1
|
Salman AS, Alkhatib SN, Ahmed FM, Hamouda RA. Chitosan Nanoparticles Loaded with Capparis cartilaginea Decne Extract: Insights into Characterization and Antigenotoxicity In Vivo. Pharmaceutics 2023; 15:2551. [PMID: 38004531 PMCID: PMC10675202 DOI: 10.3390/pharmaceutics15112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Plant-based foods may enhance the prevention of cancer. The present investigation aimed to assess the antigenotoxic effects of chitosan nanoparticles (CNPs) when loaded with the ethanol extract of C. cartilaginea (CNPs/Cc). Synthesis of CNPs and CNPs/Cc and their characterization were carried out using TEM, EDS, DSC, and Zeta potential. For in vivo experiments, animal groups were treated in the following groups: negative control, ethyl methanesulfonate (EMS) (240 mg/kg), CNPs (350 mg/kg), high and low doses of CNPs/Cc, CNPs plus EMS, high dose of CNPs/Cc plus EMS, and low dose of CNPs/Cc plus EMS. Bone marrow chromosomal aberrations and sperm shape abnormalities were examined. TEM results showed that CNPs and CNPs/Cc are spherical particles. CNPs' physical stability was observed to be lower than that of CNPs/Cc due to the presence of more positive charges on CNPs/Cc. EMS significantly enhanced chromosomal abnormalities and sperm shape abnormalities. CNPs showed powerful antigenotoxic properties. For the first time, it could be concluded that loading chitosan nanoparticles with C. cartilaginea extract significantly promotes its protective properties.
Collapse
Affiliation(s)
- Asmaa S. Salman
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
- Genetic and Cytology Department, Biotechnology Research Institute, National Research Center, Cairo 12622, Egypt
| | - Shaza N. Alkhatib
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
| | - Fatimah M. Ahmed
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
| | - Ragaa A. Hamouda
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
2
|
Hamouda RA, Salman AS, Alharbi AA, Alhasani RH, Elshamy MM. Assessment of the Antigenotoxic Effects of Alginate and ZnO/Alginate-Nanocomposites Extracted from Brown Alga Fucus vesiculosus in Mice. Polymers (Basel) 2021; 13:polym13213839. [PMID: 34771394 PMCID: PMC8587912 DOI: 10.3390/polym13213839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Mitomycin C (MMC) is an alkylating chemotherapy drug that could induce DNA damage and genetic alteration. It has been used as a model mutagen for in vivo and in vitro studies. The current study aimed to evaluate the protective role of Zinc oxide alginate–nanocomposites (ZnO-Alg/NCMs) against MMC–induced genotoxicity in mice. Animals were treated as follows: the control group, the groups treated with Algin (400 mg/kg b.w), the groups treated with ZnO-Alg/NCMs (400 mg/kg b.w), the group treated with MMC, and the groups treated with MMC plus Algin or ZnO-Alg/NCMs. Pre-treatment with Algin and ZnO-Alg/NCMs was repeated for one or seven days. Zinc oxide alginate-nanocomposites (ZnO-Alg/NCMs) were synthesized with the aim of incorporating the intrinsic properties of their constituents as an antigenotoxic substance. In this study, alginate was extracted from the brown marine alga Fucus vesiculosus, Zinc oxide nanoparticles were synthesized by using water extract of the same alga, and loaded in alginate to synthesize ZnO-Alg/NCMs. ZnO-NPs and ZnO-Alg/NCMs were characterized by TEM, SEM, EDX, and Zeta potential. The obtained results confirmed that by TEM and SEM, ZnO-NPs are rod shaped which modified, when loaded in alginate matrix, into spherical shape. The physical stability of ZnO-Alg/NCMs was reported to be higher than ZnO-NPs due to the presence of more negative charges on ZnO-Alg/NCMs. The EDX analysis indicated that the amount of zinc was higher in ZnO-NPs than ZnO-Alg/NCMs. The in vivo results showed that treatment with MMC induced genotoxic disturbances. The combined treatment with Algin and ZnO-Alg/NCMs succeeded in inducing significant protection against MMC. It could be concluded that ZnO-Algin/NCMs is a promising candidate to protect against MMC–induced genotoxicity.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
- Correspondence:
| | - Asmaa S. Salman
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
- Genetic and Cytology Department, National Research Center, Cairo 12622, Egypt
| | - Asrar A. Alharbi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21961, Saudi Arabia;
| | - Maha M. Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
3
|
Chemical characterization of Melilotus messanensis (L.) all.: Antioxidant, antidiabetic and antimutagenic effects in alloxan induced diabetic rats. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Ali SA, Arafa AF, Aly HF, Ibrahim NA, Kadry MO, Abdel-Megeed RM, Hamed MA, Farghaly AA, El Regal NS, Fouad GI, Khalil WKB, Refaat EA. DNA damage and genetic aberration induced via different sized silver nanoparticles: Therapeutic approaches of Casimiroa edulis and Glycosmis pentaphylla leaves extracts. J Food Biochem 2020; 44:e13398. [PMID: 32754950 DOI: 10.1111/jfbc.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023]
Abstract
Potential of Casimiroa edulis and Glycosmis pentaphylla leaves extracts were investigated against the effect of two different particle sizes of silver nanoparticles induced toxicity in mice. Mice received silver nanoparticles (AgNPs) (100 mg/kg) with 20 and 100 nm for four weeks followed by daily oral dose of extracts (500 mg/kg) for three weeks. C. edulis leaves identified fourteen phenolic compounds while, G. pentaphylla leaves identified, twelve phenolic compounds. Additionally, biochemical, genotoxicity, mutagenicity, and histopathological investigations were carried out, revealed that liver function activities, lipid profile, hydrogen peroxide, and C-reactive protein were significantly elevate post AgNPs exposure. While, superoxide dismutase, glutathione-S-transferases, and glutathione peroxidase significantly reduce. A marked amelioration in all detected biomarkers, improved histopathological changes and repair DNA damage after treated with C. edulis and G. pentaphylla leaves extracts. These extracts are used for the first time as promising candidate therapeutic agents against toxicity induced by AgNPs. PRACTICAL APPLICATIONS: The potential applications of AgNPs make it necessary to investigate the possible toxicity associated with release of free silver ions in the biological system. AgNPs of varying particle sizes had toxic effects as evidenced by alterations in some cellular biochemical parameters, genotoxicity, mutagenicity, and histopathological indices on mice. Casimiroa edulis and Glycosmis pentaphylla leaves extracts are used for the first time as promising candidate therapeutic, where they are able to ameliorate the toxicity induced via AgNPs and record vacillate percentage of improvement in the selected biomarkers, as a result of the bioactive secondary metabolites especially flavonoids and other polyphenolic compounds.
Collapse
Affiliation(s)
- Sanaa A Ali
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Azza F Arafa
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Nabaweya A Ibrahim
- Departments of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Mai O Kadry
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Rehab M Abdel-Megeed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Ayman A Farghaly
- Department of Genetics and Cytology, Genetic Engineering and Biotechnology Research Division, National Research Centre (NRC), Giza, Egypt
| | - Nagy S El Regal
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Ghada I Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, Genetic Engineering and Biotechnology, National Research Centre (NRC), Giza, Egypt
| | - Esraa A Refaat
- Departments of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
5
|
Application of micro-emulsion formulation in improving the antiproliferative performance of Salix mucronata (Thunb) leaves with chemical investigation of the active extract. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.chnaes.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Timoumi R, Amara I, Ayed Y, Ben Salem I, Abid-Essefi S. Triflumuron induces genotoxicity in both mice bone marrow cells and human Colon cancer cell line. Toxicol Mech Methods 2020; 30:438-449. [PMID: 32312157 DOI: 10.1080/15376516.2020.1758981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Triflumuron (TFM) is an insect growth regulator (IGR), an insecticide commonly used over the world. It is known for its several toxic manifestations, such as reprotoxicity, immunotoxicity and hematotoxicity, which could affect public health. However, studies that reveal its toxic effects on mammalians are limited. To reach this purpose, our study aimed to elucidate the eventual genotoxic effects of TFM in mice bone marrow cells and in HCT 116 cells after a short term exposition. TFM was administered intraperitoneally to Balb/C male mice at doses of 250, 350 and 500 mg/kg bw for 24 h. Genotoxicity was monitored in bone marrow cells using the comet test, the micronucleus test and the chromosome aberration assay. Our results showed that TFM induced DNA damages in a dose-dependent manner. This genotoxicity was confirmed also in vitro on human intestinal cells HCT 116 using the comet test. It was then asked whether this genotoxicity induced by TFM could be due to an oxidative stress. Thus, we found that TFM significantly decreased HCT 116 cell viability. In addition, it induced the generation of reactive oxygen species (ROS) followed by lipid peroxidation as revealed by the increase in the malondialdehyde (MDA) levels. Similarly, the activation of the antioxidant enzymes (catalase and superoxide dismutase) was also observed. Our results indicated that, in our experimental conditions, TFM had a genotoxic effect on bone morrow cells and in HCT 116 cells. Moreover, we demonstrated that this genotoxicity passes through an oxidative stress.
Collapse
Affiliation(s)
- Rim Timoumi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia.,Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Ines Amara
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia.,Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Yossra Ayed
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia
| | - Intidhar Ben Salem
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia
| |
Collapse
|
7
|
Mona A.M. Abo-Zeid, Farghaly AA, Hassan EM, Abdel-Samie NS. Phenolic Compounds of Codiaeum variegatum Spirale Lessened Cytotoxic and Genotoxic Effects of Mitomycin C in Mice Somatic and Germ Cells. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ali SA, Rizk MZ, Hamed MA, Aboul-Ela EI, El-Rigal NS, Aly HF, Abdel-Hamid AHZ. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size. Biomarkers 2019; 24:492-498. [PMID: 31099265 DOI: 10.1080/1354750x.2019.1620336] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sanaa A. Ali
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Maha Z. Rizk
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | | | - Nagy S. El-Rigal
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Hanan F. Aly
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | | |
Collapse
|
9
|
Ameliorative effect of zinc oxide nanoparticles on cyclophosphamide induced testicular injury in adult rat. Tissue Cell 2018; 54:80-93. [DOI: 10.1016/j.tice.2018.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
|
10
|
Protective Effects of Fullerene C 60 Nanoparticles and Virgin Olive Oil against Genotoxicity Induced by Cyclophosphamide in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1261356. [PMID: 30116471 PMCID: PMC6079351 DOI: 10.1155/2018/1261356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
The potential effects of the fullerene C60 nanoparticle (C60) as well as virgin olive oil (VOO) against the cyclophosphamide- (CP-) induced cytotoxic and mutagenic effects were evaluated by two main methods: molecular intersimple sequence repeat (ISSR) assay and cytogenetic biomarkers. Thirty adult male rats were divided to five groups (control, CP, C60, CP + C60, and CP + VOO). CP was i.p. injected with a single dose of 200 mg/kg; C60 and VOO were given orally (4 mg/kg dissolved in VOO and 1 ml, resp.) in alternative days for 20 days. The ISSR analysis revealed an increased in the DNA fragmentation level for liver and heart tissues represented by 21.2% and 32.6%, respectively, in the CP group. The DNA polymorphism levels were modulated and improved in CP + C60 (8.9% and 12%) and CP + VOO (9.8% and 12.7%) for hepatic and cardiac tissues, respectively. The bone marrow cytogenetic analysis revealed that C60 and VOO had significantly decreased the frequency of CP-induced chromosomal aberrations (chromosomal ring, deletion, dicentric chromosome, fragmentation, and polyploidy). Fullerene C60 and VOO have ability to reduce DNA damage and decrease chromosomal aberrations. In conclusion, fullerene C60 and VOO have protective effects against the CP-induced mutagenicity and genotoxicity. Fullerene C60 and VOO open an interesting field concerning their potential antigenotoxic agents against deleterious side effects of chemotherapeutics.
Collapse
|
11
|
Aly FM, Kotb AM, Haridy MAM, Hammad S. Impacts of fullerene C 60 and virgin olive oil on cadmium-induced genotoxicity in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:750-756. [PMID: 29499533 DOI: 10.1016/j.scitotenv.2018.02.205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Currently, cadmium is considered to be one of the major environmental pollutants. Environmentally, cadmium is released in various forms e.g. oxide, chloride and sulphide. The aim of the present study was to examine the genotoxic impact of fullerene nanoparticles C60 (C60) and virgin olive oil (VOO) on cadmium chloride (CdCl2)-induced genotoxicity in rats. To evaluate these effects on DNA damage and chromosomal frequency, 25 albino rats were randomly assigned to 5 groups (n=5 per group): Group 1 served as a control; Group 2 received a single intraperitoneal dose of CdCl2 (3.5mg/kg); Group 3 animals were treated with C60 (4mg/kg, orally) every other day for 20days; Group 4 received a single intraperitoneal dose of CdCl2 (3.5mg/kg) and an oral dose of C60 (4mg/kg); and Group 5 received a single intraperitoneal dose of CdCl2 (3.5mg/kg) and oral doses of VOO every other day for 20 consecutive days. Genotoxic and anti-genotoxic effects of C60 and VOO were evaluated in the liver, kidney and bone marrow using molecular and cytogenetic assays. As expected, CdCl2 and C60 administration was associated with band number alterations in both liver and kidney; however, C60 pretreatment recovered to approximately basal number. Surprisingly, C60 and VOO significantly attenuated the genotoxic effects caused by CdCl2 in livers and kidneys. In bone marrow, in addition to a reduction in the chromosomal number, several chromosomal aberrations were caused by CdCl2. These chromosomal alterations were also reversed by C60 and VOO. In conclusion, molecular and cytogenetic studies showed that C60 and VOO exhibit anti-genotoxic agents against CdCl2-induced genotoxicity in rats. Further studies are needed to investigate the optimal conditions for potential biomedical applications of these anti-genotoxic agents.
Collapse
Affiliation(s)
- Fayza M Aly
- Zoology Department, Faculty of Science, South Valley University, 83523-Qena, Egypt
| | - Ahmed M Kotb
- Department of Anatomy and Histology, Assiut University, Faculty of Veterinary Medicine, 71515-Assiut, Egypt
| | - Mohie A M Haridy
- Department of Pathology & Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Seddik Hammad
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523-Qena, Egypt; Molecular Hepatology Section, Department of Medicine II, Medical Faculty, Mannheim Heidelberg University, 68167-Mannheim, Germany.
| |
Collapse
|
12
|
Aly FM, Kotb AM, Hammad S. Effects of Spirulina platensis on DNA damage and chromosomal aberration against cadmium chloride-induced genotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10829-10836. [PMID: 29397502 DOI: 10.1007/s11356-018-1329-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
Todays, bioactive compounds extracted from Spirulina platensis have been intensively studied for their therapeutical values. Therefore, in the present study, we aimed to evaluate the effects of S. platensis extract on DNA damage and chromosomal aberrations induced by cadmium in rats. Four groups of male albino rats (n = 7 rats) were used. The first group served as a control group and received distilled water. The second group was exposed intraperitoneally to cadmium chloride (CdCl2) (3.5 mg/kg body weight dissolved in 2 ml distilled water). The third group included the rats that were orally treated with S. platensis extract (1 g/kg dissolved in 5 ml distilled water, every other day for 30 days). The fourth group included the rats that were intraperitoneally and orally exposed to cadmium chloride and S. platensis, respectively. The experiment in all groups was extended for 60 days. The results of cadmium-mediated toxicity revealed significant genetic effects (DNA fragmentation, deletion or disappearance of some base pairs of DNA, and appearance of few base pairs according to ISSR-PCR analysis). Moreover, chromosomes showed structural aberrations such as reduction of chromosomal number, chromosomal ring, chromatid deletions, chromosomal fragmentations, and dicentric chromosomes. Surprisingly, S. platensis extract plus CdCl2-treated group showed less genetic effects compared with CdCl2 alone. Further, S. platensis extract upon CdCl2 toxicity was associated with less chromosomal aberration number and nearly normal appearance of DNA fragments as indicated by the bone marrow and ISSR-PCR analysis, respectively. In conclusion, the present novel study showed that co-treatment with S. platensis extract could reduce the genotoxic effects of CdCl2 in rats.
Collapse
Affiliation(s)
- Fayza M Aly
- Zoology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed M Kotb
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany.
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Seddik Hammad
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
13
|
Flavonoid fraction of Cajanus cajan prohibited the mutagenic properties of cyclophosphamide in mice in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:1-5. [PMID: 29412864 DOI: 10.1016/j.mrgentox.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/24/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022]
Abstract
Cajanus cajan (L.) is a Pigeon pea cultivated in tropical and subtropical areas. It contains many bioactive components. The present study aimed to assess the antimutagenic efficacy of a flavonoid fraction of Cajanus cajan (FFCC) to reduce cytotoxicity and genotoxicity induced by cyclophosphamide (CP). We assessed genotoxic and cytotoxic effects using chromosome aberration, in mouse bone-marrow cells and spermatocytes, cell viability and DNA damage, in mouse bone-marrow cells. Animals received FFCC at concentrations 50,100 and 200 mg/kg b wt by oral gavage, and injected simultaneously with CP (20 mg/kg b wt) for 24 h. The results revealed that FFCC was safe and its effect was normal compared to control group. Moreover, we observed significant inhibition of CP-induced chromosome abnormalities in both, somatic and germ, cells (p ≪ 0.05) after concurrent administration of different concentrations of FFCC and CP. FFCC reduced chromosome aberrations by 14.29%, 25.21% and 28.57% in somatic cells, and 25.35%, 35.21% and 49.29% in germ cells after simultaneous treatment with CP respectively. Additionally, FFCC improved the cell viability of bone-marrow cells in a concentration-dependent manner when administered concurrently with CP. Similarly, FFCC diminished DNA damage (p ≪ 0.05) in CP-treated animals. The inhibitory index of tail DNA (%) reached 90.6% at the highest concentration of FFCC when administered simultaneously with CP. In conclusion, the flavonoid extract improved cell viability and protected animal cells from the cytotoxic and genotoxic effects exhibited by CP. Cajanus cajan flavonoids might contain the antioxidant bioactivity that effectively lessened chromosome aberrations and DNA damage induced by mutagenic agents.
Collapse
|
14
|
Abdel-Wahhab MA, El-Nekeety AA, Salman AS, Abdel-Aziem SH, Mehaya FM, Hassan NS. Protective capabilities of silymarin and inulin nanoparticles against hepatic oxidative stress, genotoxicity and cytotoxicity of Deoxynivalenol in rats. Toxicon 2018; 142:1-13. [PMID: 29248467 DOI: 10.1016/j.toxicon.2017.12.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/26/2023]
Abstract
Deoxynivalenol (DON) is a Fusarium mycotoxin that frequently contaminates cereal and cereal-based food and induces liver injury. This study evaluated the protective role of silymarin nanoparticles (SILNPs) and inulin nanoparticles (INNPs) against DON-induced liver injury in rats. Eleven groups of rats were treated orally for 3 weeks as follows: the control group, DON-treated group (5 mg/kg b.w.); INNPs-treated groups at low (LD) or high (HD) dose (100 or 200 mg/kg b.w.); SILPNs-treated group (50 mg/kg b.w.); SILNPs plus INNPs(LD) or INNPs(HD)-treated groups; INNPs(LD) or INNPs(HD) plus DON-treated groups and DON plus SILNPs and INNPs(LD) or INNPs(HD)-treated groups. Blood and tissue samples were collected for different analyses. The results revealed that the practical sizes were 200 and 98 nm for SILNPs and INNPs respectively. DON increased liver enzymes activity, lipid profile, serum cytokines, number and percentage of chromosomal aberration, DNA fragmentation and comet score. It disturbed the oxidative stress markers, down regulated gene expression and induced histological changes in the liver tissue. Treatment with DON and SILNPs and/or INNPs at the two tested doses improved all the tested parameters and SILNPs plus INNPs(HD) normalized most of these parameters in DON-treated animals. SILNPs and INNPs could be promising candidates as hepatoprotective against DON or other hepatotoxins.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Fathy M Mehaya
- Food Technology Department, National Research Center, Dokki, Cairo, Egypt
| | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
15
|
Fahmy MA, Farghaly AA, Omara EA, Hassan ZM, Aly FA, Donya SM, Ibrahim AA, Bayoumy EM. Amoxicillin–clavulanic acid induced sperm abnormalities and histopathological changes in mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
El-Nekeety AA, Salman AS, Hathout AS, Sabry BA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Evaluation of the bioactive extract of actinomyces isolated from the Egyptian environment against aflatoxin B 1-induce cytotoxicity, genotoxicity and oxidative stress in the liver of rats. Food Chem Toxicol 2017; 105:241-255. [PMID: 28442411 DOI: 10.1016/j.fct.2017.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/15/2023]
Abstract
This study aimed to determine the bioactive compounds of actinomyces (ACT) isolated from the Egyptian environment (D-EGY) and to evaluate their protective activity against AFB1 in female Sprague-Dawley rats. Six groups of animals were treated orally for 3 weeks included: C, the control group, T1, AFB1-treated group (80 μg/kg b.w), T2 and T3, the groups received ACT extract at low (25 mg/kg b.w) or high (50 mg/kg b.w) doses, T4 and T5, the groups received AFB1 plus the low or high dose of ACT extract. Blood, bone marrow and tissue samples were collected for different analyses and histological examination. The results revealed the identification of 40 components, representing 99.98%. Treatment with AFB1 disturbs liver function parameters, oxidative stress markers, antioxidant gene expressions, DNA fragmentation and induced severe histological changes. ACT extract at the low or high doses did not induce significant changes in all the tested parameters or histological picture of the liver. Moreover, ACT extract succeeded to induce a significant protection against the toxicity of AFB1. It could be concluded that the bioactive compounds in ACT are promise candidate for the development of food additive or drugs for the protection and treatment of liver disorders in the endemic area.
Collapse
Affiliation(s)
- Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Amal S Hathout
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Bassem A Sabry
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
17
|
Toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomed Pharmacother 2017; 90:466-472. [PMID: 28391168 DOI: 10.1016/j.biopha.2017.03.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
The toxic impact of titanium dioxide nanoparticles (TiO2NPs) on human health is of prime importance owing to their wide uses in many commercial industries. In the present study, the effect of different doses and exposure time durations of TiO2NPs (21nm) inducing oxidative stress, biochemical disturbance, histological alteration and cytogenetic aberration in mice liver and bone marrow was investigated. Different doses of (TiO2NPs) (50, 250 and 500mg/kg body weight) were each daily intrapertioneally injected to mice for 7, 14 and 45days. Aspartate and alanine aminotransferases (AST &ALT), gamma glutamyl transpeptidase (GGT), total protein, total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and nitric oxide (NO) levels were measured. The work was extended to evaluate the liver histopathological pattern and the chromosomal aberration in mice spinal cord bone marrow. The results revealed severe TiO2NPs toxicity in a dose and time dependent manner with positive correlation (r=0.98) for most investigated biochemical parameters. The same observation was noticed for the histological analysis. In case of cytogenetic study, chromosomal aberrations were demonstrated after injection of TiO2NPs with 500mg/kg b. wt. for 45days. In conclusion, the selected biochemical parameters and the liver architectures were influenced with dose and time of TiO2NPs toxicity, while the genetic disturbance started at the high dose of exposure and for long duration. Further studies are needed to fulfil the effect of TiO2NPs on pharmaceutical and nutritional applications.
Collapse
|
18
|
Asmaa S, Mohamed Z, Khaled S. The protective role of honey against cytotoxicity of cadmium chloride in mice. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Abdel-Wahhab MA, Salman AS, Ibrahim MI, El-Kady AA, Abdel-Aziem SH, Hassan NS, Waly AI. Curcumin nanoparticles loaded hydrogels protects against aflatoxin B1-induced genotoxicity in rat liver. Food Chem Toxicol 2016; 94:159-71. [PMID: 27288928 DOI: 10.1016/j.fct.2016.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/12/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
20
|
Siddique YH, Beg T, Afzal M. Antigenotoxic effects of ascorbic acid against megestrol acetate-induced genotoxicity in mice. Hum Exp Toxicol 2016; 24:121-7. [PMID: 15901051 DOI: 10.1191/0960327104ht508oa] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The genotoxicity of megestrol acetate was studied in mouse bone marrow cells using sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) as parameters. Megestrol acetate (8.12, 16.25 and 32.50 mg/ kg of body weight) was injected intraperitoneally separately in different groups of animals. Both CAs and SCEs were statistically increased at 16.25 and 32.50 mg/kg of body weight. Our earlier in vitro studies show the generation of free oxygen radicals, by synthetic progestins responsible for the genotoxic damage. As the genotoxic effects of steroids can be reduced by natural products having antioxidant properties, and ascorbic acid possesses antioxidant activity, ascorbic acid (20, 40 or 60 mg/kg of body weight) administered together with megestrol acetate (32.50 mg/kg of body weight) significantly decreased CAs and SCEs, suggesting an antigenotoxic role of ascorbic acid against megestrol acetate induced genotoxic damage in mice bone marrow cells. The antigenotoxic effect was clearly dose dependent. The highest protective effect was observed at 60 mg/kg body weight of ascorbic acid treated with 32.50 mg/kg body weight of megestrol acetate.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| | | | | |
Collapse
|
21
|
El Mahdy MM, Eldin TAS, Aly HS, Mohammed FF, Shaalan MI. Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. ACTA ACUST UNITED AC 2015; 67:21-9. [DOI: 10.1016/j.etp.2014.09.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/28/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
22
|
Souda SSEDE, Mohammed RS, Marzouk MM, Fahmy MA, Hassan ZM, Farghaly AA. Antimutagenicity and phytoconstituents of Egyptian Plantago albicans L. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60764-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Al-Okbi SY, Mohamed DA, Hamed TE, Esmail RSH, Donya SM. Prevention of renal dysfunction by nutraceuticals prepared from oil rich plant foods. Asian Pac J Trop Biomed 2014; 4:618-27. [PMID: 25183331 PMCID: PMC4037655 DOI: 10.12980/apjtb.4.201414b66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To investigate the protective effect of extracts prepared from avocado, walnut, flaxseed and Eruca sativa seeds in a rat model of kidney dysfunction induced by intraperitoneal cisplatin. METHODS Ethanol and petroleum ether extracts mixture was prepared from each plant. Six groups of rats were conducted; control healthy, cisplatin group and four test groups where rats were given daily oral dose of each extract mixture before cisplatin injection. Different biochemical and cytogenetic parameters and kidney histopathology were determined. Acute toxicity was tested for the nutraceuticals. Total phenolic contents, fatty acids (FA) and unsaponifiable matter were assessed in the extracts. RESULTS Walnut ethanol extract showed the highest content of total phenolic. FA analysis revealed that all the studied plants were rich in unsaturated FA. Gas-liquid chromatographic investigation of the unsaponifiable matter showed the presence of campesterol, stigmasterol and β-sitosterol in all the studied plants. Cisplatin treatment induced significant increase in plasma urea, creatinine and malondialdehyde along with significant reduction of plasma albumin, total protein, catalase and total antioxidant as well as reduction in creatinine clearance. Histopathological examination proved the induction of kidney dysfunction. Some sorts of chromosomal aberration and sperm-shape abnormalities were noticed after cisplatin treatment. Administration of extracts mixtures produced improvements in biochemical, histopathological and cytogenetic parameters. CONCLUSIONS Administration of the studied nutraceuticals proved to possess protective role against cisplatin-induced nephrotoxicity, chromosomal aberration and abnormal sperms. All studied nutraceuticals showed complete safety.
Collapse
Affiliation(s)
- Sahar Y. Al-Okbi
- Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
| | - Doha A. Mohamed
- Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
| | - Thanaa E. Hamed
- Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
| | - Reham SH. Esmail
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Souria M. Donya
- Cytogenetic Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
24
|
Plant Food Extracts as Source of Bioactive Compounds for Prevention of Cisplatin-Induced Kidney Dysfunction in Rats. POL J FOOD NUTR SCI 2014. [DOI: 10.2478/v10222-012-0092-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
El-Refaiy AI, Eissa FI. Histopathology and cytotoxicity as biomarkers in treated rats with cadmium and some therapeutic agents. Saudi J Biol Sci 2013; 20:265-80. [PMID: 23961244 PMCID: PMC3730709 DOI: 10.1016/j.sjbs.2013.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 02/15/2013] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to investigate the protective role of ascorbic acid (vitamin C) and zinc (Zn) against cadmium (Cd) induced histopathological changes in tissues of liver, kidney, lung and testis of rats as well as chromosomal aberrations. For this purpose, 60 male albino rats were divided into six groups; each group contained 10 animals. The first group served as control and was given only distilled water. The second and third groups received distilled water supplemented with 2 g ascorbic acid/l and 500 mg Zn/l, respectively. The fourth group received a daily oral dose containing 3 mg Cd/kg b.w. (1/30 LD50). The fifth group received Cd + ascorbic acid (3 mg Cd/kg b.w. + 2 g ascorbic acid/l), while the sixth group received Cd + Zn (3 mg Cd/kg b.w. +500 mg Zn/l). The treatment in all groups lasted for 90 consecutive days. Rats exposed to cadmium showed severe histopathological changes in the liver, kidney, lung and testicular tissues as well as chromosomal aberrations such as: break, ring, centromeric separation and polyploidy. Co-treatment with zinc partially improved the histopathological changes and chromosomal aberrations while co-treatment with vitamin C exhibited a more protective role and markedly reduced tissues damage induced by Cd.
Collapse
Affiliation(s)
- Amal I. El-Refaiy
- Biol. and Environ. Sci. Dept., Fac. of Home Economic, Al-Azhar Univ., 31511 Tanta, Egypt
- Biol. Dept., Fac. of Arts and Sciences-Khafji, Dammam Univ., 31971, Saudi Arabia
| | - Fawzy I. Eissa
- Environ. and Bio-agric. Dept., Fac. of Agric., Al-Azhar Univ., 11884 Nasr city, Cairo, Egypt
| |
Collapse
|
26
|
Rjiba-Touati K, Ayed-Boussema I, Guedri Y, Achour A, Bacha H, Abid S. Role of recombinant human erythropoietin in mitomycin C-induced genotoxicity: Analysis of DNA fragmentation, chromosome aberrations and micronuclei in rat bone-marrow cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 753:48-53. [DOI: 10.1016/j.mrgentox.2012.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/11/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
|
27
|
Gamal-Eldeen AM, Abo-Zeid MAM, Ahmed EF. Anti-genotoxic effect of the Sargassum dentifolium extracts: prevention of chromosomal aberrations, micronuclei, and DNA fragmentation. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:27-34. [PMID: 21652192 DOI: 10.1016/j.etp.2011.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 10/27/2010] [Accepted: 05/07/2011] [Indexed: 11/23/2022]
Abstract
The alga Sargassum dentifolium (Turner) C. Agardh, belongs to Sargassaceae, is a brown seaweed in red sea shores in Egypt. This work aimed to extract different water-soluble polysaccharide extracts (E1, E2, and E3) from S. dentifolium and to investigate their protective effect against cyclophosphamide (CP)-induced genotoxicity. Mice bone marrow cells (BMCs) were collected and analyzed for the chromosomal aberration, micronucleated BMCs (MN-BMCs), the mitotic index, DNA fragmentation by comet assay, and histone deacetylases (HDACs), and radical scavenging capacity of extracts was evaluated by the oxygen radical absorbance capacity assay. The results indicated that E2 and E3 significantly inhibited CP-induced multiple chromosomal aberrations, where E1 and E3 significantly suppressed the number of CP-induced formation of tetraploidy. The extracts prohibited the cytotoxic effect of CP and recovered the mitotic activity, whereas E1 possessed the highest recovery and mitosis. In absence of MN, CP induced formation of bi- and poly-nucleated BMCs. E1 prohibited CP-induced formation of bi-nucleated BMCs, while E2 and E3 prohibited CP-induced formation of poly-nucleated BMCs. CP-induced MN-BMCs were accompanied with mono-, bi- and poly-nucleated cells. E1 and E3 remarkably suppressed mono-nucleated MN-BMCs, while E2 inhibited bi-nucleated MN-BMCs. All the extracts significantly inhibited the CP-induced formation of poly-nucleated MN-BMCs. CP-induced DNA fragmentation was inhibited by all extracts, where E1 was the strongest inhibitor as concluded from the comet tail moment. All the extracts were strong OH scavengers, while only E3 was ROO scavenger. The results revealed a drastic decline in HDACs activity by E1 and E3. In conclusion, S. dentifolium polysaccharide extracts E1 and E3 possessed a potential anti-genotoxic and a promising anti-mutagenic activity.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Cancer Biology Laboratory, Center of Excellency for Advanced Sciences, National Research Center, Dokki 12622, Cairo, Egypt.
| | | | | |
Collapse
|
28
|
Deltamethrin-induced genotoxicity and testicular injury in rats: Comparison with biopesticide. Food Chem Toxicol 2012; 50:3421-5. [DOI: 10.1016/j.fct.2012.07.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/22/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
|
29
|
Rjiba-Touati K, Ayed-Boussema I, Skhiri H, Belarbia A, Zellema D, Achour A, Bacha H. Induction of DNA fragmentation, chromosome aberrations and micronuclei by cisplatin in rat bone-marrow cells: protective effect of recombinant human erythropoietin. Mutat Res 2012; 747:202-206. [PMID: 22664391 DOI: 10.1016/j.mrgentox.2012.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 03/07/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
Cisplatin (Cisp) is one of the most effective chemotherapeutic agents. However, at higher doses several side effects may occur. Recombinant human erythropoietin (rhEPO), a glycoprotein regulating haematopoiesis, has recently been shown to exert an important cyto-protective effects in many tissues. The purpose of this study was to explore whether rhEPO protects against Cisp-induced genotoxicity in rat bone-marrow cells. Adult male Wistar rats were divided into six groups of 18 animals each: control group, rhEPO-alone group, Cisp-alone group and three rhEPO+Cisp-groups (pre-, co- and post-treatment condition, respectively). Our results show that Cisp induced a noticeable genotoxic effect in rat bone-marrow cells. In all types of treatment, rhEPO significantly decreased the frequency of micronuclei, the percentage of chromosome aberrations and the level of DNA damage. The protective effect of rhEPO was more efficient when it was administrated 24h before exposure to Cisp.
Collapse
Affiliation(s)
- Karima Rjiba-Touati
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | | | | | | | | | | | | |
Collapse
|
30
|
Sayed HM, Fouad D, Ataya FS, Hassan NH, Fahmy MA. The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 744:145-53. [DOI: 10.1016/j.mrgentox.2012.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/11/2012] [Accepted: 02/05/2012] [Indexed: 11/28/2022]
|
31
|
Mansour HB, Mosrati R, Barillier D, Ghedira K, Chekir-Ghedira L. Bioremediation of industrial pharmaceutical drugs. Drug Chem Toxicol 2012; 35:235-40. [DOI: 10.3109/01480545.2011.591799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Hassanane MS, Hafiz N, Radwan W, El-Ghor AA. Genotoxic evaluation for the tricyclic antidepressant drug, amitriptyline. Drug Chem Toxicol 2012; 35:450-5. [DOI: 10.3109/01480545.2011.642382] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Ma X, Zhang H, Wang Z, Min X, Liu Y, Wu Z, Sun C, Hu B. Chromosomal aberrations in the bone marrow cells of mice induced by accelerated (12)C(6+) ions. Mutat Res 2011; 716:20-26. [PMID: 21843535 DOI: 10.1016/j.mrfmmm.2011.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
The whole bodies of 6-week-old male Kun-Ming mice were exposed to different doses of (12)C(6+) ions or X-rays. Chromosomal aberrations of the bone marrow (gaps, terminal deletions and breaks, fragments, inter-chromosomal fusions and sister-chromatid union) were scored in metaphase 9h after exposure, corresponding to cells exposed in the G(2)-phase of the first mitosis cycle. Dose-response relationships for the frequency of chromosomal aberrations were plotted both by linear and linear-quadratic equations. The data showed that there was a dose-related increase in the frequency of chromosomal aberrations in all treated groups compared to controls. Linear-quadratic equations were a good fit for both radiation types. The compound theory of dual radiation action was applied to decipher the bigger curvature (D(2)) of the dose-response curves of X-rays compared to those of (12)C(6+) ions. Different distributions of the five types of aberrations and different degrees of homogeneity were found between (12)C(6+) ion and X-ray irradiation and the possible underlying mechanism for these phenomena were analyzed according to the differences in the spatial energy deposition of both types of radiation.
Collapse
Affiliation(s)
- Xiaofei Ma
- Department of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ayed Y, Ayed-Boussema I, Ouanes Z, Bacha H. In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: comparison with zearalenone. Mutat Res 2011; 726:42-6. [PMID: 21889607 DOI: 10.1016/j.mrgentox.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/29/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. It contaminates different components of the food chain and can cause serious economic and public health problems. The major metabolites of ZEN in various animal species are alpha- and beta-zearalenol (α-, β-ZOL). Some in vivo studies have shown that these two metabolites are as toxic as the mother molecule (ZEN), but other investigations have demonstrated that α- and β-ZOL are less toxic than ZEN. Thus, the aim of the present study was to evaluate cytotoxicity and genotoxicity of α- and β-ZOL in vivo, in mouse bone-marrow cells and in vitro, in cultured HeLa cells, and to compare it with ZEN. ZEN showed the same cytotoxicity as α-ZOL and both are more cytotoxic than β-ZOL. Genotoxicity of ZEN and its derivatives was assessed by the chromosome aberration assay. Our results show that ZEN as well as α- and β-ZOL increased the percentage of chromosome aberrations in mouse bone-marrow cells and in HeLa cells. In the two systems, ZEN and α-ZOL exhibited the same range of genotoxicity and both were more genotoxic than β-ZOL. Furthermore, our results show that either ZEN or its two metabolites inhibited cell viability in a dose-dependent manner. We conclude that biotransformation of ZEN may be considered as only a partial detoxification pathway since the resulting metabolites remain relatively toxic.
Collapse
Affiliation(s)
- Yosra Ayed
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | | | | | | |
Collapse
|
35
|
Gomaa OM, Kareem HAE, Fatahy R. Assessment of the efficacy of Aspergillus sp. EL-2 in textile waste water treatment. Biodegradation 2011; 23:243-51. [PMID: 21822953 DOI: 10.1007/s10532-011-9503-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/29/2011] [Indexed: 11/25/2022]
Abstract
Fungal biomass has the ability to decolorize a wide variety of dyes successfully through a number of mechanisms. A brown rot isolate, previously identified as Aspergillus sp. EL-2, was used in the aerobic treatment of textile waste water efficiently. In the current work, the treated waste water was tested chemically using more than one combined treatment. Microbial toxicity, phytotoxicity, genotoxicity and cytotoxicity were also studied to assess the toxicity level for each treatment. The obtained data suggest that the contribution of more than one mode of treatment is essential to ensure complete destruction of the by-products. The use of gamma irradiation (25 kGy) after the bioremediation step led to the decrease of the by-products of biodegradation as observed by visible spectrum and Fourier transfer infra red spectroscopy (FT-IR). The toxicity assessment presented variable results indicating the need for more than one toxicity test to confirm the presence or absence of hazardous compounds. Brown rot fungus could be used efficiently in the treatment of textile waste water without the risk of obtaining high carcinogenic or genotoxic compounds, especially if combined treatment is employed.
Collapse
Affiliation(s)
- Ola M Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Nasr City, Cairo, Egypt.
| | | | | |
Collapse
|
36
|
Ben Mansour H, Houas I, Montassar F, Ghedira K, Barillier D, Mosrati R, Chekir-Ghedira L. Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2634-2643. [PMID: 22351353 DOI: 10.1007/s11356-012-0802-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Textile industry is one of the most common and essential sectors in Tunisia. However, the treatment of textile effluents becomes a university because of their toxic impacts on waters, soils, flora, and fauna. MATERIALS AND METHODS The aim of this work was to evaluate the ability of Pseudomonas putida mt-2 to decolorize a textile wastewater and to compare the biologic decolorization process to the chemical one currently used by the textile industry. RESULTS P. putida exhibited a high decolorizing capacity of the studied effluent, compared to the coagulation-flocculation method with decolorization percentage of 86% and 34.5%, respectively. Genotoxicity of the studied effluent, before and after decolorization by P. putida mt-2, was evaluated in vitro, using the SOS chromotest, and in vivo, in mouse bone marrow, by assessing the percentage of cells bearing different chromosome aberrations compared to not treated mice. In addition, textile effluent statistically significant influenced acetylcholinesterase and butyrylcholinesterase activities and lipid peroxidation (p < 0.01) when compared to not-treated mice. Coagulation-flocculation treatment process used by industry was revealed to be ineffective. Indeed toxicities persisted after treatment and the effluent did not show any statistically significant decrease in toxicities compared to non-treated effluent. Our results indicate that P. putida is a promising and improved alternative to treating industrial scale effluent compared to current chemical decolorization procedures used by the Tunisian textile industry.
Collapse
Affiliation(s)
- Hedi Ben Mansour
- Equipe de Recherche en Physico-chimie et Biotechnologie (E.R.P.C.B-EA3914), IUT-UFR Sciences, Université de Caen-Basse, Normandie, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Salah SH, Abdou HS, Abd El Azeem AS, Abdel-Rahim E. The antioxidative effects of some medicinal plants as hypoglycemic agents on chromosomal aberration and abnormal nucleic acids metabolism produced by diabetes stress in male adult albino rats. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jdm.2011.11002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Ben Mansour H, Ayed-Ajmi Y, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L. Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1371-1378. [PMID: 20369386 DOI: 10.1007/s11356-010-0323-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 03/04/2010] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Acid violet 7 (AV7), mostly used in food, paper, cosmetic, and especially in textile industries, was degraded by Pseudomonas putida mt-2 at concentrations up to 200 mg/l. MATERIALS AND METHODS In this study, toxicity of AV7, before and after biodegradation, was evaluated in vivo, in mouse bone marrow, by assessing the percentage of cells bearing different chromosome aberrations, membrane lipid peroxidation, and acetylcholinesterasic activity inhibition. The studies included same conditions for animal treatment, corresponding to increasing doses by intraperitoneal (ip) injection. RESULTS Results indicated that AV7 showed a significant ability to induce chromosome aberrations, lipid peroxidation, and acetylcholinesterase inhibitory effect. The toxicity of AV7 increased significantly after static biodegradation with P. putida mt-2 and totally disappeared after shaken incubation. In addition, the toxicity generated by the pure azo dye and the corresponding azoreduction metabolites (4'-aminoacetanilide (4'-AA) and 5-acetamido-2-amino-1-hydroxy-3,6-naphtalene disulfonic acid (5-ANDS)) were compared. 4'-AA and 5-ANDS would be responsible of static biodegradation medium toxicity. The present study demonstrates that P. putida mt-2, incubated under aerobic condition, has a catabolism which enables it to degrade AV7, and especially to completely detoxify the dye mixture.
Collapse
Affiliation(s)
- Hédi Ben Mansour
- Equipe de Recherche en Physico-Chimie et Biotechnologie (ERPCB-EA3914), IUTUFR Sciences, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Alzahrani HAS. Protective effect of l-carnitine against acrylamide-induced DNA damage in somatic and germ cells of mice. Saudi J Biol Sci 2010; 18:29-36. [PMID: 23961101 DOI: 10.1016/j.sjbs.2010.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/18/2010] [Accepted: 07/23/2010] [Indexed: 02/05/2023] Open
Abstract
Recent findings of acrylamide (AA) in many common foods have sparked renewed interest in assessing human health hazards. AA was evaluated by the International Agency for Research on Cancer as probably carcinogenic to humans. For this reason, the aim of this study is to evaluate the potential genotoxic effect of AA using chromosomal aberration analysis and micronucleus (MN) test in mouse bone-marrow cells and morphological sperm abnormalities. The result of the present work indicated that treatment with a single dose of 10, 20, or 30 mg/kg b.wt. of AA for 24 h and the repeated dose of 10 mg/kg b.wt. for 1and 2 weeks induced a statistically significant increase in the percentage of chromosomal aberrations and micronuclei in bone- marrow cells. These percentages reduced significantly in all groups treated with AA and the protective agent l-carnitine. Also the results indicated that the dose 10, 20 and 30 mg/kg b.wt. of AA induced a statistically significant percentage of morphological sperm abnormalities compared with the control group. Such effect reached its maximum (7.24 ± 0.61) with the highest tested dose which reduced to (4.02 ± 0.58) in the group treated with the same dose of AA and l-carnitine. In conclusion, the results confirm the protective role of LC against the mutagenicity of AA.
Collapse
|
40
|
|
41
|
Shbulatova N, Nadjafova RS, Kozlovsky I. Cytotaxonomic analysis of species of the genera Mus, Apodemus and Rattus in Azerbaijan. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.1991.tb00453.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Ahlstrom U. Chromosomes of primary carcinomas induced by 7,12-dimethylbenz(a)anthracene in the rat. Hereditas 2009; 78:235-44. [PMID: 4463176 DOI: 10.1111/j.1601-5223.1974.tb01444.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
43
|
Siddique YH, Afzal M. Antigenotoxic effect of apigenin against mitomycin C induced genotoxic damage in mice bone marrow cells. Food Chem Toxicol 2008; 47:536-9. [PMID: 19121640 DOI: 10.1016/j.fct.2008.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/05/2008] [Accepted: 12/05/2008] [Indexed: 11/28/2022]
Abstract
The antigenotoxic effect of apigenin was studied against the genotoxic damage induced by mitomycin C on mouse bone marrow cells using sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) as parameters. Apigenin was studied at three different doses i.e. 10, 20 and 40 mg/kg b.w. and was found to be non-genotoxic at all the above three doses. Mitomycin C at 2 mg/kg b.w. was given along with the 10, 20 and 40 mg/kg bw of apigenin. A significant decrease in SCEs and CAs was observed, suggesting a protective role of apigenin against the genotoxicity of mitomycin C on mice bone marrow cells.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Human Genetics and Toxicology Lab, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P. 202 002, India.
| | | |
Collapse
|
44
|
|
45
|
Hana HY, Khalil WKB, Elmakawy AI, Elmegeed GA. Androgenic profile and genotoxicity evaluation of testosterone propionate and novel synthesized heterocyclic steroids. J Steroid Biochem Mol Biol 2008; 110:284-94. [PMID: 18513952 DOI: 10.1016/j.jsbmb.2007.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 11/13/2007] [Indexed: 11/24/2022]
Abstract
In this study, we tested the androgenic activity of three structurally promising novel synthesized heterocyclic steroids compared with testosterone propionate in male mice. Additionally, the possible genotoxic effects of the novel synthesized heterocyclic steroids in comparison with testosterone propionate on male mice using chromosomal analysis of somatic and germ cells as well as RAPD-PCR were investigated. Male mice were administered with two doses of testosterone propionate, pyridoandrostene derivative 4b, pyrimidinoandrostene derivative 9a and thienoandrostene derivative 12 (200 and 400mg/kg b.w.) daily for 2 weeks. Results indicated that compounds 4b and 12 have androgenic activity as well as testosterone propionate. There were no significant differences in the frequencies of total chromosomal aberrations in both somatic and germ cells as well as no alteration in the DNA bands patterns between control, testosterone propionate and pyridoandrostene 4b treated animals. However, the pyrimidinoandrostene derivative 9a caused significant increase in the mean value of total chromosomal aberrations of both somatic and germ cells (P< or =0.01) as well as enhanced the polymorphic bands patterns as compared to the control and the other tested compounds. On the other hand, thienoandrostene derivative 12 induced significant decrease in the mean values of chromosomal aberrations in both somatic and germ cells, decreased sperm morphological abnormalities, increased the sperm count and motility than control. Our data indicate that testosterone propionate; pyridoandrostene 4b and thienoandrostene derivative 12 have no genotoxic activity. However, pyrimidinoandrostene derivative 9a has genotoxic activity possibly due to a modulation of the different expression of the catalyzing enzyme systems which will be investigated in the nearly future.
Collapse
Affiliation(s)
- Hanaa Y Hana
- Hormones Department, National Research Center, 12622 Dokki, Cairo, Egypt
| | | | | | | |
Collapse
|
46
|
Siddique YH, Ara G, Beg T, Afzal M. Antigenotoxic effect of nordihydroguaiaretic acid against chlormadinone acetate-induced genotoxicity in mice bone-marrow cells. J Nat Med 2008; 62:52-6. [PMID: 18404342 DOI: 10.1007/s11418-006-0108-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 09/27/2006] [Indexed: 11/28/2022]
Abstract
Nordihydroguaiaretic acid (NDGA), a phenolic lignan, was tested for its antigenotoxic potential against chlormadinone acetate (CMA)-induced genotoxic damage in mice bone-marrow cells. Doses of about 22.50 mg/kg body weight of CMA were given along with 1, 5 and 10 mg/kg body weight of NDGA intraperitoneally. The treatment resulted in the reduction of sister chromatid exchanges and chromosomal aberrations induced by CMA, suggesting an antigenotoxic potential of NDGA. Earlier studies show that CMA generates reactive oxygen species, responsible for genotoxic damage. The free radical-scavenging property of NDGA is responsible for the reduction of genotoxic damage induced by CMA in mice bone-marrow cells.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202 002, India.
| | | | | | | |
Collapse
|
47
|
Fahmy MA, Hassan NHA, Farghaly AA, Hassan EES. Studies on the genotoxic effect of beryllium chloride and the possible protective role of selenium/vitamins A, C and E. Mutat Res 2008; 652:103-11. [PMID: 18373946 DOI: 10.1016/j.mrgentox.2007.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 07/02/2007] [Accepted: 12/08/2007] [Indexed: 10/22/2022]
Abstract
The genotoxic potential of beryllium chloride (BeCl2) was evaluated in vivo in mice using different endpoints. Chromosomal aberrations in bone marrow cells and in spermatocytes as well as sperm abnormalities were determined in the tested mice. The protective role of an orally administered drug consisting of selenium and vitamins A, C and E (selenium-ACE) was also studied. For analysis of chromosomal aberrations, both single and repeated oral treatments for a period of 3 weeks were performed. The doses used were 93.75, 187.50, 375, and 750 mg BeCl2/kg bw, which corresponds to 1/16, 1/8, 1/4, and 1/2 of the experimental LD50. BeCl2 induced a statistically significant increase in the percentage of chromosomal aberrations in both somatic and germ cells, with a dose- and time-response. The percentage of induced chromosomal aberrations was significantly reduced in all BeCl2-treated groups after oral administration of selenium-ACE. Beryllium chloride also induced a significant increase in the percentage of abnormal sperm. This percentage reached values of 9.62 +/- 0.32 and 5.56 +/- 0.31 in mice treated with the highest test dose of BeCl2 and with BeCl2+selenium-ACE, respectively, compared with 1.96 +/- 0.14 for the control. In conclusion, the results demonstrate the genotoxic effect of beryllium chloride and confirm the protective role of selenium-ACE against the genotoxicity of beryllium chloride.
Collapse
Affiliation(s)
- Maha A Fahmy
- Department of Genetics and Cytology, National Research Centre, Dokki, Cairo, Egypt.
| | | | | | | |
Collapse
|
48
|
Donya SM, Hassan EE. Clastogenic Effects of the Fasciolicides Closantel and Nitroxynil on Mice Somatic and Germ Cells. CYTOLOGIA 2007. [DOI: 10.1508/cytologia.72.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Souria M. Donya
- Department of Genetics and Cytology, National Research Center, Egypt
| | | |
Collapse
|
49
|
Amer SM, Aly FAE, Ibrahim AAE, Farghaly AA. Cytogenetic Effect of the Chloroacetanilide Herbicide Alachlor in Somatic and Germ Cells of the Mouse. CYTOLOGIA 2007. [DOI: 10.1508/cytologia.72.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Soheir M. Amer
- Department of Genetics and Cytology, National Research Center, Egypt
| | - Fawzia A. E. Aly
- Department of Genetics and Cytology, National Research Center, Egypt
| | | | - Ayman A. Farghaly
- Department of Genetics and Cytology, National Research Center, Egypt
| |
Collapse
|
50
|
El-Makawy A, Radwan HA, Ghaly IS, El-Raouf AA. Genotoxical, teratological and biochemical effects of anthelmintic drug oxfendazole Maximum Residue Limit (MRL) in male and female mice. ACTA ACUST UNITED AC 2006; 46:139-56. [PMID: 16597420 DOI: 10.1051/rnd:2006007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 11/16/2005] [Indexed: 11/15/2022]
Abstract
Oxfendazole, methyl-5 (6)-phenylsulfinyl-2-benzimidazole carbamate, is a member of the benzimidazole family of anthelmintics. Anthelmintic benzimidazoles are widely used in meat producing animals (cattle, sheep and pigs) for control of endoparasites. The extensive use of veterinary drugs in food-producing animals can cause the presence of small quantities of the drug residues in food. Maximum residue limit or "MRL" means the maximum concentration of residue resulting from the use of a veterinary medicinal product which may be legally permitted recognized as acceptable in food. The FAO/WHO Expert Committee on Food Additives (1999) evaluations of toxicological and residue data, reported that oxfendazole (MRL) has toxicological hazards on human health. The toxicity of oxfendazole (MRL) was tested in male and female mice and their fetuses. Chromosomal aberrations, teratological examination and biochemical analysis were the parameters used in this study. The results show that oxfendazole MRL induced a mutagenic effect in all tested cell types. Also, oxfendazole exhibit embryotoxicity including teratogenicity. The biochemical results show that oxfendazole induced a disturbance in the different biochemical contents of all tested tissues. So, we must increase the attention paid to the potential risk of oxfendazole residues in human beings and should stress the need for careful control to ensure adherence to the prescribed withdrawal time of this drug.
Collapse
Affiliation(s)
- Aida El-Makawy
- Cell Biology Department, National Research Center, Dokki, Giza, Egypt.
| | | | | | | |
Collapse
|