1
|
Evans EF, Chen G, Pavlinov I, Huang X, Linask K, Liu C, Lopez AR, Gilbert MA, Spinner NB, Rodemse S, Baumgärtele K, Chen CZ, Zou J, Zheng W. Generation of induced pluripotent stem cell lines TRNDi037-A and TRNDi038-A from two patients with Alagille syndrome carrying heterozygous JAG1 mutations. Stem Cell Res 2025; 82:103634. [PMID: 39719802 DOI: 10.1016/j.scr.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC) lines TRNDi037-A and TRNDi038-A were generated from the lymphoblastoid cell lines (LCL) of two patients with different heterozygous JAG1 variants resulting in Alagille syndrome (ALGS). ALGS is a rare genetic disease of haploinsufficiency that affects the formation of the bile duct, in addition to other symptoms. These ALGS iPSC lines can be used to model ALGS and aid in the identification of therapeutics to treat patients with ALGS.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Xiuli Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kaari Linask
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Rodriguez Lopez
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven Rodemse
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Karsten Baumgärtele
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Xiong F, Zhang Y, Li T, Tang Y, Song SY, Zhou Q, Wang Y. A detailed overview of quercetin: implications for cell death and liver fibrosis mechanisms. Front Pharmacol 2024; 15:1389179. [PMID: 38855739 PMCID: PMC11157233 DOI: 10.3389/fphar.2024.1389179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Background Quercetin, a widespread polyphenolic flavonoid, is known for its extensive health benefits and is commonly found in the plant kingdom. The natural occurrence and extraction methods of quercetin are crucial due to its bioactive potential. Purpose This review aims to comprehensively cover the natural sources of quercetin, its extraction methods, bioavailability, pharmacokinetics, and its role in various cell death pathways and liver fibrosis. Methods A comprehensive literature search was performed across several electronic databases, including PubMed, Embase, CNKI, Wanfang database, and ClinicalTrials.gov, up to 10 February 2024. The search terms employed were "quercetin", "natural sources of quercetin", "quercetin extraction methods", "bioavailability of quercetin", "pharmacokinetics of quercetin", "cell death pathways", "apoptosis", "autophagy", "pyroptosis", "necroptosis", "ferroptosis", "cuproptosis", "liver fibrosis", and "hepatic stellate cells". These keywords were interconnected using AND/OR as necessary. The search focused on studies that detailed the bioavailability and pharmacokinetics of quercetin, its role in different cell death pathways, and its effects on liver fibrosis. Results This review details quercetin's involvement in various cell death pathways, including apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis, with particular attention to its regulatory influence on apoptosis and autophagy. It dissects the mechanisms through which quercetin affects these pathways across different cell types and dosages. Moreover, the paper delves into quercetin's effects on liver fibrosis, its interactions with hepatic stellate cells, and its modulation of pertinent signaling cascades. Additionally, it articulates from a physical organic chemistry standpoint the uniqueness of quercetin's structure and its potential for specific actions in the liver. Conclusion The paper provides a detailed analysis of quercetin, suggesting its significant role in modulating cell death mechanisms and mitigating liver fibrosis, underscoring its therapeutic potential.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Gastroenterology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yichen Zhang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Yiping Tang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
4
|
Vargas‐Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022; 66:530-544. [PMID: 35968817 PMCID: PMC9804383 DOI: 10.1002/mus.27684] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.
Collapse
Affiliation(s)
| | - Raghav Kalra
- Division of Pediatric NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Isabelle Draper
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusetts
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Atsushi Asakura
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| |
Collapse
|
5
|
Xu D, Qu X, Tian Y, Jie Z, Xi Z, Xue F, Ma X, Zhu J, Xia Q. Macrophage Notch1 inhibits TAK1 function and RIPK3-mediated hepatocyte necroptosis through activation of β-catenin signaling in liver ischemia and reperfusion injury. Cell Commun Signal 2022; 20:144. [PMID: 36114543 PMCID: PMC9479434 DOI: 10.1186/s12964-022-00901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Notch signaling is highly conserved and critically involved in cell differentiation, immunity, and survival. Activation of the Notch pathway modulates immune cell functions during the inflammatory response. However, it remains unknown whether and how the macrophage Notch1 may control the innate immune signaling TAK1, and RIPK3-mediated hepatocyte necroptosis in liver ischemia and reperfusion injury (IRI). This study investigated the molecular mechanisms of macrophage Notch1 in modulating TAK1-mediated innate immune responses and RIPK3 functions in liver IRI. Methods Myeloid-specific Notch1 knockout (Notch1M−KO) and floxed Notch1 (Notch1FL/FL) mice (n = 6/group) were subjected to 90 min partial liver warm ischemia followed by 6 h of reperfusion. In a parallel in vitro study, bone marrow-derived macrophages (BMMs) were isolated from these conditional knockout mice and transfected with CRISPR/Cas9-mediated β-catenin knockout (KO) vector followed by LPS (100 ng/ml) stimulation. Results IR stress-induced Notch1 activation evidenced by increased nuclear Notch intracellular domain (NICD) expression in liver macrophages. Myeloid Notch1 deficiency exacerbated IR-induced liver damage, with increased serum ALT levels, macrophage/neutrophil accumulation, and proinflammatory cytokines/chemokines production compared to the Notch1FL/FL controls. Unlike in the Notch1FL/FL controls, Notch1M−KO enhanced TRAF6, TAK1, NF-κB, RIPK3, and MLKL but reduced β-catenin activation in ischemic livers. However, adoptive transfer of lentivirus β-catenin-modified macrophages markedly improved liver function with reduced TRAF6, p-TAK1, RIPK3 and p-MLKL in IR-challenged livers. Moreover, disruption of RIPK3 in Notch1M−KO mice with an in vivo mannose-mediated RIPK3 siRNA delivery system diminished IR-triggered hepatocyte death. In vitro studies showed that macrophage NICD and β-catenin co-localized in the nucleus, whereby β-catenin interacted with NICD in response to LPS stimulation. Disruption of β-catenin with a CRISPR/Cas9-mediated β-catenin KO in Notch1FL/FL macrophage augmented TRAF6 activation leading to enhanced TAK1 function. While CRISPR/Cas9-mediated TRAF6 KO in Notch1M−KO macrophage inhibited RIPK3-mediated hepatocyte necroptosis after co-culture with primary hepatocytes. Conclusions Macrophage Notch1 controls TAK1-mediated innate immune responses and RIPK3-mediated hepatocyte necroptosis through activation of β-catenin. β-catenin is required for the macrophage Notch1-mediated immune regulation in liver IRI. Our findings demonstrate that the macrophage Notch1-β-catenin axis is a crucial regulatory mechanism in IR-triggered liver inflammation and provide novel therapeutic potential in organ IRI and transplant recipients. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00901-8.
Collapse
|
6
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
7
|
Su CJ, Murugan A, Linton JM, Yeluri A, Bois J, Klumpe H, Langley MA, Antebi YE, Elowitz MB. Ligand-receptor promiscuity enables cellular addressing. Cell Syst 2022; 13:408-425.e12. [PMID: 35421362 PMCID: PMC10897978 DOI: 10.1016/j.cels.2022.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor systems allow a small number of ligands, acting in combinations, to address a larger number of individual cell types, defined by their receptor expression profiles. Promiscuous systems outperform seemingly more specific one-to-one signaling architectures in addressing capability. Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, grows more powerful with increases in the number of receptor variants, and is maximized by specific biochemical parameter relationships. Together, these results identify design principles governing cellular addressing by ligand combinations.
Collapse
Affiliation(s)
- Christina J Su
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Akshay Yeluri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Justin Bois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heidi Klumpe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew A Langley
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Shah V, Patel S, Shah J. Emerging Role of Piezo Ion Channels in Cardiovascular Development. Dev Dyn 2021; 251:276-286. [PMID: 34255896 DOI: 10.1002/dvdy.401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/12/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Mechanical cues are crucial for vascular development and the proper differentiation of various cell types. Piezo1 and Piezo2 are mechanically activated cationic channels expressed in various cell types, especially in vascular smooth muscle and endothelial cells. It is present as a transmembrane homotrimeric complex, regulating calcium influx. Local blood flow associated shear stress, in addition to blood pressure associated cell membrane stretching are key Piezo channel activators. There is rising proof, showcasing Piezo channels significance in myocytes, cardiac fibroblast, vascular tone maintenance, atherosclerosis, hypertension, NO generation, and baroreceptor reflex. Here, we review the role of Piezo channels in cardiovascular development and its associated clinical disorders. Also, emphasizing on Piezo channel modulators which might lead to novel therapies for cardiovascular diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
9
|
Kamalakar A, McKinney JM, Salinas Duron D, Amanso AM, Ballestas SA, Drissi H, Willett NJ, Bhattaram P, García AJ, Wood LB, Goudy SL. JAGGED1 stimulates cranial neural crest cell osteoblast commitment pathways and bone regeneration independent of canonical NOTCH signaling. Bone 2021; 143:115657. [PMID: 32980561 PMCID: PMC9035226 DOI: 10.1016/j.bone.2020.115657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Craniofacial bone loss is a complex clinical problem with limited regenerative solutions. Currently, BMP2 is used as a bone-regenerative therapy in adults, but in pediatric cases of bone loss, it is not FDA-approved due to concerns of life-threatening inflammation and cancer. Development of a bone-regenerative therapy for children will transform our ability to reduce the morbidity associated with current autologous bone grafting techniques. We discovered that JAGGED1 (JAG1) induces cranial neural crest (CNC) cell osteoblast commitment during craniofacial intramembranous ossification, suggesting that exogenous JAG1 delivery is a potential craniofacial bone-regenerative approach. In this study, we found that JAG1 delivery using synthetic hydrogels containing O9-1 cells, a CNC cell line, into critical-sized calvarial defects in C57BL/6 mice provided robust bone-regeneration. Since JAG1 signals through canonical (Hes1/Hey1) and non-canonical (JAK2) NOTCH pathways in CNC cells, we used RNAseq to analyze transcriptional pathways activated in CNC cells treated with JAG1 ± DAPT, a NOTCH-canonical pathway inhibitor. JAG1 upregulated expression of multiple NOTCH canonical pathway genes (Hes1), which were downregulated in the presence of DAPT. JAG1 also induced bone chemokines (Cxcl1), regulators of cytoskeletal organization and cell migration (Rhou), signaling targets (STAT5), promoters of early osteoblast cell proliferation (Prl2c2, Smurf1 and Esrra), and, inhibitors of osteoclasts (Id1). In the presence of DAPT, expression levels of Hes1 and Cxcl1 were decreased, whereas, Prl2c2, Smurf1, Esrra, Rhou and Id1 remain elevated, suggesting that JAG1 induces osteoblast proliferation through these non-canonical genes. Pathway analysis of JAG1 + DAPT-treated CNC cells revealed significant upregulation of multiple non-canonical pathways, including the cell cycle, tubulin pathway, regulators of Runx2 initiation and phosphorylation of STAT5 pathway. In total, our data show that JAG1 upregulates multiple pathways involved in osteogenesis, independent of the NOTCH canonical pathway. Moreover, our findings suggest that JAG1 delivery using a synthetic hydrogel, is a bone-regenerative approach with powerful translational potential.
Collapse
Affiliation(s)
| | - Jay M McKinney
- Wallace H. Coulter Department of Biomedical Engineering, USA; George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | | | | | | | - Hicham Drissi
- Department of Cell Biology, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | - Pallavi Bhattaram
- Department of Cell Biology, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA.
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, USA; George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Steven L Goudy
- Department of Otolaryngology, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
10
|
Han G, Bai X, Jiang H, He Q. MicroRNA-598 inhibits the growth of triple negative breast cancer cells by targeting JAG1. Exp Ther Med 2021; 21:235. [PMID: 33603843 PMCID: PMC7851626 DOI: 10.3892/etm.2021.9666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/13/2020] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has an aggressive phenotype and a poor outcome. The discovery that dysregulated microRNAs (miRNAs) play an important role in tumor progression has led to the suggestion that miRNAs (miRs) could be a potential target for the treatment of TNBC. In the present study, it was demonstrated that miR-598 expression was significantly decreased in TNBC tissues and was related to the degree of lymph node metastasis of patients with TNBC. Ectopic expression of miR-598 suppressed viability and colony formation, as well as increased the apoptosis of TNBC cells. To further understand the functional mechanism of action underlying miR-598 in TNBC, targets of miR-598 were predicted with the miRDB bioinformatics tool. Jagged 1 (JAG1) was identified as a direct target of miR-598, possessing a binding site for miR-598 in its 3'-untranslated region. Overexpression of miR-598 inhibited the expression of JAG1 in TNBC cells. In addition, JAG1 was highly expressed in TNBC tissues and its expression was negatively correlated with the expression of miR-598. Overexpression of JAG1 significantly attenuated the inhibitory effects of miR-598 on the proliferation and colony formation of TNBC cells. Collectively, these results provided novel insights into the functional mechanism of action for the miR-598/JAG1 pathway in the development of TNBC.
Collapse
Affiliation(s)
- Guohui Han
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Xiangdong Bai
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Hongchuan Jiang
- Department of Breast Surgery, Beijing Chaoyang Hospital, The Affiliated Hospital of Capital Medical University, Beijing 100020, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, The Affiliated Hospital of Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
11
|
Chen Y, Wu Q, Lin J, Wei J. DARS-AS1 accelerates the proliferation of cervical cancer cells via miR-628-5p/JAG1 axis to activate Notch pathway. Cancer Cell Int 2020; 20:535. [PMID: 33292218 PMCID: PMC7640441 DOI: 10.1186/s12935-020-01592-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Growing evidence has indicated the vital parts of long non-coding RNAs (lncRNAs) in modulating the progression of assorted human cancers, including cervical cancer (CC). Nevertheless, the role and mechanism of aspartyl-tRNA synthetase antisense RNA 1 (DARS-AS1) have been not comprehensively illustrated in CC yet. Methods Real-time quantitative polymerase chain reaction (RT-qPCR) was exploited for assessing RNA expression while western blot for protein expression in CC cells. The cell counting kit-8 (CCK-8), colony formation and TdT-mediated dUTP Nick-End Labeling (TUNEL) assays, as well as flow cytometry analysis, were employed to evaluate the modulation of DARS-AS1 on the proliferation and apoptosis of CC cells. In addition, RNA immunoprecipitation (RIP), RNA pull down assay and luciferase reporter assay confirmed the interactivity among DARS-AS1, miR-628-5p and jagged canonical Notch ligand 1 (JAG1). RBP-JK luciferase reporter assay determined the activity of Notch pathway. Results DARS-AS1 level was significantly increased in CC cells. Moreover, down-regulation of DARS-AS1 hampered cell the proliferation and accelerated the apoptosis of CC cells. Importantly, DARS-AS1 was a competing endogenous RNA (ceRNA) to elevate JAG1 level through sequestering miR-628-5p, leading to activated Notch pathway to aggravate CC tumorigenesis. Conclusions DARS-AS1/miR-628-5p/JAG1/Notch signaling accelerates CC progression, indicating DARS-AS1 as a novel therapeutic target for patients with CC.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China
| | - Qiumei Wu
- Fujian Provincial Maternal and Child Health Care Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350000, Fujian, China
| | - Jing Lin
- Department of Embryology, Fujian Medical University, No. 88 Jiaotong Road, Taijiang District, Fuzhou, 350000, Fujian, China
| | - Juanbing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
12
|
Rodríguez-Cano MM, González-Gómez MJ, Sánchez-Solana B, Monsalve EM, Díaz-Guerra MJM, Laborda J, Nueda ML, Baladrón V. NOTCH Receptors and DLK Proteins Enhance Brown Adipogenesis in Mesenchymal C3H10T1/2 Cells. Cells 2020; 9:cells9092032. [PMID: 32899774 PMCID: PMC7565505 DOI: 10.3390/cells9092032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
The NOTCH family of receptors and ligands is involved in numerous cell differentiation processes, including adipogenesis. We recently showed that overexpression of each of the four NOTCH receptors in 3T3-L1 preadipocytes enhances adipogenesis and modulates the acquisition of the mature adipocyte phenotype. We also revealed that DLK proteins modulate the adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells in an opposite way, despite their function as non-canonical inhibitory ligands of NOTCH receptors. In this work, we used multipotent C3H10T1/2 cells as an adipogenic model. We used standard adipogenic procedures and analyzed different parameters by using quantitative-polymerase chain reaction (qPCR), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), luciferase, Western blot, and metabolic assays. We revealed that C3H10T1/2 multipotent cells show higher levels of NOTCH receptors expression and activity and lower Dlk gene expression levels than 3T3-L1 preadipocytes. We found that the overexpression of NOTCH receptors enhanced C3H10T1/2 adipogenesis levels, and the overexpression of NOTCH receptors and DLK (DELTA-like homolog) proteins modulated the conversion of cells towards a brown-like adipocyte phenotype. These and our prior results with 3T3-L1 preadipocytes strengthen the idea that, depending on the cellular context, a precise and highly regulated level of global NOTCH signaling is necessary to allow adipogenesis and determine the mature adipocyte phenotype.
Collapse
Affiliation(s)
- María-Milagros Rodríguez-Cano
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
| | - María-Julia González-Gómez
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
| | - Beatriz Sánchez-Solana
- National Institutes of Health, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Eva-María Monsalve
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
| | - María-José M. Díaz-Guerra
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
| | - Jorge Laborda
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| | - María-Luisa Nueda
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| | - Victoriano Baladrón
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| |
Collapse
|
13
|
Chromosome 20p Partial De Novo Duplication Identified in a Female Paediatric Patient with Characteristic Facial Dysmorphism and Behavioural Anomalies. Case Rep Genet 2020; 2020:7093409. [PMID: 32733715 PMCID: PMC7369683 DOI: 10.1155/2020/7093409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 11/23/2022] Open
Abstract
Copy number variations (CNVs) involving the JAG1 gene are rare and infrequently reported in the scientific literature. Recently, a generally healthy young patient presenting with a history of behavioural concerns was referred to us. Herein, we discuss the patient, a 7-year-old female possessing a 0.797 Mb microduplication within the short arm of chromosome 20 at band 12.2. The patient generates considerable curiosity due to the rarity of her case, which includes a de novo partial duplication involving the JAG1 gene. The patient exhibits a wide range of symptoms including facial dysmorphism (dolichocephaly, round face, tented philtrum, anteverted nares, and micrognathia), clinodactyly, and an inborn congenital heart defect. She presented with behavioural concerns including ADHD-I, SPD, motor clumsiness, and poor self-regulation. Deletions in JAG1 are often linked to Alagille Syndrome; however, complete duplications have not been specifically identified as disease-causing. JAG1 mutations are reported alongside various clinical features including facial dysmorphology, heart defects, vertebral abnormalities, and ocular dysmorphic features (strabismus, epicanthal folds, and slanted palpebral fissures). This particular microduplication is rare, and thus, limited data exist regarding its significance. To our knowledge, most reported duplications are larger than 0.797 Mb. This may define a critical region causing phenotypical changes in some patient cases.
Collapse
|
14
|
Hosseini-Alghaderi S, Baron M. Notch3 in Development, Health and Disease. Biomolecules 2020; 10:biom10030485. [PMID: 32210034 PMCID: PMC7175233 DOI: 10.3390/biom10030485] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Notch3 is one of four mammalian Notch proteins, which act as signalling receptors to control cell fate in many developmental and adult tissue contexts. Notch signalling continues to be important in the adult organism for tissue maintenance and renewal and mis-regulation of Notch is involved in many diseases. Genetic studies have shown that Notch3 gene knockouts are viable and have limited developmental defects, focussed mostly on defects in the arterial smooth muscle cell lineage. Additional studies have revealed overlapping roles for Notch3 with other Notch proteins, which widen the range of developmental functions. In the adult, Notch3, in collaboration with other Notch proteins, is involved in stem cell regulation in different tissues in stem cell regulation in different tissues, and it also controls the plasticity of the vascular smooth muscle phenotype involved in arterial vessel remodelling. Overexpression, gene amplification and mis-activation of Notch3 are associated with different cancers, in particular triple negative breast cancer and ovarian cancer. Mutations of Notch3 are associated with a dominantly inherited disease CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), and there is further evidence linking Notch3 misregulation to hypertensive disease. Here we discuss the distinctive roles of Notch3 in development, health and disease, different views as to the underlying mechanisms of its activation and misregulation in different contexts and potential for therapeutic intervention.
Collapse
|
15
|
Jagged1-mediated myeloid Notch1 signaling activates HSF1/Snail and controls NLRP3 inflammasome activation in liver inflammatory injury. Cell Mol Immunol 2019; 17:1245-1256. [PMID: 31673056 PMCID: PMC7784844 DOI: 10.1038/s41423-019-0318-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Notch signaling plays important roles in the regulation of immune cell functioning during the inflammatory response. Activation of the innate immune signaling receptor NLRP3 promotes inflammation in injured tissue. However, it remains unknown whether Jagged1 (JAG1)-mediated myeloid Notch1 signaling regulates NLRP3 function in acute liver injury. Here, we report that myeloid Notch1 signaling regulates the NLRP3-driven inflammatory response in ischemia/reperfusion (IR)-induced liver injury. In a mouse model of liver IR injury, Notch1-proficient (Notch1FL/FL) mice receiving recombinant JAG1 showed a reduction in IR-induced liver injury and increased Notch intracellular domain (NICD) and heat shock transcription factor 1 (HSF1) expression, whereas myeloid-specific Notch1 knockout (Notch1M-KO) aggravated hepatocellular damage even with concomitant JAG1 treatment. Compared to JAG1-treated Notch1FL/FL controls, Notch1M-KO mice showed diminished HSF1 and Snail activity but augmented NLRP3/caspase-1 activity in ischemic liver. The disruption of HSF1 reduced Snail activation and enhanced NLRP3 activation, while the adoptive transfer of HSF1-expressing macrophages to Notch1M-KO mice augmented Snail activation and mitigated IR-triggered liver inflammation. Moreover, the knockdown of Snail in JAG1-treated Notch1FL/FL livers worsened hepatocellular functioning, reduced TRX1 expression and increased TXNIP/NLRP3 expression. Ablation of myeloid Notch1 or Snail increased ASK1 activation and hepatocellular apoptosis, whereas the activation of Snail increased TRX1 expression and reduced TXNIP, NLRP3/caspase-1, and ROS production. Our findings demonstrated that JAG1-mediated myeloid Notch1 signaling promotes HSF1 and Snail activation, which in turn inhibits NLRP3 function and hepatocellular apoptosis leading to the alleviation of IR-induced liver injury. Hence, the Notch1/HSF1/Snail signaling axis represents a novel regulator of and a potential therapeutic target for liver inflammatory injury.
Collapse
|
16
|
Matana A, Popović M, Boutin T, Torlak V, Brdar D, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Polašek O, Hayward C, Barbalić M, Zemunik T. Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians. Genomics 2019; 111:737-743. [DOI: 10.1016/j.ygeno.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
|
17
|
Baron M. Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Mol Membr Biol 2018; 34:33-49. [PMID: 30246579 DOI: 10.1080/09687688.2018.1503742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Notch is a conserved cell signalling receptor regulating many aspects of development and tissue homeostasis. Notch is activated by ligand-induced proteolytic cleavages that release the Notch intracellular domain, which relocates to the nucleus to regulate gene transcription. Proteolytic activation first requires mechanical force to be applied to the Notch extracellular domain through an endocytic pulling mechanism transmitted through the ligand/receptor interface. This exposes the proteolytic cleavage site allowing the signal to be initiated following removal of the Notch extracellular domain. Ligands can also act, when expressed in the same cell, through non-productive cis-interactions to inhibit Notch activity. Furthermore, ligand selectivity and Notch activation are regulated by numerous post-translational modifications of the extracellular domain. Additional non-canonical trans and cis interactions with other regulatory proteins may modulate alternative mechanisms of Notch activation that depend on endocytic trafficking of the full-length receptor and proteolytic release of the intracellular domain from endo-lysosomal surface. Mutations of Notch, located in different regions of the protein, are associated with a spectrum of different loss and gain of function phenotypes and offer the possibility to dissect distinct regulatory interactions and mechanisms, particularly when combined with detailed structural analysis of Notch in complex with various regulatory partners.
Collapse
Affiliation(s)
- Martin Baron
- a School of Biological Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
18
|
|
19
|
Bellavia D, Checquolo S, Palermo R, Screpanti I. The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:205-222. [PMID: 30030828 DOI: 10.1007/978-3-319-89512-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During evolution, gene duplication of the Notch receptor suggests a progressive functional diversification. The Notch3 receptor displays a number of structural differences with respect to Notch1 and Notch2, most of which have been reported in the transmembrane and in the intracellular regions, mainly localized in the negative regulatory region (NRR) and trans-activation domain (TAD). Targeted deletion of Notch3 does not result in embryonic lethality, which is in line with its highly restricted tissue expression pattern. Importantly, deregulated Notch3 expression and/or activation, often results in disrupted cell differentiation and/or pathological development, most notably in oncogenesis in different cell contexts. Mechanistically this is due to Notch3-related genetic alterations or epigenetic or posttranslational control mechanisms. In this chapter we discuss the possible relationships between the structural differences and the pathological role of Notch3 in the control of mouse and human cancers. In future, targeting the unique features of Notch3-oncogenic mechanisms could be exploited to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
20
|
Yang HL, Gao YM, Zhao JA. miR-140-5p inhibits human glioma cell growth and invasion by targeting JAG1. Mol Med Rep 2017; 16:3634-3640. [DOI: 10.3892/mmr.2017.6951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
|
21
|
Qian Y, Xiao D, Guo X, Chen H, Hao L, Ma X, Huang G, Ma D, Wang H. Multiple gene variations contributed to congenital heart disease via GATA family transcriptional regulation. J Transl Med 2017; 15:69. [PMID: 28372585 PMCID: PMC5379520 DOI: 10.1186/s12967-017-1173-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Background Congenital heart disease (CHD) is a common birth defect, and most cases occur sporadically. Mutations in key genes that are responsible for cardiac development could contribute to CHD. To date, the genetic causes of CHD remain largely unknown. Methods In this study, twenty-nine candidate genes in CHD were sequenced in 106 patients with Tetralogy of Fallot (TOF) using target exome sequencing (TES). The co-immunoprecipitation (CO-IP) and luciferase reporter gene assays were performed in HEK293T cells, and wild-type and mutant mRNA of ZFPM2 were microinjected into zebrafish embryos. Results Rare variants in key cardiac transcriptional factors and JAG1 were identified in the patients. Four patients carried multiple gene variants. The novel E1148K variant was located at the eighth Zinc-finger domain of FOG2 protein. The CO-IP assays in the HEK293T cells revealed that the variant significantly damaged the interaction between ZFPM2/FOG2 and GATA4. The luciferase reporter gene assays revealed that the E1148K mutant ZFPM2 protein displayed a significantly greater inhibition of the transcriptional activation of GATA4 than the wild-type protein. The wild-type mRNA and the E1148K mutant mRNA of ZFPM2 were injected into zebrafish embryos. At 48 hpf, in the mutant mRNA injection group, the number of embryos with an abnormal cardiac chamber structure and a loss of left–right asymmetry was increased. By 72 hpf, the defects in the chamber and left–right asymmetry became obvious. Conclusions We performed TES in sporadic TOF patients and identified rare variants in candidate genes in CHD. We first validated the E1148 K variant in ZFPM2, which is likely involved in the pathogenesis of CHD via GATA4. Moreover, our results suggest that TES could be a useful tool for discovering sequence variants in CHD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1173-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanyan Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Guoying Huang
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China.,Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China. .,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Research Center for Birth Defects, School of Basic Medical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200030, China.
| | - Huijun Wang
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Molecular Genetics Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
22
|
Vanorny DA, Mayo KE. The role of Notch signaling in the mammalian ovary. Reproduction 2017; 153:R187-R204. [PMID: 28283672 DOI: 10.1530/rep-16-0689] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Abstract
The Notch pathway is a contact-dependent, or juxtacrine, signaling system that is conserved in metazoan organisms and is important in many developmental processes. Recent investigations have demonstrated that the Notch pathway is active in both the embryonic and postnatal ovary and plays important roles in events including follicle assembly and growth, meiotic maturation, ovarian vasculogenesis and steroid hormone production. In mice, disruption of the Notch pathway results in ovarian pathologies affecting meiotic spindle assembly, follicle histogenesis, granulosa cell proliferation and survival, corpora luteal function and ovarian neovascularization. These aberrations result in abnormal folliculogenesis and reduced fertility. The knowledge of the cellular interactions facilitated by the Notch pathway is an important area for continuing research, and future studies are expected to enhance our understanding of ovarian function and provide critical insights for improving reproductive health. This review focuses on the expression of Notch pathway components in the ovary, and on the multiple functions of Notch signaling in follicle assembly, maturation and development. We focus on the mouse, where genetic investigations are possible, and relate this information to the human ovary.
Collapse
Affiliation(s)
- Dallas A Vanorny
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| | - Kelly E Mayo
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| |
Collapse
|
23
|
Chen J, Zhang H, Chen Y, Qiao G, Jiang W, Ni P, Liu X, Ma L. miR-598 inhibits metastasis in colorectal cancer by suppressing JAG1/Notch2 pathway stimulating EMT. Exp Cell Res 2017; 352:104-112. [DOI: 10.1016/j.yexcr.2017.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/31/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
|
24
|
Murata A, Hayashi SI. Notch-Mediated Cell Adhesion. BIOLOGY 2016; 5:biology5010005. [PMID: 26784245 PMCID: PMC4810162 DOI: 10.3390/biology5010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms.
Collapse
Affiliation(s)
- Akihiko Murata
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
25
|
Jagged1 (JAG1): Structure, expression, and disease associations. Gene 2015; 576:381-4. [PMID: 26548814 DOI: 10.1016/j.gene.2015.10.065] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 01/29/2023]
Abstract
Jagged1 (JAG1) is one of the 5 cell surface ligands that functions primarily in the highly conserved Notch signaling pathway. Notch signaling plays a critical role in cellular fate determination and is active throughout development and across many organ systems. The classic JAG1-NOTCH interaction leads to a cascade of proteolytic cleavages resulting in the NOTCH intracellular domain being transported into the nucleus where it functions to activate downstream transcription of target genes. JAG1 mutations have been associated with several disorders including the multi-system dominant disorder Alagille syndrome, and some cases of tetralogy of Fallot (although these may represent variable expressivity of Alagille syndrome). In addition, variations in JAG1 have been found to be associated with multiple types of cancer including breast cancer and adrenocortical carcinoma. Alagille syndrome, which primarily affects the liver, heart, skeleton, eye, face, kidney and vasculature is caused by loss of function mutations in JAG1, demonstrating that haploinsufficiency for JAG1 is disease causing, at least in these tissues. Expression and conditional gene knockout studies of JAG1 (Jag1) have correlated with tissue-specific disease phenotypes and have provided insight into both disease pathogenesis and human development.
Collapse
|
26
|
Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 2015; 406:235-46. [PMID: 26318021 DOI: 10.1016/j.ydbio.2015.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
The mammalian arcuate nucleus (ARC) houses neurons critical for energy homeostasis and sexual maturation. Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) neurons function to balance energy intake and Kisspeptin neurons are critical for the onset of puberty and reproductive function. While the physiological roles of these neurons have been well established, their development remains unclear. We have previously shown that Notch signaling plays an important role in cell fate within the ARC of mice. Active Notch signaling prevented neural progenitors from differentiating into feeding circuit neurons, whereas conditional loss of Notch signaling lead to a premature differentiation of these neurons. Presently, we hypothesized that Kisspeptin neurons would similarly be affected by Notch manipulation. To address this, we utilized mice with a conditional deletion of the Notch signaling co-factor Rbpj-κ (Rbpj cKO), or mice persistently expressing the Notch1 intracellular domain (NICD tg) within Nkx2.1 expressing cells of the developing hypothalamus. Interestingly, we found that in both models, a lack of Kisspeptin neurons are observed. This suggests that Notch signaling must be properly titrated for formation of Kisspeptin neurons. These results led us to hypothesize that Kisspeptin neurons of the ARC may arise from a different lineage of intermediate progenitors than NPY neurons and that Notch was responsible for the fate choice between these neurons. To determine if Kisspeptin neurons of the ARC differentiate similarly through a Pomc intermediate, we utilized a genetic model expressing the tdTomato fluorescent protein in all cells that have ever expressed Pomc. We observed some Kisspeptin expressing neurons labeled with the Pomc reporter similar to NPY neurons, suggesting that these distinct neurons can arise from a common progenitor. Finally, we hypothesized that temporal differences leading to premature depletion of progenitors in cKO mice lead to our observed phenotype. Using a BrdU birthdating paradigm, we determined the percentage of NPY and Kisspeptin neurons born on embryonic days 11.5, 12.5, and 13.5. We found no difference in the timing of differentiation of either neuronal subtype, with a majority occurring at e11.5. Taken together, our findings suggest that active Notch signaling is an important molecular switch involved in instructing subpopulations of progenitor cells to differentiate into Kisspeptin neurons.
Collapse
|
27
|
Nouri-Shirazi M, Kahlden C, Nishino P, Guinet E. Nicotine exposure alters the mRNA expression of Notch ligands in dendritic cells and their response to Th1-/Th2-promoting stimuli. Scand J Immunol 2015; 81:110-20. [PMID: 25418282 DOI: 10.1111/sji.12254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022]
Abstract
Dendritic cells (DCs) utilize polarizing signals to instruct the differentiation of T helper (Th) cells into Th1 and Th2 effector cells: antigen-specific 'signal 1', costimulatory 'signal 2' and polarizing cytokines 'signal 3'. Accumulating evidence suggests the involvement of an additional signal, the Notch signalling pathway. We reported that in response to Th1-promoting stimuli, both mouse and human DCs generated in the presence of the immune modulator nicotine (nicDCs) fail to support the development of effector memory Th1 cells. However, in response to Th2-promoting stimuli, these nicDCs preferentially support the differentiation of antigen-specific IL-4-producing Th2 effector cells. Here, we show that when compared to their control counterparts, immature mouse and human nicDCs display higher levels of the Notch ligands D1, D4 and J2 mRNA expression. In response to Th1- and Th2-promoting stimuli, mouse nicDCs display higher levels of the Notch ligands D1, D4 and J2, while human nicDCs show higher levels of D1, D4 and J1 mRNA expression. Furthermore, both stimulated mouse and human nicDCs express higher CD86 to CD80 ratio and produce lower amount of IL-12. Collectively, our data suggest that these changes in addition to an increase in Jagged expression correlate with the ability of nicDCs to modulate the Th1/Th2 balance in favour of Th2 generation.
Collapse
Affiliation(s)
- M Nouri-Shirazi
- Integrated Medical Science Department, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL, USA and
| | | | | | | |
Collapse
|
28
|
Murata A, Yoshino M, Hikosaka M, Okuyama K, Zhou L, Sakano S, Yagita H, Hayashi SI. An evolutionary-conserved function of mammalian notch family members as cell adhesion molecules. PLoS One 2014; 9:e108535. [PMID: 25255288 PMCID: PMC4177923 DOI: 10.1371/journal.pone.0108535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/25/2014] [Indexed: 12/16/2022] Open
Abstract
Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kazuki Okuyama
- Department of Hematology and Oncology, Division of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Seiji Sakano
- Corporate R&D Laboratories, Asahi Kasei Corporation, Fuji, Shizuoka, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
29
|
Kim AD, Melick CH, Clements WK, Stachura DL, Distel M, Panáková D, MacRae C, Mork LA, Crump JG, Traver D. Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J 2014; 33:2363-73. [PMID: 25230933 DOI: 10.15252/embj.201488784] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.
Collapse
Affiliation(s)
- Albert D Kim
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Chase H Melick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Wilson K Clements
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David L Stachura
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Martin Distel
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany Cardiovascular Division, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
| | - Lindsey A Mork
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins. Mol Cell Biol 2014; 34:2822-32. [PMID: 24842903 DOI: 10.1128/mcb.00206-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, there are four NOTCH receptors and five Delta-Jagged-type ligands regulating many aspects of embryonic development and adult tissue homeostasis. NOTCH proteins are type I transmembrane receptors that interact with ligands on adjacent cells and are activated by regulated intramembrane proteolysis (RIP). The activation mechanism of NOTCH1 receptors upon ligand binding is well understood and requires cleavage by ADAM10 metalloproteases prior to intramembranous cleavage by γ-secretase. How the other human NOTCH receptor homologues are activated upon ligand binding is not known. Here, we dissect the proteolytic activation mechanism of the NOTCH2 and NOTCH3 receptors. We show that NOTCH2 and NOTCH3 signaling can be triggered by both Delta-Jagged-type ligands and requires ADAM10 and presenilin-1 or -2. Importantly, we did not find any role for the highly related ADAM17/TACE (tumor necrosis factor alpha-converting enzyme) protease in ligand-induced NOTCH2 or NOTCH3 signaling. These results demonstrate that canonical ligand-induced proteolysis of the NOTCH1, -2, and -3 receptors strictly depends on consecutive cleavage of these receptors by ADAM10 and the presenilin-containing γ-secretase complex, leading to transcriptional activation.
Collapse
|
31
|
Lavoz C, Rodrigues-Diez R, Benito-Martin A, Rayego-Mateos S, Rodrigues-Diez RR, Alique M, Ortiz A, Mezzano S, Egido J, Ruiz-Ortega M. Angiotensin II contributes to renal fibrosis independently of Notch pathway activation. PLoS One 2012; 7:e40490. [PMID: 22792351 PMCID: PMC3392235 DOI: 10.1371/journal.pone.0040490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/08/2012] [Indexed: 12/20/2022] Open
Abstract
Recent studies have described that the Notch signaling pathway is activated in a wide range of renal diseases. Angiotensin II (AngII) plays a key role in the progression of kidney diseases. AngII contributes to renal fibrosis by upregulation of profibrotic factors, induction of epithelial mesenchymal transition and accumulation of extracellular matrix proteins. In cultured human tubular epithelial cells the Notch activation by transforming growth factor-β1 (TGF-β1) has been involved in epithelial mesenchymal transition. AngII mimics many profibrotic actions of TGF-β1. For these reasons, our aim was to investigate whether AngII could regulate the Notch/Jagged system in the kidney, and its potential role in AngII-induced responses. In cultured human tubular epithelial cells, TGF-β1, but not AngII, increased the Notch pathway-related gene expression, Jagged-1 synthesis, and caused nuclear translocation of the activated Notch. In podocytes and renal fibroblasts, AngII did not modulate the Notch pathway. In tubular epithelial cells, pharmacological Notch inhibition did not modify AngII-induced changes in epithelial mesenchymal markers, profibrotic factors and extracellular matrix proteins. Systemic infusion of AngII into rats for 2 weeks caused tubulointerstitial fibrosis, but did not upregulate renal expression of activated Notch-1 or Jagged-1, as observed in spontaneously hypertensive rats. Moreover, the Notch/Jagged system was not modulated by AngII type I receptor blockade in the model of unilateral ureteral obstruction in mice. These data clearly indicate that AngII does not regulate the Notch/Jagged signaling system in the kidney, in vivo and in vitro. Our findings showing that the Notch pathway is not involved in AngII-induced fibrosis could provide important information to understand the complex role of Notch system in the regulation of renal regeneration vs damage progression.
Collapse
Affiliation(s)
- Carolina Lavoz
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
| | | | | | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
| | | | - Matilde Alique
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
| | - Alberto Ortiz
- Dialysis Unit, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesús Egido
- Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:988-95. [PMID: 22353464 DOI: 10.1016/j.bbadis.2012.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.
Collapse
Affiliation(s)
- Farah A Falix
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Chillakuri CR, Sheppard D, Lea SM, Handford PA. Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 2012; 23:421-8. [PMID: 22326375 PMCID: PMC3415683 DOI: 10.1016/j.semcdb.2012.01.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 11/05/2022]
Abstract
The Notch receptor is part of a core signalling pathway which is highly conserved in all metazoan species. It is required for various cell fate decisions at multiple stages of development and in the adult organism, with dysregulation of the pathway associated with genetic and acquired diseases including cancer. Although cellular and in vivo studies have provided considerable insight into the downstream consequences of Notch signalling, relatively little is known about the molecular basis of the receptor/ligand interaction and initial stages of activation. Recent advances in structure determination of the extracellular regions of human Notch-1 and one of its ligands Jagged-1 have given new insights into docking events occurring at the cell surface which may facilitate the development of new highly specific therapies. We review the structural data available for receptor and ligands and identify the challenges ahead.
Collapse
|
34
|
MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 2011; 6:e24584. [PMID: 21931765 PMCID: PMC3171461 DOI: 10.1371/journal.pone.0024584] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/14/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies. METHODOLOGY/PRINCIPAL FINDINGS In a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133(+)/CD15(+) tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1(+/-) p53(-/-)), thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo. CONCLUSIONS/SIGNIFICANCE Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate trials.
Collapse
|
35
|
Sánchez-Solana B, Nueda ML, Ruvira MD, Ruiz-Hidalgo MJ, Monsalve EM, Rivero S, García-Ramírez JJ, Díaz-Guerra MJM, Baladrón V, Laborda J. The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other's activities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1153-64. [DOI: 10.1016/j.bbamcr.2011.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/19/2011] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
|
36
|
Hoyne GF, Chapman G, Sontani Y, Pursglove SE, Dunwoodie SL. A cell autonomous role for the Notch ligand Delta-like 3 in αβ T-cell development. Immunol Cell Biol 2010; 89:696-705. [PMID: 21151194 DOI: 10.1038/icb.2010.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Notch signalling is critical to help direct T-cell lineage commitment in early T-cell progenitors and in the development of αβ T-cells. Epithelial and stromal cell populations in the thymus express the Notch DSL (Delta, Serrate and Lag2)ligands Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged 1 and Jagged 2, and induce Notch signalling in thymocytes that express the Notch receptor. At present there is nothing known about the role of the Delta-like 3 (Dll3) ligand in the immune system. Here we describe a novel cell autonomous role for Dll3 in αβ T-cell development. We show that Dll3 cannot activate Notch when expressed in trans but like other Notch ligands it can inhibit Notch signalling when expressed in cis with the receptor. The loss of Dll3 leads to an increase in Hes5 expression in double positive thymocytes and their increased production of mature CD4(+) and CD8(+) T cells. Studies using competitive irradiation chimeras proved that Dll3 acts in a cell autonomous manner to regulate positive selection but not negative selection of autoreactive T cells. Our results indicate that Dll3 has a unique function during T-cell development that is distinct from the role played by the other DSL ligands of Notch and is in keeping with other recent studies indicating that Dll1 and Dll3 ligands have non-overlapping roles during embryonic development.
Collapse
Affiliation(s)
- Gerard F Hoyne
- The Laboratory of T Cell Development and Regulation, John Curtin School of Medical Research, Australian National University Canberra, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | |
Collapse
|
37
|
Future perspectives: therapeutic targeting of notch signalling may become a strategy in patients receiving stem cell transplantation for hematologic malignancies. BONE MARROW RESEARCH 2010; 2011:570796. [PMID: 22046566 PMCID: PMC3200006 DOI: 10.1155/2011/570796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/30/2010] [Indexed: 12/26/2022]
Abstract
The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects.
Collapse
|
38
|
Abe N, Hozumi K, Hirano KI, Yagita H, Habu S. Notch ligands transduce different magnitudes of signaling critical for determination of T-cell fate. Eur J Immunol 2010; 40:2608-17. [DOI: 10.1002/eji.200940006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Abstract
Notch and the DSL Notch ligands Delta and Serrate/Jagged are glycoproteins with a single transmembrane domain. The extracellular domain (ECD) of both Notch receptors and Notch ligands contains numerous epidermal growth factor (EGF)-like repeats which are post-translationally modified by a variety of glycans. Inactivation of a subset of genes that encode glycosyltransferases which initiate and elongate these glycans inhibits Notch signaling. In the formation of developmental boundaries in Drosophila and mammals, in mouse T-cell and marginal zone B-cell development, and in co-culture Notch signaling assays, the regulation of Notch signaling by glycans is to date a cell-autonomous effect of the Notch-expressing cell. The regulation of Notch signaling by glycans represents a new paradigm of signal transduction. O-fucose glycans modulate the strength of Notch binding to DSL Notch ligands, while O-glucose glycans facilitate juxta-membrane cleavage of Notch, generating the substrate for intramembrane cleavage and Notch activation. Identifying precisely how the addition of particular sugars at specific locations on Notch modifies Notch signaling is a challenge for the future.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, USA
| | | |
Collapse
|
40
|
Emuss V, Lagos D, Pizzey A, Gratrix F, Henderson SR, Boshoff C. KSHV manipulates Notch signaling by DLL4 and JAG1 to alter cell cycle genes in lymphatic endothelia. PLoS Pathog 2009; 5:e1000616. [PMID: 19816565 PMCID: PMC2751827 DOI: 10.1371/journal.ppat.1000616] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/11/2009] [Indexed: 12/14/2022] Open
Abstract
Increased expression of Notch signaling pathway components is observed in Kaposi sarcoma (KS) but the mechanism underlying the manipulation of the canonical Notch pathway by the causative agent of KS, Kaposi sarcoma herpesvirus (KSHV), has not been fully elucidated. Here, we describe the mechanism through which KSHV directly modulates the expression of the Notch ligands JAG1 and DLL4 in lymphatic endothelial cells. Expression of KSHV-encoded vFLIP induces JAG1 through an NFkappaB-dependent mechanism, while vGPCR upregulates DLL4 through a mechanism dependent on ERK. Both vFLIP and vGPCR instigate functional Notch signalling through NOTCH4. Gene expression profiling showed that JAG1- or DLL4-stimulated signaling results in the suppression of genes associated with the cell cycle in adjacent lymphatic endothelial cells, indicating a role for Notch signaling in inducing cellular quiescence in these cells. Upregulation of JAG1 and DLL4 by KSHV could therefore alter the expression of cell cycle components in neighbouring uninfected cells during latent and lytic phases of viral infection, influencing cellular quiescence and plasticity. In addition, differences in signaling potency between these ligands suggest a possible complementary role for JAG1 and DLL4 in the context of KS.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Calcium-Binding Proteins/physiology
- Cell Cycle/genetics
- Cell Cycle/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Endothelium, Vascular/virology
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Intercellular Signaling Peptides and Proteins/physiology
- Jagged-1 Protein
- Lymphatic System/cytology
- Lymphatic System/physiology
- Lymphatic System/virology
- Membrane Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- Receptor, Notch4
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/virology
- Serrate-Jagged Proteins
- Signal Transduction
- Up-Regulation
Collapse
Affiliation(s)
- Victoria Emuss
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Dimitrios Lagos
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Arnold Pizzey
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Fiona Gratrix
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Stephen R. Henderson
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Chris Boshoff
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Juryńczyk M, Selmaj K. Notch: a new player in MS mechanisms. J Neuroimmunol 2009; 218:3-11. [PMID: 19748685 DOI: 10.1016/j.jneuroim.2009.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 11/28/2022]
Abstract
Notch is a family of four transmembrane receptors (Notch1-4) that orchestrate differentiation of various cell types, tissues and organs. Recent studies have revealed that Notch, among other processes, regulates immune responses of peripheral T cells, controls oligodendrocyte maturation and myelination of axons and under inflammatory conditions affects activation of macrophages and microglia. Therefore, Notch signaling has been implicated in the differentiation and function of all cell types considered crucial for the development and clinical progression of multiple sclerosis (MS). Importantly, inflammatory/demyelinating lesions in MS and its animal model, autoimmune experimental encephalomyelitis (EAE), abundantly express Notch receptors, their ligands and downstream activation targets. In EAE, in vivo modulation of Notch signaling affects immune responses of myelin-reactive T cells, enhances tissue repair and reduces clinical severity of the disease. In this review, we present recent findings on how Notch signaling may affect function of both immune and glial cells, analyze data implicating the Notch pathway in MS and EAE, and discuss the therapeutic potential of manipulating Notch signaling in MS patients.
Collapse
Affiliation(s)
- Maciej Juryńczyk
- Department of Neurology, Medical University of Lodz, Kopcińskiego 22, Poland.
| | | |
Collapse
|
42
|
Mutation of the fucose-specific β1,3 N-acetylglucosaminyltransferase LFNG results in abnormal formation of the spine. Biochim Biophys Acta Mol Basis Dis 2009; 1792:100-11. [DOI: 10.1016/j.bbadis.2008.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 01/24/2023]
|
43
|
Kalimo H, Miao Q, Tikka S, Mykkänen K, Junna M, Roine S, Viitanen M, Pöyhönen M, Baumann M. CADASIL: the most common hereditary subcortical vascular dementia. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.6.683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL) is the most common hereditary subcortical vascular dementia. It is caused by the defective NOTCH3 gene, which encodes a transmembrane receptor; over 170 different mutations are known. The main clinical features are migraine with aura (often atypical or isolated), strokes, cognitive decline/dementia and psychiatric symptoms. Executive and organizing cognitive functions are impaired first, memory is affected late. Typical MRI findings are T2 weighted hyperintensities in temporopolar white matter and the capsula externa. Smooth muscle cells in small arteries throughout the body degenerate and vessel walls become fibrotic. In the brain, this results in circulatory disturbances and lacunar infarcts, mainly in cerebral white matter and deep gray matter. The exact pathogenesis is still open: a dominant-negative toxic effect is suggested, possibly related to Notch3 misfolding. Diagnosis is reached either by identifying a pathogenic NOTCH3 mutation or by electron microscopic demonstration of granular osmiophilic material in a (skin) biopsy. Only symptomatic treatment is available at present.
Collapse
Affiliation(s)
- Hannu Kalimo
- Department of Pathology, University & University Hospital of Helsinki, Helsinki, Finland and, Uppsala University, Uppsala, Sweden and, Departments of Pathology & Forensic Medicine, Turku University & University Hospital, Turku, Finland
| | - Qing Miao
- Department of Pathology, Turku University, Turku, Finland
| | - Saara Tikka
- Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland and, Department of Pathology, Helsinki University, Helsinki, Finland
| | - Kati Mykkänen
- Department of Medical Biochemistry & Genetics, University of Turku, Turku, Finland
| | - Maija Junna
- Department of Medical Biochemistry & Genetics, University of Turku, Turku, Finland
| | - Susanna Roine
- Department of Neurology, University Hospital of Turku, Turku, Finland
| | - Matti Viitanen
- Division of Clinical Geriatrics, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden and, Department of Geriatric Medicine, University of Turku, Turku, Finland
| | - Minna Pöyhönen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland and, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Marc Baumann
- Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Komatsu H, Chao MY, Larkins-Ford J, Corkins ME, Somers GA, Tucey T, Dionne HM, White JQ, Wani K, Boxem M, Hart AC. OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol 2008; 6:e196. [PMID: 18700817 PMCID: PMC2504490 DOI: 10.1371/journal.pbio.0060196] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/26/2008] [Indexed: 01/06/2023] Open
Abstract
Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Y Chao
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | - Jonah Larkins-Ford
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Mark E Corkins
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Gerard A Somers
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Tim Tucey
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Heather M Dionne
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Jamie Q White
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Khursheed Wani
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Mike Boxem
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anne C Hart
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Luther KB, Haltiwanger RS. Role of unusual O-glycans in intercellular signaling. Int J Biochem Cell Biol 2008; 41:1011-24. [PMID: 18952191 DOI: 10.1016/j.biocel.2008.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/22/2008] [Accepted: 10/03/2008] [Indexed: 01/09/2023]
Abstract
In the last two decades, our knowledge of the role of glycans in development and signal transduction has expanded enormously. While most work has focused on the importance of N-linked or mucin-type O-linked glycosylation, recent work has highlighted the importance of several more unusual forms of glycosylation that are the focus of this review. In particular, the ability of O-fucose glycans on the epidermal growth factor-like (EGF) repeats of Notch to modulate signaling places glycosylation alongside phosphorylation as a means to modulate protein-protein interactions and their resultant downstream signals. The recent discovery that O-glucose modification of Notch EGF repeats is also required for Notch function has further expanded the range of glycosylation events capable of modulating Notch signaling. The prominent role of Notch during development and in later cell-fate decisions underscores the importance of these modifications in human biology. The role of glycans in intercellular signaling events is only beginning to be understood and appears ready to expand into new areas with the discovery that thrombospondin type 1 repeats are also modified with O-fucose glycans. Finally, a rare form of glycosylation called C-mannosylation modifies tryptophans in some signaling competent molecules and may be a further layer of complexity in the field. We will review each of these areas focusing on the glycan structures produced, the consequence of their presence, and the enzymes responsible.
Collapse
Affiliation(s)
- Kelvin B Luther
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
46
|
Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J 2008; 27:1886-95. [PMID: 18528438 DOI: 10.1038/emboj.2008.113] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/14/2008] [Indexed: 11/08/2022] Open
Abstract
Specific deletion of Notch1 and RBPjkappa in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta. Moreover, successful haematopoietic rescue of the Jagged1-null AGM cells was obtained by culturing them with Jagged1-expressing stromal cells or by lentiviral-mediated transduction of the GATA2 gene. Taken together, our results indicate that Jagged1-mediated activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse.
Collapse
|
47
|
Pei Z, Baker NE. Competition between Delta and the Abruptex domain of Notch. BMC DEVELOPMENTAL BIOLOGY 2008; 8:4. [PMID: 18208612 PMCID: PMC2267168 DOI: 10.1186/1471-213x-8-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 01/21/2008] [Indexed: 12/24/2022]
Abstract
Background Extracellular domains of the Notch family of signalling receptors contain many EGF repeat domains, as do their major ligands. Some EGF repeats are modified by O-fucosylation, and most have no identified role in ligand binding. Results Using a binding assay with purified proteins in vitro, it was determined that, in addition to binding to Delta, the ligand binding region of Notch bound to EGF repeats 22–27 of Notch, but not to other EGF repeat regions of Notch. EGF repeats 22–27 of Drosophila Notch overlap the genetically-defined 'Abruptex' region, and competed with Delta for binding to proteins containing the ligand-binding domain. Delta differed from the Abruptex domain in showing markedly enhanced binding at acid pH. Both Delta and the Abruptex region are heavily modified by protein O-fucosylation, but the split mutation of Drosophila Notch, which affects O-fucosylation of EGF repeat 14, did not affect binding of Notch to either Delta or the Abruptex region. Conclusion The Abruptex region may serve as a barrier to Notch activation by competing for the ligand-binding domain of Notch.
Collapse
Affiliation(s)
- Zifei Pei
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Geffers I, Serth K, Chapman G, Jaekel R, Schuster-Gossler K, Cordes R, Sparrow DB, Kremmer E, Dunwoodie SL, Klein T, Gossler A. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. ACTA ACUST UNITED AC 2007; 178:465-76. [PMID: 17664336 PMCID: PMC2064846 DOI: 10.1083/jcb.200702009] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Notch ligands Dll1 and Dll3 are coexpressed in the presomitic mesoderm of mouse embryos. Despite their coexpression, mutations in Dll1 and Dll3 cause strikingly different defects. To determine if there is any functional equivalence, we replaced Dll1 with Dll3 in mice. Dll3 does not compensate for Dll1; DLL1 activates Notch in Drosophila wing discs, but DLL3 does not. We do not observe evidence for antagonism between DLL1 and DLL3, or repression of Notch activity in mice or Drosophila. In vitro analyses show that differences in various domains of DLL1 and DLL3 individually contribute to their biochemical nonequivalence. In contrast to endogenous DLL1 located on the surface of presomitic mesoderm cells, we find endogenous DLL3 predominantly in the Golgi apparatus. Our data demonstrate distinct in vivo functions for DLL1 and DLL3. They suggest that DLL3 does not antagonize DLL1 in the presomitic mesoderm and warrant further analyses of potential physiological functions of DLL3 in the Golgi network.
Collapse
Affiliation(s)
- Insa Geffers
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Elyaman W, Bradshaw EM, Wang Y, Oukka M, Kivisäkk P, Chiba S, Yagita H, Khoury SJ. JAGGED1 and delta1 differentially regulate the outcome of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:5990-8. [PMID: 17947672 DOI: 10.4049/jimmunol.179.9.5990] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notch signaling plays an important role during T cell development in the thymus and in T cell activation but the role of Notch in autoimmunity is not clear. We investigated the role of Jagged1 and Delta1 in experimental autoimmune encephalomyelitis. During experimental autoimmune encephalomyelitis, Delta1 expression is up-regulated on dendritic cells and B cells after priming while Jagged1 is up-regulated only on dendritic cells. Administration of anti-Jagged1 Ab exacerbated clinical disease while that of anti-Delta1 Ab reduced the severity of the clinical disease. In contrast, administration of Jagged1-Fc protected from disease, that of Delta1-Fc exacerbated disease. Treatment with Jagged1-Fc was associated with increased IL-10-producing Ag-specific cells in the CNS, while anti-Jagged1 decreased the frequency of IL-10-producing cells. Treatment with Delta1-Fc increased Th1 cells in the CNS, while anti-Delta-1 decreased the frequency of Th1 cells. Manipulation of Delta1 or Jagged1 had no effect on the frequency of Th17 cells or FoxP3(+) cells. Moreover, Jagged1 may play a role in CNS homeostasis because murine astrocytes specifically express Jagged1 that is up-regulated by TGF-beta, whereas IFN-gamma, TNF-alpha, and IL-17 decrease Jagged1 expression. Our study provides novel data about differential roles of Notch ligands in regulating inflammation in the periphery as well as in the CNS.
Collapse
Affiliation(s)
- Wassim Elyaman
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hamada Y, Hiroe T, Suzuki Y, Oda M, Tsujimoto Y, Coleman JR, Tanaka S. Notch2 is required for formation of the placental circulatory system, but not for cell-type specification in the developing mouse placenta. Differentiation 2007; 75:268-78. [PMID: 17359302 DOI: 10.1111/j.1432-0436.2006.00137.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously reported that a mutation in the ankyrin repeats of mouse Notch2 results in embryonic lethality by embryonic day 11.5 (E11.5), showing developmental retardation at E10.5. This indicated that Notch2 plays an essential role in postimplantation development in mice. Here, we demonstrate that whole embryo culture can circumvent developmental retardation of Notch2 mutant embryos for up to 1 day, suggesting that the lethality was primarily caused by extraembryonic defects. Histological examinations revealed delayed entry of maternal blood into the mutant placenta and poor blood sinus formation at later stages. Notch2-expressing cells appeared around maternal blood sinuses. Specification of trophoblast subtypes appeared not to be drastically disturbed and expression of presumptive downstream genes of Notch2 signaling was not altered by the Notch2 mutation. Thus, in the developing mouse placenta, Notch2 is unlikely to be involved in cell fate decisions, but rather participates in formation of maternal blood sinuses. In aggregation chimeras with wild-type tetraploid embryos, the mutant embryos developed normally until E12.5, but died before E13.5. The chimeric placentas showed a restored maternal blood sinus formation when compared with the mutant placentas, but not at the level of wild-type diploid placentas. Therefore, it was concluded that the mutant suffers from defects in maternal blood sinus formation. Thus, Notch2 is not cell autonomously required for the early cell fate determination of subtypes of trophoblast cells, but plays an indispensable role in the formation of maternal blood sinuses in the developing mouse placenta.
Collapse
Affiliation(s)
- Yoshio Hamada
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|