariate Cox regression was used to identify independent prognostic factors of DFS. RESULTS Our results indicated that mutations in ACVR1B, AR, CTNNB1, ERBB3, and LRP2 were favorable mutations, while mutations in ARID1A, CDKN2A, FGFR2, NF1, NF2, PBRM1, PIK3CA, and TGFBR1 were unfavorable mutations. In addition to age, sex, and node positive, favorable genes (HR = 0.15, 95% CI = 0.04-0.48, p = 0.001) and unfavorable genes (HR = 2.86, 95% CI = 1.51-5.29, p = 0.001) were identified as independent prognostic factors for DFS. Out of the 113 patients, only 35 received adjuvant treatment whereas the majority (78) did not. For patients with both favorable and unfavorable mutations undetected, adjuvant treatment showed negative effect on DFS (median DFS: S441 vs. 956 days, p = 0.010), but there was no significant difference in DFS among those in other mutational subgroups. CONCLUSIONS Genomic testing might be useful in guiding the decisions regarding adjuvant treatment in BTC.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chaochao Tan
- Department of Clinical Medical LaboratoryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Xinmin Yin
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Siwei Zhu
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Rongyao Cai
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chunhong Liao
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yifei Wu
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Qihong Zeng
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chengzhi Cai
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Wang Xie
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Xiangyu He
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Hao‐quan Wen
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Guomin Lin
- Shanghai OrigiMed Co., Ltd.ShanghaiChina
| | | | | | - Peng Gu
- Shanghai OrigiMed Co., Ltd.ShanghaiChina
| | - Chang‐jun Liu
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| |
Collapse
|
10
|
Bei Y, He J, Dong X, Wang Y, Wang S, Guo W, Cai C, Xu Z, Wei J, Liu B, Zhang N, Shen P. Targeting CD44 Variant 5 with an Antibody-Drug Conjugate Is an Effective Therapeutic Strategy for Intrahepatic Cholangiocarcinoma. Cancer Res 2023; 83:2405-2420. [PMID: 37205633 PMCID: PMC10345965 DOI: 10.1158/0008-5472.can-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody-drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC (H1D8-drug conjugate), was developed that comprises a humanized anti-CD44v5 mAb conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Because of the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, whereas no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach. SIGNIFICANCE Elevated expression of CD44 variant 5 in intrahepatic cholangiocarcinoma confers a targetable vulnerability using the newly developed antibody-drug conjugate H1D8-DC, which induces potent growth suppressive effects without significant toxicity.
Collapse
Affiliation(s)
- Yuncheng Bei
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xuhui Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Sijie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wan Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Chengjie Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Pingping Shen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- Shenzhen Research Institute of Nanjing University, Shenzhen, PR China
| |
Collapse
|
11
|
Kitagawa A, Osawa T, Noda M, Kobayashi Y, Aki S, Nakano Y, Saito T, Shimizu D, Komatsu H, Sugaya M, Takahashi J, Kosai K, Takao S, Motomura Y, Sato K, Hu Q, Fujii A, Wakiyama H, Tobo T, Uchida H, Sugimachi K, Shibata K, Utsunomiya T, Kobayashi S, Ishii H, Hasegawa T, Masuda T, Matsui Y, Niida A, Soga T, Suzuki Y, Miyano S, Aburatani H, Doki Y, Eguchi H, Mori M, Nakayama KI, Shimamura T, Shibata T, Mimori K. Convergent genomic diversity and novel BCAA metabolism in intrahepatic cholangiocarcinoma. Br J Cancer 2023; 128:2206-2217. [PMID: 37076565 PMCID: PMC10241955 DOI: 10.1038/s41416-023-02256-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity. METHODS We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability. RESULTS We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival. CONCLUSIONS We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutiriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Sho Aki
- Division of Integrative Nutiriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Hisateru Komatsu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Maki Sugaya
- Division of Integrative Nutiriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Keisuke Kosai
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Seiichiro Takao
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yushi Motomura
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Hiroaki Wakiyama
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Hiroki Uchida
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Kohei Shibata
- Department of Gastroenterological Surgery, Oitaken Koseiren Tsurumi Hospital, 4333 Tsurumihara, Beppu, 874-8585, Japan
| | - Tohru Utsunomiya
- Department of Surgery, Oita Prefectural Hospital, 2-8-1 Bunyo, Oita, 870-8511, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Takanori Hasegawa
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yusuke Matsui
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, 997-0052, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Satoru Miyano
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan.
| |
Collapse
|
12
|
Solomou G, Finch A, Asghar A, Bardella C. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers (Basel) 2023; 15:cancers15112883. [PMID: 37296846 DOI: 10.3390/cancers15112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Altered metabolism is a common feature of many cancers and, in some cases, is a consequence of mutation in metabolic genes, such as the ones involved in the TCA cycle. Isocitrate dehydrogenase (IDH) is mutated in many gliomas and other cancers. Physiologically, IDH converts isocitrate to α-ketoglutarate (α-KG), but when mutated, IDH reduces α-KG to D2-hydroxyglutarate (D2-HG). D2-HG accumulates at elevated levels in IDH mutant tumours, and in the last decade, a massive effort has been made to develop small inhibitors targeting mutant IDH. In this review, we summarise the current knowledge about the cellular and molecular consequences of IDH mutations and the therapeutic approaches developed to target IDH mutant tumours, focusing on gliomas.
Collapse
Affiliation(s)
- Georgios Solomou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Asim Asghar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
13
|
Brandi G, Deiana C, Galvani L, Palloni A, Ricci AD, Rizzo A, Tavolari S. Are FGFR and IDH1-2 alterations a positive prognostic factor in intrahepatic cholangiocarcinoma? An unresolved issue. Front Oncol 2023; 13:1137510. [PMID: 37168376 PMCID: PMC10164916 DOI: 10.3389/fonc.2023.1137510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Despite representing some of the most common and investigated molecular changes in intrahepatic cholangiocarcinoma (iCCA), the prognostic role of FGFR and IDH1/2 alterations still remains an open question. In this review we provide a critical analysis of available literature data regarding this topic, underlining the strengths and pitfalls of each study reported. Despite the overall poor quality of current available studies, a general trend toward a better overall survival for FGFR2 rearrangements and, possibly, for FGFR2-3 alterations can be inferred. On the other hand, the positive prognostic role of IDH1/2 mutation seems much more uncertain. In this scenario, better designed clinical trials in these subsets of iCCA patients are needed in order to get definitive conclusions on this issue.
Collapse
Affiliation(s)
- Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Linda Galvani
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Palloni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, “Saverio de Bellis” Research Hospital, Bari, Italy
| | - Alessandro Rizzo
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, Bari, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medicine and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-022-00739-y. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.,Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany.,Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | | |
Collapse
|
15
|
Testa U, Pelosi E, Castelli G. The clinical value of identifying genetic abnormalities that can be targeted in cholangiocarcinomas. Expert Rev Anticancer Ther 2023; 23:147-162. [PMID: 36654529 DOI: 10.1080/14737140.2023.2170878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Cholangiocarcinomas (CCAs) are a heterogenous group of epithelial malignancies originating at any level of the biliary tree and are subdivided according to their location into intrahepatic (iCCA) and extrahepatic (eCCA). AREAS COVERED This review provides an updated analysis of studies of genetic characterization of CCA at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION With the development of genetic sequencing, several driver mutations have been identified and targeted as novel therapeutic approaches, including FGFR2, IDH1, BRAF, NTRK, HER2, ROS, and RET. Furthermore, identification of the cellular and molecular structure of the tumor microenvironment has contributed to the development of novel therapies, such as tumor immunotherapy. Combination therapies of chemotherapy plus targeted molecules or immunotherapy are under evaluation and offer the unique opportunity to improve the outcomes of CCA patients with advanced disease.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
16
|
Duwe L, Munoz-Garrido P, Lewinska M, Lafuente-Barquero J, Satriano L, Høgdall D, Taranta A, Nielsen BS, Ghazal A, Matter MS, Banales JM, Aldana BI, Gao YT, Marquardt JU, Roberts LR, Oliveira RC, Koshiol J, O'Rourke CJ, Andersen JB. MicroRNA-27a-3p targets FoxO signalling to induce tumour-like phenotypes in bile duct cells. J Hepatol 2023; 78:364-375. [PMID: 36848245 DOI: 10.1016/j.jhep.2022.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a heterogeneous and lethal malignancy, the molecular origins of which remain poorly understood. MicroRNAs (miRs) target diverse signalling pathways, functioning as potent epigenetic regulators of transcriptional output. We aimed to characterise miRNome dysregulation in CCA, including its impact on transcriptome homeostasis and cell behaviour. METHODS Small RNA sequencing was performed on 119 resected CCAs, 63 surrounding liver tissues, and 22 normal livers. High-throughput miR mimic screens were performed in three primary human cholangiocyte cultures. Integration of patient transcriptomes and miRseq together with miR screening data identified an oncogenic miR for characterization. MiR-mRNA interactions were investigated by a luciferase assay. MiR-CRISPR knockout cells were generated and phenotypically characterized in vitro (proliferation, migration, colony, mitochondrial function, glycolysis) and in vivo using subcutaneous xenografts. RESULTS In total, 13% (140/1,049) of detected miRs were differentially expressed between CCA and surrounding liver tissues, including 135 that were upregulated in tumours. CCA tissues were characterised by higher miRNome heterogeneity and miR biogenesis pathway expression. Unsupervised hierarchical clustering of tumour miRNomes identified three subgroups, including distal CCA-enriched and IDH1 mutant-enriched subgroups. High-throughput screening of miR mimics uncovered 71 miRs that consistently increased proliferation of three primary cholangiocyte models and were upregulated in CCA tissues regardless of anatomical location, among which only miR-27a-3p had consistently increased expression and activity in several cohorts. FoxO signalling was predominantly downregulated by miR-27a-3p in CCA, partially through targeting of FOXO1. MiR-27a knockout increased FOXO1 levels in vitro and in vivo, impeding tumour behaviour and growth. CONCLUSIONS The miRNomes of CCA tissues are highly remodelled, impacting transcriptome homeostasis in part through regulation of transcription factors like FOXO1. MiR-27a-3p arises as an oncogenic vulnerability in CCA. IMPACT AND IMPLICATIONS Cholangiocarcinogenesis entails extensive cellular reprogramming driven by genetic and non-genetic alterations, but the functional roles of these non-genetic events remain poorly understood. By unveiling global miRNA upregulation in patient tumours and their functional ability to increase proliferation of cholangiocytes, these small non-coding RNAs are implicated as critical non-genetic alterations promoting biliary tumour initiation. These findings identify possible mechanisms for transcriptome rewiring during transformation, with potential implications for patient stratification.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Patricia Munoz-Garrido
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Monika Lewinska
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Juan Lafuente-Barquero
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Letizia Satriano
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Dan Høgdall
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark; Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Andrzej Taranta
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | | | - Awaisa Ghazal
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Matthias S Matter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein-Campus Lübeck, 23558 Lübeck, Germany
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rui C Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, NIH, USA
| | - Colm J O'Rourke
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Jesper B Andersen
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
17
|
Any Role for Microbiota in Cholangiocarcinoma? A Comprehensive Review. Cells 2023; 12:cells12030370. [PMID: 36766711 PMCID: PMC9913249 DOI: 10.3390/cells12030370] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Alterations in the human microbiota have been linked to carcinogenesis in several cancers. To date, few studies have addressed the role of the microbiota in cholangiocarcinoma (CCA). Our work aims to update the knowledge about the role of the microbiota in the CCA microenvironment, and to highlight possible novel insights for the development of new diagnostic, prognostic, or even therapeutic strategies. We thus conducted a review of the literature. In recent years, great progress has been made in understanding the pathogenesis, the clinical and histological behavior, and the molecular profile of CCA. Much evidence suggests that the bile microbiota plays an essential role in biliary diseases, including CCA. Some studies have demonstrated that alterations in the qualitative and quantitative composition of the intestinal commensal bacteria lead to overall cancer susceptibility through various pathways. Other studies suggest that the gut microbiota plays a role in the pathogenesis and/or progression of CCA. The clinical implications are far-reaching, and the role of the microbiota in the CCA microenvironment may lead to considering the exciting implications of implementing therapeutic strategies that target the microbiota-immune system axis.
Collapse
|
18
|
Serra-Camprubí Q, Verdaguer H, Oliveros W, Lupión-Garcia N, Llop-Guevara A, Molina C, Vila-Casadesús M, Turpin A, Neuzillet C, Frigola J, Querol J, Yáñez-Bartolomé M, Castet F, Fabregat-Franco C, Escudero-Iriarte C, Escorihuela M, Arenas EJ, Bernadó-Morales C, Haro N, Giles FJ, Pozo ÓJ, Miquel JM, Nuciforo PG, Vivancos A, Melé M, Serra V, Arribas J, Tabernero J, Peiró S, Macarulla T, Tian TV. Human Metastatic Cholangiocarcinoma Patient-Derived Xenografts and Tumoroids for Preclinical Drug Evaluation. Clin Cancer Res 2023; 29:432-445. [PMID: 36374558 PMCID: PMC9873249 DOI: 10.1158/1078-0432.ccr-22-2551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.
Collapse
Affiliation(s)
- Queralt Serra-Camprubí
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Helena Verdaguer
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Núria Lupión-Garcia
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alba Llop-Guevara
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Molina
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maria Vila-Casadesús
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Anthony Turpin
- Université de Lille, CNRS INSERM UMR9020-U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.,Medical Oncology Department, CHRU Lille, Lille, France
| | - Cindy Neuzillet
- Gastrointestinal Oncology, Medical Oncology Department, Curie Institute, Versailles St-Quentin-Paris Saclay University, Saint-Cloud, France
| | - Joan Frigola
- Clinical Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jessica Querol
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mariana Yáñez-Bartolomé
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Florian Castet
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carles Fabregat-Franco
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carmen Escudero-Iriarte
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Escorihuela
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique J. Arenas
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Bernadó-Morales
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Noemí Haro
- Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Óscar J. Pozo
- Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Josep M. Miquel
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo G. Nuciforo
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Violeta Serra
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain.,Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Josep Tabernero
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Peiró
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| | - Teresa Macarulla
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| | - Tian V. Tian
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| |
Collapse
|
19
|
Ohaegbulam KC, Koethe Y, Fung A, Mayo SC, Grossberg AJ, Chen EY, Sharzehi K, Kardosh A, Farsad K, Rocha FG, Thomas CR, Nabavizadeh N. The multidisciplinary management of cholangiocarcinoma. Cancer 2023; 129:184-214. [PMID: 36382577 DOI: 10.1002/cncr.34541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a lethal malignancy of the biliary epithelium that can arise anywhere along the biliary tract. Surgical resection confers the greatest likelihood of long-term survivability. However, its insidious onset, difficult diagnostics, and resultant advanced presentation render the majority of patients unresectable, highlighting the importance of early detection with novel biomarkers. Developing liver-directed therapies and emerging targeted therapeutics may offer improved survivability for patients with unresectable or advanced disease. In this article, the authors review the current multidisciplinary standards of care in resectable and unresectable cholangiocarcinoma, with an emphasis on novel biomarkers for early detection and nonsurgical locoregional therapy options.
Collapse
Affiliation(s)
- Kim C Ohaegbulam
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yilun Koethe
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Skye C Mayo
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Emerson Y Chen
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kaveh Sharzehi
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adel Kardosh
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Khashayar Farsad
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Flavio G Rocha
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Oncology, Dartmouth School of Medicine, Hanover, New Hampshire, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Roth GS, Neuzillet C, Sarabi M, Edeline J, Malka D, Lièvre A. Cholangiocarcinoma: what are the options in all comers and how has the advent of molecular profiling opened the way to personalised medicine ? Eur J Cancer 2023; 179:1-14. [PMID: 36463640 DOI: 10.1016/j.ejca.2022.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Cholangiocarcinoma is a deadly cancer comprising very heterogenous subtypes with a limited therapeutic arsenal in all comers. However, recent significant advances were made with immunotherapy in the first-line treatment of advanced cholangiocarcinoma, with the addition of durvalumab to cisplatin-gemcitabine chemotherapy showing a survival benefit. In the second line setting, only FOLFOX (5FU/folinic acid-oxaliplatin) is validated by a phase 3 trial, yet with a very modest benefit on survival; new options using 5FU with nanoliposomal-irinotecan may emerge in the next few years. The advent of molecular profiling in advanced cholangiocarcinoma in the last decade revealed frequent targetable alterations such as IDH1 mutations, FGFR2 fusions or rearrangements, HER2 amplification, BRAF V600E mutation and others. This strategy opened the way to personalised medicine for patients which are still fit after first-line treatment and the use of targeted inhibitors in first line constitutes a huge challenge with many ongoing trials to improve patients' care. This review exposes the recent clinical trial findings in non-molecularly selected advanced cholangiocarcinoma, offers a focus on how systematic molecular screening should be structured to allow patients to access to personalised medicine, and details which are the therapeutic options accessible in case of actionable alteration.
Collapse
Affiliation(s)
- Gael S Roth
- Univ. Grenoble Alpes / Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes / Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, Grenoble, France.
| | - Cindy Neuzillet
- Institut Curie, Versailles Saint-Quentin University - Paris Saclay University, Saint-Cloud, France
| | - Matthieu Sarabi
- Medical Oncology Department, Centre Léon Bérard, 28 Rue Laennec, Lyon 69008, France; Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Lyon, France
| | | | - David Malka
- Medical Oncology, Institut Mutualiste Montsouris, Paris, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, University of Rennes 1, INSERM Unité 1242, Rennes, France
| |
Collapse
|
21
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
22
|
Testa U, Pelosi E, Castelli G. Cholangiocarcinoma: Molecular Abnormalities and Cells of Origin. Technol Cancer Res Treat 2023; 22:15330338221128689. [PMID: 36872875 PMCID: PMC9989414 DOI: 10.1177/15330338221128689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 03/07/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are a group of heterogeneous epithelial malignancies that can originate at the level of any location of the biliary tree. These tumors are relatively rare but associated with a high rate of mortality. CCAs are morphologically and molecularly heterogeneous and for their location can be distinguished as intracellular and extracellular, subdivided into perihilar and distal. Recent epidemiological, molecular, and cellular studies have supported that the consistent heterogeneity observed for CCAs may result from the convergence of various key elements mainly represented by risk factors, heterogeneity of the associated molecular abnormalities at genetic and epigenetic levels and by different potential cells of origin. These studies have consistently contributed to better defining the pathogenesis of CCAs and to identify in some instances new therapeutic targets. Although the therapeutic progress were still limited, these observations suggest that a better understanding of the molecular mechanisms underlying CCA in the future will help to develop more efficacious treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| |
Collapse
|
23
|
FGFR Inhibitors in Cholangiocarcinoma-A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 2022; 11:cells11233929. [PMID: 36497187 PMCID: PMC9737583 DOI: 10.3390/cells11233929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinomas (CCAs) are rare but aggressive tumours with poor diagnosis and limited treatment options. Molecular targeted therapies became a promising proposal for patients after progression under first-line chemical treatment. In light of an escalating prevalence of CCA, it is crucial to fully comprehend its pathophysiology, aetiology, and possible targets in therapy. Such knowledge would play a pivotal role in searching for new therapeutic approaches concerning diseases' symptoms and their underlying causes. Growing evidence showed that fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) pathway dysregulation is involved in a variety of processes during embryonic development and homeostasis as well as tumorigenesis. CCA is known for its close correlation with the FGF/FGFR pathway and targeting this axis has been proposed in treatment guidelines. Bearing in mind the significance of molecular targeted therapies in different neoplasms, it seems most reasonable to move towards intensive research and testing on these in the case of CCA. However, there is still a need for more data covering this topic. Although positive results of many pre-clinical and clinical studies are discussed in this review, many difficulties lie ahead. Furthermore, this review presents up-to-date literature regarding the outcomes of the latest clinical data and discussion over future directions of FGFR-directed therapies in patients with CCA.
Collapse
|
24
|
Duwe L, Fouassier L, Lafuente-Barquero J, Andersen JB. Unraveling the actin cytoskeleton in the malignant transformation of cholangiocyte biology. Transl Oncol 2022; 26:101531. [PMID: 36113344 PMCID: PMC9483793 DOI: 10.1016/j.tranon.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Correct actin cytoskeleton organization is vital in the liver organ homeostasis and disease control. Rearrangements of the actin cytoskeleton may play a vital role in the bile duct cells cholangiocytes. An abnormal actin network leads to aberrant cell morphology, deregulated signaling networks and ultimately triggering the development of cholangiocarcinoma (CCA) and paving the route for cancer cell dissemination (metastasis). In this review, we will outline alterations of the actin cytoskeleton and the potential role of this dynamic network in initiating CCA, as well as regulating the course of this malignancy. Actin rearrangements not only occur because of signaling pathways, but also regulate and modify cellular signaling. This emphasizes the importance of the actin cytoskeleton itself as cause for aberrant signaling and in promoting tumorigenic phenotypes. We will highlight the impact of aberrant signaling networks on the actin cytoskeleton and its rearrangement as potential cause for CCA. Often, these exact mechanisms in CCA are limited understood and still must be elucidated. Indeed, focusing future research on how actin affects and regulates other signaling pathways may provide more insights into the mechanisms of CCA development, progression, and metastasis. Moreover, manipulation of the actin cytoskeleton organization highlights the potential for a novel therapeutic area.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark.
| |
Collapse
|
25
|
Andersen JB. Stromal yin-yang of myofibroblasts and endothelial cells in the progression of intrahepatic cholangiocarcinoma. Hepatology 2022; 76:1233-1236. [PMID: 35506195 DOI: 10.1002/hep.32558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Jesper B Andersen
- Biotech Research and Innovation Center, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Ma K, Wang Y, Zhang Y, Sun H, Zhang X, Sun C, Zhang B, Zhang Y, Cheng H, Liu A, Wang M, Han B. Clinical Practice of Targeted Capture Sequencing to Identify Actionable Alterations in Cholangiocarcinoma. Cancers (Basel) 2022; 14:cancers14205062. [PMID: 36291846 PMCID: PMC9600135 DOI: 10.3390/cancers14205062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The early diagnosis and treatment of cholangiocarcinoma (CCA) remain a challenge worldwide. Genetic testing promises to solve these problems. Due to the different mutation landscapes across populations and the paucity of sequencing data of Chinese patients with CCA, the existing mutation landscape is insufficient to reflect the mutation characteristics of Chinese patients. Thus, we retrospectively analyzed 72 Chinese patients with CCA who had received genetic testing of targeted capture sequencing. A total of 2152 somatic mutations were detected in 56 (77.78%) patients, of which, the frequently mutated driver genes were TP53 (27.78%), KMT2D (23.81%), KMT2C (20.63%), BCOR (18.06%), APC (15.28%), BAP1 (13.89%), ARID1A (12.50%), NF1 (12.50%), PIK3CA (12.50%), KRAS (11.11%), and LRP1B (11.11%). Most mutations were enriched in NRF2, TP53, and TGF-Beta oncogenic signaling pathways and cadherin repeat domains which were associated with intercellular adhesion. Based on cancer-related public databases and multiple protein function prediction algorithms, we identified 118 novel pathogenic or likely pathogenic somatic mutations and 77 actionable alterations. Molecular analysis of tumors from a precision oncology perspective can provide potential targets for early diagnosis and treatment of CCA and assist physicians in clinical decision making.
Collapse
Affiliation(s)
- Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuanzheng Zhang
- Collage of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Hongfa Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xuhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chuandong Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Zhang
- School of Business Administration, Northeastern University, Shenyang 110169, China
| | - Haoyue Cheng
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ao Liu
- The Sixth Medical Center, Chinese PLA Medical School, Beijing 100853, China
| | - Mengyao Wang
- Department of Research and Development, Shenzhen Byoryn Technology Co., Ltd., Shenzhen 518122, China
- Correspondence: (M.W.); (B.H.); Tel.: +86-0532-96166 (B.H.)
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Correspondence: (M.W.); (B.H.); Tel.: +86-0532-96166 (B.H.)
| |
Collapse
|
27
|
Høgdall D, O'Rourke CJ, Larsen FO, Zarforoushan S, Christensen TD, Ghazal A, Boisen MK, Muñoz-Garrido P, Johansen JS, Andersen JB. Whole blood microRNAs capture systemic reprogramming and have diagnostic potential in patients with biliary tract cancer. J Hepatol 2022; 77:1047-1058. [PMID: 35750139 DOI: 10.1016/j.jhep.2022.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Late diagnosis is a critical factor undermining clinical management of patients with biliary tract cancer (BTC). While biliary tumours display extensive inter-patient heterogeneity, the host immune response may be comparatively homogenous, providing diagnostic opportunities. Herein, we investigated whether cancer-associated systemic reprogramming could be detected non-invasively to improve diagnosis of BTC. METHODS In this prospective Danish study, whole blood (WB) microRNA (miRNA) profiling was performed in samples from 218 patients with BTC, 99 healthy participants, and 69 patients with differential diagnoses split into discovery (small RNA-sequencing) and validation (RT-qPCR) cohorts. miRNA expression and activity were further investigated in 119 and 660 BTC tissues, respectively. RESULTS Four WB miRNAs (let-7a-3p, miR-92b-5p, miR-145-3p, miR-582-3p) were identified and validated as diagnostic of BTC on univariable analysis. Two diagnostic miRNA indexes were subsequently identified that were elevated in patients with BTC and in patients with differential diagnoses, compared to healthy participants. The combination of these miRNA indexes with serum CA 19-9 significantly improved the diagnostic performance of CA 19-9 alone, consistently achieving superior AUC values irrespective of clinical setting (minimum AUC >0.84) or tumour location (minimum AUC >0.87). The diagnostic information captured by miRNA indexes was not recapitulated by routine clinical measurements. Index miRNA expression in BTC tissues was associated with distinct pathobiological and immune features. CONCLUSIONS WB miRNA profiles are altered in patients with BTC. Quantification of miRNA indexes in combination with serum CA 19-9 has the potential to improve early diagnosis of BTC, pending further validation. LAY SUMMARY Surgery is currently the only curative intervention for patients with biliary tract cancer (BTC). However, resection is not possible for most patients who are diagnosed with late-stage disease. With the aim of identifying new early diagnostic opportunities, we analysed circulating microRNAs (small non-coding RNAs whose role in cancer is being increasingly recognised) in whole blood samples. We identified a microRNA signature that could distinguish patients with BTC from healthy participants. These miRNAs significantly improved the diagnostic potential of the routinely measured biomarker, CA 19-9, and were implicated in distinct immune processes in tumour tissues.
Collapse
Affiliation(s)
- Dan Høgdall
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Finn O Larsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Shahryar Zarforoushan
- Department of Radiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Troels D Christensen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Awaisa Ghazal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mogens K Boisen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Patricia Muñoz-Garrido
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
28
|
Tanaka M, Kunita A, Yamagishi M, Katoh H, Ishikawa S, Yamamoto H, Abe J, Arita J, Hasegawa K, Shibata T, Ushiku T. KRAS mutation in intrahepatic cholangiocarcinoma: Linkage with metastasis-free survival and reduced E-cadherin expression. Liver Int 2022; 42:2329-2340. [PMID: 35833881 DOI: 10.1111/liv.15366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Although KRAS mutations are the major driver of intrahepatic cholangiocarcinoma (ICC), their role remains unexplored. This study aimed to elucidate the prognostic effects, association with clinicopathologic characteristics and potent functions of KRAS mutations in ICC. METHODS A hundred and seven resected stage I-III ICCs were analysed for KRAS mutation status and its link with clinicopathological features. An independent validation cohort (n = 138) was included. In vitro analyses using KRAS-mutant ICC cell lines were performed. RESULTS KRAS mutation was significantly associated with worse overall survival in stage I-III ICCs, which was validated in an independent cohort. Recurrence-free survival did not significantly differ between cases with and without KRAS mutations, but if limited to recurrence with extrahepatic metastasis, KRAS-mutant cases showed significantly worse distant metastasis-free survival than KRAS-wild cases showed. KRAS mutations were associated with frequent tumour budding with reduced E-cadherin expression. In vitro, KRAS depletion caused marked inhibition of cell growth and migration together with E-cadherin upregulation in KRAS-mutant ICC cells. The RNA-sequencing assay revealed that KRAS depletion caused MYC pathway downregulation and interferon pathway upregulation. CONCLUSIONS Our observations suggest that KRAS mutations are associated with aggressive behaviour of ICC, especially the development of extrahepatic metastasis. Mutant KRAS is likely to change the adhesive status of ICC cells, affect the responsiveness of tumour cells to interferon immune signals, and consequently promote extrahepatic metastasis. KRAS mutation status, which predicts the prognoses of patients with ICC after surgical resection, is expected to help stratify patients better for individual postoperative treatment strategies.
Collapse
Affiliation(s)
- Mariko Tanaka
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Makoto Yamagishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Junichi Arita
- Department of Surgery, Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Brown ZJ, Patwardhan S, Bean J, Pawlik TM. Molecular diagnostics and biomarkers in cholangiocarcinoma. Surg Oncol 2022; 44:101851. [PMID: 36126350 DOI: 10.1016/j.suronc.2022.101851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Regardless of anatomic origin, cholangiocarcinoma is generally an aggressive malignancy with a relatively high case fatality. Surgical resection with curative intent remains the best opportunity to achieve meaningful long-term survival. Most patients present, however, with advanced disease and less than 20% of patients are candidates for surgical resection. Unfortunately, even patients who undergo resection have a 5-year survival that ranges from 20 to 40%. Biomarkers are indicators of normal, pathologic, or biologic responses to an intervention and can range from a characteristic (i.e., blood pressure reading which can detect hypertension) to specific genetic mutations or proteins (i.e., carcinoembryonic antigen level). Novel biomarkers and improved molecular diagnostics represent an attractive opportunity to improve detection as well as to identify novel therapeutic targets for patients with cholangiocarcinoma. We herein review the latest advances in molecular diagnostics and biomarkers related to the early detection and treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| | - Satyajit Patwardhan
- Dept of HPB Surgery and Liver Transplantation, Global Hospital, Mumbai, India
| | - Joal Bean
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
30
|
Elvevi A, Laffusa A, Scaravaglio M, Rossi RE, Longarini R, Stagno AM, Cristoferi L, Ciaccio A, Cortinovis DL, Invernizzi P, Massironi S. Clinical treatment of cholangiocarcinoma: an updated comprehensive review. Ann Hepatol 2022; 27:100737. [PMID: 35809836 DOI: 10.1016/j.aohep.2022.100737] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of neoplasms of the bile ducts and represents the second most common hepatic cancer after hepatocellular carcinoma; it is sub-classified as intrahepatic cholangiocarcinoma (iCCA) and extrahepatic cholangiocarcinoma (eCCA), the latter comprising both perihilar cholangiocarcinoma (pCCA or Klatskin tumor), and distal cholangiocarcinoma (dCCA). The global incidence of CCA has increased worldwide in recent decades. Chronic inflammation of biliary epithelium and bile stasis represent the main risk factors shared by all CCA sub-types. When feasible, liver resection is the treatment of choice for CCA, followed by systemic chemotherapy with capecitabine. Liver transplants represent a treatment option in patients with very early iCCA, in referral centers only. CCA diagnosis is often performed at an advanced stage when CCA is unresectable. In this setting, systemic chemotherapy with gemcitabine and cisplatin represents the first treatment option, but the prognosis remains poor. In order to ameliorate patients' survival, new drugs have been studied in the last few years. Target therapies are directed against different molecules, which are altered in CCA cells. These therapies have been studied as second-line therapy, alone or in combination with chemotherapy. In the same setting, the immune checkpoints inhibitors targeting programmed death 1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), have been proposed, as well as cancer vaccines and adoptive cell therapy (ACT). These experimental treatments showed promising results and have been proposed as second- or third-line treatment, alone or in combination with chemotherapy or target therapies.
Collapse
Affiliation(s)
- Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alice Laffusa
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Miki Scaravaglio
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Raffaella Longarini
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Anna Maria Stagno
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Ciaccio
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diego Luigi Cortinovis
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
31
|
Høgdall D, O'Rourke CJ, Andersen JB. Molecular therapeutic targets for cholangiocarcinoma: Present challenges and future possibilities. Adv Cancer Res 2022; 156:343-366. [PMID: 35961705 DOI: 10.1016/bs.acr.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diagnosis of cholangiocarcinoma (CCA) is implicit with poor prognosis and limited treatment options, underscoring the near equivalence of incidence and mortality rates in this disease. In less than 9years from genomic identification to FDA-approval of the corresponding inhibitors, fibroblast growth factor receptor 2 (FGFR2) rearrangements and isocitrate dehydrogenase 1 (IDH1) mutations became exemplary successes of precision oncology in subsets of patients with CCA. However, clinical trial results from multikinase inhibitors in unselected populations have been less successful, while the impact of immunotherapies are only beginning to impact this setting. Development of future therapeutics is incumbent with new challenges. Many driver alterations occur in tumor suppressor-like genes which are not directly druggable. Therapeutically, this will require identification of ensuant "non-oncogene addiction" involving genes which are not themselves oncogenes but become tumor survival dependencies when a specific driver alteration occurs. The low recurrence frequency of genomic alterations between CCA patients will require careful evaluation of targeted agents in biomarker-enrolled trials, including basket trial settings. Systematic expansion of candidate drug targets must integrate genes affected by non-genetic alterations which incorporates the fundamental contribution of the microenvironment and immune system to treatment response, disease facets which have been traditionally overlooked by DNA-centric analyses. As treatment resistance is an inevitability in advanced disease, resistance mechanisms require characterization to guide the development of combination therapies to increase the duration of clinical benefit. Patient-focused clinical, technological and analytical synergy is needed to deliver future solutions to these present therapeutic challenges.
Collapse
Affiliation(s)
- Dan Høgdall
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, Herlev and Gentofte Hospital, Herlev, Copenhagen University Hospital, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Macias RIR, Cardinale V, Kendall TJ, Avila MA, Guido M, Coulouarn C, Braconi C, Frampton AE, Bridgewater J, Overi D, Pereira SP, Rengo M, Kather JN, Lamarca A, Pedica F, Forner A, Valle JW, Gaudio E, Alvaro D, Banales JM, Carpino G. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 2022; 71:1669-1683. [PMID: 35580963 DOI: 10.1136/gutjnl-2022-327099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, this tumour frequently presents as a sporadic cancer in patients without defined risk factors and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, the identification of biomarkers represents an utmost need for patients with CCA. Numerous studies proposed a wide spectrum of biomarkers at tissue and molecular levels. With the present paper, a multidisciplinary group of experts within the European Network for the Study of Cholangiocarcinoma discusses the clinical role of tissue biomarkers and provides a selection based on their current relevance and potential applications in the framework of CCA. Recent advances are proposed by dividing biomarkers based on their potential role in diagnosis, prognosis and therapy response. Limitations of current biomarkers are also identified, together with specific promising areas (ie, artificial intelligence, patient-derived organoids, targeted therapy) where research should be focused to develop future biomarkers.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) group, University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Guido
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cedric Coulouarn
- UMR_S 1242, COSS, Centre de Lutte contre le Cancer Eugène Marquis, INSERM University of Rennes 1, Rennes, France
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Jakob N Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Lamarca
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Alejandro Forner
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,BCLC group, Liver Unit, Hospital Clínic Barcelona. IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jesus M Banales
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| |
Collapse
|
33
|
Song Y, Cai M, Li Y, Liu S. The focus clinical research in intrahepatic cholangiocarcinoma. Eur J Med Res 2022; 27:116. [PMID: 35820926 PMCID: PMC9277934 DOI: 10.1186/s40001-022-00741-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC), highly invasive and highly heterogeneous, has a poor prognosis. It has been confirmed that many risk factors are associated with ICC including intrahepatic lithiasis, primary sclerosing cholangitis (PSC), congenital abnormalities of the bile ducts, parasite infection, toxic exposures chronic liver disease (viral infection and cirrhosis) and metabolic abnormalities. In recent years, significant progress has been made in the clinical diagnosis and treatment of ICC. Advances in functional and molecular imaging techniques offer the possibility for more accurate preoperative assessment and detection of recurrence. Moreover, the combination of molecular typing and traditional clinical pathological typing provides accurate guarantee for clinical decision-making. Surgical resection is still the only radical treatment for ICC, while R0 resection, lymph node dissection, postoperative adjuvant therapy and recurrence resectomy have been confirmed to be beneficial for patients. New therapies including local therapy, molecular targeted therapy and immunotherapy are developing rapidly, which brings hopeful future for advanced ICC. The combination of traditional therapy and new therapy is the future development direction.
Collapse
Affiliation(s)
- Yinghui Song
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Mengting Cai
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha, Changsha, 410005, Hunan, People's Republic of China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha, Changsha, 410005, Hunan, People's Republic of China. .,Central Laboratory of The First, Affiliated Hospital of Hunan Normal University, Changsha, 410015, China.
| |
Collapse
|
34
|
Abstract
The evolutionary history of hepatobiliary cancers is embedded in their genomes. By analysing their catalogue of somatic mutations and the DNA sequence context in which they occur, it is possible to infer the mechanisms underpinning tumorigenesis. These mutational signatures reflect the exogenous and endogenous origins of genetic damage as well as the capacity of hepatobiliary cells to repair and replicate DNA. Genomic analysis of thousands of patients with hepatobiliary cancers has highlighted the diversity of mutagenic processes active in these malignancies, highlighting a prominent source of the inter-cancer-type, inter-patient, intertumour and intratumoural heterogeneity that is observed clinically. However, a substantial proportion of mutational signatures detected in hepatocellular carcinoma and biliary tract cancer remain of unknown cause, emphasizing the important contribution of processes yet to be identified. Exploiting mutational signatures to retrospectively understand hepatobiliary carcinogenesis could advance preventative management of these aggressive tumours as well as potentially predict treatment response and guide the development of therapies targeting tumour evolution.
Collapse
|
35
|
The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers. Nat Commun 2022; 13:3061. [PMID: 35650238 PMCID: PMC9160072 DOI: 10.1038/s41467-022-30708-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Molecular variation between geographical populations and subtypes indicate potential genomic heterogeneity and novel genomic features within CCA. Here, we analyze exome-sequencing data of 87 perihilar cholangiocarcinoma (pCCA) and 261 intrahepatic cholangiocarcinoma (iCCA) cases from 3 Asian centers (including 43 pCCAs and 24 iCCAs from our center). iCCA tumours demonstrate a higher tumor mutation burden and copy number alteration burden (CNAB) than pCCA tumours, and high CNAB indicates a poorer pCCA prognosis. We identify 12 significantly mutated genes and 5 focal CNA regions, and demonstrate common mutations in post-transcriptional modification-related potential driver genes METTL14 and RBM10 in pCCA tumours. Finally we demonstrate the tumour-suppressive role of METTL14, a major RNA N6-adenosine methyltransferase (m6A), and illustrate that its loss-of-function mutation R298H may act through m6A modification on potential driver gene MACF1. Our results may be valuable for better understanding of how post-transcriptional modification can affect CCA development, and highlight both similarities and differences between pCCA and iCCA. Cholangiocarcinoma is a heterogenous group of cancers, with large genetic variation seen within subtypes. Here, the authors find 12 significantly mutated genes and 5 focal CNA regions were found in perihilar cholangiocarcinoma, and identified METTL14 to have a potential tumour suppressive role.
Collapse
|
36
|
Rogalska-Taranta M, Andersen JB. Involvement of Epigenomic Factors in Bile Duct Cancer. Semin Liver Dis 2022; 42:202-211. [PMID: 35738258 DOI: 10.1055/s-0042-1748188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common type of primary liver cancer. Due to its often-silent manifestation, sporadic nature, and typically late clinical presentation, it remains difficult to diagnose and lacks effective nonsurgical therapeutic options. Extensive research aiming in understanding the mechanisms underlying this disease have provided strong evidence for the significance of epigenetics contributing to its onset, progression, and dissemination. This dysregulation in a myriad of signaling pathways, leading to malignancy, spans altered deoxyribonucleic acid and histone methylation, histone acetylation, and chromatin remodeling, as well as genetic modifications in essential genes controlling these epigenetic processes. An advantage to epigenetic modifications is that they, compared with mutations, are reversible and can partially be controlled by inhibiting the responsible enzymatic machinery. This opens novel possibilities for developing new treatment modalities with benefit for CCA patients.In this article, we have reviewed the current status of epigenome modifications described in CCA, including the role of posttranslational histone modifications and chromatin remodeling, as well as novel advances in treatment options.
Collapse
Affiliation(s)
- Magdalena Rogalska-Taranta
- Biotech Research & Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research & Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Zheng Q, Zhang B, Li C, Zhang X. Overcome Drug Resistance in Cholangiocarcinoma: New Insight Into Mechanisms and Refining the Preclinical Experiment Models. Front Oncol 2022; 12:850732. [PMID: 35372014 PMCID: PMC8970309 DOI: 10.3389/fonc.2022.850732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor characterized by a poor prognosis. Therapeutic options are limited in patients with advanced stage of CCA, as a result of the intrinsic or acquired resistance to currently available chemotherapeutic agents, and the lack of new drugs entering into clinical application. The challenge in translating basic research to the clinical setting, caused by preclinical models not being able to recapitulate the tumor characteristics of the patient, seems to be an important reason for the lack of effective and specific therapies for CCA. So, there seems to be two ways to improve patient outcomes. The first one is developing the combination therapies based on a better understanding of the mechanisms contributing to the resistance to currently available chemotherapeutic agents. The second one is developing novel preclinical experimental models that better recapitulate the genetic and histopathological features of the primary tumor, facilitating the screening of new drugs for CCA patients. In this review, we discussed the evidence implicating the mechanisms underlying treatment resistance to currently investigated drugs, and the development of preclinical experiment models for CCA.
Collapse
Affiliation(s)
- Qingfan Zheng
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Chung T, Park YN. Up-to-Date Pathologic Classification and Molecular Characteristics of Intrahepatic Cholangiocarcinoma. Front Med (Lausanne) 2022; 9:857140. [PMID: 35433771 PMCID: PMC9008308 DOI: 10.3389/fmed.2022.857140] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive primary liver malignancy with an increasing incidence worldwide. Recently, histopathologic classification of small duct type and large duct type iCCA has been introduced. Both these types of tumors exhibit differences in clinicopathological features, mutational profiles, and prognosis. Small duct type iCCA is composed of non-mucin-producing cuboidal cells, whereas large duct type iCCA is composed of mucin-producing columnar cells, reflecting different cells of origin. Large duct type iCCA shows more invasive growth and poorer prognosis than small duct type iCCA. The background liver of small duct type iCCA often shows chronic liver disease related to hepatitis B or C viral infection, or alcoholic or non-alcoholic fatty liver disease/steatohepatitis, in contrast to large duct type iCCA that is often related to hepatolithiasis and liver fluke infection. Cholangiolocarcinoma is a variant of small duct type iCCA composed of naïve-looking cuboidal cells forming cords or ductule-like structures, and shows better prognosis than the conventional small duct type. Fibrous tumor stroma, one of the characteristic features of iCCA, contains activated fibroblasts intermixed with innate and adaptive immune cells. The types of stroma (mature versus immature) are related to tumor behavior and prognosis. Low tumor-infiltrating lymphocyte density, KRAS alteration, and chromosomal instability are related to immune-suppressive tumor microenvironments with resistance to programmed death 1/ programmed death ligand 1 blockade. Data from recent large-scale exome analyses have revealed the heterogeneity in the molecular profiles of iCCA, showing that small duct type iCCA exhibit frequent BAP1, IDH1/2 hotspot mutations and FGFR2 fusion, in contrast to frequent mutations in KRAS, TP53, and SMAD4 observed in large duct type iCCA. Multi-omics analyses have proposed several molecular classifications of iCCA, including inflammation class and proliferation class. The inflammation class is enriched in inflammatory signaling pathways and expression of cytokines, while the proliferation class has activated oncogenic growth signaling pathways. Diverse pathologic features of iCCA and its associated multi-omics characteristics are currently under active investigation, thereby providing insights into precision therapeutics for patients with iCCA. This review provides the latest knowledge on the histopathologic classification of iCCA and its associated molecular features, ranging from tumor microenvironment to genomic and transcriptomic research.
Collapse
Affiliation(s)
- Taek Chung
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Young Nyun Park,
| |
Collapse
|
39
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|
40
|
Xu QC, Tien YC, Shi YH, Chen S, Zhu YQ, Huang XT, Huang CS, Zhao W, Yin XY. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m6A-YTHDF2-dependent manner. Oncogene 2022; 41:1622-1633. [PMID: 35094011 PMCID: PMC8913368 DOI: 10.1038/s41388-022-02185-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022]
Abstract
AbstractN6-methyladenosine (m6A) RNA methylation has recently been found involving in regulatory mechanism of the tumor progression. Our aim was to explore the biological function and clinical significance of the m6A methyltransferase METTL3 in intrahepatic cholangiocarcinoma (ICC). In this study, we revealed that METTL3 was upregulated and predicted poor prognosis of patients with ICC. Multivariate regression analysis demonstrated that METTL3 expression was an independent predictor for overall survival in patients with ICC. Moreover, METTL3 knockdown inhibited ICC progression, while METTL3 overexpression showed the opposite effect. METTL3 inhibitor STM2457 also showed anti-tumor effect in ICC. Mechanistically, METTL3 transcription was driven by H3K4me3 activation. Upregulation of METTL3 mediated m6A modification of IFIT2 mRNA and accelerated IFIT2 mRNA decay in a YTHDF2-dependent manner, which promoted the development of ICC and lead to poorer prognosis. In summary, our findings revealed that H3K4me3 activation-driven METTL3 transcription promotes ICC progression by YTHDF2-mediated IFIT2 mRNA degradation, suggesting that METTL3 may serve as a potential target for human ICC therapy.
Collapse
|
41
|
Song JP, Liu XZ, Chen Q, Liu YF. High tumor mutation burden indicates a poor prognosis in patients with intrahepatic cholangiocarcinoma. World J Clin Cases 2022; 10:790-801. [PMID: 35127895 PMCID: PMC8790456 DOI: 10.12998/wjcc.v10.i3.790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is malignancies of the biliary duct system and constitutes approximately 10%-20% of all primary liver cancers. Tumor mutation burden (TMB) is a useful biomarker across many cancer types for the identification of patients who will benefit from immunotherapy. Despite the role of TMB in calculating the effectiveness and prognosis of immune checkpoint inhibitors has been confirmed in multiple human cancer types, the prognostic value of TMB in ICC patients is rare investigated.
AIM To investigate the prognostic value of TMB in patients with ICC.
METHODS Data of 412 patients with ICC were included in the study. TMB was calculated as the total number of somatic non-silent protein-coding mutations divided by the coding region. The Kaplan-Meier method was used to analyze overall survival (OS), and relapse free survival (RFS). The cut-off value of TMB was determined by time-dependent receiver operating characteristic (ROC) curve. Cox regression was performed for multivariable analysis of OS. The nomogram and calibration curve were analyzed to construct and evaluate the prognostic model.
RESULTS In the analysis of the time-dependent ROC curve, we defined 3.1 mut/Mb as the cut-off value of TMB. The Kaplan-Meier plot revealed that patients with high TMB had poor OS (HR = 1.47, P = 0.002) and RFS (HR = 1.42, P = 0.035). Cox regression analysis also demonstrated that TMB was an independent risk predictor for ICC (HR = 1.43, P = 0.0240). Furthermore, independent prognostic factors of ICC included CA19-9 (HR = 1.78, P = 0.0005), chronic viral hepatitis (HR = 1.72, P = 0.0468), tumor resection (HR = 2.58, P < 0.0001) and disease progression (metastatic disease vs. solitary liver tumor; HR = 2.55, P = 0.0002). The nomogram and calibration curve also indicated the effectiveness of the constructed prognostic model.
CONCLUSION TMB was an independent prognostic biomarker in patients with ICC. Moreover, patients with ICC with high TMB had poor OS and RFS as compared to those with low TMB.
Collapse
Affiliation(s)
- Jian-Ping Song
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xue-Zhi Liu
- Department of General Surgery, Shouguang People's Hospital, Shouguang 262700, Shandong Province, China
| | - Qian Chen
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Feng Liu
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
42
|
Kankeu Fonkoua LA, Serrano Uson Junior PL, Mody K, Mahipal A, Borad MJ, Roberts LR. Novel and emerging targets for cholangiocarcinoma progression: therapeutic implications. Expert Opin Ther Targets 2022; 26:79-92. [PMID: 35034558 DOI: 10.1080/14728222.2022.2029412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a heterogeneous group of aggressive biliary malignancies. While surgery and liver transplantation are the only potentially curative modalities for early-stage disease, limited options are available for most patients with incurable-stage disease. Survival outcomes remain dismal. Recent molecular profiling efforts have led to improved understanding of the genomic landscape of CCA and to the identification of subgroups with distinct diagnostic, prognostic, and therapeutic implications. AREAS COVERED : We provide an updated review and future perspectives on features of cholangiocarcinogenesis that can be translated into therapeutic biomarkers and targets. We highlight the critical studies that have established current systemic chemotherapy and targeted therapeutics, while elaborating on novel targeted and immunotherapeutic approaches in development. Relevant literature and clinical studies were identified by searching PubMed and www.ClinicalTrials.gov. EXPERT OPINION : While therapies targeting the various molecular subgroups of CCA are rapidly emerging and changing treatment paradigms, their success has been limited by the genetic heterogeneity of CCA and the plasticity of the targets. Novel strategies aiming to combine immunotherapy, chemotherapy, and molecularly-targeted therapeutics will be required to offer durable clinical benefit and maximize survival.
Collapse
Affiliation(s)
| | | | - Kabir Mody
- Rochester, MN, and Oncology in Jacksonville, FL, Mayo Clinic, USA
| | | | | | | |
Collapse
|
43
|
Wang XY, Zhu WW, Wang Z, Huang JB, Wang SH, Bai FM, Li TE, Zhu Y, Zhao J, Yang X, Lu L, Zhang JB, Jia HL, Dong QZ, Chen JH, Andersen JB, Ye D, Qin LX. Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities. Am J Cancer Res 2022; 12:260-276. [PMID: 34987644 PMCID: PMC8690927 DOI: 10.7150/thno.63417] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose: To establish a clinically applicable genomic clustering system, we investigated the interactive landscape of driver mutations in intrahepatic cholangiocarcinoma (ICC). Methods: The genomic data of 1481 ICCs from diverse populations was analyzed to investigate the pair-wise co-occurrences or mutual exclusivities among recurrent driver mutations. Clinicopathological features and outcomes were compared among different clusters. Gene expression and DNA methylation profiling datasets were analyzed to investigate the molecular distinctions among mutational clusters. ICC cell lines with different gene mutation backgrounds were used to evaluate the cluster specific biological behaviors and drug sensitivities. Results: Statistically significant mutation-pairs were identified across 21 combinations of genes. Seven most recurrent driver mutations (TP53, KRAS, SMAD4, IDH1/2, FGFR2-fus and BAP1) showed pair-wise co-occurrences or mutual exclusivities and could aggregate into three genetic clusters: Cluster1: represented by tripartite interaction of KRAS, TP53 and SMAD4 mutations, exhibited large bile duct histological phenotype with high CA19-9 level and dismal prognosis; Cluster2: co-association of IDH/BAP1 or FGFR2-fus/BAP1 mutation, was characterized by small bile duct phenotype, low CA19-9 level and optimal prognosis; Cluster3: mutation-free ICC cases with intermediate clinicopathological features. These clusters showed distinct molecular traits, biological behaviors and responses to therapeutic drugs. Finally, we identified S100P and KRT17 as “cluster-specific”, “lineage-dictating” and “prognosis-related” biomarkers, which in combination with CA19-9 could well stratify Cluster3 ICCs into two biologically and clinically distinct subtypes. Conclusions: This clinically applicable clustering system can be instructive to ICC prognostic stratification, molecular classification, and therapeutic optimization.
Collapse
|
44
|
Novel insights into molecular and immune subtypes of biliary tract cancers. Adv Cancer Res 2022; 156:167-199. [DOI: 10.1016/bs.acr.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Liu Y, Wang Y, Yu Y, Luo H, Zhen M, Ren J. Comparison of clinical characteristics and mortality risk between patients with cholangiocarcinoma: A retrospective cohort study. Front Surg 2022; 9:1037310. [PMID: 36873806 PMCID: PMC9975750 DOI: 10.3389/fsurg.2022.1037310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/29/2022] [Indexed: 02/17/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is primary liver cancer originating from the biliary tract. The epidemiology of CCA is diverse across the globe. There are no reliably effective options for systemic therapy and CCA outcomes are poor. Herein, we examined the association between overall survival and clinical characteristics of CCA patients in our region. Methods We included 62 CCA cases diagnosed between 2015 and 2019. Demographics, clinical history, therapeutic procedures, and concomitant diseases were abstracted. Patient survival was obtained from a household registration system. Results The cohort was 69% male and 31% female, with 26 (42%) iCCA, 27 (44%) pCCA, and 9 (15%) dCCA. No age differences were observed between the three subtypes. Bile duct and metabolic disorders were the major concomitant diseases and showed varying associations with CCA subgroups. Serum triglycerides (TG) were higher in pCCA and dCCA than iCCA patients (p < 0.05), and TG and total cholesterol (TC) were highest among pCCA patients with cholelithiasis. Liver function appeared significant difference between iCCA, pCCA and dCCA subtypes (p < 0.01), and also in the subgroups without cholelithiasis (p < 0.01). The obstructive jaundice in pCCA patients was associated with survival time after surgery, and the presence of cholelithiasis was also another influential factor. Conclusion We found that pCCA was more frequently associated with metabolic disorders compared to iCCA and dCCA. Postoperative survival was also associated with the degree of jaundice in pCCA compared to iCCA or dCCA. And biliary drainage is an important predictor of outcome of pCCA.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, China.,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China
| | - Yanhong Wang
- Department of Epidemiology & Biostatistics, School of Basic Medicine Peking Union Medical College & Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqi Yu
- Department of Pathology, Xiamen University Zhongshan Hospital, Xiamen, China
| | - Haopeng Luo
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, China.,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China
| | - Maochuan Zhen
- Department of Hepatobiliary Surgery, Xiamen University Zhongshan Hospital, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, China.,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
46
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
47
|
Yamashita H, Tourna A, Akita M, Itoh T, Chokshi S, Ajiki T, Fukumoto T, Youngson NA, Zen Y. Epigenetic upregulation of TET2 is an independent poor prognostic factor for intrahepatic cholangiocarcinoma. Virchows Arch 2021; 480:1077-1085. [PMID: 34905094 PMCID: PMC9033729 DOI: 10.1007/s00428-021-03251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
Mutations in IDH1/2 and the epigenetic silencing of TET2 occur in leukaemia or glioma in a mutually exclusive manner. Although intrahepatic cholangiocarcinoma (iCCA) may harbour IDH1/2 mutations, the contribution of TET2 to carcinogenesis remains unknown. In the present study, the expression and promoter methylation of TET2 were investigated in iCCA. The expression of TET2 was assessed in 52 cases of iCCA (small-duct type, n = 33; large-duct type, n = 19) by quantitative PCR, immunohistochemistry (IHC) and a sequencing-based methylation assay, and its relationships with clinicopathological features and alterations in cancer-related genes (e.g., KRAS and IDH1) were investigated. In contrast to non-neoplastic bile ducts, which were negative for TET2 on IHC, 42 cases (81%) of iCCA showed the nuclear overexpression of TET2. Based on IHC scores (area × intensity), these cases were classified as TET2-high (n = 25) and TET2-low (n = 27). The histological type, tumour size, lymph node metastasis and frequency of mutations in cancer-related genes did not significantly differ between the two groups. Overall and recurrence-free survival were significantly worse in patients with TET2-high iCCA than in those with TET2-low iCCA. A multivariate analysis identified the high expression of TET2 as an independent prognostic factor (HR = 2.94; p = 0.007). The degree of methylation at two promoter CpG sites was significantly less in TET2-high iCCA than in TET2-low iCCA or non-cancer tissue. In conclusion, in contrast to other IDH-related neoplasms, TET2 overexpression is common in iCCA of both subtypes, and its high expression, potentially induced by promoter hypomethylation, is an independent poor prognostic factor.
Collapse
Affiliation(s)
- Hironori Yamashita
- Institute of Liver Studies, King's College Hospital, London, UK.,King's College London, London, UK.,Institute of Hepatology, Foundation for Liver Research, London, UK.,Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Masayuki Akita
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Tetsuo Ajiki
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Neil A Youngson
- Institute of Hepatology, Foundation for Liver Research, London, UK. .,Faculty of Life Sciences and Medicine, King's College London, London, UK. .,School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, UK. .,King's College London, London, UK.
| |
Collapse
|
48
|
Vignone A, Biancaniello F, Casadio M, Pesci L, Cardinale V, Ridola L, Alvaro D. Emerging Therapies for Advanced Cholangiocarcinoma: An Updated Literature Review. J Clin Med 2021; 10:4901. [PMID: 34768421 PMCID: PMC8584870 DOI: 10.3390/jcm10214901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma is a group of malignancies with poor prognosis. Treatments for the management of advanced-stage cholangiocarcinoma are limited, and the 5-year survival rate is estimated to be approximately 5-15%, considering all tumor stages. There is a significant unmet need for effective new treatment approaches. The present review is provided with the aim of summarizing the current evidence and future perspectives concerning new therapeutic strategies for cholangiocarcinoma. The role of targeted therapies and immunotherapies is currently investigational in cholangiocarcinoma. These therapeutic options might improve survival outcomes, as shown by the promising results of several clinical trials illustrated in the present review. The co-presence of driver mutations and markers of susceptibility to immunotherapy may lead to rational combination strategies and clinical trial development. A better understanding of immunologically based therapeutic weapons is needed, which will lead to a form of a precision medicine strategy capable of alleviating the clinical aggressiveness and to improve the prognosis of cholangiocarcinoma.
Collapse
Affiliation(s)
- Anthony Vignone
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.C.); (L.P.); (L.R.); (D.A.)
| | - Francesca Biancaniello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.C.); (L.P.); (L.R.); (D.A.)
| | - Marco Casadio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.C.); (L.P.); (L.R.); (D.A.)
| | - Ludovica Pesci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.C.); (L.P.); (L.R.); (D.A.)
| | - Vincenzo Cardinale
- Department of Medical-Surgical and Biotechnologies Sciences, Polo Pontino, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Lorenzo Ridola
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.C.); (L.P.); (L.R.); (D.A.)
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.C.); (L.P.); (L.R.); (D.A.)
| |
Collapse
|
49
|
Ney A, Garcia-Sampedro A, Goodchild G, Acedo P, Fusai G, Pereira SP. Biliary Strictures and Cholangiocarcinoma - Untangling a Diagnostic Conundrum. Front Oncol 2021; 11:699401. [PMID: 34660269 PMCID: PMC8515053 DOI: 10.3389/fonc.2021.699401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma is an uncommon and highly aggressive biliary tract malignancy with few manifestations until late disease stages. Diagnosis is currently achieved through a combination of clinical, biochemical, radiological and histological techniques. A number of reported cancer biomarkers have the potential to be incorporated into diagnostic pathways, but all lack sufficient sensitivity and specificity limiting their possible use in screening and early diagnosis. The limitations of standard serum markers such as CA19-9, CA125 and CEA have driven researchers to identify multiple novel biomarkers, yet their clinical translation has been slow with a general requirement for further validation in larger patient cohorts. We review recent advances in the diagnostic pathway for suspected CCA as well as emerging diagnostic biomarkers for early detection, with a particular focus on non-invasive approaches.
Collapse
Affiliation(s)
- Alexander Ney
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - George Goodchild
- St. Bartholomew's hospital, Barts Health NHS Trust, London, United Kingdom
| | - Pilar Acedo
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Fusai
- Division of Surgery and Interventional Science - University College London, London, United Kingdom
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|
50
|
Koustas E, Trifylli EM, Sarantis P, Papavassiliou AG, Karamouzis MV. Role of autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World J Gastrointest Oncol 2021; 13:1229-1243. [PMID: 34721764 PMCID: PMC8529918 DOI: 10.4251/wjgo.v13.i10.1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the intrahepatic, perihilar and distal parts of the biliary tree. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis and strategy for clinical management. However, many cholangiocarcinoma tumor-cells appear to be resistant to current chemotherapeutic agents. The role of autophagy and the therapeutic value of autophagy-based therapy are largely unknown in CCA. The multistep nature of autophagy offers a plethora of regulation points, which are prone to be deregulated and cause different human diseases, including cancer. However, it offers multiple targetable points for designing novel therapeutic strategies. Tumor cells have evolved to use autophagy as an adaptive mechanism for survival under stressful conditions such as energy imbalance and hypoxic region of tumors within the tumor microenvironment, but also to increase invasiveness and resistance to chemotherapy. The purpose of this review is to summarize the current knowledge regarding the interplay between autophagy and cholangiocarcinogenesis, together with some preclinical studies with agents that modulate autophagy in order to induce tumor cell death. Altogether, a combinatorial strategy, which comprises the current anti-cancer agents and autophagy modulators, would represent a positive CCA patient approach.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|