1
|
Sun J, Wang X, Gao Y, Li S, Hu Z, Huang Y, Fan B, Wang X, Liu M, Qiao C, Zhang W, Wang Y, Ji X. H 2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H 2S for antibacterial sensitization. Nat Commun 2024; 15:9422. [PMID: 39482291 PMCID: PMC11527999 DOI: 10.1038/s41467-024-53764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
Bacteria-derived H2S plays multifunctional protective roles against antibiotics insult, and the H2S biogenesis pathway is emerging as a viable target for the antibacterial adjuvant design. However, the development of a pan-inhibitor against H2S-synthesizing enzymes is challenging and underdeveloped. Herein, we propose an alternative strategy to downregulate the H2S levels in H2S-producing bacteria, which depletes the bacteria-derived H2S chemically by H2S scavengers without acting on the synthesizing enzymes. After the screening of chemically diversified scaffolds and a structural optimization campaign, a potent and specific H2S scavenger is successfully identified, which displays efficient H2S depletion in several H2S-producing bacteria, potentiates both bactericidal agents and photodynamic therapy, enhances the bacterial clearance of macrophages and polymorphonuclear neutrophils, disrupts the formation of bacterial biofilm and increases the sensitivity of bacterial persister cells to antibiotics. Most importantly, such an H2S scavenger exhibits sensitizing effects with gentamicin in Pseudomonas aeruginosa -infected pneumonia and skin wound female mouse models. In aggregate, our results not only provide an effective strategy to deplete bacteria-derived H2S and establish the H2S biogenesis pathway as a viable target for persisters and drug-resistant bacteria, but also deliver a promising antibacterial adjuvant for potential clinical translation.
Collapse
Affiliation(s)
- Jiekai Sun
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xu Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ye Gao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Shuangyu Li
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ziwei Hu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Yan Huang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Baoqiang Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xia Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Miao Liu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Chunhua Qiao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Yipeng Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024; 29:3466. [PMID: 39124871 PMCID: PMC11313800 DOI: 10.3390/molecules29153466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Shomokh Alsharef
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Siadnaya 22734, Syria
| | - Matthew G. Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy;
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Li Y, Ding W, Yin J, Li X, Tian X, Xiao Z, Wang F, Yin H. 2,3-Dimethoxycinnamic Acid from a Marine Actinomycete, a Promising Quorum Sensing Inhibitor in Chromobacterium violaceum. Mar Drugs 2024; 22:177. [PMID: 38667794 PMCID: PMC11051081 DOI: 10.3390/md22040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
An ethyl acetate extract of a marine actinomycete strain, Nocardiopsis mentallicus SCSIO 53858, isolated from a deep-sea sediment sample in the South China Sea, exhibited anti-quorum-sensing (QS) activity against Chromobacterium violaceum CV026. Guided by the anti-QS activity, a novel active compound was isolated and purified from the extract and was identified as 2,3-dimethoxycinnamic acid (2,3-DCA) through spectral data analysis. At a concentration of 150 μg/mL, 2,3-DCA exhibited robust inhibitory effects on three QS-regulated traits of C. violaceum CV026: violacein production, swarming motility, and biofilm formation, with inhibition rates of 73.9%, 65.9%, and 37.8%, respectively. The quantitative reverse transcription polymerase chain reaction results indicated that 2,3-DCA can disrupt the QS system in C. violaceum CV026 by effectively suppressing the expression of QS-related genes, including cviR, vioA, vioB, and vioE. Molecular docking analysis revealed that 2,3-DCA hinders the QS system by competitively binding to the same binding pocket on the CviR receptor as the natural signal molecule N-hexanoyl-L-homoserine lactone. Collectively, these findings suggest that 2,3-DCA exhibits promising potential as an inhibitor of QS systems, providing a potential solution to the emerging problem of bacterial resistance.
Collapse
Affiliation(s)
- Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Fazuo Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China
| |
Collapse
|
5
|
Chen X, Li J, Liao R, Shi X, Xing Y, Xu X, Xiao H, Xiao D. Bibliometric analysis and visualization of quorum sensing research over the last two decade. Front Microbiol 2024; 15:1366760. [PMID: 38646636 PMCID: PMC11026600 DOI: 10.3389/fmicb.2024.1366760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Background Quorum sensing (QS) research stands as a pivotal and multifaceted domain within microbiology, holding profound implications across various scientific disciplines. This bibliometric analysis seeks to offer an extensive overview of QS research, covering the period from 2004 to 2023. It aims to elucidate the hotspots, trends, and the evolving dynamics within this research domain. Methods We conducted an exhaustive review of the literature, employing meticulous data curation from the Science Citation Index Extension (SCI-E) within the Web of Science (WOS) database. Subsequently, our survey delves into evolving publication trends, the constellation of influential authors and institutions, key journals shaping the discourse, global collaborative networks, and thematic hotspots that define the QS research field. Results The findings demonstrate a consistent and growing interest in QS research throughout the years, encompassing a substantial dataset of 4,849 analyzed articles. Journals such as Frontiers in Microbiology have emerged as significant contributor to the QS literature, highlighting the increasing recognition of QS's importance across various research fields. Influential research in the realm of QS often centers on microbial communication, biofilm formation, and the development of QS inhibitors. Notably, leading countries engaged in QS research include the United States, China, and India. Moreover, the analysis identifies research focal points spanning diverse domains, including pharmacological properties, genetics and metabolic pathways, as well as physiological and signal transduction mechanisms, reaffirming the multidisciplinary character of QS research. Conclusion This bibliometric exploration provides a panoramic overview of the current state of QS research. The data portrays a consistent trend of expansion and advancement within this domain, signaling numerous prospects for forthcoming research and development. Scholars and stakeholders engaged in the QS field can harness these findings to navigate the evolving terrain with precision and speed, thereby enhancing our comprehension and utilization of QS in various scientific and clinical domains.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruohan Liao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Xing
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
6
|
Shariati A, Noei M, Askarinia M, Khoshbayan A, Farahani A, Chegini Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: a helpful promise for managing biofilm community. Front Pharmacol 2024; 15:1350391. [PMID: 38628638 PMCID: PMC11019022 DOI: 10.3389/fphar.2024.1350391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Askarinia
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Celebı D, Celebı O, Aydin E, Baser S, Güler MC, Yildirim S, Taghizadehghalehjoughi A. Boron Compound-Based Treatments Against Multidrug-Resistant Bacterial Infections in Lung Cancer In Vitro Model. Biol Trace Elem Res 2024; 202:145-160. [PMID: 37884681 DOI: 10.1007/s12011-023-03912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Multidrug-resistant bacteria is one of the most important public health problems. Increasing rates of antibacterial resistance also affect the outcomes of medical approaches. Cancer treatment because of immune system deficiency (chemotherapy or steroids usage) commonly can cause infection. Lung cancer is the dominant cause of cancer-related deaths, and infection is the most common cause of death among those patients. In this study, it was aimed to determine the antimicrobial, antibiofilm, and anticancer activity of boron compounds. A549 lung cancer cell line was infected with Acinetobacter baumannii (ATCC 19606), Klebsiella pneumoniae (ATCC 700603), and Pseudomonas aeruginosa (ATCC 27853). In order to determine the fractional inhibitory concentration (FIC) index, antibiotics and boron compound concentrations prepared according to the minimum inhibitory concentration (MIC) values were determined by the checkerboard method. In our study results, the antibiofilm activity was an average of 46% in A. baumannii+boron compounds, 45% in P. aeruginosa+boron compounds, and 43% in K. pneumoniae. Cell culture analysis results show a decrease in viability and antioxidant capacity and an increase in total oxidant status after adding boron compounds to the culture. Immunofluorescence results show a correlation with MTT, and boron compounds increased 8-OHdG expression in comparison to antibiotic administration. In conclusion, boron compounds have promising effects on bacteria, especially in resistant bacteria spp.
Collapse
Affiliation(s)
- Demet Celebı
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey.
- Ataturk University Vaccine Application and Development Center, Ataturk University, 25240, Erzurum, Turkey.
| | - Ozgur Celebı
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Elif Aydin
- Vocational School of Health Services, Kütahya Health Sciences University, Kütahya, Turkey
| | - Sumeyye Baser
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Mustafa Can Güler
- Department of Medical Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Seyh Edebali University, 11000, Bilecik, Turkey
| |
Collapse
|
8
|
Celebi O, Celebi D, Baser S, Aydın E, Rakıcı E, Uğraş S, Ağyar Yoldaş P, Baygutalp NK, Abd El-Aty AM. Antibacterial Activity of Boron Compounds Against Biofilm-Forming Pathogens. Biol Trace Elem Res 2024; 202:346-359. [PMID: 37464169 DOI: 10.1007/s12011-023-03768-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to evaluate the antibacterial activity of nine boron derivatives against biofilm-forming pathogenic bacteria. The effect of boron derivatives (CMB, calcium metaborate; SMTB, sodium metaborate tetrahydrate; ZB, zinc borate; STFB, sodium tetra fluorine borate; STB, sodium tetraborate; PTFB, potassium tetra fluor borate; APTB, ammonium pentabo-rate tetrahydrate; SPM, sodium perborate monohydrate; Borax, ATFB, ammonium tetra fluorine borate) on bacteria isolated from blood culture was determined by the minimum inhibitory concentration (MIC) method. Then, biofilm formation potentials on microplates, tubes, and Congo red agar were examined. The cytotoxicity of boron derivatives was determined by using WST-1-based methods. The interaction between the biofilm-forming bacteria, fibroblast cells, and boron derivatives was determined with the infection model. We found that the sodium metaborate tetrahydrate molecule was effective against all pathogens. According to the optical density values detected at 630 nm in microplates, meticillin-resistant Staphylococcus aureus was observed to have the most substantial biofilm ability at 0.257 nm. As a result of cytotoxicity studies, it has been determined that a 1 µg/L concentration of boron derivatives is not toxic to fibroblast L929 cells. In cell culture experiments, these boron derivatives have very serious inhibitory activity against biofilm-forming pathogens in a short treatment period, such as 2-4 h. Furthermore, using these molecules on inanimate surfaces affected by biofilms would be appropriate instead of living cells.
Collapse
Affiliation(s)
- Ozgur Celebi
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Demet Celebi
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
- Ataturk University Vaccine Application and Development Center, Ataturk University, 25240, Erzurum, Turkey
| | - Sumeyye Baser
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Elif Aydın
- Vocational School of Health Services, Kütahya Health Sciences University, Kütahya, Turkey.
| | - Erva Rakıcı
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020, Rize, Turkey
| | - Serpil Uğraş
- Department of Field Crops, Faculty of Agriculture and Natural Science, Duzce University, 81620, Düzce, Turkey
| | - Pınar Ağyar Yoldaş
- Traditional and Complementary Medicine Applied and Research Center, Duzce University, Duzce, Turkey
| | - Nurcan Kılıç Baygutalp
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkey
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
9
|
Naga NG, El-Badan DE, Ghanem KM, Shaaban MI. It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Commun Signal 2023; 21:133. [PMID: 37316831 DOI: 10.1186/s12964-023-01154-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dalia E El-Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Khaled M Ghanem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Chen H, Ji PC, Qi YH, Chen SJ, Wang CY, Yang YJ, Zhao XY, Zhou JW. Inactivation of Pseudomonas aeruginosa biofilms by thymoquinone in combination with nisin. Front Microbiol 2023; 13:1029412. [PMID: 36741886 PMCID: PMC9893119 DOI: 10.3389/fmicb.2022.1029412] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most important foodborne pathogens that can persist in leafy green vegetables and subsequently produce biofilms. In this study, the synergistic effect of thymoquinone and nisin in reducing biofilm formation of P. aeruginosa on lettuce was evaluated, and their anti-virulence and anti-biofilm mechanisms were also investigated. At concentrations ranging from 0.5 to 2 mg/ml, thymoquinone inhibited the production of autoinducers and virulence factors, and enhanced the susceptibility of P. aeruginosa biofilms to nisin as evidenced by the scanning electron microscopy and confocal laser scanning microscopy. Integrated transcriptomics, metabolomics, and docking analyses indicated that thymoquinone treatment disrupted the quorum sensing (QS) system, altered cell membrane component, and down-regulated the expressions of genes related to virulence, efflux pump, and antioxidation. The changed membrane component and repressed efflux pump system enhanced membrane permeability and facilitated the entrance of nisin into cells, thus improving the susceptibility of biofilms to nisin. The dysfunctional QS and repressed antioxidant enzymes lead to the enhancement of oxidative stress. The enhanced oxidative stress disrupted energy metabolism and protein metabolism and ultimately attenuated the virulence and pathogenicity of P. aeruginosa PAO1. Our study indicated that thymoquinone has the potential to function as a QS-based agent to defend against foodborne pathogens in combination with nisin.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Peng-Cheng Ji
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yue-Heng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Shi-Jin Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Chang-Yao Wang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yu-Jie Yang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Xin-Yu Zhao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China,*Correspondence: Jin-Wei Zhou, ✉
| |
Collapse
|
11
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
12
|
Polizzi A, Donzella M, Nicolosi G, Santonocito S, Pesce P, Isola G. Drugs for the Quorum Sensing Inhibition of Oral Biofilm: New Frontiers and Insights in the Treatment of Periodontitis. Pharmaceutics 2022; 14:2740. [PMID: 36559234 PMCID: PMC9781207 DOI: 10.3390/pharmaceutics14122740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Chemical molecules are used by microorganisms to communicate with each other. Quorum sensing is the mechanism through which microorganisms regulate their population density and activity with chemical signaling. The inhibition of quorum sensing, called quorum quenching, may disrupt oral biofilm formation, which is the main etiological factor of oral diseases, including periodontitis. Periodontitis is a chronic inflammatory disorder of infectious etiology involving the hard and soft periodontal tissues and which is related to various systemic disorders, including cardiovascular diseases, diabetes and obesity. The employment of adjuvant therapies to traditional scaling and root planing is currently being studied to further reduce the impact of periodontitis. In this sense, using antibiotics and antiseptics involves non-negligible risks, such as antibiotic resistance phenomena and hinders the re-establishment of eubiosis. Different quorum sensing signal molecules have been identified in periodontal pathogenic oral bacteria. In this regard, quorum sensing inhibitors are emerging as some interesting solutions for the management of periodontitis. Therefore, the aim of this review is to summarize the current state of knowledge on the mechanisms of quorum sensing signal molecules produced by oral biofilm and to analyze the potential of quorum sensing inhibitors for the management of periodontitis.
Collapse
Affiliation(s)
- Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| |
Collapse
|
13
|
Shrestha A, Hernández-Reyes C, Grimm M, Krumwiede J, Stein E, Schenk ST, Schikora A. AHL-Priming Protein 1 mediates N-3-oxo-tetradecanoyl-homoserine lactone priming in Arabidopsis. BMC Biol 2022; 20:268. [PMID: 36464707 PMCID: PMC9721052 DOI: 10.1186/s12915-022-01464-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) is one of the N-acyl homoserine lactones (AHL) that mediate quorum sensing in Gram-negative bacteria. In addition to bacterial communication, AHL are involved in interactions with eukaryotes. Short-chain AHL are easily taken up by plants and transported over long distances. They promote root elongation and growth. Plants typically do not uptake hydrophobic long sidechain AHL such as oxo-C14-HSL, although they prime plants for enhanced resistance to biotic and abiotic stress. Many studies have focused on priming effects of oxo-C14-HSL for enhanced plant resistance to stress. However, specific plant factors mediating oxo-C14-HSL responses in plants remain unexplored. Here, we identify the Arabidopsis protein ALI1 as a mediator of oxo-C14-HSL-induced priming in plants. RESULTS We compared oxo-C14-HSL-induced priming between wild-type Arabidopsis Col-0 and an oxo-C14-HSL insensitive mutant ali1. The function of the candidate protein ALI1 was assessed through biochemical, genetic, and physiological approaches to investigate if the loss of the ALI1 gene resulted in subsequent loss of AHL priming. Through different assays, including MAP kinase activity assay, gene expression and transcriptome analysis, and pathogenicity assays, we revealed a loss of AHL priming in ali1. This phenomenon was reverted by the reintroduction of ALI1 into ali1. We also investigated the interaction between ALI1 protein and oxo-C14-HSL using biochemical and biophysical assays. Although biophysical assays did not reveal an interaction between oxo-C14-HSL and ALI1, a pull-down assay and an indirect method employing biosensor E. coli LuxCDABE support such interaction. We expressed fluorescently tagged ALI1 in tobacco leaves to assess the localization of ALI1 and demonstrate that ALI1 colocalizes with the plasma membrane, tonoplast, and endoplasmic reticulum. CONCLUSIONS These results suggest that the candidate protein ALI1 is indispensable for oxo-C14-HSL-dependent priming for enhanced resistance in Arabidopsis and that the ALI1 protein may interact with oxo-C14-HSL. Furthermore, ALI1 protein is localized in the cell periphery. Our findings advance the understanding of interactions between plants and bacteria and provide an avenue to explore desired outcomes such as enhanced stress resistance, which is useful for sustainable crop protection.
Collapse
Affiliation(s)
- Abhishek Shrestha
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | | | - Maja Grimm
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Johannes Krumwiede
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Elke Stein
- grid.8664.c0000 0001 2165 8627Justus Liebig University Giessen, Institute for Phytopathology, , Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Sebastian T. Schenk
- grid.5963.9Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Adam Schikora
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
14
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
Xue B, Shen Y, Zuo J, Song D, Fan Q, Zhang X, Yi L, Wang Y. Bringing Antimicrobial Strategies to a New Level: The Quorum Sensing System as a Target to Control Streptococcus suis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122006. [PMID: 36556371 PMCID: PMC9782415 DOI: 10.3390/life12122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen. It mainly uses quorum sensing (QS) to adapt to complex and changeable environments. QS is a universal cell-to-cell communication system that has been widely studied for its physiological functions, including the regulation of bacterial adhesion, virulence, and biofilm formation. Quorum sensing inhibitors (QSIs) are highly effective at interfering with the QS system and bacteria have trouble developing resistance to them. We review the current research status of the S. suis LuxS/AI-2 QS system and QSIs. Studies showed that by inhibiting the formation of AI-2, targeting the LuxS protein, inhibiting the expression of luxs gene can control the LuxS/AI-2 QS system of S. suis. Other potential QSIs targets are summarized, which may be preventing and treating S. suis infections, including AI-2 production, transmission, LuxS protein, blockage of AI-2 binding to receptors, AI-2-mediated QS. Since antibiotics are becoming increasingly ineffective due to the emergence of resistant bacteria, including S. suis, it is thus critical to find new antibacterial drugs with different mechanisms of action. QSIs provide hope for the development of such drugs.
Collapse
Affiliation(s)
- Bingqian Xue
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Dong Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| |
Collapse
|
16
|
Wang Y, Bian Z, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol 2022; 106:6365-6381. [DOI: 10.1007/s00253-022-12150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
17
|
Celebi D, Taghizadehghalehjoughi A, Baser S, Genc S, Yilmaz A, Yeni Y, Yesilyurt F, Yildirim S, Bolat I, Kordali S, Yilmaz F, Hacimuftuoglu A, Celebi O, Margina D, Nitulescu GM, Spandidos DA, Tsatsakis A. Effects of boric acid and potassium metaborate on cytokine levels and redox stress parameters in a wound model infected with methicillin‑resistant Staphylococcus aureus. Mol Med Rep 2022; 26:294. [PMID: 35920188 PMCID: PMC9366158 DOI: 10.3892/mmr.2022.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are usually found in hospital settings and, frequently, in patients with open wounds. One of the most critical virulence factors affecting the severity and recurrence of infections is the biofilm; increasing antibiotic resistance due to biofilm formation has led to the search for alternative compounds to antibiotics. The present study aimed to use boric acid and potassium metaborate against MRSA infection in a fibroblast wound model. For this purpose, a two-part experiment was designed: First, MRSA strains were used for the test, and both boric acid and potassium metaborate were prepared in microdilution. In the second step, an MRSA wound model was prepared using a fibroblast culture, and treatments with boric acid and potassium metaborate were applied for 24 h. For the evaluation of the effects of treatment, cell viability assay (MTT assay), analysis of redox stress parameters, including total oxidant status and total antioxidant capacity analyses, lactate dehydrogenase analysis and immunohistochemical staining were performed. In addition, IL-1β and IL-10 gene expression levels were assayed. According to the results, potassium metaborate was more effective and exhibited a lower toxicity to fibroblast cells compared to boric acid; moreover, potassium metaborate decreased the level of prooxidant species and increased the antioxidant status more effectively than boric acid. The IL-1β level in the bacteria group was high; however, boric acid and potassium metaborate significantly decreased the expression levels of inflammatory markers, exhibiting the potential to improve the resolution of the lesion. On the whole, the findings of the present study suggest that boric acid and potassium metaborate may be effective on the tested microorganisms.
Collapse
Affiliation(s)
- Demet Celebi
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | | | - Sumeyye Baser
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Sidika Genc
- Department of Medical Pharmacology, Faculty of Medicine, Seyh Edebali University, 11000 Bilecik, Turkey
| | - Aysegul Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Saban Kordali
- Department of Plant Protection, Fethiye Faculty of Agriculture, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Ferah Yilmaz
- Department of Plant Protection, Fethiye Faculty of Agriculture, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Ozgur Celebi
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Denisa Margina
- Department of Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Department of Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
18
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
19
|
Wang Y, Pan L, Li L, Cao R, Zheng Q, Xu Z, Wu CJ, Zhu H. Glycosylation increases the anti-QS as well as anti-biofilm and anti-adhesion ability of the cyclo (L-Trp-L-Ser) against Pseudomonas aeruginosa. Eur J Med Chem 2022; 238:114457. [DOI: 10.1016/j.ejmech.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
20
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
21
|
Kadhim E, Amin B, Amin B. Anti-Quorum Sensing Effect of Salvadora Persica Against Enterococcus faecalis (ATCC 29212). Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2204280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Quorum Sensing (QS) is a mechanism many bacteria use to manage their cooperative activities and physiological functions. The Fsr system in Enterococcus faecalis (ATCC 29,212) is an example of quorum sensing with a cell density-dependent two-component regulatory system mechanism. Several publications have shown that the Fsr system and proteases independently contribute to E. faecalis pathogenicity in various infection models.
Objectives:
There is currently no published research to determine the exact molecular ability of Salvadora persica on quorum-sensing genes. Therefore, this study aimed to determine the plant extracts that inhibit the expression of the quorum-sensing gene (FsrC).
Methods:
Different fractions of Salvadora persica were obtained using different solvents, including standard hexane, chloroform, ethyl acetate, n-butanol, ethyl alcohol, and water which are expressed as fractions 1,2,3,4,5 and 6, respectively. Antibacterial activity assay of different plant extracts (S. persica) was determined by minimum inhibitory concentration (MIC). Finally, the relative expression of the quorum-sensing (QS) gene was evaluated using a One-step quantitative RT-PCR PrimeScript™ RT-PCR Kit.
Results:
All fractions of S. persica showed antimicrobial activity. However, ethyl acetate- S. persica inhibited the growth of E. faecalis (ATCC 29,212) at the lowest concentration, which was 20mg/ml and the highest concentration inhibited the growth of E. faecalis (ATCC 29,212) was 60mg/ml (chloroform- S. persica). Furthermore, the highest change fold value of (4.99) was recorded in treated E. faecalis (ATCC 29,212) with fraction 1 (hexane).
Conclusion:
Overall, S. persica showed antimicrobial activity against E. faecalis (ATCC 29,212). However, more studies are required to investigate the effect of different plant extracts on quorum-sensing genes of Enterococcus faecalis.
Collapse
|
22
|
Vetrivel A, Ramasamy J, Natchimuthu S, Senthil K, Ramasamy M, Murugesan R. Combined machine learning and pharmacophore based virtual screening approaches to screen for antibiofilm inhibitors targeting LasR of Pseudomonas aeruginosa. J Biomol Struct Dyn 2022; 41:4124-4142. [PMID: 35451916 DOI: 10.1080/07391102.2022.2064331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa, a virulent pathogen affects patients with cystic fibrosis and nosocomial infections. Quorum sensing (QS) mechanism plays a crucial role in causing these ailments by mediating biofilm formation and expressing virulent genes. A novel approach to circumvent this bacterial infection is by hindering its QS network. Targeting LasR of las system serves beneficial as it holds the top position in QS system cascade. Here, we have integrated machine learning, pharmacophore based virtual screening, molecular docking and simulation studies to look for new leads as inhibitors for LasR. Support vector machine (SVM) learning algorithm was used to generate QSAR models from 66 antagonist dataset. The top three models resulted in correlation coefficient (R2) values of 0.67, 0.86, and 0.91, respectively. The correlation coefficient (R2test) values on external test set were found to be 0.62, 0.57, and 0.55, respectively. A four-point pharmacophore model was developed. The pharmacophore hypothesis AAAD_1 was used to screen for potential leads against MolPort database in ZincPharmer. The leads which showed predicted pIC50 value of >8.00 by SVM models were subjected to docking analysis that reranked the compounds based on docking scores. Four top leads namely ZINC3851967 N-[3,5-bis(trifluoromethyl)phenyl]-5-tert-butyl-6-chloropyrazine-2-carboxamide, ZINC4024175 4-Amino-1-[(2R,3S,4S,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-oxopyrimidine-5-carbonitrile, ZINC2125703 N-[(5-Methoxy-4,7-dimethyl-2-oxo-2H-chromen-3-yl)acetyl]-beta-alanine, and ZINC3851966 N-[3,5-Bis(trifluoromethyl)phenyl]5-tert-butylpyrazine-2-carboxamide were selected. These compounds were checked for its stability by performing a molecular dynamics simulation for a period of 100 ns. The ADME properties of the leads were also determined. Hence, the compounds identified in this study can be used as possible leads for developing a novel inhibitor for LasR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Janani Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Kalaiselvi Senthil
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Monica Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
23
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
24
|
Lu L, Zhao Y, Yi G, Li M, Liao L, Yang C, Cho C, Zhang B, Zhu J, Zou K, Cheng Q. Quinic acid: a potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa. Chin Med 2021; 16:72. [PMID: 34362401 PMCID: PMC8343939 DOI: 10.1186/s13020-021-00481-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background The biofilm state of pathogens facilitates antimicrobial resistance which makes difficult-to-treat infections. In this regard, it has been found that the compounds screened from plant extracts represent one category of the most promising antibiofilm agents. However, the antibiofilm activities and the active ingredients of plant extracts remain largely unexplored. In this background, the study is (1) to screen out the plant extracts with antibiofilm ability against Pseudomonas aeruginosa, and (2) to identify the active ingredients in the plant extracts and elucidate the underlying mechanism of the antibiofilm activities. Methods Micro-broth dilution method, in vitro biofilm model, LC–MS/MS analysis and P. aeruginosa-mouse infection model were adopted to assess the antibiofilm activity. GC–MS analysis was performed to detect the active ingredients in plasma. RNA-Seq, GO analysis, KEGG analysis and RT-qPCR were adopted to elucidate the underlying mechanism of antibiofilm activities against P. aeruginosa. Results Lonicerae Japonicae Flos (LJF) among 13 plants could exert significant inhibitory effects on bacterial biofilm formation, mobility and toxin release in vitro, and it could exert antibiofilm effect in vivo too. Moreover, quinic acid, as one metabolite of chlorogenic acid, was found as an active ingredient in LJF against the biofilm of P. aeruginosa. The active ingredient significantly inhibited EPS secretion in biofilm formation and maturity and could achieve synergistic antibiofilm effect with levofloxacin. It reduced the biofilm formation by regulating core targets in quorum sensing system. In GO process, it was found that the core targets were significantly enriched in multiple biological processes involving locomotion, chemotaxis and motility mediated by flagellum/cilium, which was related to KEGG pathways such as bacterial chemotaxis, oxidative phosphorylation, ribosome, biofilm formation, cyanoamino acid metabolism and quorum sensing. Finally, the binding of quinic acid with core targets rhlA, rhlR and rhlB were validated by molecular docking and RT-qPCR. Conclusions In summary, the study verified the in vitro and in vivo antibiofilm effects of LJF against P. aeruginosa and elucidated the active ingredients in LJF and its conceivable pharmacological mechanism, indicating that quinic acid could have the potential of an antibiofilm agent against P. aeruginosa and related infections. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00481-8.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Guojuan Yi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Chihin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Bin Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Kun Zou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Qiang Cheng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
26
|
Li Miao, Qian S, Qi S, Jiang W, Dong K. Culture Medium Optimization and Active Compounds Investigation of an Anti-Quorum Sensing Marine Actinobacterium Nocardiopsis dassonvillei JS106. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
27
|
Du X, Huang R, Zhang Z, Zhang D, Cheng J, Tian P, Wang Y, Zhai Z, Chen L, Kong X, Liu Y, Su P. Rhodopseudomonas palustris Quorum Sensing Molecule pC-HSL Induces Systemic Resistance to TMV Infection via Upregulation of NbSIPK/ NbWIPK Expressions in Nicotiana benthamiana. PHYTOPATHOLOGY 2021; 111:500-508. [PMID: 32876530 DOI: 10.1094/phyto-05-20-0177-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
G-negative bacteria produce myriad N-acyl-homoserine lactones (AHLs) that can function as quorum sensing (QS) signaling molecules. AHLs are also known to regulate various plant biological activities. p-Coumaroyl-homoserine lactone (pC-HSL) is the only QS molecule produced by a photosynthetic bacterium, Rhodopseudomonas palustris. The role of pC-HSL in the interaction between R. palustris and plant has not been investigated. In this study, we investigated the effect of pC-HSL on plant immunity and found that this QS molecule can induce a systemic resistance to Tobacco mosaic virus (TMV) infection in Nicotiana benthamiana. The results show that pC-HSL treatment can prolong the activation of two mitogen-associated protein kinase genes (i.e., NbSIPK and NbWIPK) and increase the expression of transcription factor WRKY8 as well as immune response marker genes NbPR1 and NbPR10, leading to an increased accumulation of reactive oxygen species (ROS) in the TMV-infected plants. Our results also show that pC-HSL treatment can increase activities of two ROS-scavenging enzymes, peroxidase and superoxide dismutase. Knockdown of NbSIPK or NbWIPK expression in N. benthamiana plants through virus-induced gene silencing nullified or attenuated pC-HSL-induced systemic resistance, indicating that the functioning of pC-HSL relies on the activity of those two kinases. Meanwhile, pC-HSL-pretreated plants also showed a strong induction of kinase activities of NbSIPK and NbWIPK after TMV inoculation. Taken together, our results demonstrate that pC-HSL treatment increases plant resistance to TMV infection, which is helpful to uncover the outcome of interaction between R. palustris and its host plants.
Collapse
Affiliation(s)
- Xiaohua Du
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Renyan Huang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ju'e Cheng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Peijie Tian
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanqi Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhongying Zhai
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lijie Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoting Kong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Pin Su
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
28
|
Modulation of quorum sensing-associated virulence in bacteria: carbohydrate as a key factor. Arch Microbiol 2021; 203:1881-1890. [PMID: 33641039 DOI: 10.1007/s00203-021-02235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
Quorum sensing (QS) is a method of inter-cellular communication that permits bacteria to dispense information about cell density and to synchronize the gene expression accordingly. Gram-positive and Gram-negative bacteria utilize distinct quorum sensing mechanisms for effective pathogenesis. Virulence factor production by pathogenic bacteria is one of the important traits that is under the control of QS. A growing body of evidence has indicated the role of the nutritional environment notably by carbohydrates in dictating the QS-associated virulence gene regulation. The modulation of QS by carbohydrates mitigates the survival and establishment of the pathogen within its host which in turn leads to an increase in morbidity and mortality. This mini-review throws light on the predilection of pathogenic bacteria to rapidly regulate its QS-linked virulence gene expression based on the changing nutrient levels that assist them in prospering within diverse niches.
Collapse
|
29
|
1-(4-Amino-2-hydroxyphenyl)ethanone from Phomopsis liquidambari showed quorum sensing inhibitory activity against Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2020; 105:341-352. [PMID: 33215259 DOI: 10.1007/s00253-020-11013-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Phomopsis liquidambari S47 is an endophytic fungus isolated from the leaves of Punica granatum. Here, we are the first to report a quorum sensing (QS) inhibitor 1-(4-amino-2-hydroxyphenyl)ethanone (AHE) isolated and identified from the metabolites of P. liquidambari S47. Exposure to AHE at sub-MIC concentrations notably suppressed the secretion of acyl-homoserine lactones and virulence factors in Pseudomonas aeruginosa PAO1. To investigate the metabolic variations of P. aeruginosa PAO1 exposed to AHE, magnetic resonance imaging-based metabolomic analysis was performed. AHE treatment created a disturbance in the QS system by suppressing the expressions of QS-related genes. The disturbed QS system resulted in the inhibited activity of antioxidant enzymes and thus enhanced oxidative stress. The vegetable infection assay showed that the virulence of P. aeroginosa PAO1 was attenuated which could be due to the impacts to the amino acid and nucleotide metabolism by enhanced oxidative stress. These findings suggest that AHE has a potential to become an antivirulence "agent" to tackle P. aeruginosa infection. KEY POINTS: • AHE treatment inhibited AHL secretion and virulence factors production. • AHE treatment aggravated oxidative stress and disturbed metabolism. • AHE suppressed QS-related gene expressions and reduced virulence of P. aeruginosa.
Collapse
|
30
|
Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Preparation of Celery Essential Oil-Based Nanoemulsion by Ultrasonication and Evaluation of Its Potential Anticancer and Antibacterial Activity. Int J Nanomedicine 2020; 15:7651-7666. [PMID: 33116493 PMCID: PMC7553139 DOI: 10.2147/ijn.s252640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Plants have always been a significant source of natural active components with biological properties. Celery seed oil (extracted from Apium graveolens) has several potential applications, but its therapeutic uses in the form of nanoemulsion formulation need to be investigated further in order to meet the demand in cancer treatment, and to alleviate the prevailing crisis arising from increased antimicrobial resistance. Methods The therapeutic potential of celery seed oil was investigated through the formulation and testing of a nanoemulsion developed with Tween 80 (a non-ionic surfactant) and the utilization of an ultrasonication technique. Anticancer and apoptotic properties of the formulation were evaluated through MTT and Annexin V-FITC assays. The clonogenic assay aided in the identification of the antiproliferative properties of the formulation on oral squamous cell carcinoma. The antimicrobial study was supported by agar well diffusion assay, membrane integrity test and scanning electron microscopy. Results Experiments identified relevant parameters, including optimal surfactant concentration and emulsification time. GC-MS analysis identified various components in the celery oil, but not their biological activities. A sonication time of 20 min resulted in a droplet diameter of 23.4 ± 1.80 nm. The IC50 concentration of the optimal nanoemulsion formulation against SAS cells was 1.4 µL/mL. At this concentration, cell proliferation was significantly reduced through inhibition of the anchorage-independent cell growth by disrupting colony formation and inducing cell death (apoptosis) of cancer cells. The nanoemulsion was also treated with a microbial suspension of S. aureus, and displayed antibacterial properties through lipid membrane fusion, causing cytoplasmic leakage as verified through agar well diffusion and membrane permeability assays. Scanning electron microscopy revealed complete distortion of the bacterial pathogen. Conclusion The results in this study present celery as a possible constituent for cancer therapeutics and as a candidate for aggressive, yet safe cancer treatment. The celery-based nanoemulsion has the potential to act as a key alternative to standard antibiotic therapy.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Latha Durai
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vineet Gopakumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
31
|
El-Kurdi N, Abdulla H, Hanora A. Anti-quorum sensing activity of some marine bacteria isolated from different marine resources in Egypt. Biotechnol Lett 2020; 43:455-468. [PMID: 33034782 DOI: 10.1007/s10529-020-03020-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/01/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To screen for a variety of marine bacteria with anti-quorum sensing and anti-biofilm activities. RESULTS Among 188 bacterial isolates from water, sediment, and corals in the Red Sea region, approximately 35% (65 isolates) of the isolates displayed a significant degradation in the purple pigment of the bioreporter strain without affecting cell growth. The quorum quenching bacteria obtained from coral-associated bacteria were 66.2% out of the total isolates. The PCR amplification results revealed that the recorded Acyl Homoserine lactone (AHL) inhibition by 91% of the anti-QS marine bacteria was not due to lactonase activity. On the other hand, lactonase genes were recorded only in the remaining 9% (6 isolates) and those were belonging to genus Bacillus, Nocardiopsis, and Enterobacter based on 16S rRNA gene sequences. The results also showed that marine bacteria with anti-QS activity inhibited 67% of the biofilm formed by Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio alginolyticus. The computational profiling analysis confirmed the presence of the functional region in the detected genes. CONCLUSION Coral microbial communities are rich sources for pharmacologically important natural products with anti-quorum sensing and anti-biofilm activities.
Collapse
Affiliation(s)
- Najat El-Kurdi
- Department of Aquaculture Biotechnology, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt.
| | - Hesham Abdulla
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology & Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
32
|
Alizadeh M, Jalal M, Hamed K, Saber A, Kheirouri S, Pourteymour Fard Tabrizi F, Kamari N. Recent Updates on Anti-Inflammatory and Antimicrobial Effects of Furan Natural Derivatives. J Inflamm Res 2020; 13:451-463. [PMID: 32884326 PMCID: PMC7443407 DOI: 10.2147/jir.s262132] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
The furan nucleus is found in a large number of biologically active materials. In recent years, many natural furan derivatives were isolated and their biological effects were investigated. In this review, we focused on the anti-inflammatory and antimicrobial effects of some natural furans and discussed their effects on the immune system. Our investigation revealed that furan natural derivatives have effective antioxidant activities and exert regulatory effects on various cellular activities by modifying some signaling pathways such as MAPK (mitogen-activated Protein Kinase) and PPAR-ɣ (peroxisome proliferator-activated receptor gamma). The antimicrobial activity of these natural compounds was performed through selective inhibition of microbial growth and modification of enzymes. Further studies are needed for isolation and detection of different furan derivatives from natural compounds and investigation of their precise mechanisms for revealing health beneficial effects of these compounds.
Collapse
Affiliation(s)
- Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moludi Jalal
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khodaei Hamed
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Negin Kamari
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
33
|
Santajit S, Seesuay W, Mahasongkram K, Sookrung N, Pumirat P, Ampawong S, Reamtong O, Chongsa-Nguan M, Chaicumpa W, Indrawattana N. Human Single-chain Variable Fragments Neutralize Pseudomonas aeruginosa Quorum Sensing Molecule, 3O-C12-HSL, and Prevent Cells From the HSL-mediated Apoptosis. Front Microbiol 2020; 11:1172. [PMID: 32670218 PMCID: PMC7326786 DOI: 10.3389/fmicb.2020.01172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
The quorum sensing (QS) signaling molecule, N-(3-oxododecanoyl)-L-homoserine lactone (3O-C12-HSL), contributes to the pathogenesis of Pseudomonas aeruginosa by regulating expression of the bacterial virulence factors that cause intense inflammation and toxicity in the infected host. As such, the QS molecule is an attractive therapeutic target for direct-acting inhibitors. Several substances, both synthetic and naturally derived products, have shown effectiveness against detrimental 3O-C12-HSL activity. Unfortunately, these compounds are relatively toxic to mammalian cells, which limits their clinical application. In this study, fully human single-chain variable fragments (HuscFvs) that bind to P. aeruginosa haptenic 3O-C12-HSL were generated based on the principle of antibody polyspecificity and molecular mimicry of antigenic molecules. The HuscFvs neutralized 3O-C12-HSL activity and prevented mammalian cells from the HSL-mediated apoptosis, as observed by Annexin V/PI staining assay, sub-G1 arrest population investigation, transmission electron microscopy for ultrastructural morphology of mitochondria, and confocal microscopy for nuclear condensation and DNA fragmentation. Computerized homology modeling and intermolecular docking predicted that the effective HuscFvs interacted with several regions of the bacterially derived ligand that possibly conferred neutralizing activity. The effective HuscFvs should be tested further in vitro on P. aeruginosa phenotypes as well as in vivo as a sole or adjunctive therapeutic agent against P. aeruginosa infections, especially in antibiotic-resistant cases.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Biomedical Research Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Manas Chongsa-Nguan
- Faculty of Public Health and Environment, Pathumthani University, Pathum Thani, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 2020; 77:1319-1343. [PMID: 31612240 PMCID: PMC11104945 DOI: 10.1007/s00018-019-03326-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
35
|
Marine bacteria associated with shallow hydrothermal systems in the Gulf of California with the capacity to produce biofilm inhibiting compounds. Arch Microbiol 2020; 202:1477-1488. [DOI: 10.1007/s00203-020-01851-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 03/01/2020] [Indexed: 12/28/2022]
|
36
|
Paluch E, Rewak-Soroczyńska J, Jędrusik I, Mazurkiewicz E, Jermakow K. Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 2020; 104:1871-1881. [PMID: 31927762 PMCID: PMC7007913 DOI: 10.1007/s00253-020-10349-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Quorum sensing (QS) is a mechanism that enables microbial communication. It is based on the constant secretion of signaling molecules to the environment. The main role of QS is the regulation of vital processes in the cell such as virulence factor production or biofilm formation. Due to still growing bacterial resistance to antibiotics that have been overused, it is necessary to search for alternative antimicrobial therapies. One of them is quorum quenching (QQ) that disrupts microbial communication. QQ-driving molecules can decrease or even completely inhibit the production of virulence factors (including biofilm formation). There are few QQ strategies that comprise the use of the structural analogues of QS receptor autoinductors (AI). They may be found in nature or be designed and synthesized via chemical engineering. Many of the characterized QQ molecules are enzymes with the ability to degrade signaling molecules. They can also impede cellular signaling cascades. There are different techniques used for testing QS/QQ, including chromatography-mass spectroscopy, bioluminescence, chemiluminescence, fluorescence, electrochemistry, and colorimetry. They all enable qualitative and quantitative measurements of QS/QQ molecules. This article gathers the information about the mechanisms of QS and QQ, and their effect on microbial biofilm formation. Basic methods used to study QS/QQ, as well as the medical and biotechnological applications of QQ, are also described. Basis research methods are also described as well as medical and biotechnological application.
Collapse
Affiliation(s)
- E Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376, Wrocław, Poland.
| | - J Rewak-Soroczyńska
- Institute of Low Temperature and Structure Research, Polish Academy of Science, Okólna 2, 50-422, Wroclaw, Poland
| | - I Jędrusik
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - E Mazurkiewicz
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - K Jermakow
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376, Wrocław, Poland
| |
Collapse
|
37
|
Rosales-Hurtado M, Meffre P, Szurmant H, Benfodda Z. Synthesis of histidine kinase inhibitors and their biological properties. Med Res Rev 2019; 40:1440-1495. [PMID: 31802520 DOI: 10.1002/med.21651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/11/2022]
Abstract
Infections caused by multidrug-resistant bacteria represent a significant and ever-increasing cause of morbidity and mortality. There is thus an urgent need to develop efficient and well-tolerated antibacterials targeting unique cellular processes. Numerous studies have led to the identification of new biological targets to fight bacterial resistance. Two-component signal transduction systems are widely employed by bacteria to translate external and cellular signals into a cellular response. They are ubiquitous in bacteria, absent in the animal kingdom and are integrated into various virulence pathways. Several chemical series, including isothiazolidones, imidazolium salts, benzoxazines, salicylanilides, thiophenes, thiazolidiones, benzimidazoles, and other derivatives deduced by different approaches have been reported in the literature to have histidine kinase (HK) inhibitory activity. In this review, we report on the design and the synthesis of these HKs inhibitors and their potential to serve as antibacterial agents.
Collapse
Affiliation(s)
| | | | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | | |
Collapse
|
38
|
An innovative role for tenoxicam as a quorum sensing inhibitor in Pseudomonas aeruginosa. Arch Microbiol 2019; 202:555-565. [PMID: 31732766 DOI: 10.1007/s00203-019-01771-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
|
39
|
Fernandes MM, Carvalho EO, Lanceros-Mendez S. Electroactive Smart Materials: Novel Tools for Tailoring Bacteria Behavior and Fight Antimicrobial Resistance. Front Bioeng Biotechnol 2019; 7:277. [PMID: 31681752 PMCID: PMC6813912 DOI: 10.3389/fbioe.2019.00277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022] Open
Abstract
Despite being very simple organisms, bacteria possess an outstanding ability to adapt to different environments. Their long evolutionary history, being exposed to vastly different physicochemical surroundings, allowed them to detect and respond to a wide range of signals including biochemical, mechanical, electrical, and magnetic ones. Taking into consideration their adapting mechanisms, it is expected that novel materials able to provide bacteria with specific stimuli in a biomimetic context may tailor their behavior and make them suitable for specific applications in terms of anti-microbial and pro-microbial approaches. This review maintains that electroactive smart materials will be a future approach to be explored in microbiology to obtain novel strategies for fighting the emergence of live threatening antibiotic resistance.
Collapse
Affiliation(s)
- Margarida M. Fernandes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Centre of Physics, University of Minho, Braga, Portugal
| | - Estela O. Carvalho
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Centre of Physics, University of Minho, Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
40
|
Srinivasarao S, Nandikolla A, Nizalapur S, Yu TT, Pulya S, Ghosh B, Murugesan S, Kumar N, Chandra Sekhar KVG. Design, synthesis and biological evaluation of 1,2,3-triazole based 2-aminobenzimidazoles as novel inhibitors of LasR dependent quorum sensing in Pseudomonas aeruginosa. RSC Adv 2019; 9:29273-29292. [PMID: 35528444 PMCID: PMC9071802 DOI: 10.1039/c9ra05059k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Bacteria regulate their phenotype, growth and population via a signalling pathway known as quorum sensing. In this process, bacteria produce signalling molecules (autoinducers) to recognize their population density. Inhibiting this quorum sensing signalling pathway is one of the potential methods to treat bacterial infection. 2-Aminobenimdazoles are reported to be the strongest inhibitors of quorum sensing against wild-type P. aeruginosa. 1,2,3-Triazole based acyl homoserine lactones are found to be good inhibitors of the quorum sensing LasR receptor. Hence, in our current study, forty 1,2,3-triazole based 2-aminobenzimdazoles were synthesized and characterized using IR, NMR, MS and elemental analysis. A single crystal was developed for N-(1H-benzo[d]imidazol-2-yl)-2-(4-nonyl-1H-1,2,3-triazol-1-yl)acetamide (6d). All final compounds were screened for in vitro quorum sensing inhibitory activity against Pseudomonas aeruginosa. The quorum sensing inhibitory activity was determined in the LasR expressing P. aeruginosa MH602 reporter strain by measuring green fluorescent protein production. Among the title compounds, N-(1H-benzo[d]imidazol-2-yl)-2-(4-(4-chlorophenyl)-1H-1,2,3-triazol-1-yl)acetamide (6i) exhibited good quorum sensing inhibitory activity of 64.99% at 250 μM. N-(1H-Benzo[d]imidazol-2-yl)-2-(4-(4-nitrophenyl)-1H-1,2,3-triazol-1-yl)acetamide (6p) exhibited the most promising quorum sensing inhibitory activity with 68.23, 67.10 and 63.67% inhibition at 250, 125 and 62.5 μM, respectively. N-(1H-Benzo[d]imidazol-2-yl)-2-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)acetamide (6o) and N-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-2-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)acetamide (7l) also exhibited 64.25% and 65.80% quorum sensing inhibition at 250 μM. Compound 6p, the most active quorum sensing inhibitor, also displayed low cytotoxicity at the tested concentrations (25, 50 and 100 μM) against normal human embryonic kidney cell lines. Finally, a docking study using Schrodinger Glide elucidated the possible putative binding mode of the significantly active compound 6p at the active site of the target LasR receptor (PDB ID: 2UV0).
Collapse
Affiliation(s)
- Singireddi Srinivasarao
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| | - Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| | | | - Tsz Tin Yu
- School of Chemistry, UNSW Sydney NSW 2052 Australia
| | - Sravani Pulya
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 Telangana India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 Telangana India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani 333031 India
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney NSW 2052 Australia
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| |
Collapse
|
41
|
Reina JC, Pérez-Victoria I, Martín J, Llamas I. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar Drugs 2019; 17:md17090494. [PMID: 31450549 PMCID: PMC6780304 DOI: 10.3390/md17090494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The cell density-dependent mechanism, quorum sensing (QS), regulates the expression of virulence factors. Its inhibition has been proposed as a promising new strategy to prevent bacterial pathogenicity. In this study, 827 strains from the microbiota of sea anemones and holothurians were screened for their ability to produce quorum-sensing inhibitor (QSI) compounds. The strain M3-10, identified as Vibrio alginolyticus by 16S rRNA gene sequencing, as well as ANIb and dDDH analyses, was selected for its high QSI activity. Bioassay-guided fractionation of the cell pellet extract from a fermentation broth of strain M3-10, followed by LC–MS and NMR analyses, revealed tyramine and N-acetyltyramine as the active compounds. The QS inhibitory activity of these molecules, which was confirmed using pure commercially available standards, was found to significantly inhibit Chromobacterium violaceum ATCC 12472 violacein production and virulence factors, such as pyoverdine production, as well as swarming and twitching motilities, produced by Pseudomonas aeruginosa PAO1. This constitutes the first study to screen QSI-producing strains in the microbiota of anemones and holothurians and provides an insight into the use of naturally produced QSI as a possible strategy to combat bacterial infections.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ignacio Pérez-Victoria
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain.
| | - Jesús Martín
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
42
|
Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res Int 2019; 119:530-540. [DOI: 10.1016/j.foodres.2017.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022]
|
43
|
Lou Z, Letsididi KS, Yu F, Pei Z, Wang H, Letsididi R. Inhibitive Effect of Eugenol and Its Nanoemulsion on Quorum Sensing-Mediated Virulence Factors and Biofilm Formation by Pseudomonas aeruginosa. J Food Prot 2019; 82:379-389. [PMID: 30785306 DOI: 10.4315/0362-028x.jfp-18-196] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to evaluate the quorum sensing (QS) inhibition potential of eugenol and eugenol nanoemulsion against QS-dependent virulence factor production and gene expression, as well as biofilm formation in Pseudomonas aeruginosa. In the current study, eugenol nanoemulsion at a sub-MIC of 0.2 mg/mL specifically inhibited about 50% of the QS-mediated violacein production in Chromobacterium violaceum, as well as the production of N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and C4-HSL N-acyl homoserine lactone signal molecules, pyocyanin, and swarming motility in P. aeruginosa. The inhibitive effect of eugenol and its nanoemulsion on the expression of the QS synthase genes was concentration dependent, displaying 65 and 52% expression level for lasI, respectively, and 61 and 45% expression level for rhlI, respectively, at a concentration of 0.2 mg/mL. In addition, the inhibitive effect of eugenol and its nanoemulsion on the expression of the rhlA gene responsible for the production of rhamnolipid was also concentration dependent, displaying 65 and 51% expression level for the rhlA gene, respectively, at a concentration of 0.2 mg/mL. Eugenol and its nanoemulsion also displayed 36 and 63% respective inhibition of biofilm formation by P. aeruginosa at the 0.2 mg/mL concentration. Therefore, the nanoemulsion could be used as a novel QS-based antibacterial and antibiofilm agent for the control of harmful bacteria.
Collapse
Affiliation(s)
- Zaixiang Lou
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Kekgabile S Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Fuhao Yu
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Zejun Pei
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Hongxin Wang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Rebaone Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Mina G, Chbib C. Recent progresses on synthesized LuxS inhibitors: A mini-review. Bioorg Med Chem 2018; 27:36-42. [PMID: 30473360 DOI: 10.1016/j.bmc.2018.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 02/07/2023]
Abstract
Design and synthesis of LuxS enzyme inhibitors otherwise known as S-ribosylhomocysteine analogues, to target quorum sensing in bacteria, has been considerably developed within the last decade. This review presents which molecules have been synthesized to target LuxS enzyme in other words inhibitors of S-ribosylhomocysteinase. It reports their tested biological activity as LuxS inhibitors when available. A systematic overview has been conducted by searching PubMed, Medline, and The Cochrane Library and data extraction of all synthesized S-ribosylhomocysteine analogues has been collected. This mini-review shows limited data to date on this area and should continue to be studied.
Collapse
Affiliation(s)
- Georges Mina
- Pharmacy Department, Jackson Memorial Hospital, 1611 NW 12th Ave, Miami, FL 33136, United States
| | - Christiane Chbib
- Department of Pharmaceutical Sciences, Larkin College of Pharmacy, 18301 North Miami Ave, Miami, FL 33169, United States.
| |
Collapse
|
45
|
Rathinam P, Viswanathan P. Anti-virulence potential of eugenol-rich fraction of Syzygium aromaticum against multidrug resistant uropathogens isolated from catheterized patients. AVICENNA JOURNAL OF PHYTOMEDICINE 2018; 8:416-431. [PMID: 30345229 PMCID: PMC6190244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: Considering the emergence of biofilm-associated pathogens with multidrug resistance, the objective(s) of the present study was to evaluate the anti-virulence property of Syzygium aromaticum extracts/fractions against 2 multidrug-resistant catheter isolates. Materials and Methods: Pulverized clove buds were subjected to bioactivity-guided isolation to identify the bioactive extract/fraction(s) with significant anti-virulence property. The clove bud powder was subjected to Soxhlet extraction and all these extracts were investigated in terms of anti-virulent efficacy using initial readout assays. Bioassay-guided partial purification was performed through column and size exclusion chromatography. Detailed testing of the anti-virulence and anti-biofilm activity of sub-minimum inhibitory concentration (sub-MIC) levels of the active fraction, was performed besides the cytotoxicity profiling in RAW 264.7 cells. Results: Gas chromatography-mass spectrometry (GC-MS) analysis of the clove bioactive fraction-2 (CBF-2), done after the bioassay-guided fractionation, revealed eugenol as the major bioactive ingredient present in CBF-2. Reduced mRNA levels of virulence factor genes after CBF-2 (700 μg/ml) treatment correlated well with the respective phenotypic assays (p<0.001). Similarly, CBF-2 (700 μg/ml) treatment exhibited significantly low mRNA levels of quorum sensing (QS) receptor genes compared to their cognate synthase genes (p<0.001). Crystal violet staining and scanning electron micrographs of CBF-2-treated biofilms showed lesser macrocolonies with remarkably simplified architecture. Cytotoxic evaluation of CBF-2 suggested a minute reduction in viability even at the highest tested concentration (1600 μg/ml, p<0.05). Conclusion: The present study indicated that eugenol-rich CBF-2 has potent anti-virulence and anti-biofilm activity against urinary catheter isolates and can be regarded as an alternative for treatment of catheter-associated urinary tract infections.
Collapse
Affiliation(s)
- Prasanth Rathinam
- Renal Research Lab, Centre for Bio Medical Research, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Bio Medical Research, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
46
|
|
47
|
Zhang Y, Kong J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. Essential oil components inhibit biofilm formation in Erwinia carotovora and Pseudomonas fluorescens via anti-quorum sensing activity. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Ma ZP, Song Y, Cai ZH, Lin ZJ, Lin GH, Wang Y, Zhou J. Anti-quorum Sensing Activities of Selected Coral Symbiotic Bacterial Extracts From the South China Sea. Front Cell Infect Microbiol 2018; 8:144. [PMID: 29868500 PMCID: PMC5951975 DOI: 10.3389/fcimb.2018.00144] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The worldwide increase in antibiotic-resistant pathogens means that identification of alternative antibacterial drug targets and the subsequent development of new treatment strategies are urgently required. One such new target is the quorum sensing (QS) system. Coral microbial consortia harbor an enormous diversity of microbes, and are thus rich sources for isolating novel bioactive and pharmacologically valuable natural products. However, to date, the versatility of their bioactive compounds has not been broadly explored. In this study, about two hundred bacterial colonies were isolated from a coral species (Pocillopora damicornis) and screened for their ability to inhibit QS using the bioreporter strain Chromobacterium violaceum ATCC 12472. Approximately 15% (30 isolates) exhibited anti-QS activity, against the indicator strain. Among them, a typical Gram-positive bacterium, D11 (Staphylococcus hominis) was identified and its anti-QS activity was investigated. Confocal microscopy observations showed that the bacterial extract inhibited the biofilm formation of clinical isolates of wild-type P. aeruginosa PAO1 in a dose-dependent pattern. Chromatographic separation led to the isolation of a potent QS inhibitor that was identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy as DL-homocysteine thiolactone. Gene expression analyses using RT-PCR showed that strain D11 led to a significant down-regulation of QS regulatory genes (lasI, lasR, rhlI, and rhlR), as well as a virulence-related gene (lasB). From the chemical structure, the target compound (DL-homocysteine thiolactone) is an analog of the acyl-homoserine lactones (AHLs), and we presume that DL-homocysteine thiolactone outcompetes AHL in occupying the receptor and thereby inhibiting QS. Whole-genome sequence analysis of S. hominis D11 revealed the presence of predicted genes involved in the biosynthesis of homocysteine thiolactone. This study indicates that coral microbes are a resource bank for developing QS inhibitors and they will facilitate the discovery of new biotechnologically relevant compounds that could be used instead of traditional antibiotics.
Collapse
Affiliation(s)
- Zhi-Ping Ma
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Beijing, China
| | - Yu Song
- The Department of Earth Science, Tsinghua University, Beijing, China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Beijing, China
| | - Zhi-Jun Lin
- The Department of Earth Science, Tsinghua University, Beijing, China
| | - Guang-Hui Lin
- The Department of Earth Science, Tsinghua University, Beijing, China
| | - Yan Wang
- Biology, Shenzhen Polytechnic, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
Zhou JW, Luo HZ, Jiang H, Jian TK, Chen ZQ, Jia AQ. Hordenine: A Novel Quorum Sensing Inhibitor and Antibiofilm Agent against Pseudomonas aeruginosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1620-1628. [PMID: 29353476 DOI: 10.1021/acs.jafc.7b05035] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The quorum sensing (QS) inhibitory activity of hordenine from sprouting barley against foodborne pathogen Pseudomonas aeruginosa was evaluated for the first time here. At concentrations ranging from 0.5 to 1.0 mg mL-1, hordenine inhibited the levels of acyl-homoserine lactones. The enhanced susceptibility of hordenine with netilmicin on P. aeruginosa PAO1 biofilm formation as well as their efficiency in disrupting preformed biofilms was also evaluated using scanning electron microscopy and confocal laser scanning microscopy (CLSM). Hordenine treatment inhibited the production of QS-related extracellular virulence factors of P. aeruginosa PAO1. Additionally, quantitative real-time polymerase chain reaction analysis demonstrated that the expressions of QS-related genes, lasI, lasR, rhlI, and rhlR, were significantly suppressed. Our results indicated that hordenine can serve as a competitive inhibitor for signaling molecules and act as a novel QS-based agent to defend against foodborne pathogens.
Collapse
Affiliation(s)
- Jin-Wei Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University , Haikou 570228, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Huai-Zhi Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University , Haikou 570228, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Huan Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University , Haikou 570228, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Ting-Kun Jian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University , Haikou 570228, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Zi-Qian Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University , Haikou 570228, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Ai-Qun Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University , Haikou 570228, China
| |
Collapse
|
50
|
Zernickel A, Du W, Ghorpade SA, Sawant DN, Makki AA, Sekar N, Eppinger J. Bedford-Type Palladacycle-Catalyzed Miyaura Borylation of Aryl Halides with Tetrahydroxydiboron in Water. J Org Chem 2018; 83:1842-1851. [PMID: 29313348 DOI: 10.1021/acs.joc.7b02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A mild aqueous protocol for palladium catalyzed Miyaura borylation of aryl iodides, aryl bromides and aryl chlorides with tetrahydroxydiboron (BBA) as a borylating agent is developed. The developed methodology requires low catalyst loading of Bedford-type palladacycle catalyst (0.05 mol %) and works best under mild reaction conditions at 40 °C in short time of 6 h in water. In addition, our studies show that for Miyaura borylation using BBA in aqueous condition, maintaining a neutral reaction pH is very important for reproducibility and higher yields of corresponding borylated products. Moreover, our protocol is applicable for a broad range of aryl halides, corresponding borylated products are obtained in excellent yields up to 93% with 29 examples demonstrating its broad utility and functional group tolerance.
Collapse
Affiliation(s)
- Anna Zernickel
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, KAUST Catalysis Center (KCC) , Thuwal 23955-6900, Saudi Arabia
| | - Weiyuan Du
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, KAUST Catalysis Center (KCC) , Thuwal 23955-6900, Saudi Arabia
| | - Seema A Ghorpade
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, KAUST Catalysis Center (KCC) , Thuwal 23955-6900, Saudi Arabia.,Department of Dyestuff Technology, Institute of Chemical Technology (Deemed University) , N. Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Dinesh N Sawant
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, KAUST Catalysis Center (KCC) , Thuwal 23955-6900, Saudi Arabia
| | - Arwa A Makki
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, KAUST Catalysis Center (KCC) , Thuwal 23955-6900, Saudi Arabia
| | - Nagaiyan Sekar
- Department of Dyestuff Technology, Institute of Chemical Technology (Deemed University) , N. Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Jörg Eppinger
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, KAUST Catalysis Center (KCC) , Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|