1
|
Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr Res Rev 2023; 36:498-511. [PMID: 36380523 DOI: 10.1017/s095442242200021x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their circulating concentrations and beneficial health effects, such as lower risk of cardiometabolic diseases and cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids or whether they are instead induced by their metabolites. Several categories of metabolites have been reported, most notably involving (a) modifications at the cyclohexenyl ring or the polyene chain, such as epoxides and geometric isomers, (b) excentric cleavage metabolites with alcohol-, aldehyde- or carboxylic acid-functional groups or (c) centric cleaved metabolites with additional hydroxyl, aldehyde or carboxyl functionalities, not counting their potential phase-II glucuronidated / sulphated derivatives. Of special interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoid cleavage by β-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more water soluble and more electrophilic and, therefore, putative candidates for interactions with transcription factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential associated health effects, focusing exclusively on the human situation and based on quantified / semi-quantified carotenoid metabolites proven to be present in humans.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Ralph Rühl
- CISCAREX UG, Berlin, Germany
- Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
2
|
Hammerling U, Kim YK, Quadro L. Quantum chemistry rules retinoid biology. Commun Biol 2023; 6:227. [PMID: 36854887 PMCID: PMC9974979 DOI: 10.1038/s42003-023-04602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
This Perspective discusses how retinol catalyzes resonance energy transfer (RET) reactions pivotally important for mitochondrial energy homeostasis by protein kinase C δ (PKCδ). PKCδ signals to the pyruvate dehydrogenase complex, controlling oxidative phosphorylation. The PKCδ-retinol complex reversibly responds to the redox potential of cytochrome c, that changes with the electron transfer chain workload. In contrast, the natural retinoid anhydroretinol irreversibly activates PKCδ. Its elongated conjugated-double-bond system limits the energy quantum absorbed by RET. Consequently, while capable of triggering the exergonic activating pathway, anhydroretinol fails to activate the endergonic silencing path, trapping PKCδ in the ON position and causing harmful levels of reactive oxygen species. However, physiological retinol levels displace anhydroretinol, buffer cyotoxicity and potentially render anhydroretinol useful for rapid energy generation. Intriguingly, apocarotenoids, the primary products of the mitochondrial β-carotene,9'-10'-oxygenase, have all the anhydroretinol-like features, including modulation of energy homeostasis. We predict significant conceptual advances to stem from further understanding of the retinoid-catalyzed RET.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Bandara S, von Lintig J. Aster la vista: Unraveling the biochemical basis of carotenoid homeostasis in the human retina. Bioessays 2022; 44:e2200133. [PMID: 36127289 PMCID: PMC10044510 DOI: 10.1002/bies.202200133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Carotenoids play pivotal roles in vision as light filters and precursor of chromophore. Many vertebrates also display the colorful pigments as ornaments in bare skin parts and feathers. Proteins involved in the transport and metabolism of these lipids have been identified including class B scavenger receptors and carotenoid cleavage dioxygenases. Recent research implicates members of the Aster protein family, also known as GRAM domain-containing (GRAMD), in carotenoid metabolism. These multi-domain proteins facilitate the intracellular movement of carotenoids from their site of cellular uptake by scavenger receptors to the site of their metabolic processing by carotenoid cleavage dioxygenases. We provide a model how the coordinated interplay of these proteins and their differential expression establishes carotenoid distribution patterns and function in tissues, with particular emphasis on the human retina.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Njiru C, Xue W, De Rouck S, Alba JM, Kant MR, Chruszcz M, Vanholme B, Dermauw W, Wybouw N, Van Leeuwen T. Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals. BMC Biol 2022; 20:131. [PMID: 35658860 PMCID: PMC9167512 DOI: 10.1186/s12915-022-01323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homology to “intradiol ring cleavage dioxygenases (DOGs)” from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. Results We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mite’s gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites’ survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. Conclusion Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide experimental evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01323-1.
Collapse
|
5
|
Abstract
Carotenoid pigments accumulate in specific patterns in vertebrate tissues and play important roles as colorants, chromophores, and hormone precursors. However, proteins that facilitate transportation of these lipophilic pigments within cells have not been identified. We provide evidence that Aster proteins are key components for this process and show that they bind the pigments with high affinity. We observed in mice that carotenoids accumulate in tissues that express Aster-B and this accumulation can be prevented by enzymatic turnover by the BCO2 protein. Accordingly, we found opposing expression patterns of the Aster-B protein and BCO2 in the human retina that seemingly contribute to the unique carotenoid concentration in the macula lutea. Some mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme β-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues. We now provide evidence that Aster (GRAM-domain-containing) proteins, recently recognized for their role in nonvesicular cholesterol transport, engage in carotenoid metabolism. Our analyses revealed that the StART-like lipid binding domain of Aster proteins can accommodate the bulky pigments and bind them with high affinity. We further showed that carotenoids and cholesterol compete for the same binding site. We established a bacterial test system to demonstrate that the StART-like domains of mouse and human Aster proteins can extract carotenoids from biological membranes. Mice deficient for the carotenoid catabolizing enzyme BCO2 concentrated carotenoids in Aster-B protein-expressing tissues such as the adrenal glands. Remarkably, Aster-B was expressed in the human but not in the mouse retina. Within the retina, Aster-B and BCO2 showed opposite expression patterns in central versus peripheral parts. Together, our study unravels the biochemical basis for intracellular carotenoid transport and implicates Aster-B in the pathway for macula pigment concentration in the human retina.
Collapse
|
6
|
Mukherjee S, Yun JW. β-Carotene stimulates browning of 3T3-L1 white adipocytes by enhancing thermogenesis via the β3-AR/p38 MAPK/SIRT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153857. [PMID: 34840022 DOI: 10.1016/j.phymed.2021.153857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural compounds with medicinal properties are part of a strategic trend in the treatment of obesity. The vitamin A agent, β-carotene, is a well-known carotenoid, and its numerous functions in metabolism have been widely studied. The activation of thermogenesis by stimulating white fat browning (beiging) has been identified as a treatment for obese individuals. PURPOSE The current study was undertaken to unveil the browning activity of β-carotene in 3T3-L1 white adipocytes. METHODS The effects of β-carotene were evaluated in 3T3-L1 white adipocytes, and gene/protein expressions were determined by performing quantitative real-time PCR, immunoblot analysis, immunofluorescence assessment, and molecular docking techniques. RESULTS β-carotene strikingly increased the expression levels of brown-fat-specific marker proteins (UCP1, PRDM16, and PGC-1α) and beige-fat-specific genes (Cd137, Cidea, Cited1, andTbx1) in 3T3-L1 cells. Exposure to β-carotene also elevated the expressions of key adipogenic transcription factors C/EBPα and PPARγ in white adipocytes but decreased the expressions of lipogenic marker proteins ACC and FAS. Moreover, lipolysis and fat oxidation were regulated by β-carotene via upregulation of ATGL, pHSL, ACOX, and CPT1. In addition, molecular docking studies revealed β-carotene activation of the adenosine A2A receptor and β3-AR. β-Carotene increased the expressions of mitochondrial biogenic markers, stimulated the β3-AR and p38 MAPK signaling pathways and its downstream signaling molecules (SIRTs and ATF2), thereby inducing browning. CONCLUSIONS Taken together, our results indicate the potential of β-carotene as a natural-source therapeutic anti-obesity agent.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
7
|
Dewett D, Labaf M, Lam-Kamath K, Zarringhalam K, Rister J. Vitamin A deficiency affects gene expression in the Drosophila melanogaster head. G3 (BETHESDA, MD.) 2021; 11:jkab297. [PMID: 34849795 PMCID: PMC8527478 DOI: 10.1093/g3journal/jkab297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Insufficient dietary intake of vitamin A causes various human diseases. For instance, chronic vitamin A deprivation causes blindness, slow growth, impaired immunity, and an increased risk of mortality in children. In contrast to these diverse effects of vitamin A deficiency (VAD) in mammals, chronic VAD in flies neither causes obvious developmental defects nor lethality. As in mammals, VAD in flies severely affects the visual system: it impairs the synthesis of the retinal chromophore, disrupts the formation of the visual pigments (Rhodopsins), and damages the photoreceptors. However, the molecular mechanisms that respond to VAD remain poorly understood. To identify genes and signaling pathways that are affected by VAD, we performed RNA-sequencing and differential gene expression analysis in Drosophila melanogaster. We found an upregulation of genes that are essential for the synthesis of the retinal chromophore, specific aminoacyl-tRNA synthetases, and major nutrient reservoir proteins. We also discovered that VAD affects several genes that are required for the termination of the light response: for instance, we found a downregulation of both arrestin genes that are essential for the inactivation of Rhodopsin. A comparison of the VAD-responsive genes with previously identified blue light stress-responsive genes revealed that the two types of environmental stress trigger largely nonoverlapping transcriptome responses. Yet, both stresses increase the expression of seven genes with poorly understood functions. Taken together, our transcriptome analysis offers insights into the molecular mechanisms that respond to environmental stresses.
Collapse
Affiliation(s)
- Deepshe Dewett
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Maryam Labaf
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Khanh Lam-Kamath
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
8
|
Dewett D, Lam-Kamath K, Poupault C, Khurana H, Rister J. Mechanisms of vitamin A metabolism and deficiency in the mammalian and fly visual system. Dev Biol 2021; 476:68-78. [PMID: 33774009 DOI: 10.1016/j.ydbio.2021.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Vitamin A deficiency can cause human pathologies that range from blindness to embryonic malformations. This diversity is due to the lack of two major vitamin A metabolites with very different functions: the chromophore 11-cis-retinal (vitamin A aldehyde) is a critical component of the visual pigment that mediates phototransduction, while the signaling molecule all-trans-retinoic acid regulates the development of various tissues and is required for the function of the immune system. Since animals cannot synthesize vitamin A de novo, they must obtain it either as preformed vitamin A from animal products or as carotenoid precursors from plant sources. Due to its essential role in the visual system, acute vitamin A deprivation impairs photoreceptor function and causes night blindness (poor vision under dim light conditions), while chronic deprivation results in retinal dystrophies and photoreceptor cell death. Chronic vitamin A deficiency is the leading cause of preventable childhood blindness according to the World Health Organization. Due to the requirement of vitamin A for retinoic acid signaling in development and in the immune system, vitamin A deficiency also causes increased mortality in children and pregnant women in developing countries. Drosophila melanogaster is an excellent model to study the effects of vitamin A deprivation on the eye because vitamin A is not essential for Drosophila development and chronic deficiency does not cause lethality. Moreover, genetic screens in Drosophila have identified evolutionarily conserved factors that mediate the production of vitamin A and its cellular uptake. Here, we review our current knowledge about the role of vitamin A in the visual system of mammals and Drosophila melanogaster. We compare the molecular mechanisms that mediate the uptake of dietary vitamin A precursors and the metabolism of vitamin A, as well as the consequences of vitamin A deficiency for the structure and function of the eye.
Collapse
Affiliation(s)
- Deepshe Dewett
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Khanh Lam-Kamath
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Clara Poupault
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Heena Khurana
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA.
| |
Collapse
|
9
|
Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. Proc Natl Acad Sci U S A 2020; 117:19914-19925. [PMID: 32747548 DOI: 10.1073/pnas.2004116117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apocarotenoids are important signaling molecules generated from carotenoids through the action of carotenoid cleavage dioxygenases (CCDs). These enzymes have a remarkable ability to cleave carotenoids at specific alkene bonds while leaving chemically similar sites within the polyene intact. Although several bacterial and eukaryotic CCDs have been characterized, the long-standing goal of experimentally visualizing a CCD-carotenoid complex at high resolution to explain this exquisite regioselectivity remains unfulfilled. CCD genes are also present in some archaeal genomes, but the encoded enzymes remain uninvestigated. Here, we address this knowledge gap through analysis of a metazoan-like archaeal CCD from Candidatus Nitrosotalea devanaterra (NdCCD). NdCCD was active toward β-apocarotenoids but did not cleave bicyclic carotenoids. It exhibited an unusual regiospecificity, cleaving apocarotenoids solely at the C14'-C13' alkene bond to produce β-apo-14'-carotenals. The structure of NdCCD revealed a tapered active site cavity markedly different from the broad active site observed for the retinal-forming Synechocystis apocarotenoid oxygenase (SynACO) but similar to the vertebrate retinoid isomerase RPE65. The structure of NdCCD in complex with its apocarotenoid product demonstrated that the site of cleavage is defined by interactions along the substrate binding cleft as well as selective stabilization of reaction intermediates at the scissile alkene. These data on the molecular basis of CCD catalysis shed light on the origins of the varied catalytic activities found in metazoan CCDs, opening the possibility of modifying their activity through rational chemical or genetic approaches.
Collapse
|
10
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
11
|
Apo-14´-Carotenoic Acid Is a Novel Endogenous and Bioactive Apo-Carotenoid. Nutrients 2019; 11:nu11092084. [PMID: 31487780 PMCID: PMC6770688 DOI: 10.3390/nu11092084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/03/2022] Open
Abstract
Carotenoids can be metabolized to various apo-carotenoids and retinoids. Apo-15´-carotenoic acid (retinoic acid, RA) is a potent activator of the retinoic acid receptor (RAR) in its all-trans- (ATRA) and 9-cis- (9CRA) forms. In this study we show firstly, that apo-14´-carotenoic acid (A14CA), besides retinoic acids, is present endogenously and with increased levels in the human organism after carrot juice supplementation rich in β-carotene. All-trans-A14C (ATA14CA) is just a moderate activator of RAR-transactivation in reporter cell lines but can potently activate retinoic acid response element (RARE)-mediated signalling in DR5/RARE-reporter mice and potently increase retinoid-reporter target gene expression in ATA14CA-supplemented mice and treated MM6 cells. Further metabolism to all-trans-13,14-dihydroretinoic acid (ATDHRA) may be the key for its potent effects on retinoid target gene activation in ATA14CA-treated MM6 cells and in liver of supplemented mice. We conclude that besides RAs, there are alternative ways to activate RAR-response pathways in the mammalian organism. ATA14CA alone and in combination with its metabolite ATDHRA may be an alternative pathway for potent RAR-mediated signalling.
Collapse
|
12
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
13
|
Cao DX, Wang SL, WANG R, Chai ST, Liu SJ, Hao LZ. Changes of β-carotene and retinol levels and BCO1 gene and protein expressions in yak tissues at different nutritional seasons. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/109953/2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Coronel J, Pinos I, Amengual J. β-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients 2019; 11:E842. [PMID: 31013923 PMCID: PMC6521044 DOI: 10.3390/nu11040842] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, obesity has become a rising health problem as the accessibility to high calorie, low nutritional value food has increased. Research shows that some bioactive components in fruits and vegetables, such as carotenoids, could contribute to the prevention and treatment of obesity. Some of these carotenoids are responsible for vitamin A production, a hormone-like vitamin with pleiotropic effects in mammals. Among these effects, vitamin A is a potent regulator of adipose tissue development, and is therefore important for obesity. This review focuses on the role of the provitamin A carotenoid β-carotene in human health, emphasizing the mechanisms by which this compound and its derivatives regulate adipocyte biology. It also discusses the physiological relevance of carotenoid accumulation, the implication of the carotenoid-cleaving enzymes, and the technical difficulties and considerations researchers must take when working with these bioactive molecules. Thanks to the broad spectrum of functions carotenoids have in modern nutrition and health, it is necessary to understand their benefits regarding to metabolic diseases such as obesity in order to evaluate their applicability to the medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Johana Coronel
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jaume Amengual
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
16
|
Molecular cloning, expression pattern of β-carotene 15,15-dioxygenase gene and association analysis with total carotenoid content in pearl oyster Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:34-41. [PMID: 30502389 DOI: 10.1016/j.cbpb.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
Abstract
β-carotene-15,15-dioxygenase is an enzyme involved in carotenoid metabolism to catalyze oxidative cleavage of β-carotene at its central double bond to two molecules of retinal in intestinal cells of vertebrate. In this study, we cloned and characterized β-carotene-15,15-dioxygenase in pearl oyster Pinctada fucata martensii (PmβCDOX). The full length of PmβCDOX gene was 1802 bp, including 1554 bp of the open reading frame (ORF) that encoded 517 amino acids, a 5'UTR of 134 bp and a 3' UTR of 114 bp. PmβCDOX was expressed at various tissues with highest level in hepatopancreas. Eighteen and fifteen single nucleotide polymorphisms (SNPs) were separately obtained in the exon and promoter of PmβCDOX. Eight SNPs (six SNPs in the exon and two SNPs in the promoter region) were significantly associated to total carotenoid content (TCC) (P < .05). The eight SNPs of significantly associated TCC were divided three haploblocks. Haplotypes CCTT had larger TCC than other haplotypes. The present results suggest that PmβCDOX is involved in carotenoid metabolism in pearl oyster. Our study will be helpful for development gene marker in selective breeding programs for TCC trait of the species.
Collapse
|
17
|
Kelly ME, Ramkumar S, Sun W, Colon Ortiz C, Kiser PD, Golczak M, von Lintig J. The Biochemical Basis of Vitamin A Production from the Asymmetric Carotenoid β-Cryptoxanthin. ACS Chem Biol 2018; 13:2121-2129. [PMID: 29883100 PMCID: PMC6158786 DOI: 10.1021/acschembio.8b00290] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin A serves essential functions in mammalian biology as a signaling molecule and chromophore. This lipid can be synthesized from more than 50 putative dietary provitamin A precursor molecules which contain at least one unsubstituted β-ionone ring. We here scrutinized the enzymatic properties and substrate specificities of the two structurally related carotenoid cleavage dioxygenases (CCDs) which catalyze this synthesis. Recombinant BCO1 split substrates across the C15,C15' double bond adjacent to a canonical β-ionone ring site to vitamin A aldehyde. Substitution of the ring with a hydroxyl group prevented this conversion. The removal of methyl groups from the polyene carbon backbone of the substrate did not impede enzyme activity. Homology modeling and site-directed mutagenesis identified amino acid residues at the entrance of the substrate tunnel, which determined BCO1's specificity for the canonical β-ionone ring site. In contrast, BCO2 split substrates across the C9,C10 double bond adjacent to assorted ionone ring sites. Kinetic analysis revealed a higher catalytic efficiency of BCO2 with substrates bearing 3-hydroxy-β-ionone rings. In the mouse intestine, the asymmetric carotenoid β-cryptoxanthin with one canonical and one 3-hydroxy-β-ionone ring site was meticulously converted to vitamin A. The tailoring of this asymmetric substrate occurred by a stepwise processing of the carotenoid substrate by both CCDs and involved a β-apo-10'-carotenal intermediate. Thus, opposite selectivity for ionone ring sites of the two mammalian CCDs complement each other in the metabolic challenge of vitamin A production from a chemically diverse set of precursor molecules.
Collapse
Affiliation(s)
- Mary E. Kelly
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Srinivasagan Ramkumar
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Weizhong Sun
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Crystal Colon Ortiz
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Philip D. Kiser
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
18
|
Saeed A, Hoekstra M, Hoeke MO, Heegsma J, Faber KN. The interrelationship between bile acid and vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:496-512. [PMID: 28111285 DOI: 10.1016/j.bbalip.2017.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A is a fat-soluble vitamin important for vision, reproduction, embryonic development, cell differentiation, epithelial barrier function and adequate immune responses. Efficient absorption of dietary vitamin A depends on the fat-solubilizing properties of bile acids. Bile acids are synthesized in the liver and maintained in an enterohepatic circulation. The liver is also the main storage site for vitamin A in the mammalian body, where an intimate collaboration between hepatocytes and hepatic stellate cells leads to the accumulation of retinyl esters in large cytoplasmic lipid droplet hepatic stellate cells. Chronic liver diseases are often characterized by disturbed bile acid and vitamin A homeostasis, where bile production is impaired and hepatic stellate cells lose their vitamin A in a transdifferentiation process to myofibroblasts, cells that produce excessive extracellular matrix proteins leading to fibrosis. Chronic liver diseases thus may lead to vitamin A deficiency. Recent data reveal an intricate crosstalk between vitamin A metabolites and bile acids, in part via the Retinoic Acid Receptor (RAR), Retinoid X Receptor (RXR) and the Farnesoid X Receptor (FXR), in maintaining vitamin A and bile acid homeostasis. Here, we provide an overview of the various levels of "communication" between vitamin A metabolites and bile acids and its relevance for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Institute of Molecular biology & Bio-technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Mark Hoekstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Martijn Oscar Hoeke
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Huebbe P, Lange J, Lietz G, Rimbach G. Dietary beta-carotene and lutein metabolism is modulated by the APOE genotype. Biofactors 2016; 42:388-96. [PMID: 27040933 DOI: 10.1002/biof.1284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
The human apolipoprotein E (APOE) genotype has been suggested to interact with nutrient metabolism particularly with lipid soluble vitamins. Plasma carotenoid levels are determined by numerous dietary and genetic factors with high inter-individual variation; however, the APOE genotype has not been systematically examined so far. Our aim was to investigate the effect of the APOE genotype on dietary carotenoid metabolism with special regard to transcriptional regulation of carotenoid absorption, cleavage and adipocyte fat storage. We supplemented targeted replacement mice expressing human APOE3 and APOE4 isoforms with dietary beta-carotene (BC) and lutein (LUT) for 8 weeks. Plasma BC and adipose tissue BC and LUT levels were in trend lower in APOE4 than APOE3 mice, while hepatic expression of the beta-carotene oxygenases BCO1 and BCO2 was significantly higher. In contrast to the liver, mRNA levels of proteins involved in carotenoid absorption and cleavage in the small intestinal mucosa as well as of adipogenic markers in the adipose tissue were not different between APOE3 and APOE4 mice. Our data suggest that the hepatic carotenoid cleavage activity is higher in APOE4 mice partially reducing the circulation and extra-hepatic accumulation of intact carotenoids as compared to APOE3. Therefore we suggest considering the APOE genotype as modulator of carotenoid status in the future. © 2016 BioFactors, 42(4):388-396, 2016.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Jennifer Lange
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Georg Lietz
- School of Agriculture, Food and Rural Development, Human Nutrition Research Centre, University of Newcastle, Newcastle upon Tyne, NE1 7RU, U.K
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| |
Collapse
|
20
|
Stutz H, Bresgen N, Eckl PM. Analytical tools for the analysis of β-carotene and its degradation products. Free Radic Res 2015; 49:650-80. [PMID: 25867077 PMCID: PMC4487603 DOI: 10.3109/10715762.2015.1022539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
β-Carotene, the precursor of vitamin A, possesses pronounced radical scavenging properties. This has centered the attention on β-carotene dietary supplementation in healthcare as well as in the therapy of degenerative disorders and several cancer types. However, two intervention trials with β-carotene have revealed adverse effects on two proband groups, that is, cigarette smokers and asbestos-exposed workers. Beside other causative reasons, the detrimental effects observed have been related to the oxidation products of β-carotene. Their generation originates in the polyene structure of β-carotene that is beneficial for radical scavenging, but is also prone to oxidation. Depending on the dominant degradation mechanism, bond cleavage might occur either randomly or at defined positions of the conjugated electron system, resulting in a diversity of cleavage products (CPs). Due to their instability and hydrophobicity, the handling of standards and real samples containing β-carotene and related CPs requires preventive measures during specimen preparation, analyte extraction, and final analysis, to avoid artificial degradation and to preserve the initial analyte portfolio. This review critically discusses different preparation strategies of standards and treatment solutions, and also addresses their protection from oxidation. Additionally, in vitro oxidation strategies for the generation of oxidative model compounds are surveyed. Extraction methods are discussed for volatile and non-volatile CPs individually. Gas chromatography (GC), (ultra)high performance liquid chromatography (U)HPLC, and capillary electrochromatography (CEC) are reviewed as analytical tools for final analyte analysis. For identity confirmation of analytes, mass spectrometry (MS) is indispensable, and the appropriate ionization principles are comprehensively discussed. The final sections cover analysis of real samples and aspects of quality assurance, namely matrix effects and method validation.
Collapse
Affiliation(s)
- H. Stutz
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - N. Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - P. M. Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Palczewski G, Amengual J, Hoppel CL, von Lintig J. Evidence for compartmentalization of mammalian carotenoid metabolism. FASEB J 2014; 28:4457-69. [PMID: 25002123 DOI: 10.1096/fj.14-252411] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The critical role of retinoids (vitamin A and its derivatives) for vision, reproduction, and survival has been well established. Vitamin A is produced from dietary carotenoids such as β-carotene by centric cleavage via the enzyme BCO1. The biochemical and molecular identification of a second structurally related β-carotene metabolizing enzyme, BCO2, has led to a prolonged debate about its relevance in vitamin A biology. While BCO1 cleaves provitamin A carotenoids, BCO2 is more promiscuous and also metabolizes nonprovitamin A carotenoids such as zeaxanthin into long-chain apo-carotenoids. Herein we demonstrate, in cell lines, that human BCO2 is associated with the inner mitochondrial membrane. Different human BCO2 isoforms possess cleavable N-terminal leader sequences critical for mitochondrial import. Subfractionation of murine hepatic mitochondria confirmed the localization of BCO2 to the inner mitochondrial membrane. Studies in BCO2-knockout mice revealed that zeaxanthin accumulates in the inner mitochondrial membrane; in contrast, β-carotene is retained predominantly in the cytoplasm. Thus, we provide evidence for a compartmentalization of carotenoid metabolism that prevents competition between BCO1 and BCO2 for the provitamin and the production of noncanonical β-carotene metabolites.
Collapse
Affiliation(s)
| | | | - Charles L Hoppel
- Department of Pharmacology, and Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
22
|
Role of Frizzled6 in the molecular mechanism of beta-carotene action in the lung. Toxicology 2014; 320:67-73. [DOI: 10.1016/j.tox.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022]
|
23
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
24
|
Östh M, Öst A, Kjolhede P, Strålfors P. The concentration of β-carotene in human adipocytes, but not the whole-body adipocyte stores, is reduced in obesity. PLoS One 2014; 9:e85610. [PMID: 24416432 PMCID: PMC3885716 DOI: 10.1371/journal.pone.0085610] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 12/06/2013] [Indexed: 01/15/2023] Open
Abstract
We have examined the concentration of β-carotene in the fat of isolated abdominal subcutaneous adipocytes obtained from lean (BMI<23 kg/m2), non-obese with higher BMI (23≤BMI<28 kg/m2), obese (BMI≥28 kg/m2), and from a group of obese subjects with type 2 diabetes. The concentration of β-carotene was 50% lower in the adipocytes from the obese and obese/diabetic groups compared with the lean and non-obese groups. Interestingly, the total amount of β-carotene in the adipocyte stores of each subject was constant among all groups. Triacylglycerol constituted 92±1% (by weight) of the adipocyte lipids in the lean group and this was increased to 99±2% in the obese group with diabetes (p<0.05). The concentration of cholesteryl esters was in all cases <0.1 g per 100 g of total lipids, demonstrating that mature human adipocytes have negligible stores of cholesteryl ester. Our findings demonstrate that adipocyte concentrations of β-carotene are reduced in obese subjects. The lower concentrations in adipocytes from subjects with type 2 diabetes apparently reflect subjectś obesity. Our finding that whole-body stores of β-carotene in adipocytes are constant raises new questions regarding what function it serves, as well as the mechanisms for maintaining constant levels in the face of varied adipose tissue mass among individuals over a period of time.
Collapse
Affiliation(s)
- Martin Östh
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anita Öst
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Preben Kjolhede
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Peter Strålfors
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
25
|
Men X, Dong K. Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation. JOURNAL OF PLANT RESEARCH 2013; 126:823-832. [PMID: 23887833 DOI: 10.1007/s10265-013-0579-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.
Collapse
Affiliation(s)
- Xiao Men
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China,
| | | |
Collapse
|
26
|
Pham DNT, Leclerc D, Lévesque N, Deng L, Rozen R. β,β-carotene 15,15'-monooxygenase and its substrate β-carotene modulate migration and invasion in colorectal carcinoma cells. Am J Clin Nutr 2013; 98:413-22. [PMID: 23803888 DOI: 10.3945/ajcn.113.060996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND β,β-Carotene 15,15'-monooxygenase (BCMO1) converts β-carotene to retinaldehyde. Increased β-carotene consumption is linked to antitumor effects. Retinoic acid reduces the invasiveness in cancer, through inhibition of matrix metalloproteinases (MMPs). In our studies of a mouse model that develops intestinal tumors after low dietary folate, we found reduced BCMO1 expression in normal preneoplastic intestine of folate-deficient tumor-prone mice. OBJECTIVE Our goal was to determine whether BCMO1 expression could influence transformation potential in human colorectal carcinoma cells, by examining the effect of BCMO1 modulation on cellular migration and invasion, and on expression of MMPs. DESIGN LoVo colon carcinoma cells were transfected with BCMO1 small interfering RNA (siRNA) or scrambled siRNA. Migration and invasion were measured, and the expression of BCMO1, MMP7, and MMP28 was assessed by quantitative reverse-transcriptase polymerase chain reaction. These variables were also measured after treatment of cells with retinoic acid, 5-aza-2'-deoxycytidine, folate-depleted/high-methionine medium, and β-carotene. RESULTS Retinoic acid decreased the migration, invasion, and expression of MMP28 mRNA. Transfection of cells with BCMO1 siRNA inhibited BCMO1 expression, enhanced migration and invasion, and increased expression of MMP7 and MMP28. 5-Aza-2'-deoxycytidine decreased, whereas folate-depleted/high-methionine medium increased invasiveness. β-Carotene increased BCMO1 expression and reduced invasiveness with a decrease in expression of MMP7 and MMP28. CONCLUSIONS Inhibition of BCMO1 expression is associated with increased invasiveness of colon cancer cells and increased expression of MMP7 and MMP28. β-Carotene can upregulate BCMO1 and reverse these effects. These novel associations suggest a critical role for BCMO1 in cancer and provide a mechanism for the proposed antitumor effects of β-carotene.
Collapse
Affiliation(s)
- Diep Ngoc Thi Pham
- Departments of Human Genetics and Pediatrics, McGill University, and the Montreal Children's Hospital site of the McGill University Health Centre Research Institute, Montreal, Canada
| | | | | | | | | |
Collapse
|
27
|
Aydemir G, Kasiri Y, Birta E, Béke G, Garcia AL, Bartók EM, Rühl R. Lycopene-derived bioactive retinoic acid receptors/retinoid-X receptors-activating metabolites may be relevant for lycopene's anti-cancer potential. Mol Nutr Food Res 2013; 57:739-47. [PMID: 23378045 DOI: 10.1002/mnfr.201200548] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 11/09/2022]
Abstract
Dietary consumption of tomato products and especially the red tomato pigment lycopene has been associated with lower risk of cancer. New evidence is emerging toward metabolic pathways mediating the anti-cancer activities of lycopene. In this review, we explore associations between tomatoes and lycopene intake and cancer and relate this to the metabolic activation pathways of lycopene via carotene oxygenases and further carotenoid/retinoid-metabolizing enzymes to apo-lycopenoids. Several of these apo-lycopenoids have already been identified but up to date no direct connection between lycopene metabolism and apo-lycopenoids mediated receptor activation pathways has been established. Retinoic acid receptors/retinoid-X receptors activation pathways in particular, may be mediated via lycopene metabolites that are related to retinoic acids. Various studies have shown an association between lower concentration of insulin-like growth factor-1 upon lycopene treatment, cancer incidences, and retinoid-mediated signaling. In this review, we interrelate tomato/lycopene ingestion and cancer incidence, with metabolic activation of lycopene and retinoid-mediated signaling. The aim is to discuss a potential mechanism to explain lycopene related anti-cancer activities by modulation of insulin-like growth factor-1 concentrations via lycopene metabolite activation of retinoid-mediated signaling.
Collapse
Affiliation(s)
- Gamze Aydemir
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
28
|
van Helden YGJ, Godschalk RWL, van Schooten FJ, Keijer J. Organ specificity of beta-carotene induced lung gene-expression changes in Bcmo1-/- mice. Mol Nutr Food Res 2012. [PMID: 23203725 DOI: 10.1002/mnfr.201200277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SCOPE Whole genome transcriptome analysis of male and female beta-carotene 15,15'-monooxygenase knockout (Bcmo1(-/-) ) and Bcmo1(+/+) (wild-type) mice with or without 14 wk of BC supplementation was done. We previously showed that only 1.8% of the genes regulated by BC in lung were also regulated in liver and inguinal white adipose tissue (iWAT), suggesting lung specific responses. Here, we explicitly questioned the lung specificity. METHODS AND RESULTS We show that BC supplementation resulted in an opposite direction of gene-regulation in male compared to female Bcmo1(-/-) mice in lung, liver, and iWAT. This supports a systemic effect of BC on steroid hormone metabolism mediated responses. Lung, liver, and iWAT of female Bcmo1(-/-) mice showed an increased inflammatory response, which was counteracted by supplementation of BC. This supports a genotype dependent increased sensitivity of female mice for vitamin A deficiency. Finally, the effect of BC on Wnt signaling in male Bcmo1(-/-) mice was examined. Frizzled homolog 6 (Fzd6) downregulation was seen in all three tissues. Collagen triple helix containing 1 (Cthrc1) downregulation was seen in lung tissue only, suggesting specificity. Upregulation of genes involved in oxygen sensing was seen in lung and iWAT, while protocadherin upregulation was only seen in lung. CONCLUSION Our results demonstrate that effects of BC are strongly sex dependent. While effects of BC on hormone metabolism mediated responses and inflammation are systemic, effects on Wnt signaling may be lung specific.
Collapse
|
29
|
|
30
|
Lietz G, Oxley A, Boesch-Saadatmandi C, Kobayashi D. Importance of β,β-carotene 15,15'-monooxygenase 1 (BCMO1) and β,β-carotene 9',10'-dioxygenase 2 (BCDO2) in nutrition and health. Mol Nutr Food Res 2011; 56:241-50. [PMID: 22147584 DOI: 10.1002/mnfr.201100387] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/06/2011] [Accepted: 09/27/2011] [Indexed: 11/12/2022]
Abstract
In humans, varying amounts of absorbed β-carotene are oxidatively cleaved by the enzyme β,β-carotene 15,15'-monooxygenase 1 (BCMO1) into two molecules of all-trans-retinal. The other carotenoid cleavage enzyme β,β-carotene 9',10'-dioxygenase (BCDO2) cleaves β-carotene at the 9',10' double bond forming β-apo-10'-carotenal and β-ionone. Although the contribution of BCDO2 to vitamin A formation has long been debated, BCMO1 is currently considered the key enzyme for retinoid metabolism. Furthermore, BCMO1 has limited enzyme activity towards carotenoids other than provitamin A carotenoids, whereas BCDO2 exhibits a broader specificity. Both enzymes are located at different sites within the cell, with BCMO1 being a cytosolic protein and BCDO2 being located in the mitochondria. Expression of BCMO1 in tissues other than the intestine has recently revealed its function for tissue-specific retinoid metabolism with importance in embryogenesis and lipid metabolism. On the other hand, biological activity of BCDO2 metabolites has been shown to be important in protecting against carotenoid-induced mitochondrial dysfunction. Single-nucleotide polymorphisms (SNPs) such as R267S and A379V in BCMO1 can partly explain inter-individual variations observed in carotenoid metabolism. Advancing knowledge about the physiological role of these two enzymes will contribute to understanding the importance of carotenoids in health and disease.
Collapse
Affiliation(s)
- Georg Lietz
- Newcastle University, Human Nutrition Research Centre, Institute for Ageing and Health, School of Agriculture, Food and Rural Development, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
31
|
Sharoni Y, Linnewiel-Hermoni K, Khanin M, Salman H, Veprik A, Danilenko M, Levy J. Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Mol Nutr Food Res 2011; 56:259-69. [PMID: 22102431 DOI: 10.1002/mnfr.201100311] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 01/01/2023]
Abstract
The basis for the vivid color of carotenoids and their antioxidant activity is the multiple conjugated double bonds, which are characteristic for these phytonutrients. Moreover, the cleavage of these oxidation-prone double bonds leads to the formation of apocarotenoids. A large number of carbonyl-containing oxidation products are expected to be produced as a result of carotenoid oxidation and these can be further metabolized into the corresponding acids and alcohols. As discussed in this review, many, but not all, of these potential products have been detected and identified in plants as well as in human and animal plasma and tissues. Some of these compounds were found to be biologically active as anticancer agents. In addition to the inhibition of cancer cell proliferation, several carotenoid metabolites were shown to modulate the activity of various transcription systems. These include ligand-activated nuclear receptors, such as the retinoic acid receptor, retinoid X receptor, peroxisome proliferator-activated receptor and estrogen receptor, as well as other transcription systems that have an important role in cancer, such as the electrophile/antioxidant response element pathway and nuclear factor-κB. Therefore, apocarotenoids can be considered as natural compounds with multifunctional, rather than monofunctional, activity and, thus, can be useful in the prevention of cancer and other degenerative diseases.
Collapse
Affiliation(s)
- Yoav Sharoni
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | | | |
Collapse
|
32
|
Mein JR, Dolnikowski GG, Ernst H, Russell RM, Wang XD. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9',10'-monooxygenase. Arch Biochem Biophys 2011; 506:109-21. [PMID: 21081106 PMCID: PMC3026080 DOI: 10.1016/j.abb.2010.11.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/24/2010] [Accepted: 11/05/2010] [Indexed: 01/10/2023]
Abstract
Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15'-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9',10'-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC-MS and GC-MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10'-carotenal, 3-OH-β-apo-10'-carotenal, and β-apo-10'-carotenal, indicating cleavage at both the 9,10 and 9',10' carbon-carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10'-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD(+), in vitro incubation of 3-OH-β-apo-10'-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10'-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.
Collapse
Affiliation(s)
- Jonathan R. Mein
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Gregory G. Dolnikowski
- Mass Spectrometry Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Hansgeorg Ernst
- Fine Chemicals and Biocatalysis Research, GVF/A-B009, BASF AG D-67056, Ludwigshafen, Germany
| | - Robert M. Russell
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| |
Collapse
|
33
|
von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 2010; 30:35-56. [PMID: 20415581 DOI: 10.1146/annurev-nutr-080508-141027] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health, serving as antioxidants in lipophilic environments and blue light filters in the macula of human retina. These dietary compounds also serve as precursors of a unique set of apo-carotenoid cleavage products, including retinoids. Although knowledge about retinoid biology has tremendously increased, the metabolism of retinoids' parent precursors remains poorly understood. Recently, molecular players in carotenoid metabolism have been identified and biochemically characterized. Moreover, mutations in their corresponding genes impair carotenoid metabolism and induce various pathologies in animal models. Polymorphisms in these genes alter carotenoid and retinoid homeostasis in humans as well. This review summarizes our current knowledge about the molecular/biochemical basis of carotenoid metabolism and particularly the physiological role of carotenoids in retinoid-dependent physiological processes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
34
|
van Helden YGJ, Godschalk RWL, Swarts HJM, Hollman PCH, van Schooten FJ, Keijer J. Beta-carotene affects gene expression in lungs of male and female Bcmo1 (-/-) mice in opposite directions. Cell Mol Life Sci 2010; 68:489-504. [PMID: 20820853 PMCID: PMC3021199 DOI: 10.1007/s00018-010-0461-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/12/2010] [Accepted: 07/07/2010] [Indexed: 01/05/2023]
Abstract
Molecular mechanisms triggered by high dietary beta-carotene (BC) intake in lung are largely unknown. We performed microarray gene expression analysis on lung tissue of BC supplemented beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1−/−) mice, which are—like humans—able to accumulate BC. Our main observation was that the genes were regulated in an opposite direction in male and female Bcmo1−/− mice by BC. The steroid biosynthetic pathway was overrepresented in BC-supplemented male Bcmo1−/− mice. Testosterone levels were higher after BC supplementation only in Bcmo1−/− mice, which had, unlike wild-type (Bcmo1+/+) mice, large variations. We hypothesize that BC possibly affects hormone synthesis or metabolism. Since sex hormones influence lung cancer risk, these data might contribute to an explanation for the previously found increased lung cancer risk after BC supplementation (ATBC and CARET studies). Moreover, effects of BC may depend on the presence of frequent human BCMO1 polymorphisms, since these effects were not found in wild-type mice.
Collapse
Affiliation(s)
- Yvonne G J van Helden
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Kim YS, Oh DK. Biotransformation of carotenoids to retinal by carotenoid 15,15'-oxygenase. Appl Microbiol Biotechnol 2010; 88:807-16. [PMID: 20717662 DOI: 10.1007/s00253-010-2823-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 12/01/2022]
Abstract
Retinal, a precursor of vitamin A, has been used in foods, cosmetics, pharmaceuticals, nutraceuticals, and animal feed additives. Carotenoid 15,15'-oxygenases, including β-carotene 15,15'-oxygenases from mammalians, chickens, fruit flies, zebrafishes, the uncultured marine bacterium, and the fungus Fusarium fujikuroi, and apo-carotenoid 15,15'-oxygenases from cyanobacteria produce retinal from carotenoids. In this article, the biochemical properties, reaction mechanism, and substrate specificity of carotenoid oxygenases are reviewed, along with a description of the enzymatic biotransformation of carotenoids to retinal. Retinal producing methods using metabolically engineered cells and uncharacterized proteins are suggested.
Collapse
Affiliation(s)
- Yeong-Su Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
36
|
van Helden YGJ, Godschalk RW, Heil SG, Bunschoten A, Hessel S, Amengual J, Bonet ML, von Lintig J, van Schooten FJ, Keijer J. Downregulation of Fzd6 and Cthrc1 and upregulation of olfactory receptors and protocadherins by dietary beta-carotene in lungs of Bcmo1-/- mice. Carcinogenesis 2010; 31:1329-37. [PMID: 20472610 DOI: 10.1093/carcin/bgq083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An ongoing controversy exists on beneficial versus harmful effects of high beta-carotene (BC) intake, especially for the lung. To elucidate potential mechanisms, we studied effects of BC on lung gene expression. We used a beta-carotene 15,15'-monooxygenase 1 (Bcmo1) knockout mouse (Bcmo1(-/-)) model, unable to convert BC to retinoids, and wild-type mice (Bcmo1(+/+)) mice to dissect the effects of intact BC from effects of BC metabolites. As expected, BC supplementation resulted in a higher BC accumulation in lungs of Bcmo1(-/-) mice than in lungs of Bcmo1(+/+) mice. Whole mouse genome transcriptome analysis on lung tissue revealed that more genes were regulated in Bcmo1(-/-) mice than Bcmo1(+/+) mice upon BC supplementation. Frizzled homolog 6 (Fzd6) and collagen triple helix repeat containing 1 (Cthrc1) were significantly downregulated (fold changes -2.99 and -2.60, respectively, false discovery rate < 0.05) by BC in Bcmo1(-/-). Moreover, many olfactory receptors and many members of the protocadherin family were upregulated. Since both olfactory receptors and protocadherins have an important function in sensory nerves and Fzd6 and Cthrc1 are important in stem cell development, we hypothesize that BC might have an effect on the highly innervated pulmonary neuroendocrine cell (PNEC) cluster. PNECs are highly associated with sensory nerves and are important cells in the control of stem cells. A role for BC in the innervated PNEC cluster might be of particular importance in smoke-induced carcinogenesis since PNEC-derived lung cancer is highly associated with tobacco smoke.
Collapse
|
37
|
Voolstra O, Oberhauser V, Sumser E, Meyer NE, Maguire ME, Huber A, von Lintig J. NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. J Biol Chem 2009; 285:2130-9. [PMID: 19889630 DOI: 10.1074/jbc.m109.056101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In animals, visual pigments are essential for photoreceptor function and survival. These G-protein-coupled receptors consist of a protein moiety (opsin) and a covalently bound 11-cis-retinylidene chromophore. The chromophore is derived from dietary carotenoids by oxidative cleavage and trans-to-cis isomerization of double bonds. In vertebrates, the necessary chemical transformations are catalyzed by two distinct but structurally related enzymes, the carotenoid oxygenase beta-carotenoid-15,15'-monooxygenase and the retinoid isomerase RPE65 (retinal pigment epithelium protein of 65 kDa). Recently, we provided biochemical evidence that these reactions in insects are catalyzed by a single enzyme family member named NinaB. Here we show that in the fly pathway, carotenoids are mandatory precursors of the chromophore. After chromophore formation, the retinoid-binding protein Pinta acts downstream of NinaB and is required to supply photoreceptors with chromophore. Like ninaE encoding the opsin, ninaB expression is eye-dependent and is activated as a downstream target of the eyeless/pax6 and sine oculis master control genes for eye development. The requirement for coordinated synthesis of chromophore and opsin is evidenced by analysis of ninaE mutants. Retinal degeneration in opsin-deficient photoreceptors is caused by the chromophore and can be prevented by restricting its supply as seen in an opsin and chromophore-deficient double mutant. Thus, our study identifies NinaB as a key component for visual pigment production and provides evidence that chromophore in opsin-deficient photoreceptors can elicit retinal degeneration.
Collapse
Affiliation(s)
- Olaf Voolstra
- Institut für Biologie I, Neurobiologie und Tiephysiologie, Albert-Ludwigs Universität, D-79102 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim YS, Kim NH, Yeom SJ, Kim SW, Oh DK. In vitro characterization of a recombinant Blh protein from an uncultured marine bacterium as a beta-carotene 15,15'-dioxygenase. J Biol Chem 2009; 284:15781-93. [PMID: 19366683 PMCID: PMC2708875 DOI: 10.1074/jbc.m109.002618] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/13/2009] [Indexed: 11/06/2022] Open
Abstract
Codon optimization was used to synthesize the blh gene from the uncultured marine bacterium 66A03 for expression in Escherichia coli. The expressed enzyme cleaved beta-carotene at its central double bond (15,15') to yield two molecules of all-trans-retinal. The molecular mass of the native purified enzyme was approximately 64 kDa as a dimer of 32-kDa subunits. The K(m), k(cat), and k(cat)/K(m) values for beta-carotene as substrate were 37 mum, 3.6 min(-1), and 97 mm(-1) min(-1), respectively. The enzyme exhibited the highest activity for beta-carotene, followed by beta-cryptoxanthin, beta-apo-4'-carotenal, alpha-carotene, and gamma-carotene in decreasing order, but not for beta-apo-8'-carotenal, beta-apo-12'-carotenal, lutein, zeaxanthin, or lycopene, suggesting that the presence of one unsubstituted beta-ionone ring in a substrate with a molecular weight greater than C(35) seems to be essential for enzyme activity. The oxygen atom of retinal originated not from water but from molecular oxygen, suggesting that the enzyme was a beta-carotene 15,15'-dioxygenase. Although the Blh protein and beta-carotene 15,15'-monooxygenases catalyzed the same biochemical reaction, the Blh protein was unrelated to the mammalian beta-carotene 15,15'-monooxygenases as assessed by their different properties, including DNA and amino acid sequences, molecular weight, form of association, reaction mechanism, kinetic properties, and substrate specificity. This is the first report of in vitro characterization of a bacterial beta-carotene-cleaving enzyme.
Collapse
Affiliation(s)
- Yeong-Su Kim
- From the Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701 and the
| | - Nam-Hee Kim
- From the Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701 and the
| | - Soo-Jin Yeom
- From the Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701 and the
| | - Seon-Won Kim
- Division of Applied Life Science (BK21), Environmental Biotechnology National Core Research Center and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Deok-Kun Oh
- From the Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701 and the
| |
Collapse
|
39
|
Bereta G, Kiser PD, Golczak M, Sun W, Heon E, Saperstein DA, Palczewski K. Impact of retinal disease-associated RPE65 mutations on retinoid isomerization. Biochemistry 2008; 47:9856-65. [PMID: 18722466 DOI: 10.1021/bi800905v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pathogenic mutations in the RPE65 gene are associated with a spectrum of congenital blinding diseases in humans. We evaluated changes in the promoter region, coding regions, and exon/intron junctions of the RPE65 gene by direct sequencing of DNA from 36 patients affected with Leber's congenital amaurosis (LCA), 62 with autosomal recessive retinitis pigmentosa (arRP), and 21 with autosomal dominant/recessive cone-rod dystrophies (CORD). Fifteen different variants were found, of which 6 were novel. Interesting was Gly244Val, a novel mutation close to the catalytic center. To assess the role of this mutation in RPE65 inactivation, we performed detailed biochemical studies of the mutant along with a structural analysis of the 244 amino acid position with respect to amino acids known to be important for RPE65-dependent retinoid isomerization. Bicistronic plasmid expression of the RPE65 Gly244Val mutant and enhanced green fluorescent protein (EGFP) allowed us to document both its instability in cultured cells by cell sorting and immunoblotting methodology and its loss of RPE65-dependent isomerase activity by enzymatic assays. Further insights into the structural requirements for retinoid isomerization by RPE65 were obtained by using the carotenoid oxygenase (ACO) from Synechocystis (PDB accession code 2BIW ) as a structural template to construct a RPE65 homology model and locating all known inactivating mutations including Gly244Val within this model.
Collapse
Affiliation(s)
- Grzegorz Bereta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Marasco EK, Schmidt-Dannert C. Identification of bacterial carotenoid cleavage dioxygenase homologues that cleave the interphenyl alpha,beta double bond of stilbene derivatives via a monooxygenase reaction. Chembiochem 2008; 9:1450-61. [PMID: 18478524 PMCID: PMC3988535 DOI: 10.1002/cbic.200700724] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Indexed: 11/11/2022]
Abstract
Carotenoid cleavage oxygenases (CCOs), which are also referred to as carotenoid cleavage dioxygenases (CCDs) are a new class of nonheme iron-type enzymes that oxidatively cleave double bonds in the conjugated carbon chain of carotenoids. The oxidative cleavage mechanism of these enzymes is not clear, and both monooxygenase and dioxygenase mechanisms have been proposed for different carotenoid cleavage enzymes. CCOs have been described from plants, animals, fungi, and cyanobacteria, but little is known about their distribution and activities in bacteria other than cyanobacteria. We surveyed bacterial genome sequences for CCO homologues and report the characterization of CCO homologues that were identified in Novosphingobium aromaticivorans DSM 12444 (NOV1 and NOV2) and in Bradyrhizobium sp. (BRA-J and BRA-S). In vitro and in vivo assays with carotenoid and stilbene compounds were used to investigate the cleavage activities of the recombinant enzymes. The NOV enzymes cleaved the interphenyl alpha-beta double bond of stilbenes that had an oxygen functional group at the 4' carbon atom (e.g., resveratrol, piceatannol, and rhaponticin) to the corresponding aldehyde products. Carotenoids and apocarotenoids were not substrates for these enzymes. The two homologous enzymes from Bradyrhizobium sp. did not possess carotenoid or stilbene cleavage oxygenase activities, but showed activity with farnesol. To investigate whether the oxidative cleavage of stilbenes proceeds via a monooxygenase or dioxygenase reaction, oxygen-labeling studies were conducted with NOV2. Our labeling studies show that the double-bond cleavage of stilbenes occurs via a monooxygenase reaction mechanism.
Collapse
Affiliation(s)
- Erin K. Marasco
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota 1479 Gortner Avenue, St.Paul, MN 55108
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota 1479 Gortner Avenue, St.Paul, MN 55108
| |
Collapse
|
41
|
A new isopentenyl diphosphate isomerase gene from sweet potato: cloning, characterization and color complementation. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0038-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S, Hoeller U, Elste V, Hunziker W, Goralczyk R, Oberhauser V, von Lintig J, Wyss A. CMO1 deficiency abolishes vitamin A production from beta-carotene and alters lipid metabolism in mice. J Biol Chem 2007; 282:33553-33561. [PMID: 17855355 DOI: 10.1074/jbc.m706763200] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carotenoids are currently investigated regarding their potential to lower the risk of chronic disease and to combat vitamin A deficiency in humans. These plant-derived compounds must be cleaved and metabolically converted by intrinsic carotenoid oxygenases to support the panoply of vitamin A-dependent physiological processes. Two different carotenoid-cleaving enzymes were identified in mammals, the classical carotenoid-15,15'-oxygenase (CMO1) and a putative carotenoid-9',10'-oxygenase (CMO2). To analyze the role of CMO1 in mammalian physiology, here we disrupted the corresponding gene by targeted homologous recombination in mice. On a diet providing beta-carotene as major vitamin A precursor, vitamin A levels fell dramatically in several tissues examined. Instead, this mouse mutant accumulated the provitamin in large quantities (e.g. as seen by an orange coloring of adipose tissues). Besides impairments in beta-carotene metabolism, CMO1 deficiency more generally interfered with lipid homeostasis. Even on a vitamin A-sufficient chow, CMO1(-/-) mice developed a fatty liver and displayed altered serum lipid levels with elevated serum unesterified fatty acids. Additionally, this mouse mutant was more susceptible to high fat diet-induced impairments in fatty acid metabolism. Quantitative reverse transcription-PCR analysis revealed that the expression of peroxisome proliferator-activated receptor gamma-regulated marker genes related to adipogenesis was elevated in visceral adipose tissues. Thus, our study identifies CMO1 as the key enzyme for vitamin A production and provides evidence for a role of carotenoids as more general regulators of lipid metabolism.
Collapse
Affiliation(s)
- Susanne Hessel
- Institute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Anne Eichinger
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 3255, CH-4002 Basel, Switzerland
| | - Andrea Isken
- Institute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Jaume Amengual
- Institute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Silke Hunzelmann
- Institute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Ulrich Hoeller
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 3255, CH-4002 Basel, Switzerland
| | - Volker Elste
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 3255, CH-4002 Basel, Switzerland
| | - Willi Hunziker
- Frimorfo SA, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Regina Goralczyk
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 3255, CH-4002 Basel, Switzerland
| | - Vitus Oberhauser
- Institute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Johannes von Lintig
- Institute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | - Adrian Wyss
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 3255, CH-4002 Basel, Switzerland.
| |
Collapse
|
43
|
Kim YS, Kim NH, Kim HJ, Lee JK, Kim SW, Oh DK. Effective production of retinal from β-carotene using recombinant mouse β-carotene 15,15′-monooxygenase. Appl Microbiol Biotechnol 2007; 76:1339-45. [PMID: 17687551 DOI: 10.1007/s00253-007-1118-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/07/2007] [Accepted: 07/09/2007] [Indexed: 11/26/2022]
Abstract
The gene encoding beta-carotene 15,15'-monooxygenase from Mus musculus (house mouse), which cleaves beta-carotene into two molecules of retinal, was cloned and expressed in Escherichia coli. The expressed enzyme was purified by His-tag affinity and resource Q ion exchange chromatography columns to a final specific activity of 0.51 U mg(-1). The optimum pH, temperature, substrate and detergent concentrations, and enzyme amount for effective retinal production were determined to be 9.0, 37 degrees C, 200 mg l(-1) beta-carotene, 5% (w/v) Tween 40, and 0.2 U ml(-1) enzyme, respectively. Under optimum conditions, the recombinant enzyme produced 72 mg l(-1) retinal in a 15-h reaction time, with a conversion yield of 36% (w/w). The specific activity of the purified enzyme and retinal production obtained in the present study were the highest results ever reported.
Collapse
Affiliation(s)
- Yeong-Su Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, South Korea
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Carotenoids and retinoids are groups of nutritionally-relevant compounds present in many foods of plant origin (carotenoids) and animal origin (mainly retinoids). Their levels in human subjects vary depending on the diversity and amount of the individual's nutrient intake. Some carotenoids and retinoids have been investigated for their effects on the immune system bothin vitroandin vivo. It has been shown that retinoids have the potential to mediate or induce proliferative and differentiating effects on several immune-competent cells, and various carotenoids are known to be inducers of immune function. The immune-modulating effects of retinoids have been well documented, while the effects of carotenoids on the immune system have not been investigated as extensively, because little is known about their molecular mechanism of action. The present review will mainly focus on the molecular mechanism of action of retinoids and particularly carotenoids, their nutritional origin and intake, their transfer from the maternal diet to the child and their effects or potential effects on the developing immune system.
Collapse
Affiliation(s)
- Ralph Rühl
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei Krt. 98, H-4012 Debrecen, Hungary.
| |
Collapse
|
45
|
Saelices L, Youssar L, Holdermann I, Al-Babili S, Avalos J. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics 2007; 278:527-37. [PMID: 17610084 DOI: 10.1007/s00438-007-0269-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/14/2007] [Indexed: 11/29/2022]
Abstract
Torulene, a C(40) carotene, is the precursor of the end product of the Neurospora carotenoid pathway, the C(35) xanthophyll neurosporaxanthin. Torulene is synthesized by the enzymes AL-2 and AL-1 from the precursor geranylgeranyl diphosphate and then cleaved by an unknown enzyme into the C(35) apocarotenoid. In general, carotenoid cleavage reactions are catalyzed by carotenoid oxygenases. Using protein data bases, we identified two putative carotenoid oxygenases in Neurospora, named here CAO-1 and CAO-2. A search for novel mutants of the carotenoid pathway in this fungus allowed the identification of two torulene-accumulating strains, lacking neurosporaxanthin. Sequencing of the cao-2 gene in these strains revealed severe mutations, pointing to a role of CAO-2 in torulene cleavage. This was further supported by the identical phenotype found upon targeted disruption of cao-2. The biological function was confirmed by in vitro assays using the purified enzyme, which cleaved torulene to produce beta-apo-4'-carotenal, the corresponding aldehyde of neurosporaxanthin. The specificity of CAO-2 was shown by the lack of gamma-carotene-cleaving activity in vitro. As predicted for a structural gene of the carotenoid pathway, cao-2 mRNA was induced by light in a WC-1 and WC-2 dependent manner. Our data demonstrate that CAO-2 is the enzyme responsible for the oxidative cleavage of torulene in the neurosporaxanthin biosynthetic pathway.
Collapse
Affiliation(s)
- Lorena Saelices
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | | | | | | | | |
Collapse
|
46
|
Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 2007; 13:695-702. [PMID: 17529981 PMCID: PMC2233696 DOI: 10.1038/nm1587] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 04/10/2007] [Indexed: 02/07/2023]
Abstract
The metabolism of vitamin A and the diverse effects of its metabolites are tightly controlled by distinct retinoid-generating enzymes, retinoid-binding proteins and retinoid-activated nuclear receptors. Retinoic acid regulates differentiation and metabolism by activating the retinoic acid receptor and retinoid X receptor (RXR), indirectly influencing RXR heterodimeric partners. Retinoic acid is formed solely from retinaldehyde (Rald), which in turn is derived from vitamin A. Rald currently has no defined biologic role outside the eye. Here we show that Rald is present in rodent fat, binds retinol-binding proteins (CRBP1, RBP4), inhibits adipogenesis and suppresses peroxisome proliferator-activated receptor-gamma and RXR responses. In vivo, mice lacking the Rald-catabolizing enzyme retinaldehyde dehydrogenase 1 (Raldh1) resisted diet-induced obesity and insulin resistance and showed increased energy dissipation. In ob/ob mice, administrating Rald or a Raldh inhibitor reduced fat and increased insulin sensitivity. These results identify Rald as a distinct transcriptional regulator of the metabolic responses to a high-fat diet.
Collapse
Affiliation(s)
- Ouliana Ziouzenkova
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Du K, Liu GF, Xie JP, Song XH, Li R, Liang B, Huang DY. A 27.368 kDa retinal reductase in New Zealand white rabbit liver cytosol encoded by the peroxisomal retinol dehydrogenase-reductase cDNA: purification and characterization of the enzyme. Biochem Cell Biol 2007; 85:209-17. [PMID: 17534402 DOI: 10.1139/o06-183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We obtained a full-length cDNA based on a sequence deposited in GenBank (accession No. AB045133), annotated as rabbit peroxisomal NADP(H)-dependent retinol dehydrogenase-reductase (NDRD). The rabbit NDRD gene, like its mouse and human homologs, harbors 2 initiation sites, one of which theoretically encodes a 29.6 kDa protein with 279 amino acids, and the other encodes a 27.4 kDa protein with 260 amino acids. The purification of a rabbit cytosolic retinol oxidoreductase with a subunit molecular mass of 34 kDa and an N terminus that is not completely identical to that of NDRD, has been reported. An enzyme responsible for the all-trans retinal reductase activity in the liver cytosol of New Zealand white rabbit was purified to homogeneity using differential centrifugation and successive chromatographic analyses. The subunit molecular mass of the purified enzyme, revealed by SDS-PAGE, was approximately 27 kDa. The intact molecular mass, measured by MALDI-TOF mass spectrometry, was 27.368 kDa. The 60 kDa relative mobility observed in size-exclusion chromatography indicates that the native protein probably exists as a dimer. The purified enzyme was positively confirmed to be the product of NDRD by peptide mass fingerprinting, tandem mass spectrometry, and N-terminal sequencing. Taken together, the results suggested that the native protein is truncated at the N terminus.
Collapse
Affiliation(s)
- Kun Du
- Center for Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Gallego O, Belyaeva O, Porté S, Ruiz F, Stetsenko A, Shabrova E, Kostereva N, Farrés J, Parés X, Kedishvili N. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids. Biochem J 2006; 399:101-9. [PMID: 16787387 PMCID: PMC1570161 DOI: 10.1042/bj20051988] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.
Collapse
Affiliation(s)
- Oriol Gallego
- *Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Olga V. Belyaeva
- †Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A
| | - Sergio Porté
- *Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - F. Xavier Ruiz
- *Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Anton V. Stetsenko
- †Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A
| | - Elena V. Shabrova
- †Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A
| | - Natalia V. Kostereva
- †Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A
| | - Jaume Farrés
- *Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Xavier Parés
- *Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Natalia Y. Kedishvili
- †Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Identification of Carotenoid Cleavage Dioxygenases from Nostoc sp. PCC 7120 with Different Cleavage Activities. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84072-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Ziouzenkova O, Orasanu G, Sukhova G, Lau E, Berger JP, Tang G, Krinsky NI, Dolnikowski GG, Plutzky J. Asymmetric cleavage of beta-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol 2006; 21:77-88. [PMID: 17008383 DOI: 10.1210/me.2006-0225] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
beta-Carotene and its metabolites exert a broad range of effects, in part by regulating transcriptional responses through specific nuclear receptor activation. Symmetric cleavage of beta-carotene can yield 9-cis retinoic acid (9-cisRA), the natural ligand for the nuclear receptor RXR, the obligate heterodimeric partner for numerous nuclear receptor family members. A significant portion of beta-carotene can also undergo asymmetric cleavage to yield apocarotenals, a series of poorly understood naturally occurring molecules whose biologic role, including their transcriptional effects, remains essentially unknown. We show here that beta-apo-14'-carotenal (apo14), but not other structurally related apocarotenals, represses peroxisome proliferator-activated receptors (PPAR) and RXR activation and biologic responses induced by their respective agonists both in vitro and in vivo. During adipocyte differentiation, apo14 inhibited PPARgamma target gene expression and adipogenesis, even in the presence of the potent PPARgamma agonist BRL49653. Apo14 also suppressed known PPARalpha responses, including target gene expression and its known antiinflammatory effects, but not if PPARalpha agonist stimulation occurred before apo14 exposure and not in PPARalpha-deficient cells or mice. Other apocarotenals tested had none of these effects. These data extend current views of beta-carotene metabolism to include specific apocarotenals as possible biologically active mediators and identify apo14 as a possible template for designing PPAR and RXR modulators and better understanding modulation of nuclear receptor activation. These results also suggest a novel model of molecular endocrinology in which metabolism of a parent compound, beta-carotene, may alternatively activate (9-cisRA) or inhibit (apo14) specific nuclear receptor responses.
Collapse
Affiliation(s)
- Ouliana Ziouzenkova
- Cardiovascular Division, Brigham and Women's Hospital, Havard University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|