1
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
2
|
Khalilpour J, Zangbar HS, Alipour MR, Pakdel FQ, Zavari Z, Shahabi P. Chronic Sustained Hypoxia Leads to Brainstem Tauopathy and Declines the Power of Rhythms in the Ventrolateral Medulla: Shedding Light on a Possible Mechanism. Mol Neurobiol 2024; 61:3121-3143. [PMID: 37976025 DOI: 10.1007/s12035-023-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia, especially the chronic type, leads to disruptive results in the brain that may contribute to the pathogenesis of some neurodegenerative diseases such as Alzheimer's disease (AD). The ventrolateral medulla (VLM) contains clusters of interneurons, such as the pre-Bötzinger complex (preBötC), that generate the main respiratory rhythm drive. We hypothesized that exposing animals to chronic sustained hypoxia (CSH) might develop tauopathy in the brainstem, consequently changing the rhythmic manifestations of respiratory neurons. In this study, old (20-22 months) and young (2-3 months) male rats were subjected to CSH (10 ± 0.5% O2) for ten consecutive days. Western blotting and immunofluorescence (IF) staining were used to evaluate phosphorylated tau. Mitochondrial membrane potential (MMP or ∆ψm) and reactive oxygen species (ROS) production were measured to assess mitochondrial function. In vivo diaphragm's electromyography (dEMG) and local field potential (LFP) recordings from preBötC were employed to assess the respiratory factors and rhythmic representation of preBötC, respectively. Findings showed that ROS production increased significantly in hypoxic groups, associated with a significant decline in ∆ψm. In addition, tau phosphorylation elevated in the brainstem of hypoxic groups. On the other hand, the power of rhythms declined significantly in the preBötC of hypoxic rats, parallel with changes in the respiratory rate, total respiration time, and expiration time. Moreover, there was a positive and statistically significant correlation between LFP rhythm's power and inspiration time. Our data showed that besides CSH, aging also contributed to mitochondrial dysfunction, tau hyperphosphorylation, LFP rhythms' power decline, and changes in respiratory factors.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Firouz Qaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zohre Zavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| |
Collapse
|
3
|
Dereli AS, Oh AYS, McMullan S, Kumar NN. Galaninergic and hypercapnia-activated neuronal projections to the ventral respiratory column. Brain Struct Funct 2024; 229:1121-1142. [PMID: 38578351 PMCID: PMC11147908 DOI: 10.1007/s00429-024-02782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
In mammals, the ventral respiratory column (VRC) plays a pivotal role in integrating neurochemically diverse inputs from brainstem and forebrain regions to generate respiratory motor patterns. VRC microinjection of the neuropeptide galanin has been reported to dampen carbon dioxide (CO2)-mediated chemoreflex responses. Additionally, we previously demonstrated that galaninergic neurons in the retrotrapezoid nucleus (RTN) are implicated in the adaptive response to hypercapnic stimuli, suggesting a link between RTN neuroplasticity and increased neuronal drive to the VRC. VRC neurons express galanin receptor 1, suggesting potential regulatory action by galanin, however, the precise galaninergic chemoreceptor-VRC circuitry remains to be determined. This study aimed to identify sources of galaninergic input to the VRC that contribute to central respiratory chemoreception. We employed a combination of retrograde neuronal tracing, in situ hybridisation and immunohistochemistry to investigate VRC-projecting neurons that synthesise galanin mRNA. In an additional series of experiments, we used acute hypercapnia exposure (10% CO2, 1 h) and c-Fos immunohistochemistry to ascertain which galaninergic nuclei projecting to the VRC are activated. Our findings reveal that a total of 30 brain nuclei and 51 subnuclei project to the VRC, with 12 of these containing galaninergic neurons, including the RTN. Among these galaninergic populations, only a subset of the RTN neurons (approximately 55%) exhibited activation in response to acute hypercapnia. Our findings highlight that the RTN is the likely source of galaninergic transmission to the VRC in response to hypercapnic stimuli.
Collapse
Affiliation(s)
- Ayse S Dereli
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Alice Y S Oh
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Simon McMullan
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Natasha N Kumar
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Vafadari B, Oku Y, Tacke C, Harb A, Hülsmann S. In-vivo optogenetic identification and electrophysiology of glycinergic neurons in pre-Bötzinger complex of mice. Respir Physiol Neurobiol 2024; 320:104188. [PMID: 37939866 DOI: 10.1016/j.resp.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Breathing requires distinct patterns of neuronal activity in the brainstem. The most critical part of the neuronal network responsible for respiratory rhythm generation is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a transgenic mouse line that allows expression of Channelrhodopsin 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.
Collapse
Affiliation(s)
- Behnam Vafadari
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, Nishinomiya, Japan
| | - Charlotte Tacke
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Ali Harb
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Swen Hülsmann
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany.
| |
Collapse
|
5
|
Okazaki M, Matsumoto M, Koganezawa T. Hydrogen sulfide production in the medullary respiratory center modulates the neural circuit for respiratory pattern and rhythm generations. Sci Rep 2023; 13:20046. [PMID: 38049443 PMCID: PMC10696040 DOI: 10.1038/s41598-023-47280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023] Open
Abstract
Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine β-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Minako Okazaki
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Matsumoto
- Department of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tadachika Koganezawa
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
6
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
7
|
Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-Miranda LR. Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 2022; 15:1072475. [PMID: 36523603 PMCID: PMC9745097 DOI: 10.3389/fnmol.2022.1072475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 11/12/2023] Open
Abstract
Breathing (or respiration) is an unconscious and complex motor behavior which neuronal drive emerges from the brainstem. In simplistic terms, respiratory motor activity comprises two phases, inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). Breathing is not rigid, but instead highly adaptable to external and internal physiological demands of the organism. The neurons that generate, monitor, and adjust breathing patterns locate to two major brainstem structures, the pons and medulla oblongata. Extensive research over the last three decades has begun to identify the developmental origins of most brainstem neurons that control different aspects of breathing. This research has also elucidated the transcriptional control that secures the specification of brainstem respiratory neurons. In this review, we aim to summarize our current knowledge on the transcriptional regulation that operates during the specification of respiratory neurons, and we will highlight the cell lineages that contribute to the central respiratory circuit. Lastly, we will discuss on genetic disturbances altering transcription factor regulation and their impact in hypoventilation disorders in humans.
Collapse
Affiliation(s)
- Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonia Alonso
- Functional Genoarchitecture and Neurobiology Groups, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elijah D. Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Keifer J. Emergence of In Vitro Preparations and Their Contribution to Understanding the Neural Control of Behavior in Vertebrates. J Neurophysiol 2022; 128:511-526. [PMID: 35946803 DOI: 10.1152/jn.00142.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the longstanding goals of the field of neuroscience is to understand the neural control of behavior in both invertebrate and vertebrate species. A series of early discoveries showed that certain motor patterns like locomotion could be generated by neuronal circuits without sensory feedback or descending control systems. These were called fictitious, or "fictive", motor programs because they could be expressed by neurons in the absence of movement. This finding lead investigators to isolate central nervous system tissue and maintain it in a dish in vitro to better study mechanisms of motor pattern generation. A period of rapid development of in vitro preparations from invertebrate species that could generate fictive motor programs from the activity of central pattern generating circuits (CPGs) emerged that was gradually followed by the introduction of such preparations from vertebrates. Here, I will review some of the notable in vitropreparations from both mammalian and non-mammalian vertebrate species developed to study the neural circuits underlying a variety of complex behaviors. This approach has been instrumental in delineating not only the cellular substrates underlying locomotion, respiration, scratching, and other behaviors, but also mechanisms underlying the modifiability of motor pathways through synaptic plasticity. In vitro preparations have had a significant impact on the field of motor systems neuroscience and the expansion of our understanding of how nervous systems control behavior. The field is ready for further advancement of this approach to explore neural substrates for variations in behavior generated by social and seasonal context, and the environment.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
9
|
Computer Modeling of D, L – Homocysteic Acid Microinjection into the Bötzinger Complex Area. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The impact of D,L – homocysteic acid (DLH) microinjection (non-specific glutamate receptor agonist that causes excitation of neurons) into the Bötzinger complex area (BOT) was simulated using computer model of quiet breathing and cough reflex. Integrated signals from simulated neuronal populations innervating inspiratory phrenic and expiratory lumbar motoneurons were obtained. We analysed durations and amplitudes of these “pre-phrenic and pre-lumbar” activities during quiet breathing and cough reflex and the number of coughs elicited by a fictive 10-second-long stimulation. Model fibre population provides virtual DLH related excitation to expiratory neuronal populations with augmenting discharge pattern (BOT neurons). The excitation was modelled by a higher number of fibres and terminals (simulated a higher number of excitatory inputs) or by a higher synaptic strength (simulated a higher effect of excitatory inputs).
Our simulations have demonstrated a high analogy of cough and breathing changes to those observed in animal experiments. The simulated neuronal excitations in the BOT led to cough depression represented by a lower cough number and a cough neuronal activity of the lumbar nerve. Despite the shortening of the phrenic activity during cough (compared to quiet breathing), which was not observed in animal experiments, our simulations confirm the ability of the computer model to simulate motor processes in the respiratory system. The computer model of functional respiratory / cough neural network is capable to confirm and / or predict the results obtained on animals.
Collapse
|
10
|
Mechanisms of opioid-induced respiratory depression. Arch Toxicol 2022; 96:2247-2260. [PMID: 35471232 DOI: 10.1007/s00204-022-03300-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
Opioid-induced respiratory depression (OIRD), the primary cause of opioid-induced death, is the neural depression of respiratory drive which, together with a decreased level of consciousness and obstructive sleep apnea, cause ventilatory insufficiency. Variability of responses to opioids and individual differences in physiological and neurological states (e.g., anesthesia, sleep-disordered breathing, concurrent drug administration) add to the risk. Multiple sites can independently exert a depressive effect on breathing, making it unclear which sites are necessary for the induction of OIRD. The generator of inspiratory rhythm is the preBötzinger complex (preBötC) in the ventrolateral medulla. Other important brainstem respiratory centres include the pontine Kölliker-Fuse and adjacent parabrachial nuclei (KF/PBN) in the dorsal lateral pons, and the dorsal respiratory group in the medulla. Deletion of μ opioid receptors from neurons showed that the preBötC and KF/PBN contribute to OIRD with the KF as a respiratory modulator and the preBötC as inspiratory rhythm generator. Glutamatergic neurons expressing NK-1R and somatostatin involved in the autonomic function of breathing, and modulatory signal pathways involving GIRK and KCNQ potassium channels, remain poorly understood. Reversal of OIRD has relied heavily on naloxone which also reverses analgesia but mismatches between the half-lives of naloxone and opioids can make it difficult to clinically safely avoid OIRD. Maternal opioid use, which is rising, increases apneas and destabilizes neonatal breathing but opioid effects on maternal and neonatal respiratory circuits in neonatal abstinence syndrome (NAS) are not well understood. Methadone, administered to alleviate symptoms of NAS in humans, desensitizes rats to RD.
Collapse
|
11
|
Turk AZ, Bishop M, Adeck A, SheikhBahaei S. Astrocytic modulation of central pattern generating motor circuits. Glia 2022; 70:1506-1519. [PMID: 35212422 DOI: 10.1002/glia.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
Central pattern generators (CPGs) generate the rhythmic and coordinated neural features necessary for the proper conduction of complex behaviors. In particular, CPGs are crucial for complex motor behaviors such as locomotion, mastication, respiration, and vocal production. While the importance of these networks in modulating behavior is evident, the mechanisms driving these CPGs are still not fully understood. On the other hand, accumulating evidence suggests that astrocytes have a significant role in regulating the function of some of these CPGs. Here, we review the location, function, and role of astrocytes in locomotion, respiration, and mastication CPGs and propose that, similarly, astrocytes may also play a significant role in the vocalization CPG.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
12
|
Smith JC. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:1-35. [PMID: 35965022 DOI: 10.1016/b978-0-323-91534-2.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breathing movements in mammals are driven by rhythmic neural activity automatically generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This chapter reviews up-to-date experimental information and theoretical studies of the cellular and circuit mechanisms of respiratory rhythm and pattern generation operating within critical components of this CPG in the lower brainstem. Over the past several decades, there have been substantial advances in delineating the spatial architecture of essential medullary regions and their regional cellular and circuit properties required to understand rhythm and pattern generation mechanisms. A fundamental concept is that the circuits in these regions have rhythm-generating capabilities at multiple cellular and circuit organization levels. The regional cellular properties, circuit organization, and control mechanisms allow flexible expression of neural activity patterns for a repertoire of respiratory behaviors under various physiologic conditions that are dictated by requirements for homeostatic regulation and behavioral integration. Many mechanistic insights have been provided by computational modeling studies driven by experimental results and have advanced understanding in the field. These conceptual and theoretical developments are discussed.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
13
|
Abstract
Breathing (or respiration) is a complex motor behavior that originates in the brainstem. In minimalistic terms, breathing can be divided into two phases: inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). The neurons that discharge in synchrony with these phases are arranged in three major groups along the brainstem: (i) pontine, (ii) dorsal medullary, and (iii) ventral medullary. These groups are formed by diverse neuron types that coalesce into heterogeneous nuclei or complexes, among which the preBötzinger complex in the ventral medullary group contains cells that generate the respiratory rhythm (Chapter 1). The respiratory rhythm is not rigid, but instead highly adaptable to the physic demands of the organism. In order to generate the appropriate respiratory rhythm, the preBötzinger complex receives direct and indirect chemosensory information from other brainstem respiratory nuclei (Chapter 2) and peripheral organs (Chapter 3). Even though breathing is a hard-wired unconscious behavior, it can be temporarily altered at will by other higher-order brain structures (Chapter 6), and by emotional states (Chapter 7). In this chapter, we focus on the development of brainstem respiratory groups and highlight the cell lineages that contribute to central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Eser Göksu Isik
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
14
|
Wu Y, Cui N, Xing H, Zhong W, Arrowood C, Johnson CM, Jiang C. In vivo evidence for the cellular basis of central hypoventilation of Rett syndrome and pharmacological correction in the rat model. J Cell Physiol 2021; 236:8082-8098. [PMID: 34077559 DOI: 10.1002/jcp.30462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/13/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused mostly by mutations in the MECP2 gene. RTT patients show periodical hypoventilation attacks. The breathing disorder contributing to the high incidence of sudden death is thought to be due to depressed central inspiratory (I) activity via unknown cellular processes. Demonstration of such processes may lead to targets for pharmacological control of the RTT-type hypoventilation. We performed in vivo recordings from medullary respiratory neurons on the RTT rat model. To our surprise, both I and expiratory (E) neurons in the ventral respiratory column (VRC) increased their firing activity in Mecp2-null rats with severe hypoventilation. These I neurons including E-I phase-spanning and other I neurons remained active during apneas. Consistent with enhanced central I drive, ectopic phrenic discharges during expiration as well as apnea were observed in the Mecp2-null rats. Considering the increased I neuronal firing and ectopic phrenic activity, the RTT-type hypoventilation does not seem to be caused by depression in central I activity, neither reduced medullary I premotor output. This as well as excessive E neuronal firing as shown in our previous studies suggests inadequate synaptic inhibition for phase transition. We found that the abnormal respiratory neuronal firing, ectopic phrenic discharge as well as RTT-type hypoventilation all can be corrected by enhancing GABAergic inhibition. More strikingly, Mecp2-null rats reaching humane endpoints with severe hypoventilation can be rescued by GABAergic augmentation. Thus, defective GABAergic inhibition among respiratory neurons is likely to play a role in the RTT-type hypoventilation, which can be effectively controlled with pharmacological agents.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Hao Xing
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Colin Arrowood
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Acute and chronic cardiorespiratory consequences of focal intrahippocampal administration of seizure-inducing agents. Implications for SUDEP. Auton Neurosci 2021; 235:102864. [PMID: 34428716 DOI: 10.1016/j.autneu.2021.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
The risk factors for SUDEP are undoubtedly heterogenous but the main factor is the frequency of generalized tonic-clonic seizures with apnoea and/or cardiac abnormalities likely precipitating the lethal event. By its very nature modelling SUDEP experimentally is challenging, yet insights into the nature of the lethal event and precipitating factors are vital in order to understand and prevent fatalities. Acute animal models, which induce status epilepticus (SE), can be used to help understand pathophysiological processes during and following seizures, which sometimes lead to death. The most commonly used method to induce seizures and status epilepticus is systemic administration of an ictogenic agent. Microinjection of such agents into restricted regions within the brain induces a more localised epileptic focus and circumvents the risk of direct actions on cardiorespiratory control centres. Both approaches have revealed substantial cardiovascular and respiratory consequences, including death as a result of apnoea, which may be of central origin, obstructive due to laryngospasm or, at least in genetically modified mice, a result of spreading depolarisation to medullary respiratory control centres. SUDEP is by definition a result of epilepsy, which in turn is diagnosed on the basis of two or more unprovoked seizures. The incidence of tonic-clonic seizures is the main risk factor, raising the possibility that repeated seizures cause cumulative pathological and/or pathophysiological changes that contribute to the risk of SUDEP. Chronic experimental models, which induce repeated seizures that in some cases lead to death, do show progressive development of pathophysiological changes in the myocardium, e.g. prolongation of QT the interval of the ECG or, over longer periods, ventricular hypertrophy. However, the currently available evidence indicates that seizure-related deaths are primarily due to apnoeas, but cardiac factors, particularly cumulative cardiac pathophysiologies due to repeated seizures, are potential contributing factors.
Collapse
|
16
|
Yang CF, Kim EJ, Callaway EM, Feldman JL. Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons. Front Neuroanat 2020; 14:58. [PMID: 33013329 PMCID: PMC7507425 DOI: 10.3389/fnana.2020.00058] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.
Collapse
Affiliation(s)
- Cindy F. Yang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Euiseok J. Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Cinelli E, Iovino L, Bongianni F, Pantaleo T, Mutolo D. Essential Role of the cVRG in the Generation of Both the Expiratory and Inspiratory Components of the Cough Reflex. Physiol Res 2020; 69:S19-S27. [PMID: 32228008 DOI: 10.33549/physiolres.934396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As stated by Korpáš and Tomori (1979), cough is the most important airway protective reflex which provides airway defensive responses to nociceptive stimuli. They recognized that active expiratory efforts, due to the activation of caudal ventral respiratory group (cVRG) expiratory premotoneurons, are the prominent component of coughs. Here, we discuss data suggesting that neurons located in the cVRG have an essential role in the generation of both the inspiratory and expiratory components of the cough reflex. Some lines of evidence indicate that cVRG expiratory neurons, when strongly activated, may subserve the alternation of inspiratory and expiratory cough bursts, possibly owing to the presence of axon collaterals. Of note, experimental findings such as blockade or impairment of glutamatergic transmission to the cVRG neurons lead to the view that neurons located in the cVRG are crucial for the production of the complete cough motor pattern. The involvement of bulbospinal expiratory neurons seems unlikely since their activation affects differentially expiratory and inspiratory muscles, while their blockade does not affect baseline inspiratory activity. Thus, other types of cVRG neurons with their medullary projections should have a role and possibly contribute to the fine tuning of the intensity of inspiratory and expiratory efforts.
Collapse
Affiliation(s)
- E Cinelli
- Department of Experimental and Clinical Medicine, Physiological Sciences Section, University of Florence, Florence, Italy.
| | | | | | | | | |
Collapse
|
18
|
Toor RUAS, Sun QJ, Kumar NN, Le S, Hildreth CM, Phillips JK, McMullan S. Neurons in the Intermediate Reticular Nucleus Coordinate Postinspiratory Activity, Swallowing, and Respiratory-Sympathetic Coupling in the Rat. J Neurosci 2019; 39:9757-9766. [PMID: 31666354 PMCID: PMC6891060 DOI: 10.1523/jneurosci.0502-19.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
Breathing results from sequential recruitment of muscles in the expiratory, inspiratory, and postinspiratory (post-I) phases of the respiratory cycle. Here we investigate whether neurons in the medullary intermediate reticular nucleus (IRt) are components of a central pattern generator (CPG) that generates post-I activity in laryngeal adductors and vasomotor sympathetic nerves and interacts with other members of the central respiratory network to terminate inspiration. We first identified the region of the (male) rat IRt that contains the highest density of lightly cholinergic neurons, many of which are glutamatergic, which aligns well with the putative postinspiratory complex in the mouse (Anderson et al., 2016). Acute bilateral inhibition of this region reduced the amplitudes of post-I vagal and sympathetic nerve activities. However, although associated with reduced expiratory duration and increased respiratory frequency, IRt inhibition did not affect inspiratory duration or abolish the recruitment of post-I activity during acute hypoxemia as predicted. Rather than representing an independent CPG for post-I activity, we hypothesized that IRt neurons may instead function as a relay that distributes post-I activity generated elsewhere, and wondered whether they could be a site of integration for para-respiratory CPGs that drive the same outputs. Consistent with this idea, IRt inhibition blocked rhythmic motor and autonomic components of fictive swallow but not swallow-related apnea. Our data support a role for IRt neurons in the transmission of post-I and swallowing activity to motor and sympathetic outputs, but suggest that other mechanisms also contribute to the generation of post-I activity.SIGNIFICANCE STATEMENT Interactions between multiple coupled oscillators underlie a three-part respiratory cycle composed from inspiratory, postinspiratory (post-I), and late-expiratory phases. Central post-I activity terminates inspiration and activates laryngeal motoneurons. We investigate whether neurons in the intermediate reticular nucleus (IRt) form the central pattern generator (CPG) responsible for post-I activity. We confirm that IRt activity contributes to post-I motor and autonomic outputs, and find that IRt neurons are necessary for activation of the same outputs during swallow, but that they are not required for termination of inspiration or recruitment of post-I activity during hypoxemia. We conclude that this population may not represent a distinct CPG, but instead may function as a premotor relay that integrates activity generated by diverse respiratory and nonrespiratory CPGs.
Collapse
Affiliation(s)
- Rahat Ul Ain Summan Toor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Qi-Jian Sun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Natasha N Kumar
- Department of Pharmacology, School of Medical Science, University of New South Wales, 2052 New South Wales, Australia
| | - Sheng Le
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Simon McMullan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| |
Collapse
|
19
|
Morinaga R, Nakamuta N, Yamamoto Y. Serotonergic projections to the ventral respiratory column from raphe nuclei in rats. Neurosci Res 2019; 143:20-30. [DOI: 10.1016/j.neures.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
20
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
22
|
Wu Y, Cui N, Xing H, Zhong W, Arrowood C, Johnson CM, Jiang C. Mecp2 Disruption in Rats Causes Reshaping in Firing Activity and Patterns of Brainstem Respiratory Neurons. Neuroscience 2018; 397:107-115. [PMID: 30458221 DOI: 10.1016/j.neuroscience.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
People with Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in the MECP2 gene, have breathing abnormalities manifested as periodical hypoventilation with compensatory hyperventilation, which are attributable to a high incidence of sudden death. Similar breathing abnormalities have been found in animal models with Mecp2 disruptions. Although RTT-type hypoventilation is believed to be due to depressed central inspiratory activity, whether this is true remains unknown. Here we show evidence for reshaping in firing activity and patterns of medullary respiratory neurons in RTT-type hypoventilation without evident depression in inspiratory neuronal activity. Experiments were performed in decerebrate rats in vivo. In Mecp2-null rats, abnormalities in breathing patterns were apparent in both decerebrate rats and awake animals, suggesting that RTT-type breathing abnormalities take place in the brainstem without forebrain input. In comparison to their wild-type counterparts, both inspiratory and expiratory neurons in Mecp2-null rats extended their firing duration, and fired more action potentials during each burst. No changes in inspiratory or expiratory neuronal distributions were found. Most inspiratory neurons started firing in the middle of expiration and changed their firing pattern to a phase-spanning type. The proportion of post-inspiratory neurons was reduced in the Mecp2-null rats. With the increased firing activity of both inspiratory and expiratory neurons in null rats, phrenic discharges shifted to a slow and deep breathing pattern. Thus, the RTT-type hypoventilation appears to result from reshaping of firing activity of both inspiratory and expiratory neurons without evident depression in central inspiratory activity.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Hao Xing
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Weiwei Zhong
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Colin Arrowood
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Christopher M Johnson
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States.
| |
Collapse
|
23
|
Probing the function of glycinergic neurons in the mouse respiratory network using optogenetics. Respir Physiol Neurobiol 2018; 265:141-152. [PMID: 30395936 DOI: 10.1016/j.resp.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
Glycine is a primary inhibitory transmitter in the ventral medullary respiratory network, but the functional role of glycinergic neurons for breathing remains a matter of debate. We applied optogenetics to selectively modulate glycinergic neuron activity within regions of the rostral ventral respiratory column (VRC). Responses of the phrenic nerve activity to the light-driven stimulation were studied in the working heart-brainstem preparation from adult glycine transporter 2 Cre mice (GlyT2-Cre), which received a unilateral injection of a Cre-dependent AAV virus into Bötzinger and preBötzinger Complex. Sustained light stimulation from the ventral medullary surface resulted in a substantial depression of the phrenic nerve (PN) frequency, which in most cases was compensated by an increase in PN amplitude. Periodic, burst stimulation with variable intervals could alter and reset respiratory rhythm. We conclude that unilateral activation of the rostral VRC glycinergic neurons can significantly affect respiratory pattern by lengthening the expiratory interval and modulating phase transition.
Collapse
|
24
|
Organization of the core respiratory network: Insights from optogenetic and modeling studies. PLoS Comput Biol 2018; 14:e1006148. [PMID: 29698394 PMCID: PMC5940240 DOI: 10.1371/journal.pcbi.1006148] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/08/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
The circuit organization within the mammalian brainstem respiratory network, specifically within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes, and the roles of these circuits in respiratory pattern generation are continuously debated. We address these issues with a combination of optogenetic experiments and modeling studies. We used transgenic mice expressing channelrhodopsin-2 under the VGAT-promoter to investigate perturbations of respiratory circuit activity by site-specific photostimulation of inhibitory neurons within the pre-BötC or BötC. The stimulation effects were dependent on the intensity and phase of the photostimulation. Specifically: (1) Low intensity (≤ 1.0 mW) pulses delivered to the pre-BötC during inspiration did not terminate activity, whereas stronger stimulations (≥ 2.0 mW) terminated inspiration. (2) When the pre-BötC stimulation ended in or was applied during expiration, rebound activation of inspiration occurred after a fixed latency. (3) Relatively weak sustained stimulation (20 Hz, 0.5-2.0 mW) of pre-BötC inhibitory neurons increased respiratory frequency, while a further increase of stimulus intensity (> 3.0 mW) reduced frequency and finally (≥ 5.0 mW) terminated respiratory oscillations. (4) Single pulses (0.2-5.0 s) applied to the BötC inhibited rhythmic activity for the duration of the stimulation. (5) Sustained stimulation (20 Hz, 0.5-3.0 mW) of the BötC reduced respiratory frequency and finally led to apnea. We have revised our computational model of pre-BötC and BötC microcircuits by incorporating an additional population of post-inspiratory inhibitory neurons in the pre-BötC that interacts with other neurons in the network. This model was able to reproduce the above experimental findings as well as previously published results of optogenetic activation of pre-BötC or BötC neurons obtained by other laboratories. The proposed organization of pre-BötC and BötC circuits leads to testable predictions about their specific roles in respiratory pattern generation and provides important insights into key circuit interactions operating within brainstem respiratory networks.
Collapse
|
25
|
Yang CF, Feldman JL. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J Comp Neurol 2018; 526:1389-1402. [PMID: 29473167 DOI: 10.1002/cne.24415] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
The preBötzinger Complex (preBötC), a compact medullary region essential for generating normal breathing rhythm and pattern, is the kernel of the breathing central pattern generator (CPG). Excitatory preBötC neurons in rats project to major breathing-related brainstem regions. Here, we provide a brainstem connectivity map in mice for both excitatory and inhibitory preBötC neurons. Using a genetic strategy to label preBötC neurons, we confirmed extensive projections of preBötC excitatory neurons within the brainstem breathing CPG including the contralateral preBötC, Bötzinger Complex (BötC), ventral respiratory group, nucleus of the solitary tract, parahypoglossal nucleus, parafacial region (RTN/pFRG or alternatively, pFL /pFV ), parabrachial and Kölliker-Füse nuclei, as well as major projections to the midbrain periaqueductal gray. Interestingly, preBötC inhibitory projections paralleled the excitatory projections. Moreover, we examined overlapping projections in the pons in detail and found that they targeted the same neurons. We further explored the direct anatomical link between the preBötC and suprapontine brain regions that may govern emotion and other complex behaviors that can affect or be affected by breathing. Forebrain efferent projections were sparse and restricted to specific nuclei within the thalamus and hypothalamus, with processes rarely observed in cortex, basal ganglia, or other limbic regions, e.g., amygdala or hippocampus. We conclude that the preBötC sends direct, presumably inspiratory-modulated, excitatory and inhibitory projections in parallel to distinct targets throughout the brain that generate and modulate breathing pattern and/or coordinate breathing with other behaviors, physiology, cognition, or emotional state.
Collapse
Affiliation(s)
- Cindy F Yang
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| |
Collapse
|
26
|
Fogarty MJ, Mantilla CB, Sieck GC. Breathing: Motor Control of Diaphragm Muscle. Physiology (Bethesda) 2018; 33:113-126. [PMID: 29412056 PMCID: PMC5899234 DOI: 10.1152/physiol.00002.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
27
|
Morris KF, Nuding SC, Segers LS, Iceman KE, O'Connor R, Dean JB, Ott MM, Alencar PA, Shuman D, Horton KK, Taylor-Clark TE, Bolser DC, Lindsey BG. Carotid chemoreceptors tune breathing via multipath routing: reticular chain and loop operations supported by parallel spike train correlations. J Neurophysiol 2017; 119:700-722. [PMID: 29046425 DOI: 10.1152/jn.00630.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the frequency and depth of breathing through parallel circuit operations targeting the ventral respiratory column. Responses to stimulation of the chemoreceptors and identified functional connectivity support differential tuning of inspiratory neuron burst duration and firing rate and a model of brain stem network architecture incorporating tonic expiratory "hub" neurons regulated by convergent neuronal chains and loops through rostral lateral tegmental field neurons with quasi-periodic discharge patterns.
Collapse
Affiliation(s)
- Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kimberly E Iceman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Russell O'Connor
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Mackenzie M Ott
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Pierina A Alencar
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Dale Shuman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kofi-Kermit Horton
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
28
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
29
|
Oku Y, Hülsmann S. A computational model of the respiratory network challenged and optimized by data from optogenetic manipulation of glycinergic neurons. Neuroscience 2017; 347:111-122. [PMID: 28215988 DOI: 10.1016/j.neuroscience.2017.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Abstract
The topology of the respiratory network in the brainstem has been addressed using different computational models, which help to understand the functional properties of the system. We tested a neural mass model by comparing the result of activation and inhibition of inhibitory neurons in silico with recently published results of optogenetic manipulation of glycinergic neurons [Sherman, et al. (2015) Nat Neurosci 18:408]. The comparison revealed that a five-cell type model consisting of three classes of inhibitory neurons [I-DEC, E-AUG, E-DEC (PI)] and two excitatory populations (pre-I/I) and (I-AUG) neurons can be applied to explain experimental observations made by stimulating or inhibiting inhibitory neurons by light sensitive ion channels.
Collapse
Affiliation(s)
- Yoshitaka Oku
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | - Swen Hülsmann
- Clinic for Anesthesiology, University Hospital Göttingen, Göttingen 37099, Germany; DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
30
|
Perturbations of Respiratory Rhythm and Pattern by Disrupting Synaptic Inhibition within Pre-Bötzinger and Bötzinger Complexes. eNeuro 2016; 3:eN-NWR-0011-16. [PMID: 27200412 PMCID: PMC4867025 DOI: 10.1523/eneuro.0011-16.2016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022] Open
Abstract
The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. Current models postulate that both generation of the rhythm and coordination of the inspiratory-expiratory pattern involve inhibitory synaptic interactions within and between these regions. Both regions contain glycinergic and GABAergic neurons, and rhythmically active neurons in these regions receive appropriately coordinated phasic inhibition necessary for generation of the normal three-phase respiratory pattern. However, recent experiments attempting to disrupt glycinergic and GABAergic postsynaptic inhibition in the pre-BötC and BötC in adult rats in vivo have questioned the critical role of synaptic inhibition in these regions, as well as the importance of the BötC, which contradicts previous physiological and pharmacological studies. To further evaluate the roles of synaptic inhibition and the BötC, we bilaterally microinjected the GABAA receptor antagonist gabazine and glycinergic receptor antagonist strychnine into the pre-BötC or BötC in anesthetized adult rats in vivo and in perfused in situ brainstem–spinal cord preparations from juvenile rats. Muscimol was microinjected to suppress neuronal activity in the pre-BötC or BötC. In both preparations, disrupting inhibition within pre-BötC or BötC caused major site-specific perturbations of the rhythm and disrupted the three-phase motor pattern, in some experiments terminating rhythmic motor output. Suppressing BötC activity also potently disturbed the rhythm and motor pattern. We conclude that inhibitory circuit interactions within and between the pre-BötC and BötC critically regulate rhythmogenesis and are required for normal respiratory motor pattern generation.
Collapse
|
31
|
Sherman D, Worrell JW, Cui Y, Feldman JL. Optogenetic perturbation of preBötzinger complex inhibitory neurons modulates respiratory pattern. Nat Neurosci 2015; 18:408-14. [PMID: 25643296 PMCID: PMC4340826 DOI: 10.1038/nn.3938] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
Abstract
Inhibitory neurons make up a substantial fraction of the neurons in the preBötzinger complex (preBötC), a site that is critical for mammalian eupneic breathing. We investigated the role of glycinergic preBötC neurons in respiratory rhythmogenesis in mice using optogenetically targeted excitation and inhibition. Channelrhodopsin-2 (ChR2) or Archaerhodopsin (Arch) were expressed in glycinergic preBötC neurons of glycine transporter 2 (Glyt2, also known as Slc6a5)-Cre mice. In ChR2-transfected mice, brief inspiratory-phase bilateral photostimulation targeting the preBötC prematurely terminated inspiration, whereas expiratory-phase photostimulation delayed the onset of the next inspiration. Prolonged photostimulation produced apneas lasting as long as the light pulse. Inspiratory-phase photoinhibition in Arch-transfected mice during inspiration increased tidal volume without altering inspiratory duration, whereas expiratory-phase photoinhibition shortened the latency until the next inspiration. During persistent apneas, prolonged photoinhibition restored rhythmic breathing. We conclude that glycinergic preBötC neurons modulate inspiratory pattern and are important for reflex apneas, but that the rhythm can persist after substantial dampening of their activity.
Collapse
Affiliation(s)
- David Sherman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jason W Worrell
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yan Cui
- 1] Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA. [2] Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
32
|
Zhao WJ, Sun QJ, Guo RC, Pilowsky PM. Catecholamine inputs to expiratory laryngeal motoneurons in rats. J Comp Neurol 2014; 523:381-90. [PMID: 25224923 DOI: 10.1002/cne.23677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Many respiration-related interneurons and motoneurons receive a catecholaminergic input, but the extent and distribution of this input to recurrent laryngeal motoneurons that innervate intrinsic muscles of the larynx are not clear. In the present study, we examined the catecholaminergic input to expiratory laryngeal motoneurons in the caudal nucleus ambiguus by combining intracellular labeling of single identified motoneurons, with immunohistochemistry to reveal tyrosine hydroxylase immunoreactive (catecholaminergic) terminal varicosities. Close appositions were found between the two structures, with 18 ± 5 close appositions per motoneuron (n = 7). Close appositions were more frequently observed on distal rather than proximal dendrites. Axosomatic appositions were not seen. In order to determine the source of this input, microinjections of cholera toxin B subunit (1%, 20 nl) were made into the caudal nucleus ambiguus. Retrogradely labeled neurons, located in the ipsilateral nucleus tractus solitarius and the area postrema, were tyrosine hydroxylase-positive. Our results not only demonstrate details of the extent and distribution of potential catecholamine inputs to the expiratory laryngeal motoneuron, but further indicate that the inputs, at least in part, originate from the dorsomedial medulla, providing a potential anatomical basis for previously reported catecholaminergic effects on the laryngeal adductor reflex.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | | | | | | |
Collapse
|
33
|
Molkov YI, Zoccal DB, Baekey DM, Abdala APL, Machado BH, Dick TE, Paton JFR, Rybak IA. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. PROGRESS IN BRAIN RESEARCH 2014; 212:1-23. [PMID: 25194190 DOI: 10.1016/b978-0-444-63488-7.00001-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, IN, USA.
| | - Daniel B Zoccal
- Department of Physiology and Pathology, Dentistry School of Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - David M Baekey
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Ana P L Abdala
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thomas E Dick
- Departments of Medicine and Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Julian F R Paton
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
34
|
Bautista TG, Sun QJ, Pilowsky PM. The generation of pharyngeal phase of swallow and its coordination with breathing: interaction between the swallow and respiratory central pattern generators. PROGRESS IN BRAIN RESEARCH 2014; 212:253-75. [PMID: 25194202 DOI: 10.1016/b978-0-444-63488-7.00013-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Swallowing and breathing utilize common muscles and an anatomical passage: the pharynx. The risk of aspiration of ingested material is minimized not only by the laryngeal adduction of the vocal folds and laryngeal elevation but also by the precise coordination of swallows with breathing. Namely, swallows: (1) are preferentially initiated in the postinspiratory/expiratory phase, (2) are accompanied by a brief apnea, and (3) are often followed by an expiration and delay of the next breath. This review summarizes the expiratory evidence on the brainstem regions comprising the central pattern generator (CPG) that produces the pharyngeal stage of swallow, how the motor acts of swallowing and breathing are coordinated, and lastly, brainstem regions where the swallowing and respiratory CPGs may interact in order to ensure "safe" swallows.
Collapse
Affiliation(s)
- Tara G Bautista
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia.
| | - Qi-Jian Sun
- Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul M Pilowsky
- Heart Research Institute, Newtown, New South Wales, Australia
| |
Collapse
|
35
|
|
36
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Hisa Y. Activity of respiratory neurons in the rostral medulla during vocalization, swallowing, and coughing in guinea pigs. Neurosci Res 2013; 80:17-31. [PMID: 24380791 DOI: 10.1016/j.neures.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
To examine the relationship between the neuronal networks underlying respiration and non-respiratory behaviors such as vocalization and airway defensive reflexes, we compared the activity of respiratory neurons in the ventrolateral medulla during breathing with that during non-respiratory behaviors including vocalization, swallowing, and coughing in guinea pigs. During fictive vocalization the activity of augmenting expiratory neurons ceased, whereas the other types of expiratory neurons did not show a consistent tendency of increasing or decreasing activity. All inspiratory neurons discharged in synchrony with the phrenic nerve activity. Most of the phase-spanning neurons were activated throughout the vocal phase. During fictive swallowing, many expiratory and inspiratory neurons were silent, whereas many phase-spanning neurons were activated. During fictive coughing, many expiratory neurons were activated during the expiratory phase of coughing. Most inspiratory neurons discharged in parallel with the phrenic nerve activity during coughing. Many phase-spanning neurons were activated during the expiratory phase of coughing. These findings indicate that the medullary respiratory neurons help shape respiratory muscle nerve activity not only during breathing but also during these non-respiratory behaviors, and thus suggest that at least some of the respiratory neurons are shared among the neuronal circuits underlying the generation of breathing and non-respiratory behaviors.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo 131-0046, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
37
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Burke PGR, Sousa LO, Tallapragada VJ, Goodchild AK. Inhibition of protein kinase A activity depresses phrenic drive and glycinergic signalling, but not rhythmogenesis in anaesthetized rat. Eur J Neurosci 2013; 38:2260-70. [PMID: 23627348 DOI: 10.1111/ejn.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway plays a critical role in regulating neuronal activity. Yet, how PKA signalling shapes the population activity of neurons that regulate respiratory rhythm and motor patterns in vivo is poorly defined. We determined the respiratory effects of focally inhibiting endogenous PKA activity in defined classes of respiratory neurons in the ventrolateral medulla and spinal cord by microinjection of the membrane-permeable PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS) in urethane-anaesthetized adult Sprague Dawley rats. Phrenic nerve activity, end-tidal CO2 and arterial pressure were recorded. Rp-cAMPS in the preBötzinger complex (preBötC) caused powerful, dose-dependent depression of phrenic burst amplitude and inspiratory period. Rp-cAMPS powerfully depressed burst amplitude in the phrenic premotor nucleus, but had no effect at the phrenic motor nucleus, suggesting a lack of persistent PKA activity here. Surprisingly, inhibition of PKA activity in the preBötC increased phrenic burst frequency, whereas in the Bötzinger complex phrenic frequency decreased. Pretreating the preBötC with strychnine, but not bicuculline, blocked the Rp-cAMPS-evoked increase in frequency, but not the depression of phrenic burst amplitude. We conclude that endogenous PKA activity in excitatory inspiratory preBötzinger neurons and phrenic premotor neurons, but not motor neurons, regulates network inspiratory drive currents that underpin the intensity of phrenic nerve discharge. We show that inhibition of PKA activity reduces tonic glycinergic transmission that normally restrains the frequency of rhythmic respiratory activity. Finally, we suggest that the maintenance of the respiratory rhythm in vivo is not dependent on endogenous cAMP-PKA signalling.
Collapse
Affiliation(s)
- P G R Burke
- Australian School of Advanced Medicine, Level 1, 2 Technology Drive, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
40
|
Molkov YI, Bacak BJ, Dick TE, Rybak IA. Control of breathing by interacting pontine and pulmonary feedback loops. Front Neural Circuits 2013; 7:16. [PMID: 23408512 PMCID: PMC3570896 DOI: 10.3389/fncir.2013.00016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/24/2013] [Indexed: 12/20/2022] Open
Abstract
The medullary respiratory network generates respiratory rhythm via sequential phase switching, which in turn is controlled by multiple feedbacks including those from the pons and nucleus tractus solitarii; the latter mediates pulmonary afferent feedback to the medullary circuits. It is hypothesized that both pontine and pulmonary feedback pathways operate via activation of medullary respiratory neurons that are critically involved in phase switching. Moreover, the pontine and pulmonary control loops interact, so that pulmonary afferents control the gain of pontine influence of the respiratory pattern. We used an established computational model of the respiratory network (Smith et al., 2007) and extended it by incorporating pontine circuits and pulmonary feedback. In the extended model, the pontine neurons receive phasic excitatory activation from, and provide feedback to, medullary respiratory neurons responsible for the onset and termination of inspiration. The model was used to study the effects of: (1) "vagotomy" (removal of pulmonary feedback), (2) suppression of pontine activity attenuating pontine feedback, and (3) these perturbations applied together on the respiratory pattern and durations of inspiration (T(I)) and expiration (T(E)). In our model: (a) the simulated vagotomy resulted in increases of both T(I) and T(E), (b) the suppression of pontine-medullary interactions led to the prolongation of T(I) at relatively constant, but variable T(E), and (c) these perturbations applied together resulted in "apneusis," characterized by a significantly prolonged T(I). The results of modeling were compared with, and provided a reasonable explanation for, multiple experimental data. The characteristic changes in T(I) and T(E) demonstrated with the model may represent characteristic changes in the balance between the pontine and pulmonary feedback control mechanisms that may reflect specific cardio-respiratory disorders and diseases.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA ; Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, IN, USA
| | | | | | | |
Collapse
|
41
|
Moraes DJ, Zoccal DB, Machado BH. Medullary Respiratory Network Drives Sympathetic Overactivity and Hypertension in Rats Submitted to Chronic Intermittent Hypoxia. Hypertension 2012; 60:1374-80. [DOI: 10.1161/hypertensionaha.111.189332] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Davi J.A. Moraes
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil (D.J.A.M., B.H.M.); Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil (D.B.Z.)
| | - Daniel B. Zoccal
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil (D.J.A.M., B.H.M.); Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil (D.B.Z.)
| | - Benedito H. Machado
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil (D.J.A.M., B.H.M.); Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil (D.B.Z.)
| |
Collapse
|
42
|
Lindsey BG, Rybak IA, Smith JC. Computational models and emergent properties of respiratory neural networks. Compr Physiol 2012; 2:1619-70. [PMID: 23687564 PMCID: PMC3656479 DOI: 10.1002/cphy.c110016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components,including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions,enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology and Neuroscience Program, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | |
Collapse
|
43
|
Abstract
This review dissects the complex human cough reflex and suggests hypotheses about the evolutionary basis for the reflex. A mechanosensory-induced cough reflex conveys through branches of myelinated Aδ nerve fibers is not chemically reactive (i.e., capsaicin, bradykinin); possibly, its evolution is to prevent the harmful effects of aspiration of gastric or particulate contents into the lungs. This became necessary as the larynx moves closer to the opening of the esophagus as human ancestors adapt phonation over olfaction beginning less than 10 million years ago. The second type of cough reflex, a chemosensory type, is carried by unmyelinated C fibers. Supposedly, its origin dates back when prehistoric humans began living in close proximity to each other and were at risk for infectious respiratory diseases or irritant-induced lung injury. The mechanism for the latter type of cough is analogous to induced pain after tissue injury; and, it is controlled by the identical transient receptor potential vanilloid cation channel (TRPV1). The airways do not normally manifest nociceptive pain from a stimulus but the only consistent response that capsaicin and lung inflammation provoke in healthy human airways is cough. TRPA1, another excitatory ion channel, has been referred to as the "irritant receptor" and its activation also induces cough. For both types of cough, the motor responses are identical and via coordinated, precisely-timed and sequential respiratory events orchestrated by complex neuromuscular networking of the diaphragm, chest and abdominal respiratory muscles, the glottis and parts of the brain.
Collapse
Affiliation(s)
- Stuart M Brooks
- Colleges of Public Health and Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
44
|
Ott MM, Nuding SC, Segers LS, O'Connor R, Morris KF, Lindsey BG. Central chemoreceptor modulation of breathing via multipath tuning in medullary ventrolateral respiratory column circuits. J Neurophysiol 2011; 107:603-17. [PMID: 21994272 DOI: 10.1152/jn.00808.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ventrolateral respiratory column (VRC) circuits that modulate breathing in response to changes in central chemoreceptor drive are incompletely understood. We employed multielectrode arrays and spike train correlation methods to test predictions of the hypothesis that pre-Bötzinger complex (pre-BötC) and retrotrapezoid nucleus/parafacial (RTN-pF) circuits cooperate in chemoreceptor-evoked tuning of ventral respiratory group (VRG) inspiratory neurons. Central chemoreceptors were selectively stimulated by injections of CO(2)-saturated saline into the vertebral artery in seven decerebrate, vagotomized, neuromuscularly blocked, and artificially ventilated cats. Among sampled neurons in the Bötzinger complex (BötC)-to-VRG region, 70% (161 of 231) had a significant change in firing rate after chemoreceptor stimulation, as did 70% (101 of 144) of the RTN-pF neurons. Other responsive neurons (24 BötC-VRG; 11 RTN-pF) had a change in the depth of respiratory modulation without a significant change in average firing rate. Seventy BötC-VRG chemoresponsive neurons triggered 189 offset-feature correlograms (96 peaks; 93 troughs) with at least one responsive BötC-VRG cell. Functional input from at least one RTN-pF cell could be inferred for 45 BötC-VRG neurons (19%). Eleven RTN-pF cells were correlated with more than one BötC-VRG target neuron, providing evidence for divergent connectivity. Thirty-seven RTN-pF neurons, 24 of which were chemoresponsive, were correlated with at least one chemoresponsive BötC-VRG neuron. Correlation linkage maps and spike-triggered averages of phrenic nerve signals suggest transmission of chemoreceptor drive via a multipath network architecture: RTN-pF modulation of pre-BötC-VRG rostral-to-caudal excitatory inspiratory neuron chains is tuned by feedforward and recurrent inhibition from other inspiratory neurons and from "tonic" expiratory neurons.
Collapse
Affiliation(s)
- Mackenzie M Ott
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida 33612-4799, USA
| | | | | | | | | | | |
Collapse
|
45
|
Shevtsova NA, Manzke T, Molkov YI, Bischoff A, Smith JC, Rybak IA, Richter DW. Computational modelling of 5-HT receptor-mediated reorganization of the brainstem respiratory network. Eur J Neurosci 2011; 34:1276-91. [PMID: 21899601 DOI: 10.1111/j.1460-9568.2011.07825.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brainstem respiratory neurons express the glycine α(3) receptor (Glyα(3) R), which is a target of modulation by several serotonin (5-HT) receptor agonists. Application of the 5-HT(1A) receptor (5-HT(1A) R) agonist 8-OH-DPAT was shown (i) to depress cellular cAMP, leading to dephosphorylation of Glyα(3) R and augmentation of postsynaptic inhibition of neurons expressing Glyα(3) R (Manzke et al., 2010) and (ii) to hyperpolarize respiratory neurons through 5-HT-activated potassium channels. These processes counteract opioid-induced depression and restore breathing from apnoeas often accompanying pharmacotherapy of pain. The effect is postulated to rely on the enhanced Glyα(3) R-mediated inhibition of inhibitory neurons causing disinhibition of their target neurons. To evaluate this proposal and investigate the neural mechanisms involved, an established computational model of the brainstem respiratory network (Smith et al., 2007), was extended by (i) incorporating distinct subpopulations of inhibitory neurons (glycinergic and GABAergic) and their synaptic interconnections within the Bötzinger and pre-Bötzinger complexes and (ii) assigning the 5-HT(1A) R-Glyα(3) R complex to some of these inhibitory neuron types in the network. The modified model was used to simulate the effects of 8-OH-DPAT on the respiratory pattern and was able to realistically reproduce a number of experimentally observed responses, including the shift in the onset of post-inspiratory activity to inspiration and conversion of the eupnoeic three-phase rhythmic pattern into a two-phase pattern lacking the post-inspiratory phase. The model shows how 5-HT(1A) R activation can produce a disinhibition of inspiratory neurons, leading to the recovery of respiratory rhythm from opioid-induced apnoeas.
Collapse
Affiliation(s)
- Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yu SY, Wang GM, Wang H, Zhang H, Li Q. Raphe pallidus modulates Bötzinger complex-induced inhibition of the phrenic nerve activity in rats. Eur J Neurosci 2011; 34:1113-20. [PMID: 21895801 DOI: 10.1111/j.1460-9568.2011.07837.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The raphe pallidus (RPa) and Bötzinger complex (BötC) represent two important nuclei which project to spinal phrenic motor neurons. Stimulation of the RPa produces facilitative effects on respiratory activity, whereas stimulation of the BötC induces inhibitory effects on respiratory activity. In the present study, we examined the modulatory effects of serotonergic (5-hydroxytryptamine, 5-HT) RPa neurons on the inhibitory response of the phrenic nerve activity elicited from the BötC in rats. Experiments were performed on spontaneously breathing, urethane-anesthetized adult rats. Either high-frequency stimulation or glutamatergic chemical activation of the RPa region significantly attenuated the BötC-induced inhibition of the phrenic nerve. This attenuation showed a post-stimulation time and intensity dependency. Pharmacological experiments showed that intravenous injection of methysergide, a broad-spectrum antagonist of 5-HT receptors, markedly reduced the respiratory facilitation induced by electrical stimulation of the RPa. Furthermore, microinjections of methysergide into the cerebrospinal fluid around the phrenic motor nucleus (PMN) region at spinal cord segments C4 and C5 significantly decreased the RPa-related attenuation effects on BötC-evoked inhibition of phrenic nerve discharge. These results suggest that RPa serotonergic neurons could modulate the inhibition of phrenic nerve activity induced by BötC. Moreover, as the relevant 5-HT receptors for RPa's modulatory effects are located in the cervical spinal cord, 5-HT may, in part, function as a modulator to suppress the BötC neuronal activity via direct RPa-PMN and BötC-PMN convergent projection pathways to phrenic motoneurons.
Collapse
Affiliation(s)
- Shu-Yan Yu
- Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong Province, China.
| | | | | | | | | |
Collapse
|
47
|
Niebert M, Vogelgesang S, Koch UR, Bischoff AM, Kron M, Bock N, Manzke T. Expression and function of serotonin 2A and 2B receptors in the mammalian respiratory network. PLoS One 2011; 6:e21395. [PMID: 21789169 PMCID: PMC3138749 DOI: 10.1371/journal.pone.0021395] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/27/2011] [Indexed: 12/20/2022] Open
Abstract
Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibody Specificity/immunology
- Calcium/metabolism
- Fluorescence
- Gene Expression Regulation/drug effects
- In Vitro Techniques
- Male
- Mammals/metabolism
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/metabolism
- Mice
- Pons/cytology
- Pons/drug effects
- Pons/metabolism
- Rats
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2B/chemistry
- Receptor, Serotonin, 5-HT2B/genetics
- Receptor, Serotonin, 5-HT2B/metabolism
- Recombinant Proteins/metabolism
- Reproducibility of Results
- Respiration/drug effects
- Respiratory System/drug effects
- Respiratory System/metabolism
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Marcus Niebert
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Steffen Vogelgesang
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Uwe R. Koch
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Anna-Maria Bischoff
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Miriam Kron
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Nathalie Bock
- Department of Child and Adolescent Psychiatry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Till Manzke
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
- * E-mail:
| |
Collapse
|
48
|
Bolser DC, Pitts TE, Morris KF. The use of multiscale systems biology approaches to facilitate understanding of complex control systems for airway protection. Curr Opin Pharmacol 2011; 11:272-7. [PMID: 21724463 PMCID: PMC3134225 DOI: 10.1016/j.coph.2011.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 11/28/2022]
Abstract
Airway protection is a critically important function that prevents/limits the intrusion of foreign material into the pulmonary tree. A host of different behaviors participate in this process. The control, coordination, and execution of these behaviors is a complex process that has recently received increased attention. Data from human clinical and animal studies support the concept of a coordinated neural control system that governs the appropriate expression and sequencing of airway protective behaviors. Our current knowledge of the proposed neural control network for breathing, cough, swallow and other airway protective behaviors indicates that it is a highly complex system that can 'rewire' (reconfigure) itself to perform several different functions. Computational modeling and simulation have been used as tools to investigate this system. The results of modeling efforts have yielded motor output patterns of upper airway and respiratory muscles that are very similar to those recorded in vivo. Regulation and coordination of multiple different airway protective behaviors have been successfully simulated. Outcomes of simulation efforts support the hypothesis that computational modeling of airway protection can yield important testable hypotheses regarding brainstem neural network functions and organization. Modeling of complex systems can be challenging but the open availability of straight-forward computational tools is likely to result in increased implementation of modeling and simulation as adjuncts to traditional methods of investigation of the control of the upper airway.
Collapse
Affiliation(s)
- Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, United States.
| | | | | |
Collapse
|
49
|
Simms A, Paton J, Allen A, Pickering A. Is augmented central respiratory–sympathetic coupling involved in the generation of hypertension? Respir Physiol Neurobiol 2010; 174:89-97. [DOI: 10.1016/j.resp.2010.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 02/07/2023]
|
50
|
Baekey DM, Molkov YI, Paton JFR, Rybak IA, Dick TE. Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respir Physiol Neurobiol 2010; 174:135-45. [PMID: 20837166 DOI: 10.1016/j.resp.2010.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022]
Abstract
Sympathetic nerve activity (SNA) is modulated by respiratory activity which indicates the existence of direct interactions between the respiratory and sympathetic networks within the brainstem. Our experimental studies reveal that T(E) prolongation evoked by baroreceptor stimulation varies with respiratory phase and depends on the pons. We speculate that the sympathetic baroreceptor reflex, providing negative feedback from baroreceptors to the rostral ventrolateral medulla and SNA, has two pathways: one direct and independent of the respiratory-sympathetic interactions and the other operating via the respiratory pattern generator and is hence dependent on the respiratory modulation of SNA. Our experimental studies in the perfused in situ rat preparation and complementary computational modelling studies support the hypothesis that baroreceptor activation during expiration prolongs the T(E) via transient activation of post-inspiratory and inhibition of augmenting expiratory neurones of the Bötzinger Complex (BötC). We propose that these BötC neurones are also involved in the respiratory modulation of SNA, and contribute to the respiratory modulation of the sympathetic baroreceptor reflex.
Collapse
Affiliation(s)
- David M Baekey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-5067, USA.
| | | | | | | | | |
Collapse
|