1
|
de Alba Alvarez I, Arbabi A, Khlebnikov V, Marques JP, Norris DG. Single-shot frequency offset measurement with HASTE using the selective parity approach. Sci Rep 2024; 14:9949. [PMID: 38688948 PMCID: PMC11061157 DOI: 10.1038/s41598-024-60275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
Measurements of frequency offset are commonly required in MRI. The standard method measures the signal phase as a function of evolution time. Here we use a single shot turbo-spin-echo acquisition method to measure frequency offset at a single evolution time. After excitation the transverse magnetisation evolves during the evolution time, and is then repeatedly refocused. The phase is conjugated between alternate echoes. Using partial parallel acquisition techniques we obtain separate odd- and even- echo images. An iterative procedure ensures self-consistency between them. The difference in phase between the two images yields frequency offset maps. The technique was implemented at 3 Tesla and tested on a healthy human volunteer for a range of evolution times between 6 and 42 ms. A standard method using a similar readout train and multiple evolution times was used as a gold-standard measure. In a statistical comparison with the gold standard no evidence for bias or offset was found. There was no systematic variation in precision or accuracy as a function of evolution time. We conclude that the presented approach represents a viable method for the rapid generation of frequency offset maps with a high image quality and minimal distortion.
Collapse
Affiliation(s)
- Irina de Alba Alvarez
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Multi-Modality Medical Imaging (M3I), Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Aidin Arbabi
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Vitaliy Khlebnikov
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging UNESCO World Cultural Heritage Zollverein, Kokereiallee 7, Building C84, 45141, Essen, Germany.
- Department of Clinical Neurophysiology (CNPH), Faculty Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
2
|
Kandrashkin YE. Approximate analytical expressions for the Carr-Purcell-Meiboom-Gill sequences: Decay rates and modulation zeros of the echo train and the relation between the T 1 and T 2 relaxation times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107464. [PMID: 37148712 DOI: 10.1016/j.jmr.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Methods of multi-pulse sequences are widely used in magnetic resonance to study the local properties of magnetic particles and to increase the lifetime of spin coherence. Imperfect refocusing pulses lead to non-exponential signal decay due to the contribution of the coherence pathways in which T1 and T2 relaxation segments are mixed. Here, we present analytical approximations for echoes generated in the Carr-Purcell-Meiboom-Gill (CPMG) sequence. They provide simple expressions for the leading terms of the echo train decay and allow the relaxation times to be estimated for sequences with a relatively small number of pulses. For a given refocusing angle α, the decay times for the fixed phase and alternating phase CPMG sequences can be approximated as (T2-1+T1-1)/2 and T2O, respectively. The ability to estimate relaxation times from short pulse sequences can reduce the acquisition time, which is essential for the methods used in magnetic resonance imaging. In the case of a CPMG sequence with the fixed phase, the relaxation times can also be obtained from the points in the sequence at which the echo changes sign. Numerical comparison of the exact and approximate expressions shows the practical limits of the analytical formulas obtained. It is also shown that a double echo sequence in which the interval between the first two pulses is not equal to half the interval of the subsequent refocusing pulses provides the same information as two separate CPMG (or CP) sequences with fixed and alternating phases of the refocusing pulses. In addition, the two double-echo sequences differ in the parity of the number of intervals with longitudinal magnetization evolution (relaxation), i.e. the echo in one sequence is formed only from those coherence pathways that have an even number of intervals with longitudinal magnetization evolution, while the other sequence has an odd number of such intervals.
Collapse
Affiliation(s)
- Yuri E Kandrashkin
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia.
| |
Collapse
|
3
|
Rahbek S, Schakel T, Mahmood F, Madsen KH, Philippens MEP, Hanson LG. Optimized flip angle schemes for the split acquisition of fast spin-echo signals (SPLICE) sequence and application to diffusion-weighted imaging. Magn Reson Med 2023; 89:1469-1480. [PMID: 36420920 PMCID: PMC10099388 DOI: 10.1002/mrm.29545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The diffusion-weighted SPLICE (split acquisition of fast spin-echo signals) sequence employs split-echo rapid acquisition with relaxation enhancement (RARE) readout to provide images almost free of geometric distortions. However, due to the varying T 2 $$ {}_2 $$ -weighting during k-space traversal, SPLICE suffers from blurring. This work extends a method for controlling the spatial point spread function (PSF) while optimizing the signal-to-noise ratio (SNR) achieved by adjusting the flip angles in the refocusing pulse train of SPLICE. METHODS An algorithm based on extended phase graph (EPG) simulations optimizes the flip angles by maximizing SNR for a flexibly chosen predefined target PSF that describes the desired k-space density weighting and spatial resolution. An optimized flip angle scheme and a corresponding post-processing correction filter which together achieve the target PSF was tested by healthy subject brain imaging using a clinical 1.5 T scanner. RESULTS Brain images showed a clear and consistent improvement over those obtained with a standard constant flip angle scheme. SNR was increased and apparent diffusion coefficient estimates were more accurate. For a modified Hann k-space weighting example, considerable benefits resulted from acquisition weighting by flip angle control. CONCLUSION The presented flexible method for optimizing SPLICE flip angle schemes offers improved MR image quality of geometrically accurate diffusion-weighted images that makes the sequence a strong candidate for radiotherapy planning or stereotactic surgery.
Collapse
Affiliation(s)
- Sofie Rahbek
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Tim Schakel
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | | | - Lars G Hanson
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
4
|
Lee PK, Hargreaves BA. A joint linear reconstruction for multishot diffusion weighted non-Carr-Purcell-Meiboom-Gill fast spin echo with full signal. Magn Reson Med 2022; 88:2139-2156. [PMID: 35906924 PMCID: PMC9732866 DOI: 10.1002/mrm.29393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Diffusion weighted Fast Spin Echo (DW-FSE) is a promising approach for distortionless DW imaging that is robust to system imperfections such as eddy currents and off-resonance. Due to non-Carr-Purcell-Meiboom-Gill (CPMG) magnetization, most DW-FSE sequences discard a large fraction of the signal (2 - 2 × $$ \sqrt{2}-2\times $$ ), reducing signal-to-noise ratio (SNR) efficiency compared to DW-EPI. The full FSE signal can be preserved by quadratically incrementing the transmit phase of the refocusing pulses, but this method of resolving non-CPMG magnetization has only been applied to single-shot DW-FSE due to challenges associated with image reconstruction. We present a joint linear reconstruction for multishot quadratic phase increment data that addresses these challenges and corrects ghosting from both shot-to-shot phase and intrashot signal oscillations. Multishot imaging reduces T2 blur and joint reconstruction of shots improves g-factor performance. A thorough analysis on the condition number of the proposed linear system is described. METHODS A joint multishot reconstruction is derived from the non-CPMG signal model. Multishot quadratic phase increment DW-FSE was tested in a standardized diffusion phantom and compared to single-shot DW-FSE and DW-EPI in vivo in the brain, cervical spine, and prostate. The pseudo multiple replica technique was applied to generate g-factor and SNR maps. RESULTS The proposed joint shot reconstruction eliminates ghosting from shot-to-shot phase and intrashot oscillations. g-factor performance is improved compared to previously proposed reconstructions, permitting efficient multishot imaging. apparent diffusion coefficient estimates in phantom experiments and in vivo are comparable to those obtained with conventional methods. CONCLUSION Multi-shot non-CPMG DW-FSE data with full signal can be jointly reconstructed using a linear model.
Collapse
Affiliation(s)
- Philip K. Lee
- Radiology, Stanford University, Stanford, CA, 94305, USA
- Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Brian A. Hargreaves
- Radiology, Stanford University, Stanford, CA, 94305, USA
- Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Bioengineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Liu Q, Xu Z, Zhao K, Hoge WS, Zhang X, Mei Y, Lu Q, Niendorf T, Feng Y. Diffusion-weighted magnetic resonance imaging in rat kidney using two-dimensional navigated, interleaved echo-planar imaging at 7.0 T. NMR IN BIOMEDICINE 2022; 35:e4652. [PMID: 34820933 DOI: 10.1002/nbm.4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to investigate the feasibility of two-dimensional (2D) navigated, interleaved multishot echo-planar imaging (EPI) to enhance kidney diffusion-weighted imaging (DWI) in rats at 7.0 T. Fully sampled interleaved four-shot EPI with 2D navigators was tailored for kidney DWI (Sprague-Dawley rats, n = 7) on a 7.0-T small bore preclinical scanner. The image quality of four-shot EPI was compared with T2 -weighted rapid acquisition with relaxation enhancement (RARE) (reference) and single-shot EPI (ss-EPI) without and with parallel imaging (PI). The contrast-to-noise ratio (CNR) was examined to assess the image quality for the EPI approaches. The Dice similarity coefficient and the Hausdorff distance were used for evaluation of image distortion. Mean diffusivity (MD) and fractional anisotropy (FA) were calculated for renal cortex and medulla for all DWI approaches. The corticomedullary difference of MD and FA were assessed by Wilcoxon signed-rank test. Four-shot EPI showed the highest CNR among the three EPI variants and lowest geometric distortion versus T2 -weighted RARE (mean Dice: 0.77 for ss-EPI without PI, 0.88 for ss-EPI with twofold undersampling, and 0.92 for four-shot EPI). The FA map derived from four-shot EPI clearly identified a highly anisotropic region corresponding to the inner stripe of the outer medulla. Four-shot EPI successfully discerned differences in both MD and FA between renal cortex and medulla. In conclusion, 2D navigated, interleaved multishot EPI facilitates high-quality rat kidney DWI with clearly depicted intralayer and interlayer structure and substantially reduced image distortion. This approach enables the anatomic integrity of DWI-MRI in small rodents and has the potential to benefit the characterization of renal microstructure in preclinical studies.
Collapse
Affiliation(s)
- Qiang Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zhongbiao Xu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyuan Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qiqi Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Lee SY, Meyer BP, Kurpad SN, Budde MD. Diffusion-prepared fast spin echo for artifact-free spinal cord imaging. Magn Reson Med 2021; 86:984-994. [PMID: 33720450 DOI: 10.1002/mrm.28751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/07/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Diffusion MRI provides unique contrast important for the detection and examination of pathophysiology after acute neurologic insults, including spinal cord injury. Diffusion weighted imaging of the rodent spinal cord has typically been evaluated with axial EPI readout. However, Diffusion weighted imaging is prone to motion artifacts, whereas EPI is prone to susceptibility artifacts. In the context of acute spinal cord injury, diffusion filtering has previously been shown to improve detection of injury by minimizing the confounding effects of edema. We propose a diffusion-preparation module combined with a rapid acquisition with relaxation enhancement readout to minimize artifacts for sagittal imaging. METHODS Sprague-Dawley rats with cervical contusion spinal cord injury were scanned at 9.4 Tesla. The sequence optimization included the evaluation of motion-compensated encoding diffusion gradients, gating strategy, and different spinal cord-specific diffusion-weighting schemes. RESULTS A diffusion-prepared rapid acquisition with relaxation enhancement achieved high-quality images free from susceptibility artifacts with both second-order motion-compensated encoding and gating necessary for reduction of motion artifacts. Axial diffusivity obtained from the filtered diffusion-encoding scheme had greater lesion-to-healthy tissue contrast (52%) compared to the similar metric from DTI (25%). CONCLUSION This work demonstrated the feasibility of high-quality diffusion sagittal imaging in the rodent cervical cord with diffusion-prepared relaxation enhancement. The sequence and results are expected to improve injury detection and evaluation in acute spinal cord injury.
Collapse
Affiliation(s)
- Seung-Yi Lee
- Neuroscience Doctoral Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Briana P Meyer
- Neuroscience Doctoral Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew D Budde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Börnert P, Norris DG. A half-century of innovation in technology-preparing MRI for the 21st century. Br J Radiol 2020; 93:20200113. [PMID: 32496816 DOI: 10.1259/bjr.20200113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MRI developed during the last half-century from a very basic concept to an indispensable non-ionising medical imaging technique that has found broad application in diagnostics, therapy control and far beyond. Due to its excellent soft-tissue contrast and the huge variety of accessible tissue- and physiological-parameters, MRI is often preferred to other existing modalities. In the course of its development, MRI underwent many substantial transformations. From the beginning, starting as a proof of concept, much effort was expended to develop the appropriate basic scanning technology and methodology, and to establish the many clinical contrasts (e.g., T1, T2, flow, diffusion, water/fat, etc.) that MRI is famous for today. Beyond that, additional prominent innovations to the field have been parallel imaging and compressed sensing, leading to significant scanning time reductions, and the move towards higher static magnetic field strengths, which led to increased sensitivity and improved image quality. Improvements in workflow and the use of artificial intelligence are among many current trends seen in this field, paving the way for a broad use of MRI. The 125th anniversary of the BJR is a good point to reflect on all these changes and developments and to offer some slightly speculative ideas as to what the future may bring.
Collapse
Affiliation(s)
- Peter Börnert
- Philips Research, Hamburg, Germany.,Department of Radiology, LUMC, Leiden, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany.,Magnetic Detection and Imaging, Science and Technology Faculty, University of Twente, Enschede, Netherlands
| |
Collapse
|
8
|
Diffusion-weighted Renal MRI at 9.4 Tesla Using RARE to Improve Anatomical Integrity. Sci Rep 2019; 9:19723. [PMID: 31873155 PMCID: PMC6928203 DOI: 10.1038/s41598-019-56184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.
Collapse
|
9
|
Mirdrikvand M, Ridder H, Thöming J, Dreher W. Diffusion weighted magnetic resonance imaging for temperature measurements in catalyst supports with an axial gas flow. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00082h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In situ thermometry of catalytic gas phase reactions allows to determine temperature profiles in catalyst beds. Diffusion weighted MRI is proposed as an alternative method for temperature measurements using capillaries filled with different liquids.
Collapse
Affiliation(s)
- Mojtaba Mirdrikvand
- The University of Bremen
- Department of Chemistry
- In vivo MR group
- 28359 Bremen
- Germany
| | - Harm Ridder
- The University of Bremen
- Center for Environmental Research and Sustainable Technology (UFT)
- 28359 Bremen
- Germany
| | - Jorg Thöming
- The University of Bremen
- Center for Environmental Research and Sustainable Technology (UFT)
- 28359 Bremen
- Germany
| | - Wolfgang Dreher
- The University of Bremen
- Department of Chemistry
- In vivo MR group
- 28359 Bremen
- Germany
| |
Collapse
|
10
|
Cervantes B, Van AT, Weidlich D, Kooijman H, Hock A, Rummeny EJ, Gersing A, Kirschke JS, Karampinos DC. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase-corrected diffusion-prepared 3D turbo spin echo. Magn Reson Med 2018; 80:609-618. [PMID: 29380414 PMCID: PMC5947302 DOI: 10.1002/mrm.27072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE To perform in vivo isotropic-resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase-navigated diffusion-prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase-error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. METHODS Phase-navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy-current effects on the signal magnitude. Phase navigation of motion-induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single-shot echo planar imaging (ss-EPI) in 13 subjects. Diffusion data were phase-corrected per kz plane with respect to T2 -weighted data. The effects of motion-induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss-EPI. RESULTS Non-phase-corrected 3D TSE resulted in artifacts in diffusion-weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss-EPI DTI parameters (MD = 1.62 ± 0.21). CONCLUSION DP 3D TSE with phase correction allows distortion-free isotropic diffusion imaging of lower back nerves with robustness to motion-induced artifacts and DTI quantification errors. Magn Reson Med 80:609-618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Anh T. Van
- Institute of Medical Engineering (IMETUM)Technical University of MunichGarchingGermany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | | | | | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Alexandra Gersing
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| |
Collapse
|
11
|
Gibbons EK, Vasanawala SS, Pauly JM, Kerr AB. Body diffusion-weighted imaging using magnetization prepared single-shot fast spin echo and extended parallel imaging signal averaging. Magn Reson Med 2018; 79:3032-3044. [PMID: 29044721 PMCID: PMC6312718 DOI: 10.1002/mrm.26971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE This work demonstrates a magnetization prepared diffusion-weighted single-shot fast spin echo (SS-FSE) pulse sequence for the application of body imaging to improve robustness to geometric distortion. This work also proposes a scan averaging technique that is superior to magnitude averaging and is not subject to artifacts due to object phase. THEORY AND METHODS This single-shot sequence is robust against violation of the Carr-Purcell-Meiboom-Gill (CPMG) condition. This is achieved by dephasing the signal after diffusion weighting and tipping the MG component of the signal onto the longitudinal axis while the non-MG component is spoiled. The MG signal component is then excited and captured using a traditional SS-FSE sequence, although the echo needs to be recalled prior to each echo. Extended Parallel Imaging (ExtPI) averaging is used where coil sensitivities from the multiple acquisitions are concatenated into one large parallel imaging (PI) problem. The size of the PI problem is reduced by SVD-based coil compression which also provides background noise suppression. This sequence and reconstruction are evaluated in simulation, phantom scans, and in vivo abdominal clinical cases. RESULTS Simulations show that the sequence generates a stable signal throughout the echo train which leads to good image quality. This sequence is inherently low-SNR, but much of the SNR can be regained through scan averaging and the proposed ExtPI reconstruction. In vivo results show that the proposed method is able to provide diffusion encoded images while mitigating geometric distortion artifacts compared to EPI. CONCLUSION This work presents a diffusion-prepared SS-FSE sequence that is robust against the violation of the CPMG condition while providing diffusion contrast in clinical cases. Magn Reson Med 79:3032-3044, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Eric K Gibbons
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | - John M Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Adam B Kerr
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Paul K, Huelnhagen T, Oberacker E, Wenz D, Kuehne A, Waiczies H, Schmitter S, Stachs O, Niendorf T. Multiband diffusion-weighted MRI of the eye and orbit free of geometric distortions using a RARE-EPI hybrid. NMR IN BIOMEDICINE 2018; 31:e3872. [PMID: 29315932 DOI: 10.1002/nbm.3872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Diffusion-weighted imaging (DWI) provides information on tissue microstructure. Single-shot echo planar imaging (EPI) is the most common technique for DWI applications in the brain, but is prone to geometric distortions and signal voids. Rapid acquisition with relaxation enhancement [RARE, also known as fast spin echo (FSE)] imaging presents a valuable alternative to DWI with high anatomical accuracy. This work proposes a multi-shot diffusion-weighted RARE-EPI hybrid pulse sequence, combining the anatomical integrity of RARE with the imaging speed and radiofrequency (RF) power deposition advantage of EPI. The anatomical integrity of RARE-EPI was demonstrated and quantified by center of gravity analysis for both morphological images and diffusion-weighted acquisitions in phantom and in vivo experiments at 3.0 T and 7.0 T. The results indicate that half of the RARE echoes in the echo train can be replaced by EPI echoes whilst maintaining anatomical accuracy. The reduced RF power deposition of RARE-EPI enabled multiband RF pulses facilitating simultaneous multi-slice imaging. This study shows that diffusion-weighted RARE-EPI has the capability to acquire high fidelity, distortion-free images of the eye and the orbit. It is shown that RARE-EPI maintains the immunity to B0 inhomogeneities reported for RARE imaging. This benefit can be exploited for the assessment of ocular masses and pathological changes of the eye and the orbit.
Collapse
Affiliation(s)
- Katharina Paul
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Daniel Wenz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Stachs
- Department of Ophthalmology, University of Rostock, Rostock, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
13
|
Gibbons EK, Le Roux P, Vasanawala SS, Pauly JM, Kerr AB. Robust Self-Calibrating nCPMG Acquisition: Application to Body Diffusion-Weighted Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:200-209. [PMID: 28829307 PMCID: PMC5784776 DOI: 10.1109/tmi.2017.2741421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper demonstrates a robust diffusion-weighted single-shot fast spin echo (SS-FSE) sequence in the presence of significant off-resonance, which includes a variable-density acquisition and a self-calibrated reconstruction as improvements. A non-Carr-Purcell-Meiboom-Gill (nCPMG) SS-FSE acquisition stabilizes both the main and parasitic echo families for each echo. This preserves both the in-phase and quadrature components of the magnetization throughout the echo train. However, nCPMG SS-FSE also promotes aliasing of the quadrature component, which complicates reconstruction. A new acquisition and reconstruction approach is presented here, where the field-of-view is effectively doubled, but a partial k-space and variable density sampling is used to improve scan efficiency. The technique is presented in phantom scans to validate SNR and robustness against rapidly varying object phase. In vivo healthy volunteer examples and the clinical cases are demonstrated in abdominal imaging. This new approach provides comparable SNR to previous nCPMG acquisition techniques as well as providing more uniform apparent diffusion coefficient maps in phantom scans. In vivo scans suggest that this method is more robust against motion than previous approaches. The proposed reconstruction is an improvement to the nCPMG sequence as it is auto-calibrating and is justified to accurately treat the signal model for the nCPMG SS-FSE sequence.
Collapse
|
14
|
Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: Overview, pitfalls, and future directions. J Magn Reson Imaging 2017; 47:1171-1189. [DOI: 10.1002/jmri.25876] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tina Jeon
- Department of Radiology and Imaging; Hospital for Special Surgery; New York New York USA
| | - Maggie M. Fung
- MR Apps & Workflow; GE Healthcare; New York New York USA
| | - Kevin M. Koch
- Department of Radiology; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Ek T. Tan
- GE Global Research Center; Niskayuna New York USA
| | - Darryl B. Sneag
- Department of Radiology and Imaging; Hospital for Special Surgery; New York New York USA
| |
Collapse
|
15
|
Schakel T, Hoogduin JM, Terhaard CHJ, Philippens MEP. Technical Note: Diffusion-weighted MRI with minimal distortion in head-and-neck radiotherapy using a turbo spin echo acquisition method. Med Phys 2017; 44:4188-4193. [PMID: 28543364 DOI: 10.1002/mp.12363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Diffusion-weighted (DW) MRI, showing high contrast between tumor and background tissue, is a promising technique in radiotherapy for tumor delineation. However, its use for head-and-neck patients is hampered by poor geometric accuracy in conventional echo planar imaging (EPI) DW-MRI. An alternative turbo spin echo sequence, DW-SPLICE, is implemented and demonstrated in patients. METHODS The DW-SPLICE sequence was implemented on a 3.0 T system and evaluated in 10 patients. The patients were scanned in treatment position, using a customized head support and immobilization mask. Image distortions were quantified at the gross tumor volume (GTV) using field map analysis. The apparent diffusion coefficient (ADC) was evaluated using an ice water phantom. RESULTS The DW images acquired by DW-SPLICE showed no image distortions. Field map analysis at the gross tumor volumes resulted in a median distortion of 0.2 mm for DW-SPLICE, whereas for the conventional method this was 7.2 mm. ADC values, measured using an ice water phantom were in accordance with literature values. CONCLUSIONS The implementation of DW-SPLICE allows for diffusion-weighted imaging of patients in treatment position with excellent geometrical accuracy. The images can be used to facilitate target volume delineation in RT treatment planning.
Collapse
Affiliation(s)
- Tim Schakel
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Johannes M Hoogduin
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Chris H J Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marielle E P Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
16
|
Koch KM, Bhave S, Gaddipati A, Hargreaves BA, Gui D, Peters R, Bedi M, Mannem R, Kaushik SS. Multispectral diffusion-weighted imaging near metal implants. Magn Reson Med 2017; 79:987-993. [DOI: 10.1002/mrm.26737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Kevin M. Koch
- Radiology, Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Sampada Bhave
- Radiology, Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Ajeet Gaddipati
- MR Applications and Workflow, GE Healthcare; Milwaukee Wisconsin USA
| | | | - Dawei Gui
- MR Applications and Workflow, GE Healthcare; Milwaukee Wisconsin USA
| | - Robert Peters
- MR Applications and Workflow, GE Healthcare; Milwaukee Wisconsin USA
| | - Meena Bedi
- Radiation Oncology, Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Rajeev Mannem
- Radiology, Medical College of Wisconsin; Milwaukee Wisconsin USA
| | | |
Collapse
|
17
|
Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3Tesla. Z Med Phys 2017; 27:193-201. [PMID: 28410964 DOI: 10.1016/j.zemedi.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
Abstract
Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750s/mm2 with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3Tesla.
Collapse
|
18
|
Gibbons EK, Le Roux P, Pauly JM, Kerr AB. Slice profile effects on nCPMG SS-FSE. Magn Reson Med 2017; 79:430-438. [PMID: 28370409 DOI: 10.1002/mrm.26694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/13/2017] [Accepted: 03/09/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE To determine the effects of the RF refocusing pulse profile on the magnitude of the transverse signal smoothness throughout the echo train in non-Carr-Purcell-Meiboom-Gill (nCPMG) single-shot fast spin echo (SS-FSE) imaging and to design an RF refocusing pulse that provides improved signal stability. THEORY AND METHODS: nCPMG SS-FSE quadratic phase modulation requires sufficiently high and uniform refocusing flip angle to achieve a stable signal. Typically, refocusing pulses used in SS-FSE sequences are designed for minimum duration to minimize echo spacing and as a consequence have poor selectivity. However, delay-insensitive variable rate excitation Shinnar-Le Roux (DV-SLR) refocusing pulses can achieve both improved selectivity as well as a short duration. This class of RF pulse is compared against a traditional low time-bandwidth refocusing pulse in a nCPMG SS-FSE in simulation, phantom, and in vivo. RESULTS DV-SLR pulses achieve a more stable signal in simulation, phantom, and in vivo cases while maintaining an appropriately short duration as well as not dramatically increasing specific absorption rate (SAR) accumulation. CONCLUSION The nCPMG SS-FSE method demonstrates improved robustness when a more selective refocusing pulse is used. Refocusing pulses that use a time-varying excitation gradient can achieve this selectivity while maintaining short echo spacing. Magn Reson Med 79:430-438, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Eric K Gibbons
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | - John M Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Adam B Kerr
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Van AT, Cervantes B, Kooijman H, Karampinos DC. Analysis of phase error effects in multishot diffusion-prepared turbo spin echo imaging. Quant Imaging Med Surg 2017; 7:238-250. [PMID: 28516049 DOI: 10.21037/qims.2017.04.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND To characterize the effect of phase errors on the magnitude and the phase of the diffusion-weighted (DW) signal acquired with diffusion-prepared turbo spin echo (dprep-TSE) sequences. METHODS Motion and eddy currents were identified as the main sources of phase errors. An analytical expression for the effect of phase errors on the acquired signal was derived and verified using Bloch simulations, phantom, and in vivo experiments. RESULTS Simulations and experiments showed that phase errors during the diffusion preparation cause both magnitude and phase modulation on the acquired data. When motion-induced phase error (MiPe) is accounted for (e.g., with motion-compensated diffusion encoding), the signal magnitude modulation due to the leftover eddy-current-induced phase error cannot be eliminated by the conventional phase cycling and sum-of-squares (SOS) method. By employing magnitude stabilizers, the phase-error-induced magnitude modulation, regardless of its cause, was removed but the phase modulation remained. The in vivo comparison between pulsed gradient and flow-compensated diffusion preparations showed that MiPe needed to be addressed in multi-shot dprep-TSE acquisitions employing magnitude stabilizers. CONCLUSIONS A comprehensive analysis of phase errors in dprep-TSE sequences showed that magnitude stabilizers are mandatory in removing the phase error induced magnitude modulation. Additionally, when multi-shot dprep-TSE is employed the inconsistent signal phase modulation across shots has to be resolved before shot-combination is performed.
Collapse
Affiliation(s)
- Anh T Van
- Zentralinstitut für Medizintechnik, Technical University of Munich, Garching, Germany
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | | | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
20
|
Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR IN BIOMEDICINE 2017; 30:e3333. [PMID: 26114411 DOI: 10.1002/nbm.3333] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Diffusion-weighted MRI (DWI) of the vertebral bone marrow is a clinically important tool for the characterization of bone-marrow pathologies and, in particular, for the differentiation of benign (osteoporotic) and malignant vertebral compression fractures. DWI of the vertebral bone marrow is, however, complicated by some unique MR and tissue properties of vertebral bone marrow. Due to both the spongy microstructure of the trabecular bone and the proximity of the lungs, soft tissue, or large vessels, substantial magnetic susceptibility variations occur, which severely reduce the magnetic field homogeneity as well as the transverse relaxation time T*2 , and thus complicate MRI in particular with echoplanar imaging (EPI) techniques. Therefore, alternative diffusion-weighting pulse sequence types such as single-shot fast-spin-echo sequences or segmented EPI techniques became important alternatives for quantitative DWI of the vertebral bone marrow. This review first describes pulse sequence types that are particularly important for DWI of the vertebral bone marrow. Then, data from 24 studies that made diffusion measurements of normal vertebral bone marrow are reviewed; summarizing all results, the apparent diffusion coefficient (ADC) of normal vertebral bone marrow is typically found to be between 0.2 and 0.6 × 10-3 mm2 /s. Finally, DWI of vertebral compression fractures is discussed. Numerous studies demonstrate significantly greater ADCs in osteoporotic fractures (typically between 1.2 and 2.0 × 10-3 mm2 /s) than in malignant fractures or lesions (typically 0.7-1.3 × 10-3 mm2 /s). Alternatively, several studies used the (qualitative) image contrast of diffusion-weighted acquisitions for differentiation of lesion etiology: a very good lesion differentiation can be achieved, particularly with diffusion-weighted steady-state free precession sequences, which depict malignant lesions as hyperintense relative to normal-appearing vertebral bone marrow, in contrast to hypointense or isointense osteoporotic lesions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olaf Dietrich
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Tobias Geith
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Maximilian F Reiser
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Andrea Baur-Melnyk
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| |
Collapse
|
21
|
Gibbons EK, Le Roux P, Vasanawala SS, Pauly JM, Kerr AB. Body Diffusion Weighted Imaging Using Non-CPMG Fast Spin Echo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:549-559. [PMID: 27810802 PMCID: PMC5492898 DOI: 10.1109/tmi.2016.2622238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
SS-FSE is a fast technique that does not suffer from off-resonance distortions to the degree that EPI does. Unlike EPI, SS-FSE is ill-suited to diffusion weighted imaging (DWI) due to the Carr-Purcell-Meiboom-Geill (CPMG) condition. Non-CPMG phase cycling does accommodate SS-FSE and DWI but places constraints on reconstruction, which are resolved here through parallel imaging. Additionally, improved echo stability can be achieved by using short duration and highly selective DIVERSE radiofrequency pulses. Here, signal-to-noise ratio (SNR) comparisons between EPI and nCPMG SS-FSE acquisitions and reconstruction techniques give similar values. Diffusion imaging with nCPMG SS-FSE gives similar SNR to an EPI acquisition, though apparent diffusion coefficient values are higher than seen with EPI. In vivo images have good image quality with little distortion. This method has the ability to capture distortion-free DWI images near areas of significant off-resonance as well as preserve adequate SNR. Parallel imaging and DIVERSE refocusing RF pulses allow shorter ETL compared to previous implementations and thus reduces phase encode direction blur and SAR accumulation.
Collapse
|
22
|
Pastor G, Jiménez-González M, Plaza-García S, Beraza M, Reese T. Fast T1 and T2 mapping methods: the zoomed U-FLARE sequence compared with EPI and snapshot-FLASH for abdominal imaging at 11.7 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:299-307. [DOI: 10.1007/s10334-016-0604-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
23
|
Zhang Z, Zhang B, Li M, Liang X, Chen X, Liu R, Zhang X, Guo H. Multishot cartesian turbo spin-echo diffusion imaging using iterative POCSMUSE Reconstruction. J Magn Reson Imaging 2016; 46:167-174. [PMID: 27766699 DOI: 10.1002/jmri.25522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhe Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering; Tsinghua University; Beijing China
| | - Bing Zhang
- Department of Radiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing China
| | - Ming Li
- Department of Radiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing China
| | - Xue Liang
- Department of Radiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing China
| | - Xiaodong Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering; Tsinghua University; Beijing China
- Department of Radiology; Affiliated Hospital of Guangdong Medical College; Guangdong China
| | - Renyuan Liu
- Department of Radiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing China
| | - Xin Zhang
- Department of Radiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering; Tsinghua University; Beijing China
| |
Collapse
|
24
|
Fernández-Seara MA, Rodgers ZB, Englund EK, Wehrli FW. Calibrated bold fMRI with an optimized ASL-BOLD dual-acquisition sequence. Neuroimage 2016; 142:474-482. [PMID: 27502047 DOI: 10.1016/j.neuroimage.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/11/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022] Open
Abstract
Calibrated fMRI techniques estimate task-induced changes in the cerebral metabolic rate of oxygen (CMRO2) based on simultaneous measurements of cerebral blood flow (CBF) and blood-oxygen-level-dependent (BOLD) signal changes evoked by stimulation. To determine the calibration factor M (corresponding to the maximum possible BOLD signal increase), BOLD signal and CBF are measured in response to a gas breathing challenge (usually CO2 or O2). Here we describe an ASL dual-acquisition sequence that combines a background-suppressed 3D-GRASE readout with 2D multi-slice EPI. The concatenation of these two imaging sequences allowed separate optimization of the acquisition for CBF and BOLD data. The dual-acquisition sequence was validated by comparison to an ASL sequence with a dual-echo EPI readout, using a visual fMRI paradigm. Results showed a 3-fold increase in temporal signal-to-noise ratio (tSNR) of the ASL time-series data while BOLD tSNR was similar to that obtained with the dual-echo sequence. The longer TR of the proposed dual-acquisition sequence, however, resulted in slightly lower T-scores (by 30%) in the BOLD activation maps. Further, the potential of the dual-acquisition sequence for M-mapping on the basis of a hypercapnia gas breathing challenge and for quantification of CMRO2 changes in response to a motor activation task was assessed. In five subjects, an average gray matter M-value of 8.71±1.03 and fractional changes of CMRO2 of 12.5±5% were found. The new sequence remedies the deficiencies of prior combined BOLD-ASL acquisition strategies by substantially enhancing perfusion tSNR, which is essential for accurate BOLD calibration.
Collapse
Affiliation(s)
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
25
|
Kuczera S, Galvosas P. Advances and artefact suppression in RARE-velocimetry for flow with curved streamlines. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 259:135-145. [PMID: 26340434 DOI: 10.1016/j.jmr.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
Method and considerations are presented that allow for an improved quantitative velocity measurement of complex fluids under shear using a fast 2D PGSE-RARE technique. While this contribution is relevant for shear geometries with rotational symmetry in general, the focus here is set on cylindrical Couette cells, a device most commonly used for rheological NMR investigations. The curved nature of the flow within the shearing geometry creates challenges in accurately determining the flow profile, as conventional imaging gradients naturally operate on a Cartesian grid. In particular the appropriate slice thickness in the flow direction and the applied k-space trajectory are discussed. For the latter an MRI simulation program has been written that numerically solves the Bloch equations and allows for the investigation of out-of-pixel flow. Furthermore, we present ways of increasing the spatial resolution across the gap of cylindrical Couette cells while still providing 2D imaging capabilities under certain conditions, thus allowing for a more detailed quantification of flow profiles as necessary for the analysis of complex fluid flow.
Collapse
Affiliation(s)
- Stefan Kuczera
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Petrik Galvosas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
26
|
Diffusion-Sensitized Ophthalmic Magnetic Resonance Imaging Free of Geometric Distortion at 3.0 and 7.0 T. Invest Radiol 2015; 50:309-21. [DOI: 10.1097/rli.0000000000000129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Phase-aligned multiple spin-echo averaging: a simple way to improve signal-to-noise ratio of in vivo mouse spinal cord diffusion tensor image. Magn Reson Imaging 2014; 32:1335-43. [PMID: 25087856 DOI: 10.1016/j.mri.2014.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique. MATERIAL AND METHODS In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen's d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology. RESULTS Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly reflected pathological features in contusion spinal cord injury. CONCLUSION Our in vivo imaging results indicate that averaging the phased multiple spin-echo images yields an 84% signal-noise-ratio increase over the spin-echo images and a 41% gain over the magnitude averaged multiple spin-echo images with equal acquisition time. Current results from the animal model of spinal cord injury suggest that the phased multiple spin-echo images could be used to improve signal-noise-ratio.
Collapse
|
28
|
Klix S, Hezel F, Fuchs K, Ruff J, Dieringer MA, Niendorf T. Accelerated fast spin-echo magnetic resonance imaging of the heart using a self-calibrated split-echo approach. PLoS One 2014; 9:e94654. [PMID: 24728341 PMCID: PMC3984237 DOI: 10.1371/journal.pone.0094654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022] Open
Abstract
Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging.
Collapse
Affiliation(s)
- Sabrina Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Katharina Fuchs
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Jan Ruff
- Siemens Healthcare, Erlangen, Germany
| | - Matthias A. Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
29
|
Fuchs K, Hezel F, Klix S, Mekle R, Wuerfel J, Niendorf T. Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging. Magn Reson Med 2013; 72:1590-8. [DOI: 10.1002/mrm.25066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Katharina Fuchs
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrueck-Center for Molecular Medicine; Berlin Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrueck-Center for Molecular Medicine; Berlin Germany
| | - Sabrina Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrueck-Center for Molecular Medicine; Berlin Germany
| | - Ralf Mekle
- Medical Metrology, Physikalisch Technische Bundesanstalt; Berlin Germany
| | - Jens Wuerfel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrueck-Center for Molecular Medicine; Berlin Germany
- Institute of Neuroradiology, University Medicine Goettingen; Goettingen Germany
- NeuroCure Clinical Research Center; Charité - University Medicine Berlin; Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrueck-Center for Molecular Medicine; Berlin Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine; Berlin Germany
| |
Collapse
|
30
|
Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head. Magn Reson Med 2013; 71:44-9. [DOI: 10.1002/mrm.24991] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/07/2022]
|
31
|
Dietrich O. Techniques for Diffusion and Perfusion Assessment in Bone-Marrow MRI. MAGNETIC RESONANCE IMAGING OF THE BONE MARROW 2013. [DOI: 10.1007/174_2012_549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Abstract
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE.
Collapse
Affiliation(s)
- Stefan Skare
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | |
Collapse
|
33
|
Shiko G, Sederman AJ, Gladden LF. MRI technique for the snapshot imaging of quantitative velocity maps using RARE. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:183-191. [PMID: 22377348 DOI: 10.1016/j.jmr.2012.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T(2) weighted, not T(2)(∗) weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98×49 μm(2), within 20 min, and monitored over ∼13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390×390 μm(2). The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.
Collapse
Affiliation(s)
- G Shiko
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom
| | | | | |
Collapse
|
34
|
Lu L, Erokwu B, Lee G, Gulani V, Griswold MA, Dell KM, Flask CA. Diffusion-prepared fast imaging with steady-state free precession (DP-FISP): a rapid diffusion MRI technique at 7 T. Magn Reson Med 2011; 68:868-73. [PMID: 22139974 DOI: 10.1002/mrm.23287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/11/2011] [Accepted: 10/14/2011] [Indexed: 01/17/2023]
Abstract
Diffusion MRI is a useful imaging technique with many clinical applications. Many diffusion MRI studies have utilized echo-planar imaging (EPI) acquisition techniques. In this study, we have developed a rapid diffusion-prepared fast imaging with steady-state free precession MRI acquisition for a preclinical 7T scanner providing diffusion-weighted images in less than 500 ms and diffusion tensor imaging assessments in ∼1 min with minimal image artifacts in comparison with EPI. Phantom apparent diffusion coefficient (ADC) and fractional anisotropy (FA) assessments obtained from the diffusion-prepared fast imaging with steady-state free precession (DP-FISP) acquisition resulted in good agreement with EPI and spin echo diffusion methods. The mean apparent diffusion coefficient was 2.0 × 10(-3) mm(2) /s, 1.90 × 10(-3) mm(2) /s, and 1.97 × 10(-3) mm(2) /s for DP-FISP, diffusion-weighted spin echo, and diffusion-weighted EPI, respectively. The mean fractional anisotropy was 0.073, 0.072, and 0.070 for diffusion-prepared fast imaging with steady-state free precession, diffusion-weighted spin echo, and diffusion-weighted EPI, respectively. Initial in vivo studies show reasonable ADC values in a normal mouse brain and polycystic rat kidneys.
Collapse
Affiliation(s)
- Lan Lu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Jin N, Deng J, Zhang L, Zhang Z, Lu G, Omary RA, Larson AC. Targeted single-shot methods for diffusion-weighted imaging in the kidneys. J Magn Reson Imaging 2011; 33:1517-25. [PMID: 21591023 DOI: 10.1002/jmri.22556] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the feasibility of combining the inner-volume-imaging (IVI) technique with single-shot diffusion-weighted (DW) spin-echo echo-planar imaging (SE-EPI) and DW-SPLICE (split acquisition of fast spin-echo) sequences for renal DW imaging. MATERIALS AND METHODS Renal DWI was performed in 10 healthy volunteers using single-shot DW-SE-EPI, DW-SPLICE, targeted-DW-SE-EPI, and targeted-DW-SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted-DW-SE-EPI and targeted DW-SPLICE methods with conventional full field of view (FOV) DW-SE-EPI and DW-SPLICE measurements in phantoms and normal volunteers. RESULTS Compared with full FOV DW-SE-EPI and DW-SPLICE methods, targeted-DW-SE-EPI and targeted-DW-SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion, and reduced spatial blurring in both phantom and volunteer studies. The apparent diffusion coefficient (ADC) values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intravoxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single-shot DW-SE-EPI, targeted-DW-EPI, and targeted-DW-SPLICE (P > 0.05). CONCLUSION Compared with full-FOV DWI methods, targeted-DW-SE-EPI and targeted-DW-SPLICE techniques reduced image distortion and artifacts observed in the single-shot DW-SE-EPI images, reduced blurring in DW-SPLICE images, and produced comparable quantitative DW and IVIM measurements to those produced with conventional full-FOV approaches.
Collapse
Affiliation(s)
- Ning Jin
- Department of Biomedical Engineering, Northwestern University Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mantle M. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research. Int J Pharm 2011; 417:173-95. [DOI: 10.1016/j.ijpharm.2010.11.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/18/2010] [Accepted: 11/20/2010] [Indexed: 11/24/2022]
|
37
|
Le Roux P, McKinnon G, Yen YF, Fernandez B. Realignment capability of the nCPMG sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 211:121-133. [PMID: 21641245 DOI: 10.1016/j.jmr.2011.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/04/2011] [Accepted: 05/07/2011] [Indexed: 05/30/2023]
Abstract
The nCPMG sequence is based on a particular phase modulation of the refocusing pulse train, and was originally designed for rendering the spin echo amplitude insensitive to the initial magnetization phase. This pulse sequence has the peculiarity of being easily invertible, which enables perfect driven equilibrium experiments, in the absence of relaxation. This magnetization 'realignment' is effective for all three components. Hence the overall operation is transparent. Supporting theory is presented here, together with the first direct experimental proof of the claim. The experiment shows that, with the present stabilization sequence, perfect realignment is indeed made possible for a range of refocusing pulse nutation angles from 130° to 230°.
Collapse
Affiliation(s)
- P Le Roux
- Global Applied Science Laboratory, GE Healthcare, Palaiseau, France.
| | | | | | | |
Collapse
|
38
|
Wang X, Jacobs MA, Fayad L. Therapeutic response in musculoskeletal soft tissue sarcomas: evaluation by MRI. NMR IN BIOMEDICINE 2011; 24:750-63. [PMID: 21793077 PMCID: PMC3150732 DOI: 10.1002/nbm.1731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article provides a literature review of the use of MRI in monitoring the treatment response of soft tissue sarcomas. The basic classification and physiology of soft tissue tumors are introduced. Then, the major treatment options for soft tissue sarcomas are summarized with brief coverage of possible responses and grading systems. Four major branches of MRI techniques are covered, including conventional T(1) - and T(2) -weighted imaging, contrast-enhanced MRI, MR diffusion and perfusion imaging, and MRS, with a focus on the tumor microenvironment. Although this literature survey focuses on recent clinical developments using these MRI techniques, research venues in preclinical studies, as well as in potential applications other than soft tissue sarcomas, are also included when comparable and/or mutually supporting. Examples from other less-discussed MRI modalities are also briefly covered, not only to complement, but also to expand, the scope and depth of information for various kinds of lesions.
Collapse
Affiliation(s)
- Xin Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
39
|
Li Z, Pipe JG, Lee CY, Debbins JP, Karis JP, Huo D. X-PROP: A fast and robust diffusion-weighted propeller technique. Magn Reson Med 2011; 66:341-7. [DOI: 10.1002/mrm.23033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 04/18/2011] [Accepted: 05/07/2011] [Indexed: 11/10/2022]
|
40
|
Mikac U, Kristl J, Baumgartner S. Using quantitative magnetic resonance methods to understand better the gel-layer formation on polymer-matrix tablets. Expert Opin Drug Deliv 2011; 8:677-92. [DOI: 10.1517/17425247.2011.566554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Teh I, Golay X, Larkman DJ. PROPELLER for motion-robust imaging of in vivo mouse abdomen at 9.4 T. NMR IN BIOMEDICINE 2010; 23:1077-1086. [PMID: 20963802 DOI: 10.1002/nbm.1535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In vivo high-field MRI in the abdomen of small animals is technically challenging because of the small voxel sizes, short T(2) and physiological motion. In standard Cartesian sampling, respiratory and gastrointestinal motion can lead to ghosting artefacts. Although respiratory triggering and navigator echoes can either avoid or compensate for motion, they can lead to variable TRs, require invasive intubation and ventilation, or extend TEs. A self-navigated fast spin echo (FSE)-based periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) acquisition was implemented at 9.4 T to enable high-resolution in vivo MRI of mouse abdomen without the use of additional navigators or triggering. T(2)-weighted FSE-PROPELLER data were compared with single-shot FSE and multi-shot FSE data with and without triggering. Single-shot methods, although rapid and robust to motion, demonstrated strong blurring. Multi-shot FSE data showed better resolution, but suffered from marked blurring in the phase-encoding direction and motion in between shots, leading to ghosting artefacts. When respiratory triggering was used, motion artefacts were largely avoided. However, TRs and acquisition times were lengthened by up to approximately 20%. The PROPELLER data showed a 25% and 61% improvement in signal-to-noise ratio and contrast-to-noise ratio, respectively, compared with multi-shot FSE data, together with a 35% reduction in artefact power. A qualitative comparison between acquisition methods using diffusion-weighted imaging was performed. The results were similar, with the exception that respiratory triggering was unable to exclude major motion artefacts as a result of the sensitisation to motion by the diffusion gradients. The PROPELLER data were of consistently higher quality. Considerations specific to the use of PROPELLER at high field are discussed, including the selection of practical blade widths and the effects on contrast, resolution and artefacts.
Collapse
Affiliation(s)
- Irvin Teh
- Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College, London, UK.
| | | | | |
Collapse
|
42
|
Li Z, Pipe JG, Aboussouan E, Karis JP, Huo D. A parallel imaging technique using mutual calibration for split-blade diffusion-weighted PROPELLER. Magn Reson Med 2010; 65:638-44. [DOI: 10.1002/mrm.22646] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 08/04/2010] [Accepted: 08/26/2010] [Indexed: 11/10/2022]
|
43
|
Weigel M, Schwenk S, Kiselev VG, Scheffler K, Hennig J. Extended phase graphs with anisotropic diffusion. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:276-285. [PMID: 20542458 DOI: 10.1016/j.jmr.2010.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.
Collapse
Affiliation(s)
- M Weigel
- University Hospital Freiburg, Department of Radiology, Medical Physics, Breisacher Strasse 60a, 79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
44
|
McNab JA, Miller KL. Steady-state diffusion-weighted imaging: theory, acquisition and analysis. NMR IN BIOMEDICINE 2010; 23:781-793. [PMID: 20886565 DOI: 10.1002/nbm.1509] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Steady-state diffusion-weighted imaging (DWI) has long been recognized to offer potential benefits over conventional spin-echo methods. This family of pulse sequences is highly efficient and compatible with three-dimensional acquisitions, which could enable high-resolution, low-distortion images. However, the same properties that lead to its efficiency make steady-state imaging highly susceptible to motion and create a complicated signal with dependence on T(1), T(2) and flip angle. Recent developments in gradient hardware, motion-mitigation techniques and signal analysis offer potential solutions to these problems, reviving interest in steady-state DWI. This review offers a description of steady-state DWI signal formation and provides an overview of the current methods for steady-state DWI acquisition and analysis.
Collapse
Affiliation(s)
- Jennifer A McNab
- Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK
| | | |
Collapse
|
45
|
Chen YY, Hughes L, Gladden L, Mantle M. Quantitative Ultra-Fast MRI of HPMC Swelling and Dissolution. J Pharm Sci 2010; 99:3462-72. [DOI: 10.1002/jps.22110] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Finsterbusch J. Fast-spin-echo imaging of inner fields-of-view with 2D-selective RF excitations. J Magn Reson Imaging 2010; 31:1530-7. [DOI: 10.1002/jmri.22196] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Dietrich O, Biffar A, Baur-Melnyk A, Reiser MF. Technical aspects of MR diffusion imaging of the body. Eur J Radiol 2010; 76:314-22. [PMID: 20299172 DOI: 10.1016/j.ejrad.2010.02.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 02/06/2023]
Abstract
In diffusion-weighted magnetic resonance imaging (DWI), the intensity of the acquired magnetic resonance signal depends on the self-diffusion of the excited spins, i.e., on the microscopic stochastic Brownian molecular motion. Since the extent and orientation of molecular motion is influenced by the microscopic structure and organization of biological tissues, DWI can depict various pathological changes of organs or tissues. While DWI of the brain can be considered an established technique since the mid-1990s, significantly fewer studies have been published about DWI in body imaging, mainly because of the relatively low robustness of conventional DWI methods in non-neurological applications. Consequently, the image quality in such applications was rather limited. This situation, however, improved considerably in recent years due to better hardware as well as new pulse sequences, and several new applications of DWI (e.g., in the abdominal organs, in musculoskeletal applications, or in whole-body protocols) have been described. Unfortunately, DWI of the body is complicated by frequently low signal-to-noise ratios due to shorter transversal (T2) relaxation times and by strong variations of susceptibility. The latter result in severe distortion artifacts when standard echo-planar DWI techniques are applied. Hence, several alternative (non-echo-planar) diffusion-weighting pulse sequence types were proposed and evaluated for DWI applications in the body. In this review article, first the basics of molecular diffusion and of diffusion-weighted MRI are introduced and then several specific MRI techniques, which have been used for DWI of the body, are described. Finally, protocol recommendations for different DWI applications in the body are provided.
Collapse
Affiliation(s)
- Olaf Dietrich
- Josef Lissner Laboratory for Biomedical Imaging, Department of Clinical Radiology - Grosshadern, LMU Ludwig Maximilian University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
48
|
Techavipoo U, Okai AF, Lackey J, Shi J, Dresner MA, Leist TP, Lai S. Toward a practical protocol for human optic nerve DTI with EPI geometric distortion correction. J Magn Reson Imaging 2009; 30:699-707. [DOI: 10.1002/jmri.21836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Blank A, Ish-Shalom S, Shtirberg L, Zur Y. Ex situ endorectal MRI probe for prostate imaging. Magn Reson Med 2009; 62:1585-96. [DOI: 10.1002/mrm.22151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Carmichael DW, Thomas DL, Ordidge RJ. Reducing ghosting due to k-space discontinuities in fast spin echo (FSE) imaging by a new combination of k-space ordering and parallel imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:119-125. [PMID: 19608444 PMCID: PMC2728202 DOI: 10.1016/j.jmr.2009.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/02/2009] [Accepted: 06/18/2009] [Indexed: 05/28/2023]
Abstract
In multi-echo imaging sequences like fast spin echo (FSE), the point spread function (PSF) in the phase encoding direction contains significant secondary peaks (sidebands). This is due to discontinuities in adjacent k-space data obtained at different echo times caused by T(2) decay, and leads to ghosting and hence reduced image quality. Recently, utilising multiple coils for signal reception has become the standard configuration for MR systems due to the additional flexibility that parallel imaging (PI) methods can provide. PI methods generally obtain more data than is required to reconstruct an image. Here, this redundancy in information is exploited to reduce discontinuity-related ghosting in FSE imaging. Adjacent phase encoded k-space lines are acquired at different echo times alternately in the regions of discontinuity (called 'feathering'). This moves the resulting ghost artefacts to the edges of the field of view. This property of the ghost then makes them amenable to removal using PI methods. With 'feathered' array coil data it is possible to reconstruct data over the region of the discontinuity from both echo times. By combining this data, a significant reduction in ghosting can be achieved. We show this approach to be effective through simulated and acquired MRI data.
Collapse
Affiliation(s)
- David W Carmichael
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | | | | |
Collapse
|