1
|
Koçak G, Uyulgan S, Polatlı E, Sarı V, Kahveci B, Bursali A, Binokay L, Reçber T, Nemutlu E, Mardinoğlu A, Karakülah G, Utine CA, Güven S. Generation of Anterior Segment of the Eye Cells from hiPSCs in Microfluidic Platforms. Adv Biol (Weinh) 2024; 8:e2400018. [PMID: 38640945 DOI: 10.1002/adbi.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Indexed: 04/21/2024]
Abstract
Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.
Collapse
Affiliation(s)
- Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sude Uyulgan
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Elifsu Polatlı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Burak Kahveci
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Ahmet Bursali
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
| | - Leman Binokay
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, 35340, Türkiye
| |
Collapse
|
2
|
Komuro A, Yokoi N, Sotozono C, Kinoshita S. Effectiveness of Single-Dose Oral Pilocarpine Administration in Patients with Sjögren's Syndrome. Diagnostics (Basel) 2023; 14:91. [PMID: 38201400 PMCID: PMC10795738 DOI: 10.3390/diagnostics14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, we evaluated the effectiveness of a single-dose oral pilocarpine administration on tear film (TF), as well as dry eye and dry mouth symptoms, in 53 eyes of 27 Sjögren syndrome (SS) patients who were experiencing dry mouth. To evaluate the changes in tear volume, a digital video-meniscometer was used to measure the radius of the lower central tear meniscus curvature (R, mm) of each eye at prior to the administration of 5 mg oral pilocarpine, and at 15 (R:(15)), 30 (R:(30)), and 60 (R:(60)) minutes after administration. The fluorescein breakup time (FBUT, seconds) and ocular and oral dryness symptoms were evaluated before and at 60 min after administration using a visual analogue scale (VAS, mm). A significant increase in R was observed at 15 and 30 min after administration compared to that at prior to administration. FBUT showed significant improvement at 60 min after administration, and the VAS score for ocular and oral dryness symptoms was found to have decreased significantly at 60 min after administration. A single-dose administration of 5 mg oral pilocarpine had a beneficial effect on TF, as well as on ocular and oral dryness symptoms, in patients with SS.
Collapse
Affiliation(s)
- Aoi Komuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (A.K.); (C.S.)
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (A.K.); (C.S.)
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (A.K.); (C.S.)
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan;
| |
Collapse
|
3
|
Asal M, Koçak G, Sarı V, Reçber T, Nemutlu E, Utine CA, Güven S. Development of lacrimal gland organoids from iPSC derived multizonal ocular cells. Front Cell Dev Biol 2023; 10:1058846. [PMID: 36684423 PMCID: PMC9846036 DOI: 10.3389/fcell.2022.1058846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the β-Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis.
Collapse
Affiliation(s)
- Melis Asal
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, Turkey
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey,*Correspondence: Sinan Güven,
| |
Collapse
|
4
|
Glasgow BJ. Tear Lipocalin and Lipocalin-Interacting Membrane Receptor. Front Physiol 2021; 12:684211. [PMID: 34489718 PMCID: PMC8417070 DOI: 10.3389/fphys.2021.684211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Tear lipocalin is a primate protein that was recognized as a lipocalin from the homology of the primary sequence. The protein is most concentrated in tears and produced by lacrimal glands. Tear lipocalin is also produced in the tongue, pituitary, prostate, and the tracheobronchial tree. Tear lipocalin has been assigned a multitude of functions. The functions of tear lipocalin are inexorably linked to structural characteristics that are often shared by the lipocalin family. These characteristics result in the binding and or transport of a wide range of small hydrophobic molecules. The cavity of tear lipocalin is formed by eight strands (A-H) that are arranged in a β-barrel and are joined by loops between the β-strands. Recently, studies of the solution structure of tear lipocalin have unveiled new structural features such as cation-π interactions, which are extant throughout the lipocalin family. Lipocalin has many unique features that affect ligand specificity. These include a capacious and a flexible cavity with mobile and short overhanging loops. Specific features that confer promiscuity for ligand binding in tear lipocalin will be analyzed. The functions of tear lipocalin include the following: antimicrobial activities, scavenger of toxic and tear disruptive compounds, endonuclease activity, and inhibition of cysteine proteases. In addition, tear lipocalin binds and may modulate lipids in the tears. Such actions support roles as an acceptor for phospholipid transfer protein, heteropolymer formation to alter viscosity, and tear surface interactions. The promiscuous lipid-binding properties of tear lipocalin have created opportunities for its use as a drug carrier. Mutant analogs have been created to bind other molecules such as vascular endothelial growth factor for medicinal use. Tear lipocalin has been touted as a useful biomarker for several diseases including breast cancer, chronic obstructive pulmonary disease, diabetic retinopathy, and keratoconus. The functional possibilities of tear lipocalin dramatically expanded when a putative receptor, lipocalin-interacting membrane receptor was identified. However, opposing studies claim that lipocalin-interacting membrane receptor is not specific for lipocalin. A recent study even suggests a different function for the membrane protein. This controversy will be reviewed in light of gene expression data, which suggest that tear lipocalin has a different tissue distribution than the putative receptor. But the data show lipocalin-interacting membrane receptor is expressed on ocular surface epithelium and that a receptor function here would be rational.
Collapse
Affiliation(s)
- Ben J. Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Glasgow BJ, Abduragimov AR. Methods toward simplification of time resolved fluorescence anisotropy in proteins labeled with NBD (4-chloro-7-nitrobenzofurazan) adducts. MethodsX 2019; 6:998-1008. [PMID: 31080764 PMCID: PMC6506467 DOI: 10.1016/j.mex.2019.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/25/2022] Open
Abstract
The analysis of time resolved fluorescence anisotropy for NBD tagged proteins is difficult when multiple exponential components arise from heterogeneous amino acid fluorescent adducts. Two approaches were taken toward simplification. First, N terminal selective labeling of tear lipocalin with NBD-Cl was attempted at pH 7.0. While lysines were predominantly labeled at pH 8.0, selective N terminal labeling was attained at neutral pH. Second, fluorescence anisotropic decay analysis was simplified to recover only the rotational correlation time of the protein not the side chain. The boundaries for analysis of anisotropic decays were limited to the longer lifetimes. A modified tail fit enabled fitting the anisotropic decay to a single exponential. The correlation time for tear lipocalin matched published values. Additionally, a method for normalization of acquisition times of vertically (VV) and horizontally (VH) polarized fluorescence emission decays is presented for time-resolved anisotropy. Here it is applied to Picoharp software (Picoquant, Berlin). Picoharp software is programmed with an automatic stop at unequal acquisition times if the fluorescent counts exceeds a default. The method adjusts the intensity decays to the same acquisition time and is applicable to all time-resolved anisotropic decay data collected with time-correlated photon counting. NBD labeling at pH 7.0 was not selective for N terminus of LCN1. Constraints for range simplifies fittings of anisotropic decays. Different acquisition times for decays can be normalized to facilitate fitting in data obtained by Picoharp.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
6
|
Glasgow BJ, Abduragimov AR. Ligand binding complexes in lipocalins: Underestimation of the stoichiometry parameter (n). BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1001-1007. [PMID: 30037780 PMCID: PMC6481938 DOI: 10.1016/j.bbapap.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The stoichiometry of a ligand binding reaction to a protein is given by a parameter (n). The value of this parameter may indicate the presence of protein monomer or dimers in the binding complex. Members of the lipocalin superfamily show variation in the stoichiometry of binding to ligands. In some cases the stoichiometry parameter (n) has been variously reported for the same protein as mono- and multimerization of the complex. Prime examples include retinol binding protein, β lactoglobulin and tear lipocalin, also called lipocalin-1(LCN1). Recent work demonstrated the stoichiometric ratio for ceramide:tear lipocalin varied (range n = 0.3-0.75) by several different methods. The structure of ceramide raises the intriguing possibility of a lipocalin dimer complex with each lipocalin molecule attached to one of the two alkyl chains of ceramide. The stoichiometry of the ceramide-tear lipocalin binding complex was explored in detail using size exclusion chromatography and time resolved fluorescence anisotropy. Both methods showed consistent results that tear lipocalin remains monomeric when bound to ceramide. Delipidation experiments suggest the most likely explanation is that the low 'n' values result from prior occupancy of the binding sites by native ligands. Lipocalins such as tear lipocalin that have numerous binding partners are particularly prone to an underestimated apparent stoichiometry parameter.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
7
|
Stolle T, Grondinger F, Dunkel A, Hofmann T. Quantitative proteomics and SWATH-MS to elucidate peri-receptor mechanisms in human salt taste sensitivity. Food Chem 2018; 254:95-102. [DOI: 10.1016/j.foodchem.2018.01.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/23/2022]
|
8
|
Glasgow BJ, Abduragimov AR. Interaction of ceramides and tear lipocalin. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:399-408. [PMID: 29331331 PMCID: PMC5835416 DOI: 10.1016/j.bbalip.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
9
|
Glasgow BJ. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9714. [PMID: 27307653 DOI: 10.1117/12.2211074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain subdiffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095
| |
Collapse
|
10
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Exploring protein solution structure: Second moments of fluorescent spectra report heterogeneity of tryptophan rotamers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:909-920. [PMID: 26119357 PMCID: PMC4550534 DOI: 10.1016/j.saa.2015.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/11/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Trp fluorescent spectra appear as a log-normal function but are usually analyzed with λmax, full width at half maximum, and the first moment of incomplete spectra. Log-normal analyses have successfully separated fluorescence contributions from some multi-Trp proteins but deviations were observed in single Trp proteins. The possibility that disparate rotamer environments might account for these deviations was explored by moment spectral analysis of single Trp mutants spanning the sequence of tear lipocalin as a model. The analysis required full width Trp spectra. Composite spectra were constructed using log-normal analysis to derive the inaccessible blue edge, and the experimentally obtained spectra for the remainder. First moments of the composite spectra reflected the site-resolved secondary structure. Second moments were most sensitive for spectral deviations. A novel parameter, derived from the difference of the second moments of composite and simulated log-normal spectra correlated with known multiple heterogeneous rotamer conformations. Buried and restricted side chains showed the most heterogeneity. Analyses applied to other proteins further validated the method. The rotamer heterogeneity values could be rationalized by known conformational properties of Trp residues and the distribution of nearby charged groups according to the internal Stark effect. Spectral heterogeneity fits the rotamer model but does not preclude other contributing factors. Spectral moment analysis of full width Trp emission spectra is accessible to most laboratories. The calculations are informative of protein structure and can be adapted to study dynamic processes.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Ben J Glasgow
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| |
Collapse
|
11
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Double tryptophan exciton probe to gauge proximal side chains in proteins: augmentation at low temperature. J Phys Chem B 2015; 119:3962-8. [PMID: 25693116 DOI: 10.1021/jp512864s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The circular dichroic (CD) exciton couplet between tryptophans and/or tyrosines offers the potential to probe distances within 10 Å in proteins. The exciton effect has been used with native chromophores in critical positions in a few proteins. Here, site-directed mutagenesis created double tryptophan probes for key sites of a protein (tear lipocalin). For tear lipocalin, the crystal and solution structures are concordant in both apo- and holo-forms. Double tryptophan substitutions were performed at sites that could probe conformation and were likely within 10 Å. Far-UV CD spectra of double Trp mutants were performed with controls that had noninteracting substituted tryptophans. Low temperature (77 K) was tested for augmentation of the exciton signal. Exciton coupling appeared with tryptophan substitutions at positions within loop A-B (28 and 31, 33), between loop A-B (28) and strand G (103 and 105), as well as between the strands B (35) and C (56). The CD exciton couplet signals were amplified 3-5-fold at 77 K. The results were concordant with close distances in crystal and solution structures. The exciton couplets had functional significance and correctly assigned the holo-conformation. The methodology creates an effective probe to identify proximal amino acids in a variety of motifs.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles , Los Angeles, California 90095, United States
| | | | | |
Collapse
|
12
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Restoration of structural stability and ligand binding after removal of the conserved disulfide bond in tear lipocalin. Biochem Biophys Res Commun 2014; 452:1004-8. [PMID: 25223802 PMCID: PMC4219327 DOI: 10.1016/j.bbrc.2014.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 11/20/2022]
Abstract
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0M TMAO increased the free energy change (ΔG(0)) significantly from 2.1 to 3.8kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States
| | - Ben J Glasgow
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| |
Collapse
|
13
|
Staudinger T, Redl B, Glasgow BJ. Antibacterial activity of rifamycins for M. smegmatis with comparison of oxidation and binding to tear lipocalin. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:750-8. [PMID: 24530503 PMCID: PMC3992280 DOI: 10.1016/j.bbapap.2014.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/19/2022]
Abstract
A mutant of Mycobacterium smegmatis is a potential class I model substitute for Mycobacterium tuberculosis. Because not all of the rifamycins have been tested in this organism, we determined bactericidal profiles for the 6 major rifamycin derivatives. The profiles closely mirrored those established for M. tuberculosis. Rifalazil was confirmed to be the most potent rifamycin. Because the tuberculous granuloma presents a harshly oxidizing environment we explored the effects of oxidation on rifamycins. Mass spectrometry confirmed that three of the six major rifamycins showed autoxidation in the presence of trace metals. Oxidation could be monitored by distinctive changes including isosbestic points in the ultraviolet-visible spectrum. Oxidation of rifamycins abrogated anti-mycobacterial activity in M. smegmatis. Protection from autoxidation was conferred by binding susceptible rifamycins to tear lipocalin, a promiscuous lipophilic protein. Rifalazil was not susceptible to autoxidation but was insoluble in aqueous solution. Solubility was enhanced when complexed to tear lipocalin and was accompanied by a spectral red shift. The positive solvatochromism was consistent with robust molecular interaction and binding. Other rifamycins also formed a complex with lipocalin, albeit to a lesser extent. Protection from oxidation and enhancement of solubility with protein binding may have implications for delivery of select rifamycin derivatives.
Collapse
Affiliation(s)
- Tamara Staudinger
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA; Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Bernhard Redl
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ben J Glasgow
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Probing tertiary structure of proteins using single Trp mutations with circular dichroism at low temperature. J Phys Chem B 2014; 118:986-95. [PMID: 24404774 PMCID: PMC3983331 DOI: 10.1021/jp4120145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Trp is the most spectroscopically
informative aromatic amino acid
of proteins. However, the near-UV circular dichroism (CD) spectrum
of Trp is complicated because the intensity and sign of 1La and 1Lb bands vary independently.
To resolve vibronic structure and gain site-specific information from
complex spectra, deconvolution was combined with cooling and site-directed
tryptophan substitution. Low temperature near-UV CD was used to probe
the local tertiary structure of a loop and α-helix in tear lipocalin.
Upon cooling, the enhancement of the intensities of the near-UV CD
was not uniform, but depends on the position of Trp in the protein
structure. The most enhanced 1Lb band was observed
for Trp at position 124 in the α-helix segment matching the
known increased conformational mobility during ligand binding. Some
aspects of the CD spectra of W28 and W130 were successfully linked
to specific rotamers of Trp previously obtained from fluorescence
lifetime measurements. The discussion was based on a framework that
the magnitude of the energy differences in local conformations governs
the changes in the CD intensities at low temperature. The Trp CD spectral
classification of Strickland was modified to facilitate the recognition
of pseudo peaks. Near-UV CD spectra harbor abundant information about
the conformation of proteins that site directed Trp CD can report.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles , California 90095, United States
| | | | | |
Collapse
|
15
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Effect of short- and long-range interactions on trp rotamer populations determined by site-directed tryptophan fluorescence of tear lipocalin. PLoS One 2013; 8:e78754. [PMID: 24205305 PMCID: PMC3810256 DOI: 10.1371/journal.pone.0078754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/20/2013] [Indexed: 11/25/2022] Open
Abstract
In the lipocalin family, the conserved interaction between the main α-helix and the β-strand H is an ideal model to study protein side chain dynamics. Site-directed tryptophan fluorescence (SDTF) has successfully elucidated tryptophan rotamers at positions along the main alpha helical segment of tear lipocalin (TL). The rotamers assigned by fluorescent lifetimes of Trp residues corroborate the restriction expected based on secondary structure. Steric conflict constrains Trp residues to two (t, g−) of three possible χ1 (t, g−, g+) canonical rotamers. In this study, investigation focused on the interplay between rotamers for a single amino acid position, Trp 130 on the α-helix and amino acids Val 113 and Leu 115 on the H strand, i.e. long range interactions. Trp130 was substituted for Phe by point mutation (F130W). Mutations at positions 113 and 115 with combinations of Gly, Ala, Phe residues alter the rotamer distribution of Trp130. Mutations, which do not distort local structure, retain two rotamers (two lifetimes) populated in varying proportions. Replacement of either long range partner with a small amino acid, V113A or L115A, eliminates the dominance of the t rotamer. However, a mutation that distorts local structure around Trp130 adds a third fluorescence lifetime component. The results indicate that the energetics of long-range interactions with Trp 130 further tune rotamer populations. Diminished interactions, evident in W130G113A115, result in about a 22% increase of α-helix content. The data support a hierarchic model of protein folding. Initially the secondary structure is formed by short-range interactions. TL has non-native α-helix intermediates at this stage. Then, the long-range interactions produce the native fold, in which TL shows α-helix to β-sheet transitions. The SDTF method is a valuable tool to assess long-range interaction energies through rotamer distribution as well as the characterization of low-populated rotameric states of functionally important excited protein states.
Collapse
Affiliation(s)
- Oktay K. Gasymov
- Departments of Pathology and Laboratory Medicine and Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (OG); (BG)
| | - Adil R. Abduragimov
- Departments of Pathology and Laboratory Medicine and Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ben J. Glasgow
- Departments of Pathology and Laboratory Medicine and Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (OG); (BG)
| |
Collapse
|
16
|
Gasymov OK, Abduragimov AR, Glasgow BJ. A simple model-free method for direct assessment of fluorescent ligand binding by linear spectral summation. J Fluoresc 2013; 24:231-8. [PMID: 24043458 DOI: 10.1007/s10895-013-1290-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Fluorescent tagged ligands are commonly used to determine binding to proteins. However, bound and free ligand concentrations are not directly determined. Instead the response in a fluorescent ligand titration experiment is considered to be proportional to the extent of binding and, therefore, the maximum value of binding is scaled to the total protein concentration. Here, a simple model-free method is presented to be performed in two steps. In the first step, normalized bound and free spectra of the ligand are determined. In the second step, these spectra are used to fit composite spectra as the sum of individual components or linear spectral summation. Using linear spectral summation, free and bound 1-Anilinonaphthalene-8-Sulfonic Acid (ANS) fluorescent ligand concentrations are directly calculated to determine ANS binding to tear lipocalin (TL), an archetypical ligand binding protein. Error analysis shows that the parameters that determine bound and free ligand concentrations were recovered with high certainty. The linear spectral summation method is feasible when fluorescence intensity is accompanied by a spectral shift upon protein binding. Computer simulations of the experiments of ANS binding to TL indicate that the method is feasible when the fluorescence spectral shift between bound and free forms of the ligand is just 8 nm. Ligands tagged with environmentally sensitive fluorescent dyes, e.g., dansyl chromophore, are particularly suitable for this method.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
17
|
Yeh PT, Casey R, Glasgow BJ. A novel fluorescent lipid probe for dry eye: retrieval by tear lipocalin in humans. Invest Ophthalmol Vis Sci 2013; 54:1398-410. [PMID: 23361507 DOI: 10.1167/iovs.12-10817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A fluorescent probe was used to identify mucin-depleted areas on the ocular surface and to test the hypothesis that tear lipocalin retrieves lipids from the eyes of normal and dry eye subjects. METHODS Fluorescein-labeled octadecyl ester, FODE, was characterized by mass spectrometry and absorbance spectrophotometry. The use of FODE to define mucin defects was studied with impression membranes under conditions that selectively deplete mucin. The kinetics of FODE removal from the ocular surface were analyzed by sampling tears from control and dry eye patients at various times. The tear protein-FODE complexes were isolated by gel filtration and ion exchange chromatographies, monitored with absorption and fluorescent spectroscopies, and analyzed by gel electrophoresis. Immunoprecipitation verified FODE complexed to tear lipocalin in tears. RESULTS FODE exhibits an isosbestic point at 473 nm, pKa of 7.5, and red shift relative to fluorescein. The low solubility of FODE in buffer is enhanced with 1% Tween 80 and ethanol. FODE adheres to the ocular surface of dry eye patients. FODE produces visible staining at the contact sites of membranes, which correlates with removal of mucin. Despite the fact that tear lipocalin is reduced in dry eye patients, FODE removal follows similar rapid exponential decay functions for all subjects. FODE is bound to tear lipocalin in tears. CONCLUSIONS Tear lipocalin retrieves lipid rapidly from the human ocular surface in mild to moderate dry eye disease and controls. With improvements in solubility, FODE may have potential as a fluorescent probe to identify mucin-depleted areas.
Collapse
Affiliation(s)
- Po-Ting Yeh
- Departments of Ophthalmology and Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California-Los Angeles, Jules Stein Eye Institute, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
18
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Tryptophan rotamer distribution revealed for the α-helix in tear lipocalin by site-directed tryptophan fluorescence. J Phys Chem B 2012; 116:13381-8. [PMID: 23088798 DOI: 10.1021/jp309318r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rotamer libraries are a valuable tool for protein structure determination, modeling, and design. Site-directed tryptophan fluorescence (SDTF) was used in combination with the rotamer model for the fluorescence intensity decays to solve α-helical conformations of proteins in solution. Single Trp mutations located in an α-helical segment of human tear lipocalin were explored for structure assignment. Along with fluorescence λ(max) values, the rotamer model assignment of fluorescence lifetimes fits the backbone conformation. Typically, Trp fluorescence in proteins shows three lifetimes. However, for the α-helix, two lifetimes assigned to t and g(-) rotamers were satisfactory to describe Trp fluorescence intensity decays. The g(+) rotamer is not feasible in the α-helix due to steric restriction. Trp rotamer distributions obtained by fluorescence were compared with the rotamer library derived from X-ray crystallography data of proteins. The Trp rotamer distributions vary for solvent exposed and buried (tertiary interaction) sites. A new strategy using the rotamer distribution with SDTF (RD-SDTF) removes the limitation of regular SDTF and other labeling techniques, in which site-specific differences, e.g., accessibility, are presumed. The RD-SDTF technique does not rely on environmental differences of side chains and is able to detect α-helical structure where all side chains are exposed to solvent. Potentially, this technique is applicable to various proteins including membrane proteins, which are rich in α-helix motif.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology and Jules Stein Eye Institute, University California at Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
19
|
Ubels JL, Gipson IK, Spurr-Michaud SJ, Tisdale AS, Van Dyken RE, Hatton MP. Gene expression in human accessory lacrimal glands of Wolfring. Invest Ophthalmol Vis Sci 2012; 53:6738-47. [PMID: 22956620 DOI: 10.1167/iovs.12-10750] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The accessory lacrimal glands are assumed to contribute to the production of tear fluid, but little is known about their function. The goal of this study was to conduct an analysis of gene expression by glands of Wolfring that would provide a more complete picture of the function of these glands. METHODS Glands of Wolfring were isolated from frozen sections of human eyelids by laser microdissection. RNA was extracted from the cells and hybridized to gene expression arrays. The expression of several of the major genes was confirmed by immunohistochemistry. RESULTS Of the 24 most highly expressed genes, 9 were of direct relevance to lacrimal function. These included lysozyme, lactoferrin, tear lipocalin, and lacritin. The glands of Wolfring are enriched in genes related to protein synthesis, targeting, and secretion, and a large number of genes for proteins with antimicrobial activity were detected. Ion channels and transporters, carbonic anhydrase, and aquaporins were abundantly expressed. Genes for control of lacrimal function, including cholinergic, adrenergic, vasoactive intestinal polypeptide, purinergic, androgen, and prolactin receptors were also expressed in gland of Wolfring. CONCLUSIONS The data suggest that the function of glands of Wolfring is similar to that of main lacrimal glands and are consistent with secretion electrolytes, fluid, and protein under nervous and hormonal control. Since these glands secrete directly onto the ocular surface, their location may allow rapid response to exogenous stimuli and makes them readily accessible to topical drugs.
Collapse
Affiliation(s)
- John L Ubels
- Department of Biology, Calvin College, Grand Rapids, Michigan 49546, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Teran LM, Rüggeberg S, Santiago J, Fuentes-Arenas F, Hernández JL, Montes-Vizuet AR, Xinping L, Franz T. Immune Response to Seasonal Influenza A Virus Infection: A Proteomic Approach. Arch Med Res 2012; 43:464-9. [DOI: 10.1016/j.arcmed.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
|
21
|
Dean AW, Glasgow BJ. Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Invest Ophthalmol Vis Sci 2012; 53:1773-82. [PMID: 22395887 DOI: 10.1167/iovs.11-9419] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The purpose of this article was to identify by mass spectrometry phosphocholine lipids in stimulated human tears and determine the molecules bound to tear lipocalin or other proteins. METHODS Tear proteins were separated isocratically from pooled stimulated human tears by gel filtration fast performance liquid chromatography. Separation of tear lipocalin was confirmed by SDS tricine gradient PAGE. Protein fractions were extracted with chloroform/methanol and analyzed with electrospray ionization MS/MS triple quadrupole mass spectrometry in precursor ion scan mode for select leaving groups. For quantification, integrated ion counts were derived from standard curves of authentic compounds of phosphatidylcholine (PC) and phosphatidylserine. RESULTS Linear approximation was possible from integration of the mass spectrometrically obtained ion peaks at 760 Da for the PC standard. Tears contained 194 ng/mL of the major intact PC (34:2), m/z 758.6. Ten other monoisotopic phosphocholines were found in tears. A peak at 703.3 Da was assigned as a sphingomyelin. Four lysophosphatidylcholines (m/z 490-540) accounted for about 80% of the total integrated ion count. The [M+H](+) compound, m/z 496.3, accounted for 60% of the signal intensity. Only the tear lipocalin-bearing fractions showed phosphocholines (104 ng/mL). Although the intact phospholipids bound to tear lipocalin corresponded precisely in mass and relative signal intensity to that found in tears, we did not identify phosphocholines between m/z 490 and 540 in any of the gel-filtration fractions. CONCLUSIONS Phospholipids, predominantly lysophospholipids, are present in tears. The higher mass intact PCs in tears are native ligands of tear lipocalin.
Collapse
Affiliation(s)
- Austin W Dean
- Departments of Ophthalmology, Pathology, and Laboratory Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Jules Stein Eye Institute, Los Angeles, CA 90095, USA
| | | |
Collapse
|
22
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Cation-π interactions in lipocalins: structural and functional implications. Biochemistry 2012; 51:2991-3002. [PMID: 22439821 DOI: 10.1021/bi3002902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cation-π interaction impacts protein folding, structural stability, specificity, and molecular recognition. Cation-π interactions have been overlooked in the lipocalin family. To fill this gap, these interactions were analyzed in the 113 crystal and solution structures from the lipocalin family. The cation-π interactions link previously identified structurally conserved regions and reveal new motifs, which are beyond the reach of a sequence alignment algorithm. Functional and structural significance of the interactions were tested experimentally in human tear lipocalin (TL). TL, a prominent and promiscuous lipocalin, has a key role in lipid binding at the ocular surface. Ligand binding modulation through the loop AB at the "open" end of the barrel has been erroneously attributed solely to electrostatic interactions. Data revealed that the interloop cation-π interaction in the pair Phe28-Lys108 contributes significantly to stabilize the holo-conformation of the loop AB. Numerous energetically significant and conserved cation-π interactions were uncovered in TL and throughout the lipocalin family. Cation-π interactions, such as the highly conserved Trp17-Arg118 pair in TL, were educed in low temperature experiments of mutants with Trp to Tyr substitutions.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology and Jules Stein Eye Institute, University California at Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
23
|
Abstract
Lipocalins are a family of diverse low molecular weight proteins that act extracellularly. They use multiple recognition properties that include 1) ligand binding to small hydrophobic molecules, 2) macromolecular complexation with other soluble macromolecules, and 3) binding to specific cell surface receptors to deliver cargo. Tear lipocalin (TLC) is a major protein in tears and has a large ligand-binding cavity that allows the lipocalin to bind an extensive and diverse set of lipophilic molecules. TLC can also bind to macromolecules, including the tear proteins lactoferin and lysozyme. The receptor to which TLC binds is termed tear lipocalin-interacting membrane receptor (LIMR). LIMR appears to work by endocytosis. TLC has a variety of suggested functions in tears, including regulation of tear viscosity, binding and release of lipids, endonuclease inactivation of viral DNA, binding of microbial siderophores (iron chelators used to deliver essential iron to bacteria), serving as a biomarker for dry eye, and possessing anti-inflammatory activity. Additional research is warranted to determine the actual functions of TLC in tears and the presence of its receptor on the ocular surface.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Kim HJ, Kim PK, Yoo HS, Kim CW. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin Biochem 2011; 45:60-7. [PMID: 22040812 DOI: 10.1016/j.clinbiochem.2011.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/11/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
OBJECTIVES To identify potential prognostic or diagnostic marker tear proteins for early diabetic retinopathy (DR) and to investigate the pathogenesis of this disease using proteomics techniques. DESIGN AND METHODS The tear proteins expressed in patients suffering from diabetes mellitus without the retinopathy symptoms, nonproliferative diabetic retinopathy and healthy volunteers were analyzed by 2-DE. The differentially expressed proteins in patients were identified by ESI-Q-TOF and confirmed by Western blotting. RESULTS Proteins which were differentially expressed with statistical significance (P<0.05) in two diabetic groups as compared to those in healthy group were selected and identified by ESI-Q-TOF MS/MS. Among these proteins, three proteins (LCN-1, HSP27 and B2M) were found to exhibit a progressive reduction in two disease groups. The expression levels of which might be useful as diagnostic biomarkers of DR were verified by Western blotting CONCLUSIONS Proteomic analysis using tear is a novel approach that can provide insight into possible biomarker and the pathogenesis of early DR.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Gasymov OK, Abduragimov AR, Glasgow BJ. The conserved disulfide bond of human tear lipocalin modulates conformation and lipid binding in a ligand selective manner. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:671-83. [PMID: 21466861 DOI: 10.1016/j.bbapap.2011.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
The primary aim of this study is the elucidation of the mechanism of disulfide induced alteration of ligand binding in human tear lipocalin (TL). Disulfide bonds may act as dynamic scaffolds to regulate conformational changes that alter protein function including receptor-ligand interactions. A single disulfide bond, (Cys61-Cys153), exists in TL that is highly conserved in the lipocalin superfamily. Circular dichroism and fluorescence spectroscopies were applied to investigate the mechanism by which disulfide bond removal effects protein stability, dynamics and ligand binding properties. Although the secondary structure is not altered by disulfide elimination, TL shows decreased stability against urea denaturation. Free energy change (ΔG(0)) decreases from 4.9±0.2 to 2.1±0.3kcal/mol with removal of the disulfide bond. Furthermore, ligand binding properties of TL without the disulfide vary according to the type of ligand. The binding of a bulky ligand, NBD-cholesterol, has a decreased time constant (from 11.8±0.2 to 3.3s). In contrast, the NBD-labeled phospholipid shows a moderate decrease in the time constant for binding, from 33.2±0.2 to 22.2±0.4s. FRET experiments indicate that the hairpin CD is directly involved in modulation of both ligand binding and flexibility of TL. In TL complexed with palmitic acid (PA-TL), the distance between the residues 62 of strand D and 81 of loop EF is decreased by disulfide bond reduction. Consequently, removal of the disulfide bond boosts flexibility of the protein to reach a CD-EF loop distance (24.3Å, between residues 62 and 81), which is not accessible for the protein with an intact disulfide bond (26.2Å). The results suggest that enhanced flexibility of the protein promotes a faster accommodation of the ligand inside the cavity and an energetically favorable ligand-protein complex.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, University of California, Los Angeles, USA.
| | | | | |
Collapse
|
26
|
Setälä NL, Holopainen JM, Metso J, Yohannes G, Hiidenhovi J, Andersson LC, Eriksson O, Robciuc A, Jauhiainen M. Interaction of phospholipid transfer protein with human tear fluid mucins. J Lipid Res 2010; 51:3126-34. [PMID: 20724654 DOI: 10.1194/jlr.m006239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to circulation, where it transfers phospholipids between lipoprotein particles, phospholipid transfer protein (PLTP) was also identified as a component of normal tear fluid. The purpose of this study was to clarify the secretion route of tear fluid PLTP and elucidate possible interactions between PLTP and other tear fluid proteins. Human lacrimal gland samples were stained with monoclonal antibodies against PLTP. Heparin-Sepharose (H-S) affinity chromatography was used for specific PLTP binding, and coeluted proteins were identified with MALDI-TOF mass spectrometry or Western blot analysis. Immunoprecipitation assay and blotting with specific antibodies helped to identify and characterize PLTP-mucin interaction in tear fluid. Human tear fluid PLTP is secreted from the lacrimal gland. MALDI-TOF analysis of H-S fractions identified several candidate proteins, but protein-protein interaction assays revealed only ocular mucins as PLTP interaction partners. We suggest a dual role for PLTP in human tear fluid: (1) to scavenge lipophilic substances from ocular mucins and (2) to maintain the stability of the anterior tear lipid film. PLTP may also play a role in the development of ocular surface disease.
Collapse
Affiliation(s)
- Niko L Setälä
- Department of Ophthalmology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Excited protein states of human tear lipocalin for low- and high-affinity ligand binding revealed by functional AB loop motion. Biophys Chem 2010; 149:47-57. [PMID: 20439130 DOI: 10.1016/j.bpc.2010.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/22/2010] [Accepted: 03/28/2010] [Indexed: 10/19/2022]
Abstract
Human tear lipocalin (TL), a prominent member of lipocalin family, exhibits functional and structural promiscuity. The plasticity of loop regions modulates entry to the ligand pocket at the "open" end of the eight-stranded beta-barrel. Site-directed multi-distance measurements using fluorescence resonance energy transfer between functional loops register two excited protein states for low- and high-affinity ligand binding. At low pH, the longest loop AB adopts the conformation of the low-affinity excited protein state that matches the crystal structure of holo-TL at pH 8. A "crankshaft" like movement is detected for the loop AB in a low pH transition. At pH 7.3 the holo-protein assumes a high-affinity excited protein state, in which the loop AB is more compact (RMS=3.1A). In the apo-holo transition, the reporter Trp 28 moves about 4.5A that reflects a decrease in distance between Glu27 and Lys108. This interaction fixes the loop AB conformation for the high-affinity mode. No such movement is detected at low pH, where Glu27 is protonated. Data strongly indicate that the protonation state of Glu27 modulates the conformation of the loop AB for high- and low-affinity binding.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, University of California at Los Angeles, USA.
| | | | | |
Collapse
|
28
|
Glasgow BJ, Gasymov OK, Abduragimov AR, Engle JJ, Casey RC. Tear lipocalin captures exogenous lipid from abnormal corneal surfaces. Invest Ophthalmol Vis Sci 2010; 51:1981-7. [PMID: 19959641 PMCID: PMC2868392 DOI: 10.1167/iovs.09-4622] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/25/2009] [Accepted: 11/06/2009] [Indexed: 01/02/2023] Open
Abstract
Purpose. The cornea is protected by apical hydrophilic transmembrane mucins and tears. In pathologic states the mucin barrier is disrupted, creating potential for meibomian lipids to adhere more strongly. Undisplaced lipids create an unwettable surface. The hypothesis that pathologic ocular surfaces alter lipid binding and the ability of tear proteins to remove lipids was tested. Methods. Corneas with pathologic surfaces were studied for lipid adhesion and removal by tears. Capture of fluorescence-labeled phospholipids by human tears was assessed by steady state fluorometry. Tear proteins were separated by gel filtration chromatography and analyzed for bound lipids. Results. Contact angle measurements revealed strong lipid adherence to corneas submerged in buffer. Lower contact angles are observed for lipids on completely de-epithelialized corneas compared with intact corneas (P = 0.04). Lipid removal from these surfaces is greater with whole tears than with tears depleted of tear lipocalin (P < 0.0005). Significantly fewer lipids are captured by tears from Bowman's layer than from epithelial-bearing surfaces (P < 0.025). The only tear component to bind the fluorescence-tagged lipid is tear lipocalin. The histology of a rare case of dry eye disease demonstrates the dominant features of contemporaneous bullous keratopathy. Lipid sequestration from this cornea by tear lipocalin was robust. Conclusions. Lipid is captured by tear lipocalin from corneas with bullous keratopathy and dry eye. Lipid removal is slightly abrogated by greater lipid adhesion to Bowman's layer. Reduced secretion of tear lipocalin documented in dry eye disease could hamper lipid removal and exacerbate ocular surface pathology.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Pathology, UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
29
|
Gasymov OK, Abduragimov AR, Glasgow BJ. pH-Dependent conformational changes in tear lipocalin by site-directed tryptophan fluorescence. Biochemistry 2010; 49:582-90. [PMID: 20025287 DOI: 10.1021/bi901435q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tear lipocalin (TL), a major protein of human tears, binds a broad array of endogenous ligands. pH-dependent ligand binding in TL may have functional implications in tears. Previously, conformational selections of the AB and GH loops have been implicated in ligand binding by site-directed tryptophan fluorescence (SDTF). In this study, SDTF was applied to the AB and GH loops to investigate pH-driven conformational changes relevant to ligand binding. Both loops demonstrate significant but distinct conformational rearrangements over a wide pH range. In the low-pH transition, from 7.3 to 3.0, residues of the GH loop exhibit decreased solvent accessibilities. In acrylamide quenching experiments, the average quenching rate constant (k(q), accessibility parameter) of the residues in the GH loop is decreased approximately 38%, from 2.1 x 10(9) to 1.3 x 10(9) M(-1) s(-1). However, despite the significant changes in accessibilities for some residues in the AB loop, the average accessibility per residue remained unchanged (average k(q) = 1.2 M(-1) s(-1)). Accordingly, the low-pH transition induces conformational changes that reshuffle the accessibility profiles of the residues in the AB loop. A significant difference in the titration curves between the holo and apo forms of the W28 mutant suggests that the protonation states of the residues around position 28 modulate conformational switches of the AB loop relevant to ligand binding.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, UCLA School of Medicine, Jules Stein Eye Institute, 100 Stein Plaza, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
30
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Intracavitary ligand distribution in tear lipocalin by site-directed tryptophan fluorescence. Biochemistry 2009; 48:7219-28. [PMID: 19586017 DOI: 10.1021/bi9005557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-directed tryptophan fluorescence has been successfully used to determine the solution structure of tear lipocalin. Here, the technique is extended to measure the binding energy landscape. Single Trp mutants of tear lipocalin are bound to the native ligand and an analogue tagged with a quencher group to both populate and discriminate the excited protein states. Steady-state and time-resolved fluorescence quenching data reveal the intracavitary state of the ligand. The static components of fluorescence quenching identify the residues where nonfluorescence complexes form. An asymmetric distribution of the ligand within the cavity reflects the complex energy landscape of the excited protein states. These findings suggest that the excited protein states are not unique but consist of many substates. The roughness of the binding energy landscape is about 2.5kBT. The excited protein states originate primarily from conformational selections of loops AB and GH, a portal region. In contrast to static quenching, the dynamic components of fluorescence quenching by the ligand are relevant to both local side chain and ligand dynamics. Apparent bimolecular rate constants for collisional quenching of Trp by the nitroxide moiety are approximately 1 / 5 x 10(12) M(-1) s(-1). Estimations made for effective ligand concentrations establish actual rate constants on the order of 12 x 10(9) M(-1) s(-1). Prior to exit from the cavity of the protein, ligands explore binding sites in nanoseconds. Although microsecond fluctuations are rate-limiting processes in ligand binding for many proteins, accompanying nanosecond motion may be necessary for propagation of ligand binding.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, UCLA School of Medicine, Jules Stein Eye Institute, 100 Stein Plaza, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
31
|
Glasgow BJ, Gasymov OK, Casey RC. Exfoliative epitheliopathy of bullous keratopathy with breaches in the MUC16 Glycocalyx. Invest Ophthalmol Vis Sci 2009; 50:4060-4. [PMID: 19420336 PMCID: PMC2774776 DOI: 10.1167/iovs.08-3361] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Expression of cellular adhesion molecules is altered in bullous keratopathy. The hypothesis that epithelial alterations in bullous keratopathy compromise the surface of the cornea and its glycocalyx was tested. METHODS Studies were performed on eight cases each of pseudophakic bullous keratopathy and healthy corneas. The number of epithelial cell layers was determined with a stereological method of point counting. The minimum distance between points was established by estimates of cell size with variable pressure scanning electron microscopy performed in backscatter mode. The mean number of cell layers with mucin expression was identified by immunohistochemistry with mouse monoclonal antibodies for MUC1 and MUC16. Data were analyzed by Student's t-test if values showed a normal distribution or, alternatively, by the Wilcoxon rank-sum test. RESULTS Mean numbers of wing cell and superficial cell layers were lower in bullous keratopathy specimens (1.6 vs. 2.0; P < 0.0001) than in controls (1.1 vs. 1.8; P < 0.000001). The number of exfoliated cell layers evident in sections was increased in the bullous keratopathy specimens compared with controls (0.36 vs. 0.03; P < 0.0001). The number of cell layers decorated with antibodies to MUC16 was lower in bullous keratopathy specimens than in controls (0.5 vs. 1.2; P < 0.025). The reduction of layers expressing MUC1 in bullous keratopathy was not statistically significant. CONCLUSIONS Pseudophakic bullous keratopathy manifests an abnormal corneal ocular surface in which superficial cell layers are exfoliated, leaving breaches in the protective MUC16 glycocalyx. The results provide a morphologic correlate for the surface epithelial abnormalities noted clinically in these patients.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Pathology, Jules Stein Eye Institute, University of California at Los Angeles School of Medicine, Los Angeles, California, USA.
| | | | | |
Collapse
|
32
|
|
33
|
Caffery B, Joyce E, Boone A, Slomovic A, Simpson T, Jones L, Senchyna M. Tear Lipocalin and Lysozyme in Sjögren and Non-Sjogren Dry Eye. Optom Vis Sci 2008; 85:661-7. [DOI: 10.1097/opx.0b013e318181ae4f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Characterization of fluorescence of ANS-tear lipocalin complex: evidence for multiple-binding modes. Photochem Photobiol 2008; 83:1405-14. [PMID: 18028215 DOI: 10.1111/j.1751-1097.2007.00180.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ANS is widely used as a probe for locating binding sites of proteins and studying structural changes under various external conditions. However, the nature of ANS-binding sites in proteins and the accompanying changes in fluorescence properties are controversial. We examined the steady-state and time-resolved fluorescence of the ANS-protein complexes for tear lipocalin (TL) and its mutants in order to discern the origin of lifetime components via analysis that included the multiexponential decay and the model-free maximum entropy methods. Fluorescence lifetimes of ANS-TL complexes can be grouped into two species, 14.01-17.42 ns and 2.72-4.37 ns. The log-normal analyses of fluorescence spectral shapes reveal the heterogeneous nature of both long- and short-lifetime species. The constructed time-resolved emission, amplitude (TRES) and area normalized (TRANES), and decay-associated spectra are consistent with a model that includes heterogeneous modes of ANS binding with two separate lifetime components. The two lifetime components are not derived from solvent relaxation, but rather may represent different binding modes.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, CA, USA
| | | | | |
Collapse
|
35
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Ligand binding site of tear lipocalin: contribution of a trigonal cluster of charged residues probed by 8-anilino-1-naphthalenesulfonic acid. Biochemistry 2008; 47:1414-24. [PMID: 18179255 DOI: 10.1021/bi701955e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human tear lipocalin (TL) exhibits diverse functions, most of which are linked to ligand binding. To map the binding site of TL for some amphiphilic ligands, we capitalized on the hydrophobic and hydrophilic properties of 8-anilino-1-naphthalenesulfonic acid (ANS). In single Trp mutants, resonance energy transfer from Trp to ANS indicates that the naphthalene group of ANS is proximate to Leu105 in the cavity. Binding energies of TL to ANS and its analogues reveal contributions from electrostatic interactions. The sulfonate group of ANS interacts strongly with the nonconserved intracavitary residue Lys114 and less with neighboring residues His84 and Glu34. This trigonal cluster of residues may play a role in the ligand recognition site for some negatively charged ligands. Because many drugs possess sulfonate groups, the trigonal cluster-sulfonate interaction can also be exploited as a lipocalin-based drug delivery mechanism. The binding of lauric acid and its analogues shows that fatty acids assume heterogeneous orientations in the cavity of TL. Predominantly, the hydrocarbon tail is buried in the cavity of TL and the carboxyl group is oriented toward the mouth. However, TL can also interact, albeit relatively weakly, with fatty acids oriented in the opposite direction. As the major lipid binding protein of tears, the ability to accommodate fatty acids in two opposing orientations may have functional implications for TL. At the aqueous-lipid interface, fatty acids whose carboxyl groups are positioned toward the aqueous phase are available for interaction with TL that could augment stability of the tear film.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
36
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Site-directed circular dichroism of proteins: 1Lb bands of Trp resolve position-specific features in tear lipocalin. Anal Biochem 2007; 374:386-95. [PMID: 18047823 DOI: 10.1016/j.ab.2007.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 10/31/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
The absorption spectra of N-acetyl-L-tryptophanamide in various solvents were resolved into the sums of the (1)L(a) and (1)L(b) components. The relative intensities of the 0-0 transitions of the (1)L(b) bands correlate linearly with the solvent polarity values (E(T)(N)). A novel strategy that uses a set of the experimental (1)L(b) bands was employed to resolve the near-UV circular dichroism (CD) spectra of tryptophanyl residues. Resolved spectral parameters from the single-tryptophan mutants of tear lipocalin (TL), F99W and Y87W, corroborate the fluorescence and structural data of TL. Analysis of the (1)L(b) bands of the Trp CD spectra in proteins is a valuable tool to obtain the local features. The dimethyl sulfoxide (DMSO)-like (1)L(b) band of Trp CD spectra may be used as a "fingerprint" to identify the tryptophanyl side chains in situations where the benzene rings of Trp have van der Waals interactions with the side chains of its nearest neighbor. In addition, the signs and intensities of the components hold information about the side chain conformations and dynamics in proteins. Combined with Trp mutagenesis, this method, which we call site-directed circular dichroism, is broadly applicable to various proteins to obtain the position-specific data.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
37
|
Evidence for internal and external binding sites on human tear lipocalin. Arch Biochem Biophys 2007; 468:15-21. [PMID: 17945179 DOI: 10.1016/j.abb.2007.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/13/2007] [Accepted: 09/16/2007] [Indexed: 11/23/2022]
Abstract
8-anilino-1-naphthalenesulfonic acid (ANS) is widely used as a probe for locating binding sites of proteins. To characterize the binding sites of tear lipocalin (TL), we studied ANS binding to apoTL by steady-state and time-resolved fluorescence. Deconvolution of ANS binding revealed that two lifetime components, 16.99ns and 2.76ns at pH 7.3, have dissociation constants of 0.58muM and 5.7muM, respectively. At pH 3.0, the lifetime components show decreased affinities with dissociation constants of 2.42muM and approximately 21muM, respectively. Selective displacement of ANS molecules from the ANS-apoTL complex by stearic acid discriminates the internal and external binding sites. Dependence of the binding affinity on ionic strength under various conditions provides strong evidence that an electrostatic interaction is involved. Time-resolved fluorescence is a promising tool to segregate multiple binding sites of proteins.
Collapse
|
38
|
Gasymov OK, Abduragimov AR, Merschak P, Redl B, Glasgow BJ. Oligomeric state of lipocalin-1 (LCN1) by multiangle laser light scattering and fluorescence anisotropy decay. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1307-15. [PMID: 17869594 PMCID: PMC2040513 DOI: 10.1016/j.bbapap.2007.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/22/2007] [Accepted: 07/31/2007] [Indexed: 11/26/2022]
Abstract
Multiangle laser light scattering and fluorescence anisotropy decay measurements clarified the oligomeric states of native and recombinant tear lipocalin (lipocalin-1, TL). Native TL is monomeric. Recombinant TL (5-68 microM) with or without the histidine tag shows less than 7% dimer formation that is not in equilibrium with the monomeric form. Fluorescence anisotropy decay showed a correlation time of 9-10 ns for TL (10 microM-1 mM). Hydrodynamic calculations based on the crystallographic structure of a monomeric TL mutant closely concur with the observed correlation time. The solution properties calculated with HYDROPRO and SOLPRO programs from the available crystallographic structure of a monomeric TL mutant concur closely with the observed fluorescence anisotropy decay. The resulting model shows that protein topology is the major determinant of rotational correlation time and accounts for deviation from the Stokes-Einstein relation. The data challenge previous gel filtration studies to show that native TL exists predominantly as a monomer in solution rather than as a dimer. Delipidation of TL results in a formation of a complex oligomeric state (up to 25%). These findings are important as the dynamic processes in the tear film are limited by diffusional, translational as well as rotational, properties of the protein.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
39
|
Gasymov OK, Abduragimov AR, Prasher P, Yusifov TN, Glasgow BJ. Tear lipocalin: evidence for a scavenging function to remove lipids from the human corneal surface. Invest Ophthalmol Vis Sci 2005; 46:3589-96. [PMID: 16186338 PMCID: PMC1618769 DOI: 10.1167/iovs.05-0569] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Lipid contamination of the cornea may create an unwettable surface and result in desiccation of the corneal epithelium. Tear lipocalin (TL), also known as lipocalin-1, is the principal lipid-binding protein in tears. TL has been shown to scavenge lipids from hydrophobic surfaces. The hypothesis that TL can remove contaminating fatty acids and phospholipids from the human corneal surface was tested. METHODS TL was purified from pooled human tear samples by size exclusion and ion exchange chromatographies. Tears depleted of TL were reconstituted from fractions eluted by size exclusion chromatography that did not contain TL. Fresh and formalin-fixed human corneas were obtained from exenteration specimens. Fluorescent analogs of either palmitic acid or phosphatidylcholine were applied to the corneal epithelial surface. Tears, TL, or tears depleted of TL were applied over the corneas, and spectrofluorometry and fluorescent stereomicroscopy were used to monitor the removal of fluorescent lipids. Tears used in the experiments were then fractionated by size exclusion chromatography to determine the component of tears associated with fluorescent lipids. RESULTS Significant enhancement of fluorescence for 16AP and NBD C(6)-HPC was evident in solutions incubated with whole tears and purified TL but not with tears depleted of TL for fixed and unfixed corneas. After the experiment, size exclusion fractions of tears showed that the fluorescence component coeluted with TL. CONCLUSIONS TL scavenges lipids from the human corneal surface and delivers them into the aqueous phase of tears. TL may have an important role in removing lipids from the corneal surface to maintain the wettability and integrity of the ocular surface.
Collapse
Affiliation(s)
| | | | | | | | - Ben J. Glasgow
- Corresponding author: Ben J. Glasgow, 100 Stein Plaza, Room B-279, Los Angeles, CA 90095;
| |
Collapse
|
40
|
Karring H, Thøgersen IB, Klintworth GK, Møller-Pedersen T, Enghild JJ. A dataset of human cornea proteins identified by Peptide mass fingerprinting and tandem mass spectrometry. Mol Cell Proteomics 2005; 4:1406-8. [PMID: 15911533 DOI: 10.1074/mcp.d500003-mcp200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Diseases of the cornea are extremely common and cause severe visual impairment worldwide. To explore the basic molecular mechanisms involved in corneal health and disease, the present study characterizes the proteome of the normal human cornea. All proteins were extracted from the central 7-mm region of 12 normal human donor corneas containing all layers: epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. Proteins were fractionated and identified using two different procedures: (i) two-dimensional gel electrophoresis and protein identification by MALDI-MS and (ii) strong cation exchange or one-dimensional SDS gel electrophoresis followed by LC-MS/MS. All together, 141 distinct proteins were identified of which 99 had not previously been identified in any mammalian corneas by direct protein identification methods. The characterized proteins are involved in many processes including antiangiogenesis, antimicrobial defense, protection from and transport of heme and iron, tissue protection against UV radiation and oxidative stress, cell metabolism, and maintenance of intracellular and extracellular structures and stability. This proteome study of the healthy human cornea provides a basis for further analysis of corneal diseases and the design of bioengineered corneas.
Collapse
Affiliation(s)
- Henrik Karring
- Center for Insoluble Protein Structure (inSPIN), Department of Molecular Biology, Science Park, University of Aarhus, and the Department of Ophthalmology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
41
|
Azzarolo AM, Brew K, Kota S, Ponomareva O, Schwartz J, Zylberberg C. Presence of tear lipocalin and other major proteins in lacrimal fluid of rabbits. Comp Biochem Physiol B Biochem Mol Biol 2004; 138:111-7. [PMID: 15193265 DOI: 10.1016/j.cbpc.2004.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 02/13/2004] [Accepted: 02/16/2004] [Indexed: 11/25/2022]
Abstract
The lipocalins are a highly divergent, ubiquitous family of proteins that commonly function in binding lipophilic molecules. Although a specific tear lipocalin is a major component of lacrimal fluid and tears in many mammals, there has been no definitive identification of such a protein in rabbit tears. The goals of this project were to identify the major proteins in rabbit (Oryctolagus cuniculus) lacrimal fluid, so as to determine if they include a lipocalin and, if such a protein is present, to determine its source. Lacrimal fluid was collected from NZW sexually mature female rabbits, and culture medium from rabbit lacrimal gland epithelial (acinar) and interstitial cells was isolated. Proteins from these fluids were separated by SDS-PAGE electrophoresis and analyzed by sequencing the intact proteins and sequencing or mass analysis of fragments derived by trypsin digestion. Proteins of approximately 85 and 67 kDa were identified as rabbit transferrin and serum albumin, respectively, while components of 17 and 7 kDa had N-terminal sequences identical to those of lipophilin CL and AL, respectively. BLAST searches of the nr database with the N-terminal sequence of a protein of 18 kDa did not identify any homologues. However, when used to scan the PROSITE database, it was found to contain a lipocalin signature sequence. It is closely related to two lipocalins previously isolated from rabbit saliva and nasal mucus. Further studies with the N-terminal and internal sequences confirmed that the lacrimal protein is a lipocalin that is truncated at the N-terminus as compared with other tear lipocalins and is more similar to odorant binding proteins from rodents.
Collapse
Affiliation(s)
- Ana Maria Azzarolo
- Charles E. Schmidt Biomedical Science Department, Florida Atlantic University, Building 71, Room 145, 777 Glades Road, P.O. Box 3091, Boca Raton, FL 33431-0991, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Gasymov OK, Abduragimov AR, Gasimov EO, Yusifov TN, Dooley AN, Glasgow BJ. Tear lipocalin: potential for selective delivery of rifampin. Biochim Biophys Acta Mol Basis Dis 2004; 1688:102-11. [PMID: 14990340 DOI: 10.1016/j.bbadis.2003.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 09/29/2003] [Accepted: 11/07/2003] [Indexed: 11/20/2022]
Abstract
The potential of ligand binding proteins as drug carriers and delivery systems has recently sparked great interest. We investigated the potential of tear lipocalin (TL) to bind the antibiotic, rifampin, and the environmental conditions for controlled release. To determine if TL binds rifampin, gel filtration was used to isolate protein fractions of tears. Rifampin was detected by absorbance spectroscopy in the elution fractions containing TL. The bound complex of rifampin-TL generates optical activity at about 360 nm, indicating a unique conformation at the binding site. Rifampin has a higher affinity for TL (Kd=128 microM) than albumin. Rifampin is released from the TL calyx in acidic conditions and is displaced by palmitic acid. Autooxidation of free rifampin begins in minutes but is delayed by at least 3 h in the presence of TL. These properties are conducive to stabilization and delivery of rifampin to tubercles that are acidic and rich in fatty acids. These studies show the potential of TL as a carrier for rifampin with controlled release to a targeted environment.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, Jules Stein Eye Institute, University of California, 100 Stein Plaza Rm B-279, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
43
|
Glasgow BJ, Abduragimov AR, Gasymov OK, Yusifov TN. Tear lipocalin: structure, function and molecular mechanisms of action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:555-65. [PMID: 12613960 DOI: 10.1007/978-1-4615-0717-8_78] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Ben J Glasgow
- Department of Ophthalmology, Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | |
Collapse
|
44
|
Glasgow BJ, Abduragimov AR, Gassymov OK, Yusifov TN, Ruth EC, Faull KF. Vitamin E associated with the lipocalin fraction of human tears. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:567-72. [PMID: 12613961 DOI: 10.1007/978-1-4615-0717-8_79] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ben J Glasgow
- Department of Pathology and Ophthalmology, Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sanghi S, Kumar R, Lumsden A, Dickinson D, Klepeis V, Trinkaus-Randall V, Frierson HF, Laurie GW. cDNA and genomic cloning of lacritin, a novel secretion enhancing factor from the human lacrimal gland. J Mol Biol 2001; 310:127-39. [PMID: 11419941 DOI: 10.1006/jmbi.2001.4748] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multiple extracellular factors are hypothesized to promote the differentiation of unstimulated and/or stimulated secretory pathways in exocrine secretory cells, but the identity of differentiation factors, particularly those organ-specific, remain largely unknown. Here, we report on the identification of a novel secreted glycoprotein, lacritin, that enhances exocrine secretion in overnight cultures of lacrimal acinar cells which otherwise display loss of secretory function. Lacritin mRNA and protein are highly expressed in human lacrimal gland, moderately in major and minor salivary glands and slightly in thyroid. No lacritin message or protein is detected elsewhere among more than 50 human tissues examined. Lacritin displays partial similarity to the glycosaminoglycan-binding region of brain-specific neuroglycan C (32 % identity over 102 amino acid residues) and to the possibly mucin-like amino globular region of fibulin-2 (30 % identity over 81 amino acid residues), and localizes primarily to secretory granules and secretory fluid. The lacritin gene consists of five exons, displays no alternative splicing and maps to 12q13. Recombinant lacritin augments unstimulated but not stimulated acinar cell secretion, promotes ductal cell proliferation, and stimulates signaling through tyrosine phosphorylation and release of calcium. It binds collagen IV, laminin-1, entactin/nidogen-1, fibronectin and vitronectin, but not collagen I, heparin or EGF. As an autocrine/paracrine enhancer of the lacrimal constitutive secretory pathway, ductal cell mitogen and stimulator of corneal epithelial cells, lacritin may play a key role in the function of the lacrimal gland-corneal axis.
Collapse
Affiliation(s)
- S Sanghi
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dota A, Nishida K, Adachi W, Nakamura T, Koizumi N, Kawamoto S, Okubo K, Kinoshita S. An expression profile of active genes in human conjunctival epithelium. Exp Eye Res 2001; 72:235-41. [PMID: 11180972 DOI: 10.1006/exer.2000.0946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to describe the quantitatively and qualitatively genes expressed in in vivo human conjunctival epithelium. A cDNA library was created from human conjunctival epithelial cells obtained from 38 normal eyes by brush cytology. Poly A(+)RNA isolated from these cells was used as a template for cDNA synthesis by the vector-priming method. A 3'-directed cDNA library consisting of the cDNA moiety covering the poly A(+)RNA tail through the nearest Mbo I site was constructed and transformed into Escherichia coli. Inserts in 933 randomly chosen clones were sequenced. The resulting sequences were compared to determine frequency of appearance in the library, and to establish an expression profile of genes in the conjunctival epithelium. The sequences were sent to GenBank for gene identification. The result was an expression profile of active genes reflecting their relative abundance in the conjunctival epithelial mRNA population. The expression profile of human conjunctival epithelium showed that the most abundant gene transcript in human conjunctival epithelium was that for cytokeratin 13. Altogether 102 genes were found to be very active, including beta-2 microglobulin, lipocortin I and insulin-like growth factor binding protein-3. The gene expression profile of the conjunctival epithelium reflects the unique properties and functions of this tissue. Comparison of this expression profile with that obtained from corneal epithelium discloses clear differences and helps us better understand the physiology and pathophysiology of the ocular surface in humans.
Collapse
Affiliation(s)
- A Dota
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-0841, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Human tear prealbumin, now called tear lipocalin, was originally described as a major protein of human tear fluid, which was thought to be tear specific. However, recent investigations demonstrated that it is identical with lingual von Ebner's gland protein, and is also produced in prostate, nasal mucosa and tracheal mucosa. Homologous proteins have been found in rat, pig and probably dog and horse. Tear lipocalin is an unusual lipocalin member, because of its high promiscuity for relative insoluble lipids and binding characteristics that differ from other members. In addition, it shows inhibitory activity on cysteine proteinases similar to cystatins, a feature unique among lipocalins. Although it acts as the principal lipid binding protein in tear fluid, a more general physiological function has to be proposed due to its wide distribution and properties. It would be ideally suited for scavenging of lipophilic, potentially harmful substances and thus might act as a general protection factor of epithelia.
Collapse
Affiliation(s)
- B Redl
- Institut für Mikrobiologie, Medizinische Fakultät, Universität Innsbruck, Fritz Pregl Strasse 3, A-6020 Innsbruck, Austria.
| |
Collapse
|
48
|
Abstract
Lipocalins as biochemical markers of disease have been used extensively. The clinical indications relate to almost any field of medicine, such as inflammatory disease, cancer, lipid disorders, liver and kidney function. Some of the more well-known lipocalins that have been used as markers of disease are orosomucoid, Protein HC (alpha(1)-microglobulin), apolipoprotein D, retinol-binding protein, complement C8 gamma, prostaglandin D synthase and human tear prealbumin, and these markers will be briefly reviewed in this article. Emphasis, however, will be put on the description of another newly described lipocalin, i.e. human neutrophil lipocalin/neutrophil gelatinase-associated lipocalin (HNL/NGAL), since the body fluid measurement of HNL/NGAL was shown to be a superior means to distinguish between acute viral and bacterial infections and also to accurately reflect the activity and involvement of neutrophils in a variety of other diseases.
Collapse
Affiliation(s)
- S Xu
- Department of Medical Sciences, Clinical Chemistry, University of Uppsala, S-751 85 Uppsala, Sweden.
| | | |
Collapse
|
49
|
Abstract
PURPOSE We calibrated the cavity of tear lipocalin with a series of fluorescent labeled lipids of increasing chain length and varying diameter. METHODS Cavity length was assessed with competitive fluorescent assays in which DAUDA was displaced from apo-tear lipocalin with ligands of increasing carbon chain lengths from C12-C24. The concentrations of competitors that inhibit 50% of the binding of DAUDA (IC(50)) were compared. Functional diameters of tear lipocalin and beta-lactoglobulin were estimated with fatty acids bearing fluorescent labels of various diameters. The cavity dimensions of other lipocalins were derived from their published crystal structure coordinates. RESULTS In tear lipocalin, the binding affinities of fatty acids increased up to a carbon chain length of 18 (22.5 A) but remained constant from C18-C24. The cavity length of other lipocalins in crystal form were similar to tear lipocalin in solution. Tear lipocalin showed decreased binding affinities with progressively increasing ring dimensions of the ligand. In contrast to beta-lactoglobulin and retinol binding protein, tear lipocalin bound DAUDA and cholesterol in the calyx. Neither tear lipocalin nor beta-lactoglobulin bound P646 in their respective cavities. The calculated inter-sheet distances at the mouth of the crystallized lipocalins ranged from 16-22A. CONCLUSIONS Tear lipocalin is more promiscuous than beta-lactoglobulin or retinol binding protein because of a greater functional diameter. Differences in ligand specificity of the various lipocalins can not be explained simply by variation in cavity length or the intersheet distances at the calyx mouths as determined by crystal structure. Other factors may influence ligand specificity such as size and/or dynamic motion of loops between the beta strands.
Collapse
Affiliation(s)
- A R Abduragimov
- Department of Pathology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
50
|
Gasymov OK, Abduragimov AR, Yusifov TN, Glasgow BJ. Resolution of ligand positions by site-directed tryptophan fluorescence in tear lipocalin. Protein Sci 2000; 9:325-31. [PMID: 10716184 PMCID: PMC2144538 DOI: 10.1110/ps.9.2.325] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The lipocalin superfamily of proteins functions in the binding and transport of a variety of important hydrophobic molecules. Tear lipocalin is a promiscuous lipid binding member of the family and serves as a paradigm to study the molecular determinants of ligand binding. Conserved regions in the lipocalins, such as the G strand and the F-G loop, may play an important role in ligand binding and delivery. We studied structural changes in the G strand of holo- and apo-tear lipocalin using spectroscopic methods including circular dichroism analysis and site-directed tryptophan fluorescence. Apo-tear lipocalin shows the same general structural characteristics as holo-tear lipocalin including alternating periodicity of a beta-strand, orientation of amino acid residues 105, 103, 101, and 99 facing the cavity, and progressive depth in the cavity from residues 105 to 99. For amino acid residues facing the internal aspect of cavity, the presence of a ligand is associated with blue shifted spectra. The collisional rate constants indicate that these residues are not less exposed to solvent in holo-tear lipocalin than in apo-tear lipocalin. Rather the spectral blue shifts may be accounted for by a ligand induced rigidity in holo-TL. Amino acid residues 94 and 95 are consistent with positions in the F-G loop and show greater exposure to solvent in the holo- than the apo-proteins. These findings are consistent with the general hypothesis that the F-G loop in the holo-proteins of the lipocalin family is available for receptor interactions and delivery of ligands to specific targets. Site-directed tryptophan fluorescence was used in combination with a nitroxide spin labeled fatty acid analog to elucidate dynamic ligand interactions with specific amino acid residues. Collisional quenching constants of the nitroxide spin label provide evidence that at least three amino acids of the G strand residues interact with the ligand. Stern-Volmer plots are inconsistent with a ligand that is held in a static position in the calyx, but rather suggest that the ligand is in motion. The combination of site-directed tryptophan fluorescence with quenching by nitroxide labeled species has broad applicability in probing specific interactions in the solution structure of proteins and provides dynamic information that is not attainable by X-ray crystallography.
Collapse
Affiliation(s)
- O K Gasymov
- Department of Pathology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|