1
|
Green D, van Ewijk R, Tirtei E, Andreou D, Baecklund F, Baumhoer D, Bielack SS, Botchu R, Boye K, Brennan B, Capra M, Cottone L, Dirksen U, Fagioli F, Fernandez N, Flanagan AM, Gambarotti M, Gaspar N, Gelderblom H, Gerrand C, Gomez-Mascard A, Hardes J, Hecker-Nolting S, Kabickova E, Kager L, Kanerva J, Kester LA, Kuijjer ML, Laurence V, Lervat C, Marchais A, Marec-Berard P, Mendes C, Merks JH, Ory B, Palmerini E, Pantziarka P, Papakonstantinou E, Piperno-Neumann S, Raciborska A, Roundhill EA, Rutkauskaite V, Safwat A, Scotlandi K, Staals EL, Strauss SJ, Surdez D, Sys GM, Tabone MD, Toulmonde M, Valverde C, van de Sande MA, Wörtler K, Campbell-Hewson Q, McCabe MG, Nathrath M. Biological Sample Collection to Advance Research and Treatment: A Fight Osteosarcoma Through European Research and Euro Ewing Consortium Statement. Clin Cancer Res 2024; 30:3395-3406. [PMID: 38869831 PMCID: PMC11334773 DOI: 10.1158/1078-0432.ccr-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Osteosarcoma and Ewing sarcoma are bone tumors mostly diagnosed in children, adolescents, and young adults. Despite multimodal therapy, morbidity is high and survival rates remain low, especially in the metastatic disease setting. Trials investigating targeted therapies and immunotherapies have not been groundbreaking. Better understanding of biological subgroups, the role of the tumor immune microenvironment, factors that promote metastasis, and clinical biomarkers of prognosis and drug response are required to make progress. A prerequisite to achieve desired success is a thorough, systematic, and clinically linked biological analysis of patient samples, but disease rarity and tissue processing challenges such as logistics and infrastructure have contributed to a lack of relevant samples for clinical care and research. There is a need for a Europe-wide framework to be implemented for the adequate and minimal sampling, processing, storage, and analysis of patient samples. Two international panels of scientists, clinicians, and patient and parent advocates have formed the Fight Osteosarcoma Through European Research consortium and the Euro Ewing Consortium. The consortia shared their expertise and institutional practices to formulate new guidelines. We report new reference standards for adequate and minimally required sampling (time points, diagnostic samples, and liquid biopsy tubes), handling, and biobanking to enable advanced biological studies in bone sarcoma. We describe standards for analysis and annotation to drive collaboration and data harmonization with practical, legal, and ethical considerations. This position paper provides comprehensive guidelines that should become the new standards of care that will accelerate scientific progress, promote collaboration, and improve outcomes.
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Roelof van Ewijk
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Elisa Tirtei
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Dimosthenis Andreou
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria.
| | - Fredrik Baecklund
- Pediatric Oncology Unit, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel Baumhoer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| | - Stefan S. Bielack
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway.
| | - Bernadette Brennan
- Paediatric Oncology, Royal Manchester Children’s Hospital, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom.
| | - Michael Capra
- Haematology/Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland.
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Uta Dirksen
- Pediatrics III, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Franca Fagioli
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Natalia Fernandez
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
| | - Adrienne M. Flanagan
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
- Histopathology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- U1015, Université Paris-Saclay, Villejuif, France.
| | - Hans Gelderblom
- Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Craig Gerrand
- Orthopaedic Oncology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Anne Gomez-Mascard
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.
- EQ ONCOSARC, CRCT Inserm/UT3, ERL CNRS, Toulouse, France.
| | - Jendrik Hardes
- Tumour Orthopaedics, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Stefanie Hecker-Nolting
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Edita Kabickova
- Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic.
| | - Leo Kager
- Pediatrics, St Anna Children’s Hospital, Medical University Vienna, Vienna, Austria.
- St Anna Children’s Cancer Research Institute, Vienna, Austria.
| | - Jukka Kanerva
- Hematology-Oncology and Stem Cell Transplantation, HUS Helsinki University Hospital, New Children’s Hospital, Helsinki, Finland.
| | - Lennart A. Kester
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Marieke L. Kuijjer
- Computational Biology and Systems Medicine Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
- Pathology, Leiden University Medical Center, Leiden, the Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Cyril Lervat
- Department of Pediatrics and AYA Oncology, Centre Oscar Lambret, Lille, France.
| | - Antonin Marchais
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Perrine Marec-Berard
- Institute of Hematology and Pediatric Oncology, Léon Bérard Center, Lyon, France.
| | - Cristina Mendes
- Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal.
| | - Johannes H.M. Merks
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Benjamin Ory
- School of Medicine, Nantes Université, Nantes, France.
| | - Emanuela Palmerini
- Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Orthopedico Rizzoli, Bologna, Italy.
| | - Pan Pantziarka
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
- Anticancer Fund, Meise, Belgium.
- The George Pantziarka TP53 Trust, London, United Kingdom.
| | - Evgenia Papakonstantinou
- Pediatric Hematology-Oncology, Ippokratio General Hospital of Thessaloniki, Thessaloniki, Greece.
| | | | - Anna Raciborska
- Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Warsaw, Poland.
| | - Elizabeth A. Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Vilma Rutkauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
| | - Akmal Safwat
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Eric L. Staals
- Orthopaedics and Trauma, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Sandra J. Strauss
- Department of Oncology, University College London Hospitals NHS Foundation Trust, UCL Cancer Institute, London, United Kingdom.
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland.
| | - Gwen M.L. Sys
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Belgium.
| | - Marie-Dominique Tabone
- Department of Hematology and Oncology, A. Trousseau Hospital, Sorbonne University, APHP, Paris, France.
| | - Maud Toulmonde
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Claudia Valverde
- Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Spain.
| | | | - Klaus Wörtler
- Musculoskeletal Radiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Quentin Campbell-Hewson
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Martin G. McCabe
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom.
- The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Michaela Nathrath
- Children’s Cancer Research Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Pediatric Oncology, Klinikum Kassel, Kassel, Germany.
| |
Collapse
|
2
|
Xiang F, Zhang Y, Tan X, Zhang J, Li T, Yan Y, Ma W, Chen Y. A bibliometric analysis based on hotspots and frontier trends of positron emission tomography/computed tomography utility in bone and soft tissue sarcoma. Front Oncol 2024; 14:1344643. [PMID: 38974238 PMCID: PMC11224451 DOI: 10.3389/fonc.2024.1344643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose This study aimed to analyze articles on the diagnosis and treatment of bone and soft tissue sarcoma using positron emission tomography (PET)/computed tomography (CT) published in the last 13 years. The objective was to conduct a bibliometric analysis and identify the research hotspots and emerging trends. Methods Web of Science was used to search for articles on PET/CT diagnosis and treatment of bone and soft tissue sarcoma published from January 2010 to June 2023. CiteSpace was utilized to import data for bibliometric analysis. Results In total, 425 relevant publications were identified. Publications have maintained a relatively stable growth rate for the past 13 years. The USA has the highest number of published articles (139) and the highest centrality (0.35). The UDICE-French Research Universities group is the most influential institution. BYUN BH is a prominent contributor to this field. The Journal of Clinical Oncology has the highest impact factor in the field. Conclusion The clinical application of PET/CT is currently a research hotspot. Upcoming areas of study concentrate on the merging of PET/CT with advanced machine learning and/or alternative imaging methods, novel imaging substances, and the fusion of diagnosis and therapy. The use of PET/CT has progressively become a crucial element in the identification and management of sarcomas. To confirm its efficacy, there is a need for extensive, multicenter, prospective studies.
Collapse
Affiliation(s)
- Feifan Xiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Orthopedic, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Orthopedic, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqi Tan
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jintao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Tengfei Li
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Wenzhe Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Zorba BI, Boyacıoğlu Ö, Çağlayan T, Reçber T, Nemutlu E, Eroğlu İ, Korkusuz P. CB65 and novel CB65 liposomal system suppress MG63 and Saos-2 osteosarcoma cell growth in vitro. J Liposome Res 2024; 34:274-287. [PMID: 37740901 DOI: 10.1080/08982104.2023.2262025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells via cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10-11 and 4.95 × 10-11 M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following in vivo validation.
Collapse
Affiliation(s)
- Başak Işıl Zorba
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Özge Boyacıoğlu
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Atılım University, Ankara, Turkey
| | - Tuğba Çağlayan
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Mancarella C, Morrione A, Scotlandi K. Extracellular Interactors of the IGF System: Impact on Cancer Hallmarks and Therapeutic Approaches. Int J Mol Sci 2024; 25:5915. [PMID: 38892104 PMCID: PMC11172729 DOI: 10.3390/ijms25115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dysregulation of the insulin-like growth factor (IGF) system determines the onset of various pathological conditions, including cancer. Accordingly, therapeutic strategies have been developed to block this system in tumor cells, but the results of clinical trials have been disappointing. After decades of research in the field, it is safe to say that one of the major reasons underlying the poor efficacy of anti-IGF-targeting agents is derived from an underestimation of the molecular complexity of this axis. Genetic, transcriptional, post-transcriptional and functional interactors interfere with the activity of canonical components of this axis, supporting the need for combinatorial approaches to effectively block this system. In addition, cancer cells interface with a multiplicity of factors from the extracellular compartment, which strongly affect cell destiny. In this review, we will cover novel extracellular mechanisms contributing to IGF system dysregulation and the implications of such dangerous liaisons for cancer hallmarks and responses to known and new anti-IGF drugs. A deeper understanding of both the intracellular and extracellular microenvironments might provide new impetus to better decipher the complexity of the IGF axis in cancer and provide new clues for designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
5
|
Li G, Wang H, Meftahpour V. Overall review of curative impact and barriers of CAR-T cells in osteosarcoma. EXCLI JOURNAL 2024; 23:364-383. [PMID: 38655095 PMCID: PMC11036068 DOI: 10.17179/excli2023-6760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Osteosarcoma (OS) is a rare form of cancer and primary bone malignancy in children and adolescents. Current therapies include surgery, chemotherapy, and amputation. Therefore, a new therapeutic strategy is needed to dramatically change cancer treatment. Recently, chimeric antigen receptor T cells (CAR-T cells) have been of considerable interest as it has provided auspicious results and patients suffering from low side effects after injection that resolve with current therapy. However, there are reports that cytokine release storm (CRS) can be observed in some patients. In addition, as researchers have faced problems that limit and suppress T cells, further studies are required to resolve these problems. In addition, to maximize the therapeutic benefit of CAR-T cell therapy, researchers have suggested that combination therapy could be better used to treat cancer by overcoming any problems and reducing side effects as much as possible. This review summarizes these problems, barriers, and the results of some studies on the evaluation of CAR-T cells in patients with osteosarcoma.
Collapse
Affiliation(s)
- Guilin Li
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Hong Wang
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Vafa Meftahpour
- Medical Immunology, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
7
|
Zhang T, Zhang T, Gao C, Jalal S, Yuan R, Teng H, Li C, Huang L. Antitumor Effects of β-Elemene Through Inducing Autophagy-Mediated Apoptosis in Ewing Sarcoma Family Tumor Cells. DNA Cell Biol 2023; 42:532-540. [PMID: 37610845 DOI: 10.1089/dna.2023.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Ewing sarcoma family tumors (ESFTs) are a group of aggressive tumors mainly affecting children and young people. A compound derived from Curcuma wenyujin plant or lemon grass, β-elemene, has exhibited antitumor effects to ESFT cells, the mechanism of which remains to be clarified further. Autophagy is involved in the antitumor effects of various drugs, whereas the role of autophagy in the antitumor effects of β-elemene persists controversial. Herein we found that β-elemene treatment inhibited the viability of ESFT cells in a dose-dependent manner. The increase of LC3-II level and the decrease of p62 level were observed in β-elemene-treated cells, as well as the increase of autolysosomes, which indicated the promotion of autophagic flux. Sequentially the autophagy inhibition using 3-MA treatment or ATG5 depletion significantly reversed the viability repression and apoptosis induction by β-elemene treatment. In addition, autophagy was found to be important in the toxic effects induced by the combination treatment of β-elemene and IGF1R inhibition in ESFT cells. Our data suggested an essential role of autophagy in β-elemene-induced apoptosis in ESFT cells, which is anticipated to provide novel insights to the development of ESFT treatments.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, People's Republic of China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, People's Republic of China
| | - Chuanzhou Gao
- Institute of Cancer Stem Cell, and Dalian Medical University, Dalian, People's Republic of China
| | - Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, People's Republic of China
| | - Cong Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, People's Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
8
|
Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma: Mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e308. [PMID: 37441462 PMCID: PMC10333890 DOI: 10.1002/mco2.308] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is a highly prevalent bone malignancy among adolescents, accounting for 40% of all primary malignant bone tumors. Neoadjuvant chemotherapy combined with limb-preserving surgery has effectively reduced patient disability and mortality, but pulmonary metastases and OS cells' resistance to chemotherapeutic agents are pressing challenges in the clinical management of OS. There has been an urgent need to identify new biomarkers for OS to develop specific targeted therapies. Recently, the continued advancements in genomic analysis have contributed to the identification of clinically significant molecular biomarkers for diagnosing OS, acting as therapeutic targets, and predicting prognosis. Additionally, the contemporary molecular classifications have revealed that the signaling pathways, including Wnt/β-catenin, PI3K/AKT/mTOR, JAK/STAT3, Hippo, Notch, PD-1/PD-L1, MAPK, and NF-κB, have an integral role in OS onset, progression, metastasis, and treatment response. These molecular classifications and biological markers have created new avenues for more accurate OS diagnosis and relevant treatment. We herein present a review of the recent findings for the modulatory role of signaling pathways as possible biological markers and treatment targets for OS. This review also discusses current OS therapeutic approaches, including signaling pathway-based therapies developed over the past decade. Additionally, the review covers the signaling targets involved in the curative effects of traditional Chinese medicines in the context of expression regulation of relevant genes and proteins through the signaling pathways to inhibit OS cell growth. These findings are expected to provide directions for integrating genomic, molecular, and clinical profiles to enhance OS diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Ji
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Jianlin Shen
- Department of OrthopaedicsAffiliated Hospital of Putian UniversityPutianFujianChina
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Qian Yi
- Department of PhysiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Huan Liu
- Department of OrthopaedicsThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
9
|
Chakraborty S, Bhat AM, Mushtaq I, Luan H, Kalluchi A, Mirza S, Storck MD, Chaturvedi N, Lopez-Guerrero JA, Llombart-Bosch A, Machado I, Scotlandi K, Meza JL, Ghosal G, Coulter DW, Jordan Rowley M, Band V, Mohapatra BC, Band H. EHD1-dependent traffic of IGF-1 receptor to the cell surface is essential for Ewing sarcoma tumorigenesis and metastasis. Commun Biol 2023; 6:758. [PMID: 37474760 PMCID: PMC10359273 DOI: 10.1038/s42003-023-05125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
Overexpression of the EPS15 Homology Domain containing 1 (EHD1) protein has been linked to tumorigenesis but whether its core function as a regulator of intracellular traffic of cell surface receptors plays a role in oncogenesis remains unknown. We establish that EHD1 is overexpressed in Ewing sarcoma (EWS), with high EHD1 mRNA expression specifying shorter patient survival. ShRNA-knockdown and CRISPR-knockout with mouse Ehd1 rescue established a requirement of EHD1 for tumorigenesis and metastasis. RTK antibody arrays identified IGF-1R as a target of EHD1 regulation in EWS. Mechanistically, we demonstrate a requirement of EHD1 for endocytic recycling and Golgi to plasma membrane traffic of IGF-1R to maintain its surface expression and downstream signaling. Conversely, EHD1 overexpression-dependent exaggerated oncogenic traits require IGF-1R expression and kinase activity. Our findings define the RTK traffic regulation as a proximal mechanism of EHD1 overexpression-dependent oncogenesis that impinges on IGF-1R in EWS, supporting the potential of IGF-1R and EHD1 co-targeting.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Incyte Corporation, Wilmington, DE, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sameer Mirza
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagendra Chaturvedi
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Antonio Llombart-Bosch
- Department of Pathology, University of Valencia, Avd. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Isidro Machado
- Department of Pathology, University of Valencia, Avd. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhopal C Mohapatra
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Daher M, Zalaquett Z, Chalhoub R, Abi Farraj S, Abdo M, Sebaaly A, Kourie HR, Ghanem I. Molecular and biologic biomarkers of Ewing sarcoma: A systematic review. J Bone Oncol 2023; 40:100482. [PMID: 37180735 PMCID: PMC10173001 DOI: 10.1016/j.jbo.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
With an annual incidence of less than 1%, Ewing sarcoma mainly occurs in children and young adults. It is not a frequent tumor but is the second most common bone malignancy in children. It has a 5-year survival rate of 65-75%; however, it has a poor prognosis when it relapses in patients. A genomic profile of this tumor can potentially help identify poor prognosis patients earlier and guide their treatment. A systematic review of the articles concerning genetic biomarkers in Ewing sarcoma was conducted using the Google Scholar, Cochrane, and PubMed database. There were 71 articles discovered. Numerous diagnostic, prognostic, and predictive biomarkers were found. However, more research is necessary to confirm the role of some of the mentioned biomarkers. .
Collapse
Affiliation(s)
- Mohammad Daher
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
- Corresponding author at: Hotel Dieu de France, Beirut, Lebanon.
| | - Ziad Zalaquett
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ralph Chalhoub
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Sami Abi Farraj
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Majd Abdo
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Amer Sebaaly
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Hampig-Raphaël Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ismat Ghanem
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| |
Collapse
|
11
|
Pilavaki P, Gahanbani Ardakani A, Gikas P, Constantinidou A. Osteosarcoma: Current Concepts and Evolutions in Management Principles. J Clin Med 2023; 12:jcm12082785. [PMID: 37109122 PMCID: PMC10143544 DOI: 10.3390/jcm12082785] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Osteosarcoma is a rare malignancy arising from mesenchymal tissue, and represents the most common bone sarcoma. The management of osteosarcoma is challenging, and requires a multidisciplinary approach. In daily clinical practice, surgery, radiotherapy, and conventional chemotherapy constitute the therapeutic armamentarium against the disease. However, a significant number of patients with initially localized osteosarcoma will experience local or distant recurrence, and the prognosis for metastatic disease remains dismal. There is a pressing need to identify novel therapeutic strategies to better manage osteosarcoma and improve survival outcomes. In this study, we present recent advances in the therapeutic management of osteosarcoma, including surgical and medical advances. The role of immunotherapy (immune checkpoint inhibitors, adoptive cellular therapy, cancer vaccines) and other targeted therapies including tyrosine kinase inhibitors is discussed; however, additional studies are required to delineate their roles in clinical practice.
Collapse
Affiliation(s)
- Pampina Pilavaki
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia 2006, Cyprus
| | | | - Panagiotis Gikas
- Department of Orthopaedics, Cleveland Clinic London, London SW1X 7HY, UK
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia 2006, Cyprus
- Cyprus Cancer Research Institute, Nicosia 2109, Cyprus
| |
Collapse
|
12
|
Chakraborty S, Bhat AM, Mushtaq I, Luan H, Kalluchi A, Mirza S, Storck MD, Chaturvedi N, Lopez-Guerrero JA, Llombart-Bosch A, Machado I, Scotlandi K, Meza JL, Ghosal G, Coulter DW, Rowley JM, Band V, Mohapatra BC, Band H. EHD1-dependent traffic of IGF-1 receptor to the cell surface is essential for Ewing sarcoma tumorigenesis and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524130. [PMID: 36711452 PMCID: PMC9882098 DOI: 10.1101/2023.01.15.524130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Overexpression of EPS15 Homology Domain containing 1 (EHD1) has been linked to tumorigenesis but whether its core function as a regulator of intracellular traffic of cell surface receptors plays a role in oncogenesis remains unknown. We establish that EHD1 is overexpressed in Ewing sarcoma (EWS), with high EHD mRNA expression specifying shorter patient survival. ShRNA and CRISPR-knockout with mouse Ehd1 rescue established a requirement of EHD1 for tumorigenesis and metastasis. RTK antibody arrays identified the IGF-1R as a target of EHD1 regulation in EWS. Mechanistically, we demonstrate a requirement of EHD1 for endocytic recycling and Golgi to plasma membrane traffic of IGF-1R to maintain its surface expression and downstream signaling. Conversely, EHD1 overexpression-dependent exaggerated oncogenic traits require IGF-1R expression and kinase activity. Our findings define the RTK traffic regulation as a proximal mechanism of EHD1 overexpression-dependent oncogenesis that impinges on IGF-1R in EWS, supporting the potential of IGF-1R and EHD1 co-targeting.
Collapse
|
13
|
Shifting from a Biological-Agnostic Approach to a Molecular-Driven Strategy in Rare Cancers: Ewing Sarcoma Archetype. Biomedicines 2023; 11:biomedicines11030874. [PMID: 36979853 PMCID: PMC10045500 DOI: 10.3390/biomedicines11030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Sarcomas of the thoracic cavity are rare entities that predominantly affect children and young adults. They can be very heterogeneous encompassing several different histological entities. Ewing Sarcoma (ES) can potentially arise from every bone, soft tissue, or visceral site in the body. However, it represents an extremely rare finding when it affects the thoracic cavity. It represents the second most frequent type of thoracic sarcoma, after chondrosarcoma. ES arises more frequently in sites that differ from the thoracic cavity, but it displays the same biological features and behavior of extra-thoracic ones. Current management of ES often requires a multidisciplinary treatment approach including surgery, radiotherapy, and systemic therapy, as it can guarantee local and distant disease control, at least transiently, although the long-term outcome remains poor. Unfortunately, due to the paucity of clinical trials purposely designed for this rare malignancy, there are no optimal strategies that can be used for disease recurrence. As a result of its complex biological features, ES might be suitable for emerging biology-based therapeutic strategies. However, a deeper understanding of the molecular mechanisms driving tumor growth and treatment resistance, including those related to oncogenic pathways, epigenetic landscape, and immune microenvironment, is necessary in order to develop new valid therapeutic opportunities. Here, we provide an overview of the most recent therapeutic advances for ES in both the preclinical and clinical settings. We performed a review of the current available literature and of the ongoing clinical trials focusing on new treatment strategies, after failure of conventional multimodal treatments.
Collapse
|
14
|
Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers (Basel) 2023; 15:cancers15041287. [PMID: 36831629 PMCID: PMC9954466 DOI: 10.3390/cancers15041287] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease driven by gene alterations and microenvironmental influences. Not only enhanced serum IGF-1 but also the activation of IGF-1R and its downstream signaling components has been increasingly recognized to have a vital driving role in the development of PCa. A better understanding of IGF-1/IGF-1R activity and regulation has therefore emerged as an important subject of PCa research. IGF-1/IGF-1R signaling affects diverse biological processes in cancer cells, including promoting survival and renewal, inducing migration and spread, and promoting resistance to radiation and castration. Consequently, inhibitory reagents targeting IGF-1/IGF-1R have been developed to limit cancer development. Multiple agents targeting IGF-1/IGF-1R signaling have shown effects against tumor growth in tumor xenograft models, but further verification of their effectiveness in PCa patients in clinical trials is still needed. Combining androgen deprivation therapy or cytotoxic chemotherapeutics with IGF-1R antagonists based on reliable predictive biomarkers and developing and applying novel agents may provide more desirable outcomes. This review will summarize the contribution of IGF-1 signaling to the development of PCa and highlight the relevance of this signaling axis in potential strategies for cancer therapy.
Collapse
|
15
|
Chavan M, Dhakal S, Singh A, Rai V, Arora S, C Mallipeddi M, Das A. Ewing sarcoma genomics and recent therapeutic advancements. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
16
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|
17
|
Tarone L, Mareschi K, Tirtei E, Giacobino D, Camerino M, Buracco P, Morello E, Cavallo F, Riccardo F. Improving Osteosarcoma Treatment: Comparative Oncology in Action. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122099. [PMID: 36556464 PMCID: PMC9783386 DOI: 10.3390/life12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OSA) is the most common pediatric malignant bone tumor. Although surgery together with neoadjuvant/adjuvant chemotherapy has improved survival for localized OSA, most patients develop recurrent/metastatic disease with a dismally poor outcome. Therapeutic options have not improved for these OSA patients in recent decades. As OSA is a rare and "orphan" tumor, with no distinct targetable driver antigens, the development of new efficient therapies is still an unmet and challenging clinical need. Appropriate animal models are therefore critical for advancement in the field. Despite the undoubted relevance of pre-clinical mouse models in cancer research, they present some intrinsic limitations that may be responsible for the low translational success of novel therapies from the pre-clinical setting to the clinic. From this context emerges the concept of comparative oncology, which has spurred the study of pet dogs as a uniquely valuable model of spontaneous OSA that develops in an immune-competent system with high biological and clinical similarities to corresponding human tumors, including in its metastatic behavior and resistance to conventional therapies. For these reasons, the translational power of studies conducted on OSA-bearing dogs has seen increasing recognition. The most recent and relevant veterinary investigations of novel combinatorial approaches, with a focus on immune-based strategies, that can most likely benefit both canine and human OSA patients have been summarized in this commentary.
Collapse
Affiliation(s)
- Lidia Tarone
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Elisa Tirtei
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| | - Federica Riccardo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| |
Collapse
|
18
|
Chen C, Shi Q, Xu J, Ren T, Huang Y, Guo W. Current progress and open challenges for applying tyrosine kinase inhibitors in osteosarcoma. Cell Death Dis 2022; 8:488. [PMID: 36509754 PMCID: PMC9744866 DOI: 10.1038/s41420-022-01252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS) is a mesenchymal-origin tumor that constitutes the most common primary malignant bone tumor. The survival rate of the patients has significantly improved since the introduction of neoadjuvant chemotherapy and extensive resection, but it has stagnated in recent 40 years. Tyrosine kinase inhibitors (TKIs) have played a key part in the treatment of malignant tumors. In advanced OS, TKIs including anlotinib, apatinib, sorafenib, etc. have significantly improved the progression-free survival of patients, while the overall survival remains unchanged. The main reason is the rapid and inevitable progress of acquired drug resistance of OS. However, as the application of TKIs in OS and other tumors is still in the exploratory phase, its drug resistance mechanism and corresponding solutions are rarely reported. Hence, in this review, we summarize knowledge of the applications of TKIs, the mechanism of TKIs resistance, and the attempts to overcome TKIs resistance in OS, which are the three potentially novel insights of TKIs in OS. Because most evidence is derived from studies using animal and cell models, we also reviewed clinical trials and related bioinformatics data available in public databases, which partially improved our understanding of TKIs applications.
Collapse
Affiliation(s)
- Chenglong Chen
- grid.414360.40000 0004 0605 7104Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Qianyu Shi
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jiuhui Xu
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Tingting Ren
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yi Huang
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Wei Guo
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Anderson PM, Subbiah V, Trucco MM. Current and future targeted alpha particle therapies for osteosarcoma: Radium-223, actinium-225, and thorium-227. Front Med (Lausanne) 2022; 9:1030094. [PMID: 36457575 PMCID: PMC9705365 DOI: 10.3389/fmed.2022.1030094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma is a high-grade sarcoma characterized by osteoid formation, nearly universal expression of IGF1R and with a subset expressing HER-2. These qualities provide opportunities for the use of the alpha particle-emitting isotopes to provide targeted radiation therapy via alpha particles precisely to bone-forming tumors in addition to IFG1R or Her-2 expressing metastases. This review will detail experience using the alpha emitter radium-223 (223Ra, tradename Xofigo), that targets bone formation, in osteosarcoma, specifically related to patient selection, use of gemcitabine for radio-sensitization, and using denosumab to increasing the osteoblastic phenotype of these cancers. A case of an inoperable left upper lobe vertebral-paraspinal-mediastinal osteoblastic lesion treated successfully with 223Ra combined with gemcitabine is described. Because not all areas of osteosarcoma lesions are osteoblastic, but nearly all osteosarcoma cells overexpress IGF1R, and some subsets expressing Her-2, the anti-IGF1R antibody FPI-1434 linked to actinium-225 (225Ac) or the Her-2 antibody linked to thorium-227 (227Th) may become other means to provide targeted alpha particle therapy against osteosarcoma (NCT03746431 and NCT04147819).
Collapse
Affiliation(s)
- Peter M. Anderson
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vivek Subbiah
- Investigational Cancer Therapeutics, Cancer Medicine, Clinical Center for Targeted Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matteo M. Trucco
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
20
|
Management of Unresectable Localized Pelvic Bone Sarcomas: Current Practice and Future Perspectives. Cancers (Basel) 2022; 14:cancers14102546. [PMID: 35626150 PMCID: PMC9139258 DOI: 10.3390/cancers14102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Some locally advanced pelvic bone tumors are deemed unresectable and, as such, not suitable for curative surgery. In this setting, treatment options are generally limited and not unanimous, with decisions being made on an individual basis after multidisciplinary discussion. Ultimately, and notwithstanding the bright prospects raised by novel therapeutic approaches, treatment should be patient-tailored, weighing a panoply of patient- and tumor-related factors. Abstract Bone sarcomas (BS) are rare mesenchymal tumors usually located in the extremities and pelvis. While surgical resection is the cornerstone of curative treatment, some locally advanced tumors are deemed unresectable and hence not suitable for curative intent. This is often true for pelvic sarcoma due to anatomic complexity and proximity to vital structures, making treatment options for these tumors generally limited and not unanimous, with decisions being made on an individual basis after multidisciplinary discussion. Several studies have been published in recent years focusing on innovative treatment options for patients with locally advanced sarcoma not amenable to local surgery. The present article reviews the evidence regarding the treatment of patients with locally advanced and unresectable pelvic BS, with the goal of providing an overview of treatment options for the main BS histologic subtypes involving this anatomic area and exploring future therapeutic perspectives. The management of unresectable localized pelvic BS represents a major challenge and is hampered by the lack of comprehensive and standardized guidelines. As such, the optimal treatment needs to be individually tailored, weighing a panoply of patient- and tumor-related factors. Despite the bright prospects raised by novel therapeutic approaches, the role of each treatment option in the therapeutic armamentarium of these patients requires solid clinical evidence before becoming fully established.
Collapse
|
21
|
Recent and Ongoing Research into Metastatic Osteosarcoma Treatments. Int J Mol Sci 2022; 23:ijms23073817. [PMID: 35409176 PMCID: PMC8998815 DOI: 10.3390/ijms23073817] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The survival rate for metastatic osteosarcoma has not improved for several decades, since the introduction and refinement of chemotherapy as a treatment in addition to surgery. Over two thirds of metastatic osteosarcoma patients, many of whom are children or adolescents, fail to exhibit durable responses and succumb to their disease. Concerted efforts have been made to increase survival rates through identification of candidate therapies via animal studies and early phase trials of novel treatments, but unfortunately, this work has produced negligible improvements to the survival rate for metastatic osteosarcoma patients. This review summarizes data from clinical trials of metastatic osteosarcoma therapies as well as pre-clinical studies that report efficacy of novel drugs against metastatic osteosarcoma in vivo. Considerations regarding the design of animal studies and clinical trials to improve survival outcomes for metastatic osteosarcoma patients are also discussed.
Collapse
|
22
|
Truong D, Cherradi-Lamhamedi SE, Ludwig JA. Targeting the IGF/PI3K/mTOR Pathway and AXL/YAP1/TAZ pathways in Primary Bone Cancer. J Bone Oncol 2022; 33:100419. [PMID: 35251924 PMCID: PMC8892134 DOI: 10.1016/j.jbo.2022.100419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Primary bone cancers (PBC) belong to the family of mesenchymal tumors classified based on their cellular origin, extracellular matrix, genetic regulation, and epigenetic modification. The three major PBC types, Ewing sarcoma, osteosarcoma, and chondrosarcoma, are frequently aggressive tumors, highly metastatic, and typically occur in children and young adults. Despite their distinct origins and pathogenesis, these sarcoma subtypes rely upon common signaling pathways to promote tumor progression, metastasis, and survival. The IGF/PI3K/mTOR and AXL/YAP/TAZ pathways, in particular, have gained significant attention recently given their ties to oncogenesis, cell fate and differentiation, metastasis, and drug resistance. Naturally, these pathways – and their protein constituents – have caught the eye of the pharmaceutical industry, and a wide array of small molecule inhibitors and antibody drug-conjugates have emerged. Here, we review how the IGF/PI3K/mTOR and AXL/YAP/TAZ pathways promote PBC and highlight the drug candidates under clinical trial investigation.
Collapse
|
23
|
Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv 2022; 13:167-186. [PMID: 35029130 DOI: 10.4155/tde-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-1Rs enact a significant part in cancer growth and its progress. IGF-1R inhibitors were encouraged in the early trials, but the patients did not benefit due to the unavailability of predictive biomarkers and IGF-1R system complexity. However, the linkage between IGF-1R and cancer was reported three decades ago. This review will shed light on the IGF-1R system, targeting IGF-1R through monoclonal antibodies, reasons behind IGF-1R trial failure and future directions. This study presented that targeting IGF-1R through monoclonal antibodies is still effective in cancer treatment, and there is a need to look for future directions. Cancer patients may benefit from using mAbs that target existing and new cancer targets, evidenced by promising results. It is also essential that the academician, trial experts and pharmaceutical companies play their role in finding a treatment for this deadly disease.
Collapse
|
24
|
Knight SWE, Knight TE, Santiago T, Murphy AJ, Abdelhafeez AH. Malignant Peripheral Nerve Sheath Tumors-A Comprehensive Review of Pathophysiology, Diagnosis, and Multidisciplinary Management. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9010038. [PMID: 35053663 PMCID: PMC8774267 DOI: 10.3390/children9010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas (STS) with nerve sheath differentiation and a tendency to metastasize. Although occurring at an incidence of 0.001% in the general population, they are relatively common in individuals with neurofibromatosis type 1 (NF1), for whom the lifetime risk approaches 10%. The staging of MPNSTs is complicated and requires close multi-disciplinary collaboration. Their primary management is most often surgical in nature, with non-surgical modalities playing a supportive, necessary role, particularly in metastatic, invasive, or widespread disease. We, therefore, sought to provide a comprehensive review of the relevant literature describing the characteristics of these tumors, their pathophysiology and risk factors, their diagnosis, and their multi-disciplinary treatment. A close partnership between surgical and medical oncologists is therefore necessary. Advances in the molecular characterization of these tumors have also begun to allow the integration of targeted RAS/RAF/MEK/ERK pathway inhibitors into MPNST management.
Collapse
Affiliation(s)
- Samantha W. E. Knight
- Division of Surgery, Department of General Surgery, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98195, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Abdelhafeez H. Abdelhafeez
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
- Correspondence: ; Tel.: +1-(901)-595-2315; Fax: +1-(901)-595-2207
| |
Collapse
|
25
|
Omer N, Nicholls W, Ruegg B, Souza-Fonseca-Guimaraes F, Rossi GR. Enhancing Natural Killer Cell Targeting of Pediatric Sarcoma. Front Immunol 2021; 12:791206. [PMID: 34804076 PMCID: PMC8600077 DOI: 10.3389/fimmu.2021.791206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma (EWS), and rhabdomyosarcoma (RMS) are the most common pediatric sarcomas. Conventional therapy for these sarcomas comprises neoadjuvant and adjuvant chemotherapy, surgical resection of the primary tumor and/or radiation therapy. Patients with metastatic, relapsed, or refractory tumors have a dismal prognosis due to resistance to these conventional therapies. Therefore, innovative therapeutic interventions, such as immunotherapy, are urgently needed. Recently, cancer research has focused attention on natural killer (NK) cells due their innate ability to recognize and kill tumor cells. Osteosarcoma, EWS and RMS, are known to be sensitive to NK cell cytotoxicity in vitro. In the clinical setting however, NK cell cytotoxicity against sarcoma cells has been mainly studied in the context of allogeneic stem cell transplantation, where a rapid immune reconstitution of NK cells plays a key role in the control of the disease, known as graft-versus-tumor effect. In this review, we discuss the evidence for the current and future strategies to enhance the NK cell-versus-pediatric sarcoma effect, with a clinical focus. The different approaches encompass enhancing antibody-dependent NK cell cytotoxicity, counteracting the NK cell mechanisms of self-tolerance, and developing adoptive NK cell therapy including chimeric antigen receptor-expressing NK cells.
Collapse
Affiliation(s)
- Natacha Omer
- The University of Queensland Diamantina Institute (UQDI), The University of Queensland, Brisbane, QLD, Australia.,Oncology Services Group, Queensland Children's Hospital, South Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Wayne Nicholls
- Oncology Services Group, Queensland Children's Hospital, South Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Bronte Ruegg
- The University of Queensland Diamantina Institute (UQDI), The University of Queensland, Brisbane, QLD, Australia
| | | | - Gustavo Rodrigues Rossi
- The University of Queensland Diamantina Institute (UQDI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Mathur T, Yee D. The Emerging Role of the Fetal Insulin Receptor in Hormone-refractory Breast Cancer. Endocrinology 2021; 162:bqab147. [PMID: 34304271 PMCID: PMC8787423 DOI: 10.1210/endocr/bqab147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/19/2022]
Abstract
Type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane tyrosine kinase receptor and a mediator of the biologic effects of insulin-like growth factor (IGF)-I and -II. Inhibitors of IGF-1R signaling were tested in clinical cancer trials aiming to assess the utility of this receptor as a therapeutic target; essentially all IGF-1R inhibitors failed to provide an additional benefit compared with standard-of-care therapy. In this review, we will evaluate the role the insulin receptor (IR) plays in mediating IGF signaling and subsequent metabolic and mitogenic effects as 1 possible reason for these failures. IR is expressed as 2 isoforms, with the fetal isoform IR-A derived from alternative splicing and loss of exon 11, the adult isoform (IR-B) includes this exon. Cancer frequently re-expresses fetal proteins and this appears to be the case in cancer with a re-expression of the fetal isoform and an increased IR-A:IR-B ratio. The biological effects of IR isoform signaling are complex and not completely understood although it has been suggested that IR-A could stimulate mitogenic signaling pathways, play a role in cancer cell stemness, and mediate tolerance to cancer therapies. From a clinical perspective, the IR-A overexpression in cancer may explain why targeting IGF-1R alone was not successful. However, given the predominance of IR-A expression in cancer, it may also be possible to develop isoform specific inhibitors and avoid the metabolic consequences of inhibiting IR-B. If such inhibitors could be developed, then IR-A expression could serve as a predictive biomarker, and cotargeting IR-A and IGF-1R could provide a novel, more effective therapy method.
Collapse
Affiliation(s)
- Tanvi Mathur
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
28
|
Chen Y, Liu R, Wang W, Wang C, Zhang N, Shao X, He Q, Ying M. Advances in targeted therapy for osteosarcoma based on molecular classification. Pharmacol Res 2021; 169:105684. [PMID: 34022396 DOI: 10.1016/j.phrs.2021.105684] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/03/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Osteosarcoma, a highly malignant tumor, is characterized by widespread and recurrent chromosomal and genetic abnormalities. In recent years, a number of elaborated sequencing analyses have made it possible to cluster the osteosarcoma based on the identification of candidate driver genes and develop targeted therapy. Here, we reviewed recent next-generation genome sequencing studies and advances in targeted therapies for osteosarcoma based on molecular classification. First, we stratified osteosarcomas into ten molecular subtypes based on genetic changes. And we analyzed potential targeted therapies for osteosarcoma based on the identified molecular subtypes. Finally, the development of targeted therapies for osteosarcoma investigated in clinical trials were further summarized and discussed. Therefore, we indicated the importance of molecular classification on the targeted therapy for osteosarcoma. And the stratification of patients based on the genetic characteristics of osteosarcoma will help to obtain a better therapeutic response to targeted therapies, bringing us closer to the era of personalized medicine.
Collapse
Affiliation(s)
- Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Runzhi Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|
30
|
Felix A, Berlanga P, Toulmonde M, Landman‐Parker J, Dumont S, Vassal G, Le Deley M, Gaspar N. Systematic review of phase-I/II trials enrolling refractory and recurrent Ewing sarcoma: Actual knowledge and future directions to optimize the research. Cancer Med 2021; 10:1589-1604. [PMID: 33452711 PMCID: PMC7940237 DOI: 10.1002/cam4.3712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Optimal Phase-II design to evaluate new therapies in refractory/relapsed Ewing sarcomas (ES) remains imperfectly defined. OBJECTIVES Recurrent/refractory ES phase-I/II trials analysis to improve trials design. METHODS Comprehensive review of therapeutic trials registered on five databases (who.int/trialsearch, clinicaltrials.gov, clinicaltrialsregister.eu, e-cancer.fr, and umin.ac.jp) and/or published in PubMed/ASCO/ESMO websites, between 2005 and 2018, using the criterion: (Ewing sarcoma OR bone sarcoma OR sarcoma) AND (Phase-I or Phase-II). RESULTS The 146 trials identified (77 phase-I/II, 67 phase-II, and 2 phase-II/III) tested targeted (34%), chemo- (23%), immune therapies (19%), or combined therapies (24%). Twenty-three trials were ES specific and 48 had a specific ES stratum. Usually multicentric (88%), few trials were international (30%). Inclusion criteria cover the recurrent ES age range for only 12% of trials and allowed only accrual of measurable diseases (RECIST criteria). Single-arm design was the most frequent (88%) testing mainly single drugs (61%), only 5% were randomized. Primary efficacy outcome was response rate (RR=CR+PR; Complete+Partial response) (n = 116/146; 79%), rarely progression-free or overall survival (16% PFS and 3% OS). H0 and H1 hypotheses were variable (3%-25% and 20%-50%, respectively). The 62 published trials enrolled 827 ES patients. RR was poor (10%; 15 CR=1.7%, 68 PR=8.3%). Stable disease was the best response for 186 patients (25%). Median PFS/OS was of 1.9 (range 1.3-14.7) and 7.6 months (5-30), respectively. Eleven (18%) published trials were considered positive, with median RR/PFS/OS of 15% (7%-30%), 4.5 (1.3-10), and 16.6 months (6.9-30), respectively. CONCLUSION This review supports the need to develop the international randomized phase-II trials across all age ranges with PFS as primary endpoint.
Collapse
Affiliation(s)
- Arthur Felix
- Department of Oncology for Child and AdolescentGustave Roussy Cancer CampusVillejuif cedexFrance
| | - Pablo Berlanga
- Department of Oncology for Child and AdolescentGustave Roussy Cancer CampusVillejuif cedexFrance
| | - Maud Toulmonde
- Medical Oncology DepartmentInstitut BergoniéBordeauxFrance
| | | | - Sarah Dumont
- Department of Medical OncologyGustave Roussy Cancer CampusVillejuifFrance
| | - Gilles Vassal
- Department of Oncology for Child and AdolescentGustave Roussy Cancer CampusVillejuif cedexFrance
| | - Marie‐Cécile Le Deley
- Direction de la Recherche Clinique et de l'InnovationCentre Oscar LambretLilleFrance
| | - Nathalie Gaspar
- Department of Oncology for Child and AdolescentGustave Roussy Cancer CampusVillejuif cedexFrance
| |
Collapse
|
31
|
Roessner A, Lohmann C, Jechorek D. Translational cell biology of highly malignant osteosarcoma. Pathol Int 2021; 71:291-303. [PMID: 33631032 DOI: 10.1111/pin.13080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Highly malignant osteosarcoma (HMO) is the most frequent malignant bone tumor preferentially occurring in adolescents and children with a second more flat peak in patients over the age of 60. The younger patients benefit from combined neoadjuvant chemotherapy with 65-70% 5-year survival rate. In patients with metastatic HMO the 5-year survival rate is consistently poor with approximately 30%. In the last several years strategies for target therapies have been developed by using next generation sequencing (NGS) for defining targetable molecular factors. However, it has so far been challenging to establish an effective target therapy for so-called 'orphan tumors' without recognizable driver mutations, including HMO. The molecular genetic studies using NGS have shown that HMOs are genomically unstable tumors with highly complex chaotic karyotypes. Before the background of this genetic complexity more investigations should be performed in the future for defining targetable biological factors. As the prognosis could not be improved for 40 years one may expect improvements for patients only by gaining a deeper understanding of the cell and molecular biology of HMO. The cell of origin of HMO is being clarified now. The majority of studies indicate that an osteoblastic progenitor cell is probably the cell of origin of HMO and not an undifferentiated mesenchymal stem cell. This means that the established histopathological definition of HMO through verification of osteoid production by the osteoblastic cells is well justified and will probably be the cornerstone for a precise differential diagnosis of HMO also in the years to come.
Collapse
Affiliation(s)
- Albert Roessner
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph Lohmann
- Department of Orthopedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Doerthe Jechorek
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
32
|
Quadros M, Momin M, Verma G. Design strategies and evolving role of biomaterial assisted treatment of osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111875. [PMID: 33579498 DOI: 10.1016/j.msec.2021.111875] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most commonly diagnosed form of bone cancer. It is characterized by a high risk of developing lung metastasis as the disease progresses. Standard treatment includes combination of surgical intervention, chemotherapy and radiotherapy. However, the non-specificity of potent chemotherapeutic agents often leads to major side effects. In this review, we discuss the role of various classes of biomaterials, including both organic as well as inorganic in realizing the local and systemic delivery of therapeutic agents like drugs, radioisotopes and even gene silencing agents to treat osteosarcoma. Biomaterial assisted unconventional therapies such as targeted therapy, nanotherapy, magnetic hyperthermia, gene therapy, photothermal and photodynamic therapies are also being explored. A wide variety of biomaterials including lipids, carbon-based materials, polymers, silica, bioactive glass, hydroxyapatite and metals are designed as delivery systems with the desired loading efficiency, release profile, and on-demand delivery. Among others, liposomal carriers have attracted a great deal of attention due to their capability to encapsulate both hydrophobic and hydrophilic drugs. Polymeric systems have high drug loading efficiency and stability and can even be tailored to achieve desired size and physiochemical properties. Carbon-based systems can also be seen as an upcoming class of therapeutics with great potential in treating different types of cancer. Inorganic materials like silica nanoparticles have high drug payload owing to their mesoporous structure. On the other hand, ceramic materials like bioactive glass and hydroxyapatite not only act as excellent delivery vectors but also participate in osteo-regeneration activity. These multifunctional biomaterials are also being investigated for their theranostic abilities to monitor cancer ablation. This review systematically discusses the vast landscape of biomaterials along with their challenges and respective opportunities for osteosarcoma therapy.
Collapse
Affiliation(s)
- Mural Quadros
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India; Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India.
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar 400 094, India.
| |
Collapse
|
33
|
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13040683. [PMID: 33567616 PMCID: PMC7915189 DOI: 10.3390/cancers13040683] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development.
Collapse
|
34
|
Prognostic and Therapeutic Utility of Variably Expressed Cell Surface Receptors in Osteosarcoma. Sarcoma 2021; 2021:8324348. [PMID: 33603563 PMCID: PMC7872755 DOI: 10.1155/2021/8324348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Background Six cell surface receptors, human epidermal growth factor receptor-2 (Her-2), platelet-derived growth factor receptor-β (PDGFR-β), insulin-like growth factor-1 receptor (IGF-1R), insulin receptor (IR), c-Met, and vascular endothelial growth factor receptor-3 (VEGFR-3), previously demonstrated variable expression across varying patient-derived and standard osteosarcoma (OS) cell lines. The current study sought to validate previous expression patterns and evaluate whether these receptors offer prognostic and/or therapeutic value. Methods Patient-derived OS cell lines (n = 52) were labeled with antibodies to Her-2, PDGFR-β, IGF-1R, IR, c-Met, and VEGFR-3. Expression was characterized using flow cytometry. The difference in geometric mean fluorescent intensity (geoMFIdiff = geoMFIpositive - geoMFInegative) was calculated for each receptor across all cell lines. Receptor expression was categorized as low (Q1), intermediate (Q2, Q3), or high (Q4). The event-free survival (EFS) and overall survival for the six cell surface receptors were estimated by the Kaplan-Meier method. Differences in hazard for EFS event and overall survival event for patients in each of the three expression levels in each of the six cell surface receptors were assessed using the log-rank test. Results All 6 receptors were variably expressed in the majority of cell lines. IR and PDGFR-β expressions were found to be significant predictors for EFS amongst patients with nonmetastatic disease (p=0.02 and 0.01, respectively). The hazard ratio for EFS was significantly higher between high IR and intermediate IR expression (HR = 2.66, p=0.02), as well as between high PDGFR-β and intermediate PDGFR-β expression (HR = 5.68, p=0.002). Her-2, c-Met, IGF-1R, and VEGFR-3 were not found to be significant predictors for either EFS or overall survival. Conclusion The six cell surface receptors demonstrated variable expression across the majority of patient-derived OS cell lines tested. Limited prognostic value was offered by IR and PDGFR-β expression within nonmetastatic patients. The remaining receptors do not provide clear prognostic utility. Nevertheless, their consistent, albeit variable, surface expression across a large panel of patient-derived OS cell lines maintains their potential use as future therapeutic targets.
Collapse
|
35
|
Fernandes I, Melo-Alvim C, Lopes-Brás R, Esperança-Martins M, Costa L. Osteosarcoma Pathogenesis Leads the Way to New Target Treatments. Int J Mol Sci 2021; 22:E813. [PMID: 33467481 PMCID: PMC7831017 DOI: 10.3390/ijms22020813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare condition with very poor prognosis in a metastatic setting. Basic research has enabled a better understanding of OS pathogenesis and the discovery of new potential therapeutic targets. Phase I and II clinical trials are already ongoing, with some promising results for these patients. This article reviews OS pathogenesis and new potential therapeutic targets.
Collapse
Affiliation(s)
- Isabel Fernandes
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
| | - Raquel Lopes-Brás
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
| | - Miguel Esperança-Martins
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
- Sérgio Dias Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| | - Luís Costa
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| |
Collapse
|
36
|
Ameline B, Kovac M, Nathrath M, Barenboim M, Witt O, Krieg AH, Baumhoer D. Overactivation of the IGF signalling pathway in osteosarcoma: a potential therapeutic target? JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:165-172. [PMID: 33295144 PMCID: PMC7869926 DOI: 10.1002/cjp2.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. More than a third of patients do not respond to standard therapy and urgently require alternative treatment options. Due to a high degree of inter‐ and intra‐tumoural genomic heterogeneity and complexity, recurrent molecular alterations that could serve as prognostic predictors or therapeutic targets are still lacking in osteosarcoma. Copy number (CN) gains involving the IGF1R gene, however, have been suggested as a potential surrogate marker for treating a subset of patients with IGF1R inhibitors. In this study, we screened a large set of osteosarcomas and found specific CN gains of the IGF1R gene in 18 of 253 (7.1%) cases with corresponding IGF1R overexpression. Despite the discouraging results observed in clinical trials in other tumours so far, focusing only on selected patients with osteosarcoma that show evidence of IGF pathway activation might represent a promising new and innovative treatment approach.
Collapse
Affiliation(s)
- Baptiste Ameline
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michal Kovac
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.,Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Michaela Nathrath
- Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany
| | - Maxim Barenboim
- Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Olaf Witt
- Coordinator INFORM Program, Hopp Children's Cancer Center, German Cancer Research Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas H Krieg
- Bone and Soft tissue Sarcoma Center, University of Basel, University Childrens Hospital (UKBB), Basel, Switzerland
| | - Daniel Baumhoer
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
de Groot S, Röttgering B, Gelderblom H, Pijl H, Szuhai K, Kroep JR. Unraveling the Resistance of IGF-Pathway Inhibition in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12123568. [PMID: 33260481 PMCID: PMC7759976 DOI: 10.3390/cancers12123568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The insulin-like growth factor-1 receptor (IGF1R) is a receptor commonly overexpressed and overactivated in a variety of cancers, including Ewing sarcoma, and promotes cell growth and survival. After promising results with targeting and inhibiting the receptor in vitro, multiple different IGF1R targeting compounds have been clinically tried but showed limited efficacy. Here we discuss several possible resistance mechanisms which could explain why IGF1R targeting fails in the clinic and discuss possible ways to overcome these resistances. Abstract Insulin-like growth factor-1 receptor (IGF1R) inhibitors are effective in preclinical studies, but so far, no convincing benefit in clinical studies has been observed, except in some rare cases of sustained response in Ewing sarcoma patients. The mechanism of resistance is unknown, but several hypotheses are proposed. In this review, multiple possible mechanisms of resistance to IGF-targeted therapies are discussed, including activated insulin signaling, pituitary-driven feedback loops through growth hormone (GH) secretion and autocrine loops. Additionally, the outcomes of clinical trials of IGF1-targeted therapies are discussed, as well as strategies to overcome the possible resistance mechanisms. In conclusion, lowering the plasma insulin levels or blocking its activity could provide an additional target in cancer therapy in combination with IGF1 inhibition. Furthermore, because Ewing sarcoma cells predominantly express the insulin receptor A (IRA) and healthy tissue insulin receptor B (IRB), it may be possible to synthesize a specific IRA inhibitor.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.d.G.); (H.G.)
| | - Bas Röttgering
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.d.G.); (H.G.)
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
- Correspondence: (K.S.); (J.R.K.); Tel.: +31-715266922 (K.S.); +31-715263464 (J.R.K.)
| | - Judith R. Kroep
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.d.G.); (H.G.)
- Correspondence: (K.S.); (J.R.K.); Tel.: +31-715266922 (K.S.); +31-715263464 (J.R.K.)
| |
Collapse
|
38
|
Smolle MA, Szkandera J, Andreou D, Palmerini E, Bergovec M, Leithner A. Treatment options in unresectable soft tissue and bone sarcoma of the extremities and pelvis - a systematic literature review. EFORT Open Rev 2020; 5:799-814. [PMID: 33312707 PMCID: PMC7722943 DOI: 10.1302/2058-5241.5.200069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In patients with metastatic or unresectable soft tissue and bone sarcoma of extremities and pelvis, survival is generally poor. The aim of the current systematic review was to analyse recent publications on treatment approaches in patients with inoperable and/or metastatic sarcoma. Original articles published between 1st January 2011 and 2nd May 2020, using the search terms ‘unresectable sarcoma’, ‘inoperability AND sarcoma’, ‘inoperab* AND sarcoma’, and ‘treatment AND unresectable AND sarcoma’ in PubMed, were potentially eligible. Out of the 839 initial articles (containing 274 duplicates) obtained and 23 further articles identified by cross-reference checking, 588 were screened, of which 447 articles were removed not meeting the inclusion criteria. A further 54 articles were excluded following full-text assessment, resulting in 87 articles finally being analysed. Of the 87 articles, 38 were retrospective (43.7%), two prospective (2.3%), six phase I or I/II trials (6.9%), 22 phase II non-randomized trials (27.6%), nine phase II randomized trials (10.3%) and eight phase III randomized trials (9.2%). Besides radio/particle therapy, isolated limb perfusion and conventional chemotherapy, novel therapeutic approaches, including immune checkpoint inhibitors and tyrosine kinase inhibitors were also identified, with partially very promising effects in advanced sarcomas. Management of inoperable, advanced or metastatic sarcomas of the pelvis and extremities remains challenging, with the optimal treatment to be defined individually. Besides conventional chemotherapy, some novel therapeutic approaches have promising effects in both bone and soft tissue subtypes. Considering that only a small proportion of studies were randomized, the clinical evidence currently remains moderate and thus calls for further large, randomized clinical trials.
Cite this article: EFORT Open Rev 2020;5:799-814. DOI: 10.1302/2058-5241.5.200069
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dimosthenis Andreou
- Division of Orthopaedic Oncology and Sarcoma Surgery, Helios Klinikum Bad Saarow, Sarcoma Center Berlin-Brandenburg, Berlin, Germany
| | - Emanuela Palmerini
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna University, Bologna, Italy
| | - Marko Bergovec
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
39
|
Lilienthal I, Herold N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int J Mol Sci 2020; 21:ijms21186885. [PMID: 32961800 PMCID: PMC7555161 DOI: 10.3390/ijms21186885] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Due to micrometastatic spread, radical surgery alone rarely results in cure. Introduction of combination chemotherapy in the 1970s, however, dramatically increased overall survival rates from 20% to approximately 70%. Unfortunately, large clinical trials aiming to intensify treatment in the past decades have failed to achieve higher cure rates. In this review, we revisit how the heterogenous nature of osteosarcoma as well as acquired and intrinsic resistance to chemotherapy can account for stagnation in therapy improvement. We summarise current osteosarcoma treatment strategies focusing on molecular determinants of treatment susceptibility and resistance. Understanding therapy susceptibility and resistance provides a basis for rational therapy betterment for both identifying patients that might be cured with less toxic interventions and targeting resistance mechanisms to sensitise resistant osteosarcoma to conventional therapies.
Collapse
Affiliation(s)
- Ingrid Lilienthal
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| | - Nikolas Herold
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Paediatric Oncology, Astrid Lindgren’s Children Hospital, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| |
Collapse
|
40
|
Szekanecz Z, Gomez I, Soós B, Bodoki L, Szamosi S, András C, Juhász B, Váróczy L, Antal-Szalmás P, Szodoray P, Bittner N, Árkosy P, Illés Á, Szűcs G, Dankó K, Bender T, Tamási L, Szekanecz É. Eight pillars of oncorheumatology: Crossroads between malignancies and musculoskeletal diseases. Autoimmun Rev 2020; 19:102658. [PMID: 32942035 DOI: 10.1016/j.autrev.2020.102658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
ONCORHEUMATOLOGY RELATIONSHIP BETWEEN MALIGNANCIES AND MUSCULOSKELETAL DISEASES: Oncorheumatology is the meeting point of tumor formation and rheumatic musculoskeletal diseases (RMD). Multiple interactions exist between these two medical specialties. One major field is the topic of malignancies associated with rheumatic diseases, while the other topic covers the development of musculoskeletal disease in cancer patients. Within the first group, secondary malignancies may be associated with rheumatic diseases. Mostly sustained inflammation is responsible for transition into cancer. Tumor-associated antigens (TAA) with adhesive properties are present on tumor cells. These molecules may also be expressed by inflammatory leukocytes and soluble TAA levels may be elevated in RMDs. There has been continuous debate with respect to the possible carcinogenicity of conventional and targeted antirheumatic drugs. Very recent data from registries suggest that neither biologics, nor JAK inhibitors increase cancer risk in arthritis patients. The issue of physiotherapy in rheumatic patients with recent or current cancer has also been controversial. Some modalities, primarily exercise, may be safely applied to patients with RMD and cancer. The second large topic includes paraneoplastic syndromes. Musculoskeletal paraneoplasias are triggered by tumor-derived mediators. These syndromes are sometimes slightly different from the classical RMDs. Various chemotherapies may also be associated with autoimmune side effects. Recently, these immune-related complications have also been observed in cancer patients treated with immune-checkpoint inhibitors. Sex hormone-deprivation therapies, such as aromatase inhibitors and anti-androgens are widely used for the treatment of breast and prostate cancer, respectively. These compounds may induce bone loss and lead to osteoporosis. Finally, primary and secondary malignancies of the musculoskeletal system may also interest rheumatologists. In this review, the clinical, practical aspects of these eight pillars of oncorheumatology will be discussed.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Izabella Gomez
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; National Institute of Rheumatology and Physiotherapy, Budapest, Hungary
| | - Boglárka Soós
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Levente Bodoki
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Szamosi
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla András
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Juhász
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Váróczy
- Division of Hematology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Antal-Szalmás
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Szodoray
- Division of Clinical Immunology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Institute of Immunology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Nóra Bittner
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Illés
- Division of Hematology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Dankó
- Division of Clinical Immunology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bender
- Buda Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - László Tamási
- Department of Rheumatology, Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, Miskolc;, Hungary
| | - Éva Szekanecz
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
41
|
Tsukamoto S, Errani C, Angelini A, Mavrogenis AF. Current Treatment Considerations for Osteosarcoma Metastatic at Presentation. Orthopedics 2020; 43:e345-e358. [PMID: 32745218 DOI: 10.3928/01477447-20200721-05] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/12/2019] [Indexed: 02/03/2023]
Abstract
Approximately one-fourth of osteosarcoma patients have metastases at presentation. The best treatment options for these patients include chemotherapy, surgery, and radiotherapy; however, the optimal scheme has not yet been defined. Standard chemotherapy for osteosarcoma metastatic at presentation is based on high-dose methotrexate, doxorubicin, and cisplatin (the MAP regimen), with the possible addition of ifosfamide. Surgical treatment continues to be fundamental; complete surgical resection of all sites of disease (primary and metastatic) remains essential for survival. In patients whose tumors do not respond to neoadjuvant chemotherapy, early surgical resection of the primary tumor with limb-salvage surgery or amputation and multiple metastasectomies, if feasible, after the completion of adjuvant chemotherapy is a reasonable option, as the reduction of the tumor volume could probably increase the effect of chemotherapy. Advanced radiotherapy techniques, such as carbon ion radiotherapy and stereotactic radiosurgery, and molecular targeted chemo-therapy with drugs such as pazopanib or apatinib have improved the dismal prognosis, especially for patients who are medically inoperable or who refuse surgery. Given that the presence of metastatic disease at diagnosis of a patient with osteosarcoma is a poor prognostic factor, a multidisciplinary approach by surgeons, medical oncologists, and radiotherapists is important. [Orthopedics. 2020;43(5):e345-e358.].
Collapse
|
42
|
Amin HM, Morani AC, Daw NC, Lamhamedi-Cherradi SE, Subbiah V, Menegaz BA, Vishwamitra D, Eskandari G, George B, Benjamin RS, Patel S, Song J, Lazar AJ, Wang WL, Kurzrock R, Pappo A, Anderson PM, Schwartz GK, Araujo D, Cuglievan B, Ratan R, McCall D, Mohiuddin S, Livingston JA, Molina ER, Naing A, Ludwig JA. IGF-1R/mTOR Targeted Therapy for Ewing Sarcoma: A Meta-Analysis of Five IGF-1R-Related Trials Matched to Proteomic and Radiologic Predictive Biomarkers. Cancers (Basel) 2020; 12:cancers12071768. [PMID: 32630797 PMCID: PMC7408058 DOI: 10.3390/cancers12071768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Background : Ten to fourteen percent of Ewing sarcoma (ES) study participants treated nationwide with IGF-1 receptor (IGF-1R)-targeted antibodies achieved tumor regression. Despite this success, low response rates and short response durations (approximately 7-weeks) have slowed the development of this therapy. Methods: We performed a meta-analysis of five phase-1b/2 ES-oriented trials that evaluated the anticancer activity of IGF-1R antibodies +/− mTOR inhibitors (mTORi). Our meta-analysis provided a head-to-head comparison of the clinical benefits of IGF-1R antibodies vs. the IGF-1R/mTOR-targeted combination. Available pretreatment clinical samples were semi-quantitatively scored using immunohistochemistry to detect proteins in the IGF-1R/PI3K/AKT/mTOR pathway linked to clinical response. Early PET/CT imaging, obtained within the first 2 weeks (median 10 days), were examined to determine if reduced FDG avidity was predictive of progression-free survival (PFS). Results: Among 56 ES patients treated at MD Anderson Cancer Center (MDACC) with IGF-1R antibodies, our analysis revealed a significant ~two-fold improvement in PFS that favored a combination of IGF-1R/mTORi therapy (1.6 vs. 3.3-months, p = 0.042). Low pIGF-1R in the pretreatment specimens was associated with treatment response. Reduced total-lesion glycolysis more accurately predicted the IGF-1R response than other previously reported radiological biomarkers. Conclusion: Synergistic drug combinations, and newly identified proteomic or radiological biomarkers of IGF-1R response, may be incorporated into future IGF-1R-related trials to improve the response rate in ES patients.
Collapse
Affiliation(s)
- Hesham M. Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Ajaykumar C. Morani
- Department of Nuclear Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Najat C. Daw
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - Salah-Eddine Lamhamedi-Cherradi
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, 7Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (V.S.); (A.N.)
| | - Brian A. Menegaz
- Baylor College of Medicine, Department of Surgery, Breast Surgical Oncology, Houston, TX 77030, USA; (B.A.M.); (E.R.M.)
| | - Deeksha Vishwamitra
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Ghazaleh Eskandari
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Bhawana George
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Robert S. Benjamin
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Juhee Song
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Alexander J. Lazar
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.L.); (W.-L.W.)
| | - Wei-Lien Wang
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.L.); (W.-L.W.)
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego (UCSD) Moores Cancer Center, San Diego, CA 92037, USA;
| | - Alberto Pappo
- Department of Pathology, St. Jude’s Cancer Research Hospital, Memphis, TN 38105, USA;
| | | | - Gary K. Schwartz
- Division of Hematology & Oncology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Dejka Araujo
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Branko Cuglievan
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - David McCall
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - Sana Mohiuddin
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - John A. Livingston
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Eric R. Molina
- Baylor College of Medicine, Department of Surgery, Breast Surgical Oncology, Houston, TX 77030, USA; (B.A.M.); (E.R.M.)
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, 7Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (V.S.); (A.N.)
| | - Joseph A. Ludwig
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
- Correspondence: ; Tel.: +1-(713)-792-3626
| |
Collapse
|
43
|
Heitzeneder S, Sotillo E, Shern JF, Sindiri S, Xu P, Jones R, Pollak M, Noer PR, Lorette J, Fazli L, Alag A, Meltzer P, Lau C, Conover CA, Oxvig C, Sorensen PH, Maris JM, Khan J, Mackall CL. Pregnancy-Associated Plasma Protein-A (PAPP-A) in Ewing Sarcoma: Role in Tumor Growth and Immune Evasion. J Natl Cancer Inst 2020; 111:970-982. [PMID: 30698726 DOI: 10.1093/jnci/djy209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ewing sarcoma (EWS) manifests one of the lowest somatic mutation rates of any cancer, leading to a scarcity of druggable mutations and neoantigens. Immunotherapeutics targeting differentially expressed cell surface antigens could provide therapeutic benefit for such tumors. Pregnancy-associated plasma protein A (PAPP-A) is a cell membrane-associated proteinase produced by the placenta that promotes fetal growth by inducing insulinlike growth factor (IGF) signaling. METHODS By comparing RNA expression of cell surface proteins in EWS (n = 120) versus normal tissues (n = 42), we comprehensively characterized the surfaceome of EWS to identify highly differentially expressed molecules. Using CRISPR/Cas-9 and anti-PAPP-A antibodies, we investigated biological roles for PAPP-A in EWS in vitro and in vivo in NSG xenograft models and performed RNA-sequencing on PAPPA knockout clones (n = 5) and controls (n = 3). All statistical tests were two-sided. RESULTS EWS surfaceome analysis identified 11 highly differentially overexpressed genes, with PAPPA ranking second in differential expression. In EWS cell lines, genetic knockout of PAPPA and treatment with anti-PAPP-A antibodies revealed an essential survival role by regulating local IGF-1 bioavailability. MAb-mediated PAPPA inhibition diminished EWS growth in orthotopic xenografts (leg area mm2 at day 49 IgG2a control (CTRL) [n = 14], mean = 397.0, SD = 86.1 vs anti-PAPP-A [n = 14], mean = 311.7, SD = 155.0; P = .03; median OS anti-PAPP-A = 52.5 days, 95% CI = 46.0 to 63.0 days vs IgG2a = 45.0 days, 95% CI = 42.0 to 52.0 days; P = .02) and improved the efficacy of anti-IGF-1R treatment (leg area mm2 at day 49 anti-PAPP-A + anti-IGF-1R [n = 15], mean = 217.9, SD = 148.5 vs IgG2a-CTRL; P < .001; median OS anti-PAPP-A + anti-IGF1R = 63.0 days, 95% CI = 52.0 to 67.0 days vs IgG2a-CTRL; P < .001). Unexpectedly, PAPPA knockout in EWS cell lines induced interferon (IFN)-response genes, including proteins associated with antigen processing/presentation. Consistently, gene expression profiles in PAPPA-low EWS tumors were enriched for immune response pathways. CONCLUSION This work provides a comprehensive characterization of the surfaceome of EWS, credentials PAPP-A as a highly differentially expressed therapeutic target, and discovers a novel link between IGF-1 signaling and immune evasion in cancer, thus implicating shared mechanisms of immune evasion between EWS and the placenta.
Collapse
|
44
|
[Osteoid-forming bone tumors : Morphology and current translational cell biology]. DER PATHOLOGE 2020; 41:123-133. [PMID: 32078700 DOI: 10.1007/s00292-020-00763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Osteoid osteoma and osteoblastoma are the most important benign osteoid-forming tumors. They grow slowly and are well differentiated. Histologically, the tumor cells show no atypia and no increased mitoses. In typical cases, they can be clearly diagnosed. However, the rare cases on the dividing line between osteoblastoma and osteosarcoma are extremely problematic. In these cases, molecular genetic investigations should contribute to finding the correct diagnosis in the future.Juvenile highly malignant osteosarcoma is the most important malignant osteoid-forming tumor. About 40 years ago, neoadjuvant chemotherapy was introduced for the mostly young patients. This therapy highly significantly improved prognosis. However, a plateau phase was quickly reached and the last several decades have seen no further progress in conventional therapeutic approaches. There is no doubt that further progress can only be achieved on the basis of new molecular genetic and cell biological findings. The target-therapeutic strategies derived from these findings will be discussed in this review.The rare parosteal osteosarcoma and the even rarer periosteal osteosarcoma are mostly not highly malignant tumors that are located on the surface of bone. The parosteal osteosarcoma is usually G1 and the periosteal osteosarcoma G2. Occasionally, the differential diagnosis between a parosteal osteosarcoma and a fibrous dysplasia is difficult. In such rare cases, the detection of GNAS mutations in fibrous dysplasia can prove useful. In contrast to chondromas and chondrosarcomas, periosteal osteosarcomas do not contain IDH1 and IDH2 mutations.
Collapse
|
45
|
Baranowska-Kortylewicz J, Sharp JG, McGuire TR, Joshi S, Coulter DW. Alpha-Particle Therapy for Multifocal Osteosarcoma: A Hypothesis. Cancer Biother Radiopharm 2020; 35:418-424. [PMID: 32073902 DOI: 10.1089/cbr.2019.3112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteosarcoma (OST) is the most common bone tumor in children and adolescents with a second peak of incidence in elderly adults usually diagnosed as secondary tumors in Paget's disease or irradiated bone. Subjects with metastatic disease or whose disease relapses after the initial therapy have a poor prognosis. Moreover, multifocal OST contains tumor-initiating cells that are resistant to chemotherapy. The use of aggressive therapies in an attempt to eradicate these cells can have long-term negative consequences in these vulnerable patient populations. 227Th-labeled molecular probes based on ligands to OST-associated receptors such as IGF-1R (insulin-like growth factor receptor 1), HER2 (human epidermal growth factor receptor 2), and PSMA (prostate-specific membrane antigen) are expected to detect and treat osseous and nonosseous sites of multifocal OST. Published reports indicate that 227Th has limited myelotoxicity, can be stably chelated to its carriers and, as it decays at targeted sites, 227Th produces 223Ra that is subsequently incorporated into the areas of increased osteoblastic activity, that is, osseous metastatic lesions. Linear energy transfer of α particles emitted by 227Th and its daughter 223Ra is within the range of the optimum relative biological effectiveness. The radiotoxicity of α particles is virtually independent of the phase in the cell cycle, oxygenation, and the dose rate. For these reasons, even resistant OST cells remain susceptible to killing by high-energy α particles, which can also kill adjacent quiescent OST cells or cells with low expression of targeted receptors. Systemic side effects are minimized by the limited range of these intense radiations. Quantitative single-photon emission computed tomography of 227Th and 223Ra is feasible. Additionally, the availability of radionuclide pairs, for example, 89Zr for positron emission tomography and 227Th for therapy, establish a strong basis for the theranostic use of 227Th in the individualized treatment of multifocal OST.
Collapse
Affiliation(s)
- Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John G Sharp
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shantharam Joshi
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Don W Coulter
- Division of Hematology/Oncology, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
46
|
The IGF-II-Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives. Cancers (Basel) 2020; 12:cancers12020366. [PMID: 32033443 PMCID: PMC7072655 DOI: 10.3390/cancers12020366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin receptor overexpression is a common event in human cancer. Its overexpression is associated with a relative increase in the expression of its isoform A (IRA), a shorter variant lacking 11 aa in the extracellular domain, conferring high affinity for the binding of IGF-II along with added intracellular signaling specificity for this ligand. Since IGF-II is secreted by the vast majority of malignant solid cancers, where it establishes autocrine stimuli, the co-expression of IGF-II and IRA in cancer provides specific advantages such as apoptosis escape, growth, and proliferation to those cancers bearing such a co-expression pattern. However, little is known about the exact role of this autocrine ligand–receptor system in sustaining cancer malignant features such as angiogenesis, invasion, and metastasis. The recent finding that the overexpression of angiogenic receptor kinase EphB4 along with VEGF-A is tightly dependent on the IGF-II/IRA autocrine system independently of IGFIR provided new perspectives for all malignant IGF2omas (those aggressive solid cancers secreting IGF-II). The present review provides an updated view of the IGF system in cancer, focusing on the biology of the autocrine IGF-II/IRA ligand–receptor axis and supporting its underscored role as a malignant-switch checkpoint target.
Collapse
|
47
|
Zhao J, Dean DC, Hornicek FJ, Yu X, Duan Z. Emerging next-generation sequencing-based discoveries for targeted osteosarcoma therapy. Cancer Lett 2020; 474:158-167. [PMID: 31987920 DOI: 10.1016/j.canlet.2020.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and is frequently lethal via metastasis to the lung. While surgical techniques and adjuvant chemotherapies have emerged to combat this deadly cancer, the 5-year survival rate has plateaued over the past four decades. Therapeutic progress has been notably poor because past technologies have not been able to reveal obscured OS biomarkers and targets. With the advent and implementation of large-scale next-generation sequencing (NGS) studies, various somatic mutations and copy number changes involved in OS progression and metastasis have surfaced. These findings have significantly expanded the amount of genome-informed pathways and candidate genes suitable for targeting in pre-clinical models. Furthermore, NGS analyses comparing primary and matched pulmonary metastatic tumor tissues have catalogued previously unknown prognostic biomarkers in OS. In this review, we delineate the most recent findings in NGS for OS therapy and how this technology has advanced personalized therapy.
Collapse
Affiliation(s)
- Jie Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China; Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Orthopaedic Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250031, China.
| | - Dylan C Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Xiuchun Yu
- Department of Orthopaedic Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250031, China.
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
48
|
Receptor Tyrosine Kinases in Osteosarcoma: 2019 Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:141-155. [PMID: 32767239 DOI: 10.1007/978-3-030-43085-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary conclusions of our 2014 contribution to this series were as follows: Multiple receptor tyrosine kinases (RTKs) likely contribute to aggressive phenotypes in osteosarcoma and, therefore, inhibition of multiple RTKs is likely necessary for successful clinical outcomes. Inhibition of multiple RTKs may also be useful to overcome resistance to inhibitors of individual RTKs as well as resistance to conventional chemotherapies. Different combinations of RTKs are likely important in individual patients. AXL, EPHB2, FGFR2, IGF1R, and RET were identified as promising therapeutic targets by our in vitro phosphoproteomic/siRNA screen of 42 RTKs in the highly metastatic LM7 and 143B human osteosarcoma cell lines. This chapter is intended to provide an update on these topics as well as the large number of osteosarcoma clinical studies of inhibitors of multiple tyrosine kinases (multi-TKIs) that were recently published.
Collapse
|
49
|
Phase I Study of IGF-Methotrexate Conjugate in the Treatment of Advanced Tumors Expressing IGF-1R. Am J Clin Oncol 2019; 42:862-869. [DOI: 10.1097/coc.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Andersson MK, Åman P, Stenman G. IGF2/IGF1R Signaling as a Therapeutic Target in MYB-Positive Adenoid Cystic Carcinomas and Other Fusion Gene-Driven Tumors. Cells 2019; 8:cells8080913. [PMID: 31426421 PMCID: PMC6721700 DOI: 10.3390/cells8080913] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Chromosome rearrangements resulting in pathogenetically important gene fusions are a common feature of many cancers. They are often potent oncogenic drivers and have key functions in central cellular processes and pathways and encode transcription factors, transcriptional co-regulators, growth factor receptors, tyrosine kinases, and chromatin modifiers. In addition to being useful diagnostic biomarkers, they are also targets for development of new molecularly targeted therapies. Studies in recent decades have shown that several oncogenic gene fusions interact with the insulin-like growth factor (IGF) signaling pathway. For example, the MYB-NFIB fusion in adenoid cystic carcinoma is regulated by IGF1R through an autocrine loop, and IGF1R is a downstream target of the EWSR1-WT1 and PAX3-FKHR fusions in desmoplastic small round cell tumors and alveolar rhabdomyosarcoma, respectively. Here, we will discuss the mechanisms behind the interactions between oncogenic gene fusions and the IGF signaling pathway. We will also discuss the role of therapeutic inhibition of IGF1R in fusion gene driven malignancies.
Collapse
Affiliation(s)
- Mattias K Andersson
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Pierre Åman
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|