1
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
2
|
Dadam MN, Hien LT, Makram EM, Sieu LV, Morad A, Khalil N, Tran L, Makram AM, Huy NT. Role of cell-free DNA levels in the diagnosis and prognosis of sepsis and bacteremia: A systematic review and meta-analysis. PLoS One 2024; 19:e0305895. [PMID: 39208340 PMCID: PMC11361684 DOI: 10.1371/journal.pone.0305895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sepsis remains a major cause of mortality in intensive care units (ICUs). Prompt diagnosis and effective management are imperative for better outcomes. In this systematic review and meta-analysis, we explore the potential of circulating cell-free DNA (cfDNA), as a promising tool for early sepsis detection and prognosis assessment, aiming to address limitations associated with traditional diagnostic methods. METHODS Following PRISMA guidelines, we collected relevant literature from thirteen databases. Studies were included if they analyzed quantitative diagnostic or prognostic cfDNA levels in humans in case of sepsis. We collected data on basic study characteristics, baseline patient demographics (e.g. age and sex), and cfDNA levels across different stages of sepsis. Pooled SMD with 95%-CI was calculated, and Comprehensive Meta-Analysis (CMA) software facilitated meta-analysis. Receiver operating characteristic (ROC) curves were generated to assess cfDNA's combined sensitivity and specificity in diagnostics and prognostics. RESULTS We included a final of 44 studies, of which, only 32 with 2950 participants were included in the meta-analysis. cfDNA levels were higher in septic patients compared to healthy controls (SMD = 3.303; 95%-CI [2.461-4.145], p<0.01). Furthermore, cfDNA levels were higher in non-survivors than survivors (SMD = 1.554; 95%-CI [0.905-2.202], p<0.01). Prognostic studies demonstrated a pooled sensitivity and specificity of 0.78, while diagnostic studies showed a sensitivity of 0.81 and a specificity of 0.87. CONCLUSION These findings show that cfDNA levels are significantly higher in sepsis patients compared to control groups and non-survivors in comparison to survivors among both adult and pediatric populations.
Collapse
Affiliation(s)
- Mohammad Najm Dadam
- Department of Geriatrics, Helios Clinic Schwelm, Schwelm, Germany
- Online Research Club, Nagasaki, Japan
| | - Le Thanh Hien
- Online Research Club, Nagasaki, Japan
- Department of Obstetrics and Gynecology, Ho Chi Minh City Medicine and Pharmacy University, Ho Chi Minh City, Vietnam
| | - Engy M. Makram
- Online Research Club, Nagasaki, Japan
- College of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Lam Vinh Sieu
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Moscow State University of Medicine and Dentistry Named After A.I. Yevdokimov, Moscow, Russia
| | - Ahmad Morad
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nada Khalil
- Online Research Club, Nagasaki, Japan
- School of Medicine, New Giza University, Giza, Egypt
| | - Linh Tran
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Abdelrahman M. Makram
- Online Research Club, Nagasaki, Japan
- School of Public Health, Imperial College London, London, United Kingdom
| | - Nguyen Tien Huy
- Online Research Club, Nagasaki, Japan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Hobbs KJ, Cooper BL, Dembek K, Sheats MK. Investigation of Extracted Plasma Cell-Free DNA as a Biomarker in Foals with Sepsis. Vet Sci 2024; 11:346. [PMID: 39195800 PMCID: PMC11359113 DOI: 10.3390/vetsci11080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-free DNA (cfDNA) is fragmented extracellular DNA that is released from cells into various body fluids. Previously published data from adult horses supports cfDNA as a potential disease biomarker, but also shows that direct measurement in plasma is inaccurate due to matrix effect. It is currently unknown whether a similar matrix effect exists in foal plasma. Given this, the objectives of the current study were to investigate foal plasma for potential matrix effect during fluorescence measurement of cfDNA using a Qubit fluorometer, and to determine whether neat and/or extracted plasma cfDNA concentrations are significantly different in healthy, sick non-septic (SNS) or septic foals. We hypothesized that matrix effect would interfere with accurate fluorescent measurement of cfDNA in foal plasma. Further, we hypothesized that mean extracted cfDNA concentrations, and/or extracted cfDNA:neutrophil ratio, would be elevated in plasma of septic foals compared to healthy or SNS foals. Cell-free DNA was measured in neat plasma, and following DNA extraction with a commercial kit, from 60 foals. Foal plasma exhibited both autofluorescence and non-specific dye binding, confirming matrix effect. However, even with extraction, no significant difference was found in cfDNA concentrations, or cfDNA:neutrophil ratios, between healthy (sepsis score ≤ 5), SNS (sepsis score 6-11 and negative blood culture), or septic (sepsis score ≥ 12 ± positive blood culture) foals. Our data show that matrix effect interferes with accurate Qubit measurement of cfDNA in foal plasma and supports previous findings that plasma cfDNA concentrations are not associated with sepsis diagnosis in foals. Further research is needed to better understand neutrophil function and dysfunction in foal sepsis.
Collapse
Affiliation(s)
| | | | | | - M. Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA; (K.J.H.); (B.L.C.); (K.D.)
| |
Collapse
|
4
|
Peng H, Pan M, Zhou Z, Chen C, Xing X, Cheng S, Zhang S, Zheng H, Qian K. The impact of preanalytical variables on the analysis of cell-free DNA from blood and urine samples. Front Cell Dev Biol 2024; 12:1385041. [PMID: 38784382 PMCID: PMC11111958 DOI: 10.3389/fcell.2024.1385041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cell-free DNA (cfDNA), a burgeoning class of molecular biomarkers, has been extensively studied across a variety of biomedical fields. As a key component of liquid biopsy, cfDNA testing is gaining prominence in disease detection and management due to the convenience of sample collection and the abundant wealth of genetic information it provides. However, the broader clinical application of cfDNA is currently impeded by a lack of standardization in the preanalytical procedures for cfDNA analysis. A number of fundamental challenges, including the selection of appropriate preanalytical procedures, prevention of short cfDNA fragment loss, and the validation of various cfDNA measurement methods, remain unaddressed. These existing hurdles lead to difficulties in comparing results and ensuring repeatability, thereby undermining the reliability of cfDNA analysis in clinical settings. This review discusses the crucial preanalytical factors that influence cfDNA analysis outcomes, including sample collection, transportation, temporary storage, processing, extraction, quality control, and long-term storage. The review provides clarification on achievable consensus and offers an analysis of the current issues with the goal of standardizing preanalytical procedures for cfDNA analysis.
Collapse
Affiliation(s)
- Hongwei Peng
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Pan
- Taihe Skills Training Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zongning Zhou
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Congbo Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shanshan Zhang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Zheng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
de Miranda FS, Claudio LMAM, de Almeida DSM, Nunes JB, Barauna VG, Luiz WB, Vassallo PF, Campos LCG. Cell-Free Nuclear and Mitochondrial DNA as Potential Biomarkers for Assessing Sepsis Severity. Biomedicines 2024; 12:933. [PMID: 38790895 PMCID: PMC11117867 DOI: 10.3390/biomedicines12050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Sepsis continues to be a significant public health challenge despite advances in understanding its pathophysiology and management strategies. Therefore, this study evaluated the value of cell-free nuclear DNA (cf-nDNA) and cell-free mitochondrial DNA (cf-mtDNA) for assessing the severity and prognosis of sepsis. Ninety-four patients were divided into three groups: infection (n = 32), sepsis (n = 30), and septic shock (n = 32). Plasma samples were collected at the time of diagnosis, and cfDNA concentrations were determined by qPCR assay. The results showed that plasma cfDNA levels increased with the severity of the disease. To distinguish between patients with infection and those with sepsis, the biomarker L1PA290 achieved the highest AUC of 0.817 (95% CI: 0.725-0.909), demonstrating a sensitivity of 77.0% and a specificity of 79.3%. When cf-nDNA was combined with the SOFA score, there was a significant improvement in the AUC (0.916 (0.853-0.979)), sensitivity (88.1%), and specificity (80.0%). Moreover, patients admitted to the ICU after being diagnosed with sepsis had significantly higher cf-nDNA concentrations. In patients admitted to the ICU, combining cf-nDNA with the SOFA score yielded an AUC of 0.753 (0.622-0.857), with a sensitivity of 95.2% and a specificity of 50.0%. cfDNA can differentiate between patients with infection and those with sepsis. It can also identify patients who are likely to be admitted to the ICU by predicting those with indications for intensive care, suggesting its potential as a biomarker for sepsis.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Department of Biological Science State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (F.S.d.M.); (D.S.M.d.A.); (J.B.N.); (W.B.L.)
- Postgraduate Program in Biology and Biotechnology of Microorganisms State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Livia Maria A. M. Claudio
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil;
| | - Dayanne Silva M. de Almeida
- Department of Biological Science State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (F.S.d.M.); (D.S.M.d.A.); (J.B.N.); (W.B.L.)
- Laboratory of Applied Pathology and Genetics State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Juliana Braga Nunes
- Department of Biological Science State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (F.S.d.M.); (D.S.M.d.A.); (J.B.N.); (W.B.L.)
- Laboratory of Applied Pathology and Genetics State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil;
| | - Wilson Barros Luiz
- Department of Biological Science State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (F.S.d.M.); (D.S.M.d.A.); (J.B.N.); (W.B.L.)
- Postgraduate Program in Biology and Biotechnology of Microorganisms State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Paula Frizzera Vassallo
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil;
| | - Luciene Cristina Gastalho Campos
- Department of Biological Science State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (F.S.d.M.); (D.S.M.d.A.); (J.B.N.); (W.B.L.)
- Postgraduate Program in Biology and Biotechnology of Microorganisms State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics State, University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| |
Collapse
|
6
|
Cepeda J, Racca ME, Rossetti MF, Cardozo MA, Gaydou L, Luque EH, Muñoz-de-Toro M, Milesi MM, Varayoud J, Ramos JG. A Reliable Method for Quantifying Plasma Cell-Free DNA Using an Internal Standard Strategy: Evaluation in a Cohort of Non-Pregnant and Pregnant Women. Reprod Sci 2024; 31:987-996. [PMID: 38030813 DOI: 10.1007/s43032-023-01403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023]
Abstract
The use of plasma cell-free DNA (cfDNA) as a useful biomarker in obstetric clinical practice has been delayed due to the lack of reliable quantification protocols. We developed a protocol to quantify plasma cfDNA using an internal standard strategy to overcome difficulties posed by low levels and high fragmentation of cfDNA. cfDNA was isolated from plasma samples of non-pregnant (NP, n = 26) and pregnant (P, n = 26) women using a commercial kit and several elution volumes were evaluated. qPCR parameters were optimized for cfDNA quantification, and several quantities of a recombinant standard were evaluated as internal standard. Absolute quantification was performed using a standard curve and the quality of the complete method was evaluated. cfDNA was eluted in a 50-μl volume, actin-β (ACTB) was selected as the target gene, and qPCR parameters were optimized. The ACTB standard was constructed and 1000 copies were selected as internal standard. The standard curve showed R2 = 0.993 and E = 109.7%, and the linear dynamic range was defined between 102 and 106 ACTB copies/tube. Repeatability and reproducibility in terms of CV were 19% and up to 49.5% for ACTB copies per milliliter of plasma, respectively. The range of cfDNA levels was 428-18,851 copies/mL in NP women and 4031-2,019,363 copies/mL in P women, showing significant differences between the groups. We recommend the application of internal standard strategy for a reliable plasma cfDNA quantification. This methodology holds great potential for a future application in the obstetric field.
Collapse
Affiliation(s)
- Julieta Cepeda
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - M Emilia Racca
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - M Florencia Rossetti
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - M Alejandra Cardozo
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Laboratorios BLUT, Santa Fe, Argentina
| | - Luisa Gaydou
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Enrique H Luque
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - M Mercedes Milesi
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorge G Ramos
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| |
Collapse
|
7
|
Cleveland MH, He HJ, Milavec M, Bae YK, Vallone PM, Huggett JF. Digital PCR for the characterization of reference materials. Mol Aspects Med 2024; 96:101256. [PMID: 38359699 DOI: 10.1016/j.mam.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Well-characterized reference materials support harmonization and accuracy when conducting nucleic acid-based tests (such as qPCR); digital PCR (dPCR) can measure the absolute concentration of a specific nucleic acid sequence in a background of non-target sequences, making it ideal for the characterization of nucleic acid-based reference materials. National Metrology Institutes are increasingly using dPCR to characterize and certify their reference materials, as it offers several advantages over indirect methods, such as UV-spectroscopy. While dPCR is gaining widespread adoption, it requires optimization and has certain limitations and considerations that users should be aware of when characterizing reference materials. This review highlights the technical considerations of dPCR, as well as its role when developing and characterizing nucleic acid-based reference materials.
Collapse
Affiliation(s)
- Megan H Cleveland
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Hua-Jun He
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Mojca Milavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Young-Kyung Bae
- Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Peter M Vallone
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Jim F Huggett
- National Measurement Laboratory (NML), LGC, Queens Road, Teddington, TW11 0LY, Middlesex, UK; School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, UK
| |
Collapse
|
8
|
Milecki T, Kluzek K, Pstrąg N, Antczak A, Cieślikowski WA, Wichtowski M, Kuncman Ł, Kwias Z, Wesoły J. Preoperative cell-free DNA concentration in plasma as a diagnostic and prognostic biomarker of clear cell renal cell carcinoma. Contemp Oncol (Pozn) 2024; 27:284-291. [PMID: 38405214 PMCID: PMC10883193 DOI: 10.5114/wo.2023.135366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Assessment of renal tumour masses is based on conventional imaging studies (computer tomography or magnetic resonance), which does not allow characterisation of the histopathological type. Moreover, the prediction of prognosis in localised and metastatic renal cell carcinoma requires improvement as well. Analysis of circulating free DNA (cfDNA) in blood is one of the variants of liquid biopsy that may improve diagnostics and prognosis issues of patients with renal tumour masses suspected to be renal cell carcinoma. The aim of the study was to assess the diagnostic and prognostic role of preoperative cfDNA concentration in the plasma samples of clear cell renal cell carcinoma (ccRCC) patients. Material and methods The preoperative plasma cfDNA concentration was assessed in ccRCC patients (n = 46) and healthy individuals (control group) (n = 17). The circulating free DNA concentration was reflected by the 90 bp DNA fragments determined by real-time polymerase chain reaction. Results The median cfDNA concentration was significantly higher in ccRCC patients (n = 46) compared to the control g roup (n = 17) (2588 ±2554 copies/ml vs. 960 ±490 copies/ml, p < 0.01). In multivariate analysis, the preoperative plasma cfDNA concentration was the significant factor increasing the probability of ccRCC detection (OR: 1.003; 95% CI: 1.001-1.005). The median cfDNA concentration depended on the stage of ccRCC; it was higher in metastatic ccRCC patients (n = 11) compared to non-metastatic ccRCC patients (n = 35) (3619 ±4059 copies/ml vs. 2473 ±1378 copies/ml, p < 0.03). Kaplan-Meier survival analysis demon-strated that patients with high cfDNA values (above 2913 copies/ml) had significantly worse cancer-specific survival (HR: 4.5; 95% CI: 1.3-16.9, log-rank Mantel-Cox test p = 0.015). Conclusions Preoperative plasma cfDNA concentration has diagnostic and prognostic potential in ccRCC pa-tients.
Collapse
Affiliation(s)
- Tomasz Milecki
- Department of Urology, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Poznań University of Medical Sciences, Poznań, Poland
| | - Natalia Pstrąg
- High Throughput Technologies Laboratory, Faculty of Biology, Poznań University of Medical Sciences, Poznań, Poland
| | - Andrzej Antczak
- Department of Urology, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Mateusz Wichtowski
- Surgical Oncology Clinic, Poznań University of Medical Sciences, Poznań, Poland
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Łódź, Łódź, Poland
| | - Zbigniew Kwias
- Department of Urology, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna Wesoły
- High Throughput Technologies Laboratory, Faculty of Biology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Song Y, Guo J, Zhou Y, Wei X, Li J, Zhang G, Wang H. A loss-of-function variant in ZCWPW1 causes human male infertility with sperm head defect and high DNA fragmentation. Reprod Health 2024; 21:18. [PMID: 38310235 PMCID: PMC10837985 DOI: 10.1186/s12978-024-01746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Male infertility is a global health issue. The more causative genes related to human male infertility should be further explored. The essential role of Zcwpw1 in male mouse fertility has been established and the role of ZCWPW1 in human reproduction needs further investigation to verify. METHODS An infertile man with oligoasthenoteratozoospermia phenotype and his parents were recruited from West China Second University Hospital, Sichuan University. A total of 200 healthy Han Chinese volunteers without any evidence of infertility were recruited as normal controls, while an additional 150 infertile individuals were included to assess the prevalence of ZCWPW1 variants in a sporadic male sterile population. The causative gene variant was identified by Whole-exome sequencing and Sanger sequencing. The phenotype of the oligoasthenoteratozoospermia was determined by Papanicolaou staining, immunofluorescence staining and electron microscope. In-vitro experiments, western blot and in-silicon analysis were applied to assess the pathogenicity of the identified variant. Additionally, we examined the influence of the variant on the DNA fragmentation and DNA repair capability by Sperm Chromatin Dispersion and Neutral Comet Assay. RESULTS The proband exhibits a phenotype of oligoasthenoteratozoospermia, his spermatozoa show head defects by semen examination, Papanicolaou staining and electron microscope assays. Whole-exome sequencing and Sanger sequencing found the proband carries a homozygous ZCWPW1 variant (c.1064C > T, p. P355L). Immunofluorescence analysis shows a significant decrease in ZCWPW1 expression in the proband's sperm. By exogenous expression with ZCWPW1 mutant plasmid in vitro, the obvious declined expression of ZCWPW1 with the mutation is validated in HEK293T. After being treated by hydroxyurea, MUT-ZCWPW1 transfected cells and empty vector transfected cells have a higher level of γ-H2AX, increased tail DNA and reduced H3K9ac level than WT-ZCWPW1 transfected cells. Furthermore, the Sperm Chromatin Dispersion assay revealed the proband's spermatozoa have high DNA fragmentation. CONCLUSIONS It is the first report that a novel homozygous missense mutation in ZCWPW1 caused human male infertility with sperm head defects and high DNA fragmentation. This finding enriches the gene variant spectrum and etiology of oligoasthenoteratozoospermia.
Collapse
Affiliation(s)
- Yuelin Song
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Juncen Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanling Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingjian Wei
- Department of Obstetrics and Gynaecology, Southwest Medical University, Luzhou, 646000, China
| | - Jianlan Li
- Child Healthcare Department, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610000, China.
| | - Hongjing Wang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Devonshire A, Jones G, Gonzalez AF, Kofanova O, Trouet J, Pinzani P, Gelmini S, Bonin S, Foy C. Interlaboratory evaluation of quality control methods for circulating cell-free DNA extraction. N Biotechnol 2023; 78:13-21. [PMID: 37730172 DOI: 10.1016/j.nbt.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Analysis of circulating cell-free DNA (ccfDNA) isolated from liquid biopsies is rapidly being implemented into clinical practice. However, diagnostic accuracy is significantly impacted by sample quality and standardised approaches for assessing the quality of ccfDNA are not yet established. In this study we evaluated the application of nucleic acid "spike-in" control materials to aid quality control (QC) and standardisation of cfDNA isolation for use in in vitro diagnostic assays. We describe an approach for the design and characterisation of in-process QC materials, illustrating it with a spike-in material containing an exogenous Arabidopsis sequence and DNA fragments approximating to ccfDNA and genomic DNA lengths. Protocols for inclusion of the spike-in material in plasma ccfDNA extraction and quantification of its recovery by digital PCR (dPCR) were assessed for their suitability for process QC in an inter-laboratory study between five expert laboratories, using a range of blood collection devices and ccfDNA extraction methods. The results successfully demonstrated that spiking plasmid-derived material into plasma did not deleteriously interfere with endogenous ccfDNA recovery. The approach performed consistently across a range of commonly-used extraction protocols and was able to highlight differences in efficiency and variability between the methods, with the dPCR quantification assay performing with good repeatability (generally CV <5%). We conclude that initial findings demonstrate that this approach appears "fit for purpose" and spike-in recovery can be combined with other extraction QC metrics for monitoring the performance of a process over time, or in the context of external quality assessment.
Collapse
Affiliation(s)
- Alison Devonshire
- Molecular and Cell Biology Team, National Measurement Laboratory (NML), LGC, Teddington, Middlesex, UK.
| | - Gerwyn Jones
- Molecular and Cell Biology Team, National Measurement Laboratory (NML), LGC, Teddington, Middlesex, UK
| | - Ana Fernandez Gonzalez
- Molecular and Cell Biology Team, National Measurement Laboratory (NML), LGC, Teddington, Middlesex, UK
| | - Olga Kofanova
- Integrated BioBank of Luxembourg (IBBL), Luxembourg Institute of Health (LIH), 1, rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Johanna Trouet
- Integrated BioBank of Luxembourg (IBBL), Luxembourg Institute of Health (LIH), 1, rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Pamela Pinzani
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Stefania Gelmini
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Serena Bonin
- DSM-Dept. Medical Sciences, University of Trieste, Trieste, Italy
| | - Carole Foy
- Molecular and Cell Biology Team, National Measurement Laboratory (NML), LGC, Teddington, Middlesex, UK
| |
Collapse
|
11
|
Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis. Crit Rev Clin Lab Sci 2023; 60:573-594. [PMID: 37518938 DOI: 10.1080/10408363.2023.2230290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Over the last decade, great advancements have been made in the field of liquid biopsy through extensive research and the development of new technologies that facilitate the use of liquid biopsy for cancer patients. This is shown by the numerous liquid biopsy tests that gained clearance by the US Food and Drug Administration (FDA) in recent years. Liquid biopsy has significantly altered cancer treatment by providing clinicians with powerful and immediate information about therapeutic decisions. However, the clinical integration of liquid biopsy is still challenging and there are many critical factors to consider prior to its implementation into routine clinical practice. Lack of standardization due to technical challenges and the definition of the clinical utility of specific assays further complicates the establishment of Standard Operating Procedures (SOPs) in liquid biopsy. Harmonization of laboratories to established guidelines is of major importance to overcome inter-lab variabilities observed. Quality control assessment in diagnostic laboratories that offer liquid biopsy testing will ensure that clinicians can base their therapeutic decisions on robust results. The regular participation of laboratories in external quality assessment schemes for liquid biopsy testing aims to promptly pinpoint deficiencies and efficiently educate laboratories to improve their quality of services. Accreditation of liquid biopsy diagnostic laboratories based on the ISO15189 standard in Europe or by CLIA/CAP accreditation procedures in the US is the best way to achieve the adaptation of liquid biopsy into the clinical setting by assuring reliable results for the clinicians and their cancer patients. Nowadays, various organizations from academia, industry, and regulatory agencies collaborate to set a framework that will include all procedures from the pre-analytical phase and the analytical process to the final interpretation of results. In this review, we underline several challenges in the analysis of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) concerning standardization of protocols, quality control assessment, harmonization of laboratories, and compliance to specific guidelines that need to be thoroughly considered before liquid biopsy enters the clinic.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
13
|
Liu F, Hao X, Liu B, Liu S, Yuan Y. Bile liquid biopsy in biliary tract cancer. Clin Chim Acta 2023; 551:117593. [PMID: 37839517 DOI: 10.1016/j.cca.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Biliary tract cancers are heterogeneous in etiology, morphology and molecular characteristics thus impacting disease management. Diagnosis is complex and prognosis poor. The advent of liquid biopsy has provided a unique approach to more thoroughly understand tumor biology in general and biliary tract cancers specifically. Due to their minimally invasive nature, liquid biopsy can be used to serially monitor disease progression and allow real-time monitoring of tumor genetic profiles as well as therapeutic response. Due to the unique anatomic location of biliary tract cancer, bile provides a promising biologic fluid for this purpose. This review focuses on the composition of bile and the use of these various components, ie, cells, extracellular vesicles, nucleic acids, proteins and metabolites as potential biomarkers. Based on the disease characteristics and research status of biliary tract cancer, considerable effort should be made to increase understanding of this disease, promote research and development into early diagnosis, develop efficient diagnostic, therapeutic and prognostic markers.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Songmei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, PR China.
| |
Collapse
|
14
|
Biglari N, Soltani-Zangbar MS, Mohammadian J, Mehdizadeh A, Abbasi K. ctDNA as a novel and promising approach for cancer diagnosis: a focus on hepatocellular carcinoma. EXCLI JOURNAL 2023; 22:752-780. [PMID: 37720239 PMCID: PMC10502204 DOI: 10.17179/excli2023-6277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 09/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent forms of cancer worldwide. Therefore, it is essential to diagnose and treat HCC patients promptly. As a novel discovery, circulating tumor DNA (ctDNA) can be used to analyze the tumor type and the cancer location. Additionally, ctDNA assists the cancer stage determination, which enables medical professionals to provide patients with the most appropriate treatment. This review will discuss the HCC-related mutated genes diagnosed by ctDNA. In addition, we will introduce the different and the most appropriate ctDNA diagnosis approaches based on the facilities.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Cox DRA, McClure T, Zhang F, Wong BKL, Testro A, Goh SK, Muralidharan V, Dobrovic A. Graft-Derived Cell-Free DNA Quantification following Liver Transplantation Using Tissue-Specific DNA Methylation and Donor-Specific Genotyping Techniques: An Orthogonal Comparison Study. EPIGENOMES 2023; 7:11. [PMID: 37367181 DOI: 10.3390/epigenomes7020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Graft-derived cell-free DNA (gdcfDNA) analysis has shown promise as a non-invasive tool for monitoring organ health following solid organ transplantation. A number of gdcfDNA analysis techniques have been described; however, the majority rely on sequencing or prior genotyping to detect donor-recipient mis-matched genetic polymorphisms. Differentially methylated regions of DNA can be used to identify the tissue-of-origin of cell-free DNA (cfDNA) fragments. In this study, we aimed to directly compare the performance of gdcfDNA monitoring using graft-specific DNA methylation analysis and donor-recipient genotyping techniques in a pilot cohort of clinical samples from patients post-liver transplantation. Results: 7 patients were recruited prior to LT, 3 developed early, biopsy-proven TCMR in the first 6 weeks post-LT. gdcfDNA was successfully quantified in all samples using both approaches. There was a high level of technical correlation between results using the two techniques (Spearman testing, rs = 0.87, p < 0.0001). gdcfDNA levels quantified using the genotyping approach were significantly greater across all timepoints in comparison to the tissue-specific DNA methylation-based approach: e.g., day 1 post-LT median 31,350 copies/mL (IQR 6731-64,058) vs. 4133 copies/mL (IQR 1100-8422), respectively. Qualitative trends in gdcfDNA levels for each patient were concordant between the two assays. Acute TCMR was preceded by significant elevations in gdcfDNA as quantified by both techniques. Elevations in gdcfDNA, using both techniques, were suggestive of TCMR in this pilot study with a 6- and 3-day lead-time prior to histological diagnosis in patients 1 and 2. Conclusions: Both the graft-specific methylation and genotyping techniques successfully quantified gdcfDNA in patients post-LT with statistically significant concordance. A direct comparison of these two techniques is not only important from a technical perspective for orthogonal validation, but significantly adds weight to the evidence that gdcfDNA monitoring reflects the underlying biology. Both techniques identified LT recipients who developed acute TCMR, with several days lead-time in comparison to conventional diagnostic workflows. Whilst the two assays performed comparably, gdcfDNA monitoring based on graft-specific DNA methylation patterns in cfDNA offers major practical advantages over the donor-recipient genotyping, and hence enhances the potential to translate this emerging technology into clinical practice.
Collapse
Affiliation(s)
- Daniel R A Cox
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Tess McClure
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
- Liver Transplant Unit, Department of Gastroenterology & Hepatology, Austin Health, Melbourne, VIC 3084, Australia
| | - Fan Zhang
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Boris Ka Leong Wong
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Adam Testro
- Liver Transplant Unit, Department of Gastroenterology & Hepatology, Austin Health, Melbourne, VIC 3084, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Alexander Dobrovic
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| |
Collapse
|
16
|
Oliveira BB, Costa B, Morão B, Faias S, Veigas B, Pereira LP, Albuquerque C, Maio R, Cravo M, Fernandes AR, Baptista PV. Combining the amplification refractory mutation system and high-resolution melting analysis for KRAS mutation detection in clinical samples. Anal Bioanal Chem 2023; 415:2849-2863. [PMID: 37097304 PMCID: PMC10185647 DOI: 10.1007/s00216-023-04696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
The success of personalized medicine depends on the discovery of biomarkers that allow oncologists to identify patients that will benefit from a particular targeted drug. Molecular tests are mostly performed using tumor samples, which may not be representative of the tumor's temporal and spatial heterogeneity. Liquid biopsies, and particularly the analysis of circulating tumor DNA, are emerging as an interesting means for diagnosis, prognosis, and predictive biomarker discovery. In this study, the amplification refractory mutation system (ARMS) coupled with high-resolution melting analysis (HRMA) was developed for detecting two of the most relevant KRAS mutations in codon 12. After optimization with commercial cancer cell lines, KRAS mutation screening was validated in tumor and plasma samples collected from patients with pancreatic ductal adenocarcinoma (PDAC), and the results were compared to those obtained by Sanger sequencing (SS) and droplet digital polymerase chain reaction (ddPCR). The developed ARMS-HRMA methodology stands out for its simplicity and reduced time to result when compared to both SS and ddPCR but showing high sensitivity and specificity for the detection of mutations in tumor and plasma samples. In fact, ARMS-HRMA scored 3 more mutations compared to SS (tumor samples T6, T7, and T12) and one more compared to ddPCR (tumor sample T7) in DNA extracted from tumors. For ctDNA from plasma samples, insufficient genetic material prevented the screening of all samples. Still, ARMS-HRMA allowed for scoring more mutations in comparison to SS and 1 more mutation in comparison to ddPCR (plasma sample P7). We propose that ARMS-HRMA might be used as a sensitive, specific, and simple method for the screening of low-level mutations in liquid biopsies, suitable for improving diagnosis and prognosis schemes.
Collapse
Affiliation(s)
- Beatriz B Oliveira
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- i4HB, Associate Laboratory - Institute for Health and Bioeconomy, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Beatriz Costa
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- i4HB, Associate Laboratory - Institute for Health and Bioeconomy, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | | | | | - Bruno Veigas
- AlmaScience, Campus de Caparica, 2829-519, Caparica, Portugal
| | - Lucília Pebre Pereira
- Unidade de Investigação Em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil EPE, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Cristina Albuquerque
- Unidade de Investigação Em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil EPE, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Rui Maio
- Hospital da Luz-Lisboa, Lisbon, Portugal
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marília Cravo
- Hospital da Luz-Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- i4HB, Associate Laboratory - Institute for Health and Bioeconomy, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
| | - Pedro Viana Baptista
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- i4HB, Associate Laboratory - Institute for Health and Bioeconomy, Faculdade de Ciências E Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
| |
Collapse
|
17
|
Souza VGP, Forder A, Brockley LJ, Pewarchuk ME, Telkar N, de Araújo RP, Trejo J, Benard K, Seneda AL, Minutentag IW, Erkan M, Stewart GL, Hasimoto EN, Garnis C, Lam WL, Martinez VD, Reis PP. Liquid Biopsy in Lung Cancer: Biomarkers for the Management of Recurrence and Metastasis. Int J Mol Sci 2023; 24:ijms24108894. [PMID: 37240238 DOI: 10.3390/ijms24108894] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.
Collapse
Affiliation(s)
- Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araújo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Ana Laura Seneda
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Iael W Minutentag
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erica N Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Cathie Garnis
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Victor D Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| |
Collapse
|
18
|
Bányász B, Antal J, Dénes B. False Positives in Brucellosis Serology: Wrong Bait and Wrong Pond? Trop Med Infect Dis 2023; 8:tropicalmed8050274. [PMID: 37235322 DOI: 10.3390/tropicalmed8050274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review summarizes the status of resolving the problem of false positive serologic results (FPSR) in Brucella serology, compiles our knowledge on the molecular background of the problem, and highlights some prospects for its resolution. The molecular basis of the FPSRs is reviewed through analyzing the components of the cell wall of Gram-negative bacteria, especially the surface lipopolysaccharide (LPS) with details related to brucellae. After evaluating the efforts that have been made to solve target specificity problems of serologic tests, the following conclusions can be drawn: (i) resolving the FPSR problem requires a deeper understanding than we currently possess, both of Brucella immunology and of the current serology tests; (ii) the practical solutions will be as expensive as the related research; and (iii) the root cause of FPSRs is the application of the same type of antigen (S-type LPS) in the currently approved tests. Thus, new approaches are necessary to resolve the problems stemming from FPSR. Such approaches suggested by this paper are: (i) the application of antigens from R-type bacteria; or (ii) the further development of specific brucellin-based skin tests; or (iii) the application of microbial cell-free DNA as analyte, whose approach is detailed in this paper.
Collapse
Affiliation(s)
- Borbála Bányász
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
- Laboratory of Immunology, Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary
| | - József Antal
- Omixon Biocomputing Ltd., 1117 Budapest, Hungary
| | - Béla Dénes
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
| |
Collapse
|
19
|
Leon-Martinez D, Lynn T, Abrahams VM. Cell-free fetal DNA impairs trophoblast migration in a TLR9-dependent manner and can be reversed by hydroxychloroquine. J Reprod Immunol 2023; 157:103945. [PMID: 37062109 DOI: 10.1016/j.jri.2023.103945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Growing evidence suggests a relationship between elevated circulating placental-derived cell-free fetal DNA (cffDNA) and preeclampsia. Hypomethylation of CpG motifs, a hallmark of cffDNA, allows it to activate Toll-like receptor 9 (TLR9). Using an in vitro human first trimester extravillous trophoblast cell model, we sought to determine if trophoblast-derived cffDNA and ODN 2216, a synthetic unmethylated CpG oligodeoxynucleotide, directly impacted spontaneous trophoblast migration. The role of the DNA sensors TLR9, AIM2, and cGAS was assessed using the inhibitor A151. To test whether any effects could be reversed by therapeutic agents, trophoblasts were treated with or without cffDNA or ODN 2216 with or without aspirin (ASA; a known cGAS inhibitor), aspirin-triggered lipoxin (ATL), or hydroxychloroquine (HCQ; a known TLR9 inhibitor). Trophoblast-derived cffDNA and ODN 2216 reduced trophoblast migration without affecting cell viability. Reduced trophoblast migration in response to cffDNA or ODN 2216 was reversed by A151. cffDNA inhibition of trophoblast migration was reversed by HCQ, while ASA or ATL had no effect. In contrast ODN 2216 inhibition of trophoblast migration was reversed by ASA, ATL and HCQ. Our findings suggest that cffDNA can exert a local effect on placental function by impairing trophoblast migration through activation of innate immune DNA sensors. HCQ, a known TLR9 inhibitor, reversed the effects of cffDNA on trophoblast migration. Greater insights into the molecular underpinnings of how cffDNA impacts placentation can aid in our understanding of the pathogenesis of preeclampsia, and in the development of novel therapeutic approaches for preeclampsia therapy.
Collapse
|
20
|
Koval AP, Khromova AS, Blagodatskikh KA, Zhitnyuk YV, Shtykova YA, Alferov AA, Kushlinskii NE, Shcherbo DS. Application of PCR-based approaches for evaluation of cell-free DNA fragmentation in colorectal cancer. Front Mol Biosci 2023; 10:1101179. [PMID: 37051326 PMCID: PMC10083340 DOI: 10.3389/fmolb.2023.1101179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Cell-free DNA (cfDNA) testing is the core of most liquid biopsy assays. In particular, cfDNA fragmentation features could facilitate non-invasive cancer detection due to their interconnection with tumor-specific epigenetic alterations. However, the final cfDNA fragmentation profile in a purified sample is the result of a complex interplay between informative biological and artificial technical factors. In this work, we use ddPCR to study cfDNA lengths in colorectal cancer patients and observe shorter and more variable cfDNA fragments in accessible chromatin loci compared to the densely packed pericentromeric region. We also report a convenient qPCR system suitable for screening cfDNA samples for artificial high molecular weight DNA contamination.
Collapse
Affiliation(s)
- Anastasia P. Koval
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexandra S. Khromova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin A. Blagodatskikh
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Center of Genetics and Reproductive Medicine “Genetico”, Moscow, Russia
| | - Yulia V. Zhitnyuk
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Aleksandr A. Alferov
- Laboratory of Clinical Biochemistry, N. N. Blokhin Cancer Research Medical Center of Oncology, Moscow, Russia
| | - Nikolay E. Kushlinskii
- Laboratory of Clinical Biochemistry, N. N. Blokhin Cancer Research Medical Center of Oncology, Moscow, Russia
| | - Dmitry S. Shcherbo
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- *Correspondence: Dmitry S. Shcherbo,
| |
Collapse
|
21
|
Bitenc M, Grebstad Tune B, Melheim M, Atneosen-Åsegg M, Lai X, Rajar P, Solberg R, Baumbusch LO. Assessing nuclear versus mitochondrial cell-free DNA (cfDNA) by qRT-PCR and droplet digital PCR using a piglet model of perinatal asphyxia. Mol Biol Rep 2023; 50:1533-1544. [PMID: 36512170 PMCID: PMC9889441 DOI: 10.1007/s11033-022-08135-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since the discovery more than half a century ago, cell-free DNA (cfDNA) has become an attractive objective in multiple diagnostic, prognostic, and monitoring settings. However, despite the increasing number of cfDNA applications in liquid biopsies, we still lack a comprehensive understanding of the nature of cfDNA including optimal assessment. In the presented study, we continued testing and validation of common techniques for cfDNA extraction and quantification (qRT-PCR or droplet digital PCR) of nuclear- and mitochondrial cfDNA (ncfDNA and mtcfDNA) in blood, using a piglet model of perinatal asphyxia to determine potential temporal and quantitative changes at the levels of cfDNA. METHODS AND RESULTS Newborn piglets (n = 19) were either exposed to hypoxia (n = 11) or were part of the sham-operated control group (n = 8). Blood samples were collected at baseline (= start) and at the end of hypoxia or at 40-45 min for the sham-operated control group. Applying the qRT-PCR method, ncfDNA concentrations in piglets exposed to hypoxia revealed an increasing trend from 7.1 ng/ml to 9.5 ng/ml for HK2 (hexokinase 2) and from 4.6 ng/ml to 7.9 ng/ml for β-globulin, respectively, whereas the control animals showed a more balanced profile. Furthermore, median levels of mtcfDNA were much higher in comparison to ncfDNA, but without significant differences between intervention versus the control group. CONCLUSIONS Both, qRT-PCR and the droplet digital PCR technique identified overall similar patterns for the concentration changes of cfDNA; but, the more sensitive digital PCR methodology might be required to identify minimal responses.
Collapse
Affiliation(s)
- Marie Bitenc
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
| | - Benedicte Grebstad Tune
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Melheim
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
| | | | - Xiaoran Lai
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Polona Rajar
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars Oliver Baumbusch
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway.
| |
Collapse
|
22
|
Drandi D, Ferrante M, Borriero M, Ferrero S. MYD88 L265P Mutation Detection by ddPCR: Recommendations for Screening and Minimal Residual Disease Monitoring : ddPCR for Highly Sensitive Detection of MYD88 L265P Mutation. Methods Mol Biol 2023; 2621:57-72. [PMID: 37041440 DOI: 10.1007/978-1-0716-2950-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
MYD88L265P is a gain-of-function mutation, arising from the missense alteration c.794T>C, that frequently occurs in B-cell malignancies such as Waldenstrom macroglobulinemia and less frequently in IgM monoclonal gammopathy of undetermined significance (IgM-MGUS) or other lymphomas. MYD88L265P has been recognized as a relevant diagnostic flag, but also as a valid prognostic and predictive biomarker, as well as an investigated therapeutic target. Up until now, allele-specific quantitative PCR (ASqPCR) has been widely used for MYD88L265P detection providing a higher level of sensitivity than Sanger sequencing. However, the recently developed droplet digital PCR (ddPCR) shows a deeper sensitivity, compared to ASqPCR, that is necessary for screening low infiltrated samples. Actually, ddPCR could represent an improvement in daily laboratory practice since it allows mutation detection in unselected tumor cells, allowing to bypass the time-consuming and costly B-cell selection procedure. ddPCR accuracy has been recently proved to be suitable also for mutation detection in "liquid biopsy" samples that might be used as a noninvasive and patient-friendly alternative to bone marrow aspiration especially during the disease monitoring. The relevance of MYD88L265P, both in daily management of patients and in prospective clinical trials investigating the efficacy of novel agents, makes crucial to find a sensitive, accurate, and reliable molecular technique for mutation detection. Here, we propose a protocol for MYD88L265P detection by ddPCR.
Collapse
Affiliation(s)
- Daniela Drandi
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy.
| | - Martina Ferrante
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| | - Michela Borriero
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| | - Simone Ferrero
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| |
Collapse
|
23
|
Takousis P, Devonshire AS, Redshaw N, von Baumgarten L, Whale AS, Jones GM, Fernandez-Gonzalez A, Martin J, Foy CA, Alexopoulos P, Huggett JF, Perneczky R. A standardised methodology for the extraction and quantification of cell-free DNA in cerebrospinal fluid and application to evaluation of Alzheimer's disease and brain cancers. N Biotechnol 2022; 72:97-106. [PMID: 36202346 DOI: 10.1016/j.nbt.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
Abstract
Cerebrospinal fluid (CSF) is a source of diagnostic biomarkers for a range of neurological conditions. Cell-free DNA (cfDNA) is detected in CSF and differences in the concentration of cell-free mitochondrial DNA have been reported in studies of neurodegenerative disorders including Alzheimer's disease (AD). However, the influence of pre-analytical steps has not been investigated for cfDNA in CSF and there is no standardised approach for quantification of total cfDNA (copies of nuclear genome or mitochondria-derived gene targets). In this study, the suitability of four extraction methods was evaluated: QIAamp Circulating Nucleic Acid (Qiagen), Quick-cfDNA Serum & Plasma (Zymo), NucleoSnap® DNA Plasma (Macherey-Nagel) and Plasma/Serum Circulating DNA Purification Mini (Norgen) kits, for cfDNA extraction from CSF of controls and AD dementia patients, utilising a spike-in control for extraction efficiency and fragment size. One of the optimal extraction methods was applied to a comparison of cfDNA concentrations in CSF from control subjects, AD dementia and primary and secondary brain tumour patients. Extraction efficiency based on spike-in recovery was similar in all three groups whilst both endogenous mitochondrial and nucleus-derived cfDNA was significantly higher in CSF from cancer patients compared to control and AD groups, which typically contained < 100 genome copies/mL. This study shows that it is feasible to measure low concentration nuclear and mitochondrial gene targets in CSF and that normalisation of extraction yield can help control pre-analytical variability influencing biomarker measurements.
Collapse
Affiliation(s)
- Petros Takousis
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Alison S Devonshire
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK.
| | - Nicholas Redshaw
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Louisa von Baumgarten
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany; Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra S Whale
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Gerwyn M Jones
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Ana Fernandez-Gonzalez
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Jan Martin
- Department of Anaesthesiology and Intensive Care Medicine, Technical University Munich, Munich, Germany
| | - Carole A Foy
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Panagiotis Alexopoulos
- Department of Psychiatry, University of Patras, Rion Patras, Greece; Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany
| | - Jim F Huggett
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK; School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Robert Perneczky
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Gezer U, Bronkhorst AJ, Holdenrieder S. The Clinical Utility of Droplet Digital PCR for Profiling Circulating Tumor DNA in Breast Cancer Patients. Diagnostics (Basel) 2022; 12:diagnostics12123042. [PMID: 36553049 PMCID: PMC9776872 DOI: 10.3390/diagnostics12123042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Breast cancer is the most common cancer affecting women worldwide. It is a malignant and heterogeneous disease with distinct molecular subtypes, which has prognostic and predictive implications. Circulating tumor DNA (ctDNA), cell-free fragmented tumor-derived DNA in blood plasma, is an invaluable source of specific cancer-associated mutations and holds great promise for the development of minimally invasive diagnostic tests. Furthermore, serial monitoring of ctDNA over the course of systemic and targeted therapies not only allows unparalleled efficacy assessments but also enables the identification of patients who are at risk of progression or recurrence. Droplet digital PCR (ddPCR) is a powerful technique for the detection and monitoring of ctDNA. Due to its relatively high accuracy, sensitivity, reproducibility, and capacity for absolute quantification, it is increasingly used as a tool for managing cancer patients through liquid biopsies. In this review paper, we gauge the clinical utility of ddPCR as a technique for mutational profiling in breast cancer patients and focus on HER2, PIK3CA, ESR1, and TP53, which represent the most frequently mutated genes in breast cancers.
Collapse
Affiliation(s)
- Ugur Gezer
- Institute of Oncology, Department of Basic Oncology, Istanbul University, Istanbul 34093, Turkey
| | - Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
- Correspondence:
| |
Collapse
|
25
|
Improved DNA extraction on bamboo paper and cotton is tightly correlated with their crystallinity and hygroscopicity. PLoS One 2022; 17:e0277138. [PMID: 36342943 PMCID: PMC9639815 DOI: 10.1371/journal.pone.0277138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
DNA extraction, a vital pre-requisite for most biological studies, continues to be studied extensively. According to some studies, DNA shows a certain degree of absorbability on filter paper made of plant fiber-based adsorbent material. However, the principle underlying such specific adsorption as well as plant species associated with plant fiber-based adsorbents and optimized extraction conditions have not yet been studied. This study demonstrates the tight correlation between crystallinity and hygroscopicity in plant fiber-based adsorbents used for DNA extraction and proposes the concept of DNA adsorption on plant fiber-based adsorbents, for the first time. We also explored optimal extracting and eluting conditions and developed a novel plant fiber-based DNA extraction method that was quadruple times more powerful than current approaches. Starting with the screening of various types of earthed plant fiber-based adsorbents, we went on to mine new plant fiber-based adsorbents, bamboo paper and degreased cotton, and succeeded in increasing their efficiency of DNA extraction to 4.2 times than that of current approaches. We found a very strong correlation between the crystallinity and hygroscopicity of plant fiber-based adsorbents which showed efficiency for DNA extraction, and thus propose a principle that potentially governs such specific adsorption processes, in the hope that this information may guide related multidisciplinary research studies in the future. Nanodrop, electrophoresis and PCR were selected to demonstrate the quantity, quality, integrity and utility of the extracted DNA. Furthermore, crystallinity, hygroscopicity, pore size distribution and composition of plant fiber-based adsorbents were studied to explore their correlation in an attempt to understand the principle underlying this particular type of adsorption. The findings of this study may be further extended to the extraction of other types of nucleic acids with similar biochemical properties.
Collapse
|
26
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
27
|
Cox DR, Wong BKL, Lee E, Testro A, Muralidharan V, Dobrovic A, Goh SK. Evaluating DNA recovery efficiency following bisulphite modification from plasma samples submitted for cell-free DNA methylation analysis. Epigenetics 2022; 17:1956-1960. [PMID: 35763697 DOI: 10.1080/15592294.2022.2091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The detection of methylated templates in cell-free DNA (cfDNA) is increasingly recognized as a valuable, non-invasive tool for diagnosis, monitoring and prognostication in a range of medical contexts. The importance of controlling pre-analytical conditions in laboratory workflows prior to cfDNA quantification is well-established. Significant variations in the recovery of DNA following processes such as cfDNA extraction and sodium bisulphite modification may confound downstream analysis, particularly when accurate quantification of templates is required. Given the wealth of potential applications for this emerging molecular technology, attention has turned to the requirement to recognize and minimize pre-analytical variables prior to cfDNA methylation analysis. We recently described the development of an approach using an exogenous DNA construct to evaluate the recovery efficiency of cfDNA following the extraction and bisulphite modification steps (CEREBIS). Here, we report our experience in the practical application of this technique in 107 consecutive patient plasma samples submitted for quantitative cfDNA methylation analysis. The mean recovery of cfDNA (as estimated using cerebis), following extraction and bisulphite modification, was 37% ± 7%. Nine (8.4%) of the 107 samples were found to be outside of control limits, where the recovery of cerebis indicated significant differences in the efficiency of the pre-analytical processing of these samples. Recognition of these out-of-control samples precluded subsequent molecular analysis. Implementation of data-driven quality control measures, such as the one described, has the potential to improve the quality of liquid biopsy methylation analysis, interpretation and reporting.
Collapse
Affiliation(s)
- Daniel Ra Cox
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| | - Boris Ka Leong Wong
- Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia
| | - Eunice Lee
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Health, Heidelberg, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| | - Alexander Dobrovic
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| |
Collapse
|
28
|
Wiggins JM, Ali S, Polsky D. Cell-Free DNA in Dermatology Research. J Invest Dermatol 2022; 142:1523-1528.e1. [PMID: 35598899 PMCID: PMC10038729 DOI: 10.1016/j.jid.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
In various diseases, particularly cancer, cell-free DNA (cfDNA) has been widely studied as a marker of disease prognosis or to facilitate the detection of therapeutic targets. In dermatology, most studies have focused on melanoma; other skin diseases such as vascular malformations and psoriasis have also been examined. Genetic alterations unique to the tissue of origin such as sequence variations, copy number alterations, chromosomal rearrangements, differential DNA methylation patterns, and fragmentation patterns can be identified in circulation providing information on patient disease status. These alterations can be detected either by PCR-based methods or next-generation sequencing depending on the target of interest. In this article, we discuss the origins of cfDNA, the most common methods of detection, current studies assessing cfDNA as a biomarker, and cfDNA's potential clinical applications in melanoma and other skin diseases. In addition, we provide important factors to consider during blood processing and DNA extraction as well as limitations for each assay.
Collapse
Affiliation(s)
- Jennifer M Wiggins
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Saim Ali
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA.
| |
Collapse
|
29
|
Saelee SL, Lovejoy AF, Hinzmann B, Mayol K, Huynh S, Harrell A, Lefkowitz J, Deodhar N, Garcia-Montoya G, Yaung SJ, Klass DM. Quantitative PCR-Based Method to Assess Cell-Free DNA Quality, Adjust Input Mass, and Improve Next-Generation Sequencing Assay Performance. J Mol Diagn 2022; 24:566-575. [PMID: 35364322 DOI: 10.1016/j.jmoldx.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/19/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Cell-free (cf)DNA-based testing has undergone increasingly wide adoption, including assays for the detection of circulating tumor DNA. Due to nucleosome protection, cfDNA has a distinctive fragment size of 160 to 180 bp. However, cfDNA can be contaminated with high molecular weight genomic DNA from blood cells released in plasma during sample collection. Such contamination can lead to decreased sensitivity or inconsistent results in cfDNA next-generation sequencing assays. This article describes a technical advancement in which a quantitative PCR method is used for high molecular weight contamination assessment and input mass adjustment, and has been demonstrated to improve consistency of performance in a circulating tumor DNA next-generation sequencing workflow.
Collapse
Affiliation(s)
| | | | | | - Katrina Mayol
- Roche Sequencing Solutions, Inc., Pleasanton, California
| | - Samantha Huynh
- Roche Sequencing Solutions, Inc., Pleasanton, California
| | - Amy Harrell
- Roche Sequencing Solutions, Inc., Pleasanton, California
| | - Josh Lefkowitz
- Roche Sequencing Solutions, Inc., Pleasanton, California
| | | | | | | | - Daniel M Klass
- Roche Sequencing Solutions, Inc., Pleasanton, California.
| |
Collapse
|
30
|
Yuwono NL, Boyd MAA, Henry CE, Werner B, Ford CE, Warton K. Circulating cell-free DNA undergoes significant decline in yield after prolonged storage time in both plasma and purified form. Clin Chem Lab Med 2022; 60:1287-1298. [DOI: 10.1515/cclm-2021-1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Circulating DNA (cirDNA) is generally purified from plasma that has been biobanked for variable lengths of time. In long-term experiments or clinical trials, the plasma can be stored frozen for up to several years. Therefore, it is crucial to determine the stability of cirDNA to ensure confidence in sample quality upon analysis. Our main objective was to determine the effect of storage for up to 2 years on cirDNA yield and fragmentation.
Methods
We stored frozen EDTA plasma and purified cirDNA from 10 healthy female donors, then quantified cirDNA yield at baseline, and at regular intervals for up to 2 years, by qPCR and Qubit. We also compared cirDNA levels in non-haemolysed and haemolysed blood samples after 16 months of storage and tested the effect of varying DNA extraction protocol parameters.
Results
Storage up to two years caused an annual cirDNA yield decline of 25.5% when stored as plasma and 23% when stored as purified DNA, with short fragments lost more rapidly than long fragments. Additionally, cirDNA yield was impacted by plasma input and cirDNA elution volumes, but not by haemolysis.
Conclusions
The design of long-term cirDNA-based studies and clinical trials should factor in the deterioration of cirDNA during storage.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Mollie Ailie Acheson Boyd
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Claire Elizabeth Henry
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Bonnita Werner
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| |
Collapse
|
31
|
Pott C, Kotrova M, Darzentas N, Brüggemann M, Khouja M. cfDNA-Based NGS IG Analysis in Lymphoma. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:101-117. [PMID: 35622323 DOI: 10.1007/978-1-0716-2115-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Liquid biopsy is a novel diagnostic approach at first developed to characterize the molecular profile of solid tumors by analyzing body fluids. For cancer patients, it represents a noninvasive way to monitor the status of the solid tumor with respect to representative biomarkers. There is growing interest in the utilization of circulating tumor DNA (ctDNA) analysis also in the diagnostic and prognostic fields of lymphomas. Clonal immunoglobulin (IG) gene rearrangements are fingerprints of the respective lymphoid malignancy and thus are highly suited as specific molecular targets for minimal residual disease (MRD) detection. Tracing of the clonal IG rearrangement patterns in ctDNA pool during treatment can be used for MRD assessment in B-cell lymphomas. Here, we describe a reproducible next-generation sequencing assay to identify and characterize clonal IG gene rearrangements for MRD detection in cell-free DNA.
Collapse
Affiliation(s)
- Christiane Pott
- Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Michaela Kotrova
- Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nikos Darzentas
- Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Monika Brüggemann
- Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mouhamad Khouja
- Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
32
|
Shen N, Zhu B, Zhang W, Nian B, Xu X, Yu L, Ruan X, Chen S, Liu Y, Cao X, Shi X, Li Z, Huang X, Wang X, Chen C, Xiong L, Zhang D, Fu X, Zhang Y. Comprehensive Evaluation and Application of a Novel Method to Isolate Cell-Free DNA Derived From Bile of Biliary Tract Cancer Patients. Front Oncol 2022; 12:891917. [PMID: 35600407 PMCID: PMC9116272 DOI: 10.3389/fonc.2022.891917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cell-free DNA (cfDNA) exists in various types of bodily fluids, including plasma, urine, bile, and others. Bile cfDNA could serve as a promising liquid biopsy for biliary tract cancer (BTC) patients, as bile directly contacts tumors in the biliary tract system. However, there is no commercial kit or widely acknowledged method for bile cfDNA extraction. In this study, we established a silica-membrane-based method, namely 3D-BCF, for bile cfDNA isolation, exhibiting effective recovery of DNA fragments in the spike-in assay. We then compared the 3D-BCF method with four other commercial kits: the BIOG cfDNA Easy Kit (BIOG), QIAamp DNA Mini Kit (Qiagen), MagMAXTM Cell-Free DNA Isolation Kit (Thermo Fisher), and NORGEN Urine Cell-Free Circulating DNA Purification Mini Kit (Norgen Biotek). The proposed 3D-BCF method exhibited the highest cfDNA isolation efficiency (p < 0.0001) from patient bile samples, and bile cfDNA of short, medium or long fragments could all be extracted effectively. To test whether the extracted bile cfDNA from patients carries tumor-related genomic information, we performed next-generation sequencing on the cfDNA and verified the gene-mutation results by polymerase chain reaction (PCR)-Sanger chromatograms and copy-number-variation (CNV) detection by fluorescence in situ hybridization (FISH) of tumor tissues. The 3D-BCF method could efficiently extract cfDNA from bile samples, providing technical support for bile cfDNA as a promising liquid biopsy for BTC patient diagnosis and prognosis.
Collapse
Affiliation(s)
- Ningjia Shen
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | - Bin Zhu
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | | | | | | | - Lianghe Yu
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | - Xiang Ruan
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | | | - Yang Liu
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | | | - Xintong Shi
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | | | - Xingfeng Huang
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | - Xiang Wang
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | | | | | | | - Xiaohui Fu
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| | - Yongjie Zhang
- Department of Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Navy Medical University, Shanghai, China
| |
Collapse
|
33
|
Hapsianto BN, Kojima N, Kurita R, Yamagata H, Fujita H, Fujii T, Kim SH. Direct Capture and Amplification of Small Fragmented DNAs Using Nitrogen-Mustard-Coated Microbeads. Anal Chem 2022; 94:7594-7600. [PMID: 35578745 DOI: 10.1021/acs.analchem.2c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circulating cell-free DNA (cfDNA) has been implicated as an important biomarker and has been intensively studied for "liquid biopsy" applications in cancer diagnostics. Owing to its small fragment size and its low concentration in circulation, cfDNA extraction and purification from serum samples are complicated, and the extraction yield affects the precision of subsequent molecular diagnostic tests. Here, we report a novel approach using nitrogen-mustard-coated DNA capture beads (NMD beads) that covalently capture DNA and allow direct subsequent polymerase chain reaction (PCR) amplification from the NMD bead without elusion. The complex DNA extraction and purification processes are not required. To illustrate the diagnostic use of the NMD beads, we detected short DNA fragments (142 bp) that were spiked into fetal bovine serum (as a model serum sample). The spiked DNAs were captured directly from serum samples and detected using real-time PCR at concentrations as low as 10 fg/mL. We anticipate that this DNA capture bead technique has the potential to simplify the preanalytical processes required for cfDNA detection, which could significantly expand the diagnostic applications of liquid biopsy.
Collapse
Affiliation(s)
- Benediktus N Hapsianto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Naoshi Kojima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Ryoji Kurita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Hitoshi Yamagata
- Advanced Research Laboratory (ARL), Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara 324-8550, Tochigi, Japan
| | - Hiroyuki Fujita
- Advanced Research Laboratory (ARL), Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara 324-8550, Tochigi, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
34
|
Haselmann V, Hedtke M, Neumaier M. Liquid Profiling for Cancer Patient Stratification in Precision Medicine—Current Status and Challenges for Successful Implementation in Standard Care. Diagnostics (Basel) 2022; 12:diagnostics12030748. [PMID: 35328301 PMCID: PMC8947441 DOI: 10.3390/diagnostics12030748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor DNA (ctDNA), accurately described by the term liquid profiling (LP), enables real-time assessment of the tumor mutational profile as a minimally invasive test and has therefore rapidly gained traction, particular for the management of cancer patients. By LP, tumor-specific genetic alterations can be determined as part of companion diagnostics to guide selection of appropriate targeted therapeutics. Because LP facilitates longitudinal monitoring of cancer patients, it can be used to detect acquired resistant mechanisms or as a personalized biomarker for earlier detection of disease recurrence, among other applications. However, LP is not yet integrated into routine care to the extent that might be expected. This is due to the lack of harmonization and standardization of preanalytical and analytical workflows, the lack of proper quality controls, limited evidence of its clinical utility, heterogeneous study results, the uncertainty of clinicians regarding the value and appropriate indications for LP and its interpretation, and finally, the lack of reimbursement for most LP tests. In this review, the value proposition of LP for cancer patient management and treatment optimization, the current status of implementation in standard care, and the main challenges that need to be overcome are discussed in detail.
Collapse
|
35
|
Pękacz M, Basałaj K, Kalinowska A, Klockiewicz M, Stopka D, Bąska P, Długosz E, Karabowicz J, Młocicki D, Wiśniewski M, Zawistowska-Deniziak A. Selection of new diagnostic markers for Dirofilaria repens infections with the use of phage display technology. Sci Rep 2022; 12:2288. [PMID: 35145147 PMCID: PMC8831495 DOI: 10.1038/s41598-022-06116-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dirofilaria repens is a parasitic nematode causing vector-borne disease (dirofilariasis), considered an emerging problem in veterinary and human medicine. Although main hosts are carnivores, particularly dogs, D. repens shows high zoonotic potential. The disease spreads uncontrollably, affecting new areas. Since there is no vaccine against dirofilariasis, the only way to limit disease transmission is an early diagnosis. Currently, diagnosis depends on the detection of microfilariae in the host bloodstream using modified Knott's test or multiplex PCR. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable diagnostic test is required. Our study aimed to select new diagnostic markers for dirofilariasis with potential application in diagnostics. We focused on single epitopes to ensure high specificity of diagnosis and avoid cross-reactivity with the other parasite infections common in dogs. Using phage display technology and 12-mer peptides library, we selected epitopes highly reactive with IgG from sera of infected dogs. Additionally, our study presents the possibility of detecting D. repens specific cell-free DNA in dogs with no microfilaria but high IgG and IgM antibody levels against parasite somatic antigen.
Collapse
Affiliation(s)
- Mateusz Pękacz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Klockiewicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Diana Stopka
- Division of Pathology, Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ewa Długosz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Justyna Karabowicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Liquid biopsies have emerged as a noninvasive alternative to tissue biopsy with potential applications during all stages of pediatric oncology care. The purpose of this review is to provide a survey of pediatric cell-free DNA (cfDNA) studies, illustrate their potential applications in pediatric oncology, and to discuss technological challenges and approaches to overcome these hurdles. RECENT FINDINGS Recent literature has demonstrated liquid biopsies' ability to inform treatment selection at diagnosis, monitor clonal evolution during treatment, sensitively detect minimum residual disease following local control, and provide sensitive posttherapy surveillance. Advantages include reduced procedural anesthesia, molecular profiling unbiased by tissue heterogeneity, and ability to track clonal evolution. Challenges to wider implementation in pediatric oncology, however, include blood volume restrictions and relatively low mutational burden in childhood cancers. Multiomic approaches address challenges presented by low-mutational burden, and novel bioinformatic analyses allow a single assay to yield increasing amounts of information, reducing blood volume requirements. SUMMARY Liquid biopsies hold tremendous promise in pediatric oncology, enabling noninvasive serial surveillance with adaptive care. Already integrated into adult care, recent advances in technologies and bioinformatics have improved applicability to the pediatric cancer landscape.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
37
|
Fournier L, de Geus-Oei LF, Regge D, Oprea-Lager DE, D’Anastasi M, Bidaut L, Bäuerle T, Lopci E, Cappello G, Lecouvet F, Mayerhoefer M, Kunz WG, Verhoeff JJC, Caruso D, Smits M, Hoffmann RT, Gourtsoyianni S, Beets-Tan R, Neri E, deSouza NM, Deroose CM, Caramella C. Twenty Years On: RECIST as a Biomarker of Response in Solid Tumours an EORTC Imaging Group - ESOI Joint Paper. Front Oncol 2022; 11:800547. [PMID: 35083155 PMCID: PMC8784734 DOI: 10.3389/fonc.2021.800547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations. While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for response classification within thus partly circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to individual cases. As reproducibility of RECIST measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted. There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be overcome, and human adjudications may be required.
Collapse
Affiliation(s)
- Laure Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Université de Paris, Assistance Publique–Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Department of Radiology, Paris Cardiovascular Research Center (PARCC) Unité Mixte de Recherche (UMRS) 970, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Daniele Regge
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Daniela-Elena Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers [Vrije Universiteit (VU) University], Amsterdam, Netherlands
| | - Melvin D’Anastasi
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Tobias Bäuerle
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine Unit, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) – Humanitas Research Hospital, Milan, Italy
| | - Giovanni Cappello
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Frederic Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marius Mayerhoefer
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang G. Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Joost J. C. Verhoeff
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Damiano Caruso
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Marion Smits
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
- Brain Tumour Centre, Erasmus Medical Centre (MC) Cancer Institute, Rotterdam, Netherlands
| | - Ralf-Thorsten Hoffmann
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl-Gustav-Carus Technical University Dresden, Dresden, Germany
| | - Sofia Gourtsoyianni
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
| | - Regina Beets-Tan
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- School For Oncology and Developmental Biology (GROW) School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Emanuele Neri
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, United States
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph Centre International des Cancers Thoraciques, Université Paris-Saclay, Le Plessis-Robinson, France
| |
Collapse
|
38
|
Kondratskaya VA, Pokrovskaya MS, Doludin YV, Borisova AL, Limonova AS, Meshkov АN, Drapkina OM. Influence of preanalytical variables on the quality of cell-free DNA. Biobanking of cell-free DNA material. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2021-3114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The search for early disease markers and the development of diagnostic systems has recently been expanding within genomics. Genomic deoxyribonucleic acid (DNA), cell-free DNA (cfDNA) and microbiome DNA obtained from different types of samples (tissues, blood and its derivatives, feces, etc.) are used as objects of genetic research. It has been shown that cfDNA that enters the bloodstream, in particular, as a result of apoptosis, necrosis, active tumor secretion and metastasis, is of great importance for studying molecular mechanisms of the pathological process and application in clinical practice. Circulating nucleic acid analysis can be used to monitor response to treatment, assess drug resistance, and quantify minimal residual disease. The review article reflects the following information about the biomaterial: source of cfDNA, methods of cfDNA isolation, storage and use for the diagnosis of certain diseases. Cell-free DNA can be present in biological fluids such as blood, urine, saliva, synovial and cerebrospinal fluid. In most cases, cfDNA is isolated from blood derivatives (serum and plasma), while it is most correct to use blood plasma for cfDNA isolation. Optimal and economically justifiable is the use of ethylenediaminetetra-acetic acid tubes for taking blood and obtaining plasma with subsequent cfDNA isolation. There is evidence that the optimal shelf life in an ethylenediaminetetra-acetic acid tube from the moment of blood sampling to subsequent isolation is a 2-hour interval. After centrifugation, cfDNA in plasma (or serum) can be stored for a long time at a temperature of -80O C. Storage at -20O C is undesirable, since DNA fragmentation increases.
Collapse
Affiliation(s)
| | - M. S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine
| | - Yu. V. Doludin
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. L. Borisova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. S. Limonova
- National Medical Research Center for Therapy and Preventive Medicine
| | - А. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
39
|
Nidadavolu LS, Feger D, Wu Y, Grodstein F, Gross AL, Bennett DA, Walston JD, Oh ES, Abadir PM. Circulating Cell-Free Genomic DNA Is Associated with an Increased Risk of Dementia and with Change in Cognitive and Physical Function. J Alzheimers Dis 2022; 89:1233-1240. [PMID: 36031893 PMCID: PMC9969834 DOI: 10.3233/jad-220301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Altered cell homeostasis, seen in cognitive decline and frailty, leads to cell death and turnover, releasing circulating cell-free DNA (ccf-DNA). OBJECTIVE The goal of this study is to determine if serum genomic cell-free DNA (ccf-gDNA) is associated with physical and cognitive decline in older adults. METHODS We used serum from 631 community-dwelling individuals from the Religious Orders Study or Rush Memory and Aging Project who were without cognitive impairment at baseline. ccf-gDNA fragments in serum were quantified using digital PCR. An array of cognitive and physical traits, risk of dementia, global cognition, and frailty at or nearest the time of blood draw were regressed on ccf-DNA, with adjustment for age, sex, race, and education. RESULTS Cross-sectionally, higher ccf-gDNA levels were associated with lower global cognition score and slower gait speed at the evaluation nearest to blood draw. Higher ccf-gDNA levels were associated with increased odds of incident dementia (OR 1.27, 95% CI 1.05, 1.54). Longitudinally, higher levels of ccf-gDNA were associated with steeper general cognitive decline and worsening frailty over eight years of follow up. CONCLUSION This study demonstrates that ccf-gDNA fragments have utility for identifying persons at higher risk of developing dementia and worsening cognition and frailty.
Collapse
Affiliation(s)
- Lolita S. Nidadavolu
- Johns Hopkins University School of Medicine, Division of Geriatric Medicine and Gerontology, Baltimore, MD, USA
| | - Danielle Feger
- Johns Hopkins University Center on Aging and Health, Baltimore, MD, USA
| | - Yuqiong Wu
- Johns Hopkins University School of Medicine, Division of Geriatric Medicine and Gerontology, Baltimore, MD, USA
| | - Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Alden L. Gross
- Johns Hopkins University School of Medicine, Division of Geriatric Medicine and Gerontology, Baltimore, MD, USA
- Johns Hopkins University Center on Aging and Health, Baltimore, MD, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jeremy D. Walston
- Johns Hopkins University School of Medicine, Division of Geriatric Medicine and Gerontology, Baltimore, MD, USA
| | - Esther S. Oh
- Johns Hopkins University School of Medicine, Division of Geriatric Medicine and Gerontology, Baltimore, MD, USA
| | - Peter M. Abadir
- Johns Hopkins University School of Medicine, Division of Geriatric Medicine and Gerontology, Baltimore, MD, USA
| |
Collapse
|
40
|
Chang A, Mzava O, Lenz JS, Cheng AP, Burnham P, Motley ST, Bennett C, Connelly JT, Dadhania DM, Suthanthiran M, Lee JR, Steadman A, De Vlaminck I. Measurement Biases Distort Cell-Free DNA Fragmentation Profiles and Define the Sensitivity of Metagenomic Cell-Free DNA Sequencing Assays. Clin Chem 2021; 68:163-171. [PMID: 34718476 PMCID: PMC8718127 DOI: 10.1093/clinchem/hvab142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Metagenomic sequencing of microbial cell-free DNA (cfDNA) in blood and urine is increasingly used as a tool for unbiased infection screening. The sensitivity of metagenomic cfDNA sequencing assays is determined by the efficiency by which the assay recovers microbial cfDNA vs host-specific cfDNA. We hypothesized that the choice of methods used for DNA isolation, DNA sequencing library preparation, and sequencing would affect the sensitivity of metagenomic cfDNA sequencing. METHODS We characterized the fragment length biases inherent to select DNA isolation and library preparation procedures and developed a model to correct for these biases. We analyzed 305 cfDNA sequencing data sets, including publicly available data sets and 124 newly generated data sets, to evaluate the dependence of the sensitivity of metagenomic cfDNA sequencing on pre-analytical variables. RESULTS Length bias correction of fragment length distributions measured from different experimental procedures revealed the ultrashort (<100 bp) nature of microbial-, mitochondrial-, and host-specific urinary cfDNA. The sensitivity of metagenomic sequencing assays to detect the clinically reported microorganism differed by more than 5-fold depending on the combination of DNA isolation and library preparation used. CONCLUSIONS Substantial gains in the sensitivity of microbial and other short fragment recovery can be achieved by easy-to-implement changes in the sample preparation protocol, which highlights the need for standardization in the liquid biopsy field.
Collapse
Affiliation(s)
- Adrienne Chang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Omary Mzava
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joan S Lenz
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Alexandre P Cheng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Philip Burnham
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Crissa Bennett
- Global Good Fund, Intellectual Ventures Lab, Bellevue, WA, USA
| | | | - Darshana M Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | | | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Schlenker F, Kipf E, Deuter M, Höffkes I, Lehnert M, Zengerle R, von Stetten F, Scherer F, Wehrle J, von Bubnoff N, Juelg P, Hutzenlaub T, Borst N. Stringent Base Specific and Optimization-Free Multiplex Mediator Probe ddPCR for the Quantification of Point Mutations in Circulating Tumor DNA. Cancers (Basel) 2021; 13:cancers13225742. [PMID: 34830896 PMCID: PMC8616434 DOI: 10.3390/cancers13225742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cancer treatment strategies and their follow-up monitoring are changing to personalized therapies, based on molecular genetic information from the individual person. Liquid biopsy, where this molecular information is derived from body fluids such as blood, has the potential to provide a systemic fingerprint of cancer dynamics, and, compared to tissue biopsy, is much less invasive for the patient. We used the previously published mediator probe PCR technology for liquid biopsy detection of several mutations in one reaction, so-called digital multiplex PCR. Quantification of point mutations in plasma eluates from follow-up patients using 4-plex digital assays showed a comparable performance to reference 2-plex assays. As a key feature, the presented multiplex assays require no laborious optimization as they use the same concentrations and cycling conditions for all targets. This allows for flexible design and interchangeable target panels, thus the assay is easily adaptable for individual patient monitoring and reduces sample consumption. Abstract There is an increasing demand for optimization-free multiplex assays to rapidly establish comprehensive target panels for cancer monitoring by liquid biopsy. We present the mediator probe (MP) PCR for the quantification of the seven most frequent point mutations and corresponding wild types (KRAS and BRAF) in colorectal carcinoma. Standardized parameters for the digital assay were derived using design of experiments. Without further optimization, the limit of detection (LoD) was determined through spiking experiments with synthetic mutant DNA in human genomic DNA. The limit of blank (LoB) was measured in cfDNA plasma eluates from healthy volunteers. The 2-plex and 4-plex MP ddPCR assays showed a LoB of 0 copies/mL except for 4-plex KRAS G13D (9.82 copies/mL) and 4-plex BRAF V600E (16.29 copies/mL) and allele frequencies of 0.004% ≤ LoD ≤ 0.38% with R2 ≥ 0.98. The quantification of point mutations in patient plasma eluates (18 patients) during follow-up using the 4-plex MP ddPCR showed a comparable performance to the reference assays. The presented multiplex assays need no laborious optimization, as they use the same concentrations and cycling conditions for all targets. This facilitates assay certification, allows a fast and flexible design process, and is thus easily adaptable for individual patient monitoring.
Collapse
Affiliation(s)
- Franziska Schlenker
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Elena Kipf
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Max Deuter
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Inga Höffkes
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Julius Wehrle
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
- Department of Hematology and Oncology, Campus Lübeck, University Hospital Schleswig-Holstein, 23562 Lübeck, Germany
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nadine Borst
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-73208
| |
Collapse
|
42
|
Yuwono NL, Warton K, Ford CE. The influence of biological and lifestyle factors on circulating cell-free DNA in blood plasma. eLife 2021; 10:e69679. [PMID: 34752217 PMCID: PMC8577835 DOI: 10.7554/elife.69679] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
Research and clinical use of circulating cell-free DNA (cirDNA) is expanding rapidly; however, there remain large gaps in our understanding of the influence of lifestyle and biological factors on the amount of cirDNA present in blood. Here, we review 66 individual studies of cirDNA levels and lifestyle and biological factors, including exercise (acute and chronic), alcohol consumption, occupational hazard exposure, smoking, body mass index, menstruation, hypertension, circadian rhythm, stress, biological sex and age. Despite technical and methodological inconsistences across studies, we identify acute exercise as a significant influence on cirDNA levels. Given the large increase in cirDNA induced by acute exercise, we recommend that controlling for physical activity prior to blood collection is routinely incorporated into study design when total cirDNA levels are of interest. We also highlight appropriate selection and complete reporting of laboratory protocols as important for improving the reproducibility cirDNA studies and ability to critically evaluate the results.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| |
Collapse
|
43
|
Kerachian MA, Azghandi M, Mozaffari-Jovin S, Thierry AR. Guidelines for pre-analytical conditions for assessing the methylation of circulating cell-free DNA. Clin Epigenetics 2021; 13:193. [PMID: 34663458 PMCID: PMC8525023 DOI: 10.1186/s13148-021-01182-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers. It consists of isolation (pre-analytical) and detection (analytical) phases. The choice of pre-analytical variables comprising cirDNA extraction and bisulfite conversion methods can affect the identification of cirDNA methylation. Indeed, different techniques give a different return of cirDNA, which confirms the importance of pre-analytical procedures in clinical diagnostics. Although novel techniques have been developed for the simplification of methylation analysis, the process remains complex, as the steps of DNA extraction, bisulfite treatment, and methylation detection are each carried out separately. Recent studies have noted the absence of any standard method for the pre-analytical processing of methylated cirDNA. We have therefore conducted a comprehensive and systematic review of the important pre-analytical and analytical variables and the patient-related factors which form the basis of our guidelines for analyzing methylated cirDNA in liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
44
|
Jackson AM, Amato-Menker C, Bettinotti M. Cell-free DNA diagnostics in transplantation utilizing next generation sequencing. Hum Immunol 2021; 82:850-858. [PMID: 34600770 DOI: 10.1016/j.humimm.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
The use of Next Generation Sequencing (NGS) to interrogate cell-free DNA (cfDNA) as a transplant diagnostic provides a crucial step in improving the accuracy of post-transplant monitoring of allograft health. cfDNA interrogation provides a powerful, yet minimally invasive, biomarker for disease and tissue injury. cfDNA can be isolated from a variety of body fluids and analyzed using bioinformatics to unlock its origins. Furthermore, cfDNA characteristics can reveal the mechanisms and conditions under which it was generated and released. In transplantation, donor-derived cfDNA monitoring provides a tool for identifying active allograft injury at the time of transplant, infection, and rejection. Multiple detection and interrogation methods for cfDNA detection are now being evaluated for clinical validity and hold the promise to provide minimally invasive, quantitative, and reproducible measures of allograft injury across organ types.
Collapse
Affiliation(s)
- Annette M Jackson
- Duke University, Department of Surgery, DUMC Box 2645, Durham, NC 27710, USA.
| | - Carly Amato-Menker
- West Virginia University, Microbiology, Immunology, and Cell Biology, Morgantown, WV, USA
| | - Maria Bettinotti
- Johns Hopkins University, Department of Pathology, 2041 E. Monument Street, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Till JE, Black TA, Gentile C, Abdalla A, Wang Z, Sangha HK, Roth JJ, Sussman R, Yee SS, O'Hara MH, Thompson JC, Aggarwal C, Hwang WT, Elenitoba-Johnson KSJ, Carpenter EL. Optimization of Sources of Circulating Cell-Free DNA Variability for Downstream Molecular Analysis. J Mol Diagn 2021; 23:1545-1552. [PMID: 34454115 DOI: 10.1016/j.jmoldx.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Circulating cell-free DNA (ccfDNA) is used increasingly as a cancer biomarker for prognostication, as a correlate for tumor volume, or as input for downstream molecular analysis. Determining optimal blood processing and ccfDNA quantification are crucial for ccfDNA to serve as an accurate biomarker as it moves into the clinical realm. Whole blood was collected from 50 subjects, processed to plasma, and used immediately or frozen at -80°C. Plasma ccfDNA was extracted and concentration was assessed by real-time quantitative PCR (qPCR), fluorimetry, and droplet digital PCR (ddPCR). For the 24 plasma samples from metastatic pancreatic cancer patients, the variant allele fractions (VAF) of KRAS G12/13 pathogenic variants in circulating tumor DNA (ctDNA) were measured by ddPCR. Using a high-speed (16,000 × g) or slower-speed (4100 × g) second centrifugation step showed no difference in ccfDNA yield or ctDNA VAF. A two- versus three-spin centrifugation protocol also showed no difference in ccfDNA yield or ctDNA VAF. A higher yield was observed from fresh versus frozen plasma by qPCR and fluorimetry, whereas a higher yield was observed for frozen versus fresh plasma by ddPCR, however, no difference was observed in ctDNA VAF. Overall, our findings suggest factors to consider when implementing a ccfDNA extraction and quantification workflow in a research or clinical setting.
Collapse
Affiliation(s)
- Jacob E Till
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taylor A Black
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caren Gentile
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aseel Abdalla
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhuoyang Wang
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hareena K Sangha
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacquelyn J Roth
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robyn Sussman
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie S Yee
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Thompson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charu Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kojo S J Elenitoba-Johnson
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
46
|
Samoila A, Sosa J, Padilla J, Wutkowski M, Vanness K, Viale A, Berger M, Houck-Loomis B, Pessin M, Peerschke EI. Developing Quality Programs for Cell-Free DNA (cfDNA) Extraction from Peripheral Blood. J Appl Lab Med 2021; 5:788-797. [PMID: 32603443 DOI: 10.1093/jalm/jfaa050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cell-free DNA (cfDNA) analysis using peripheral blood represents an exciting, minimally invasive technology for cancer diagnosis and monitoring. The reliability of testing is dependent on the accuracy and sensitivity of specific molecular analyses to detect tumor-associated genomic variants and on the quantity and quality of cfDNA available for testing. Specific guidelines for standardization and design of appropriate quality programs focused specifically on cfDNA isolation are lacking, as are standardized quality control reagents. CONTENT This report describes and illustrates quality control and quality assurance processes, supported by generation of in-house quality control material, to ensure the reliability of the preanalytical phase of cfDNA analysis. SUMMARY We have developed a robust quality program to support high-volume automated cfDNA extraction from peripheral blood by implementing processes and procedures designed to monitor the adequacy of specimen collection, specimen stability, efficiency of cfDNA extraction, and cfDNA quality.
Collapse
Affiliation(s)
- Aliaksandra Samoila
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jose Sosa
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jessica Padilla
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Wutkowski
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katelynd Vanness
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Agnes Viale
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian Houck-Loomis
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Melissa Pessin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
47
|
Bellassai N, D’Agata R, Marti A, Rozzi A, Volpi S, Allegretti M, Corradini R, Giacomini P, Huskens J, Spoto G. Detection of Tumor DNA in Human Plasma with a Functional PLL-Based Surface Layer and Plasmonic Biosensing. ACS Sens 2021; 6:2307-2319. [PMID: 34032412 PMCID: PMC8294610 DOI: 10.1021/acssensors.1c00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Standard protocols for the analysis of circulating tumor DNA (ctDNA) include the isolation of DNA from the patient's plasma and its amplification and analysis in buffered solutions. The application of such protocols is hampered by several factors, including the complexity and time-constrained preanalytical procedures, risks for sample contamination, extended analysis time, and assay costs. A recently introduced nanoparticle-enhanced surface plasmon resonance imaging-based assay has been shown to simplify procedures for the direct detection of tumor DNA in the patient's plasma, greatly simplifying the cumbersome preanalytical phase. To further simplify the protocol, a new dual-functional low-fouling poly-l-lysine (PLL)-based surface layer has been introduced that is described herein. The new PLL-based layer includes a densely immobilized CEEEEE oligopeptide to create a charge-balanced system preventing the nonspecific adsorption of plasma components on the sensor surface. The layer also comprises sparsely attached peptide nucleic acid probes complementary to the sequence of circulating DNA, e.g., the analyte that has to be captured in the plasma from cancer patients. We thoroughly investigated the contribution of each component of the dual-functional polymer to the antifouling properties of the surface layer. The low-fouling property of the new surface layer allowed us to detect wild-type and KRAS p.G12D-mutated DNA in human plasma at the attomolar level (∼2.5 aM) and KRAS p.G13D-mutated tumor DNA in liquid biopsy from a cancer patient with almost no preanalytical treatment of the patient's plasma, no need to isolate DNA from plasma, and without PCR amplification of the target sequence.
Collapse
Affiliation(s)
- Noemi Bellassai
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
| | - Roberta D’Agata
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| | - Almudena Marti
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science & Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Stefano Volpi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Matteo Allegretti
- Oncogenomics
and Epigenetics, IRCCS Regina Elena National
Cancer Institute, Via
Elio Chianesi, 53, 00144 Rome, Italy
| | - Roberto Corradini
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Patrizio Giacomini
- Oncogenomics
and Epigenetics, IRCCS Regina Elena National
Cancer Institute, Via
Elio Chianesi, 53, 00144 Rome, Italy
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science & Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Giuseppe Spoto
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|
48
|
Goh SK, Cox DRA, Wong BKL, Musafer A, Witkowski T, Do H, Muralidharan V, Dobrovic A. A Synthetic DNA Construct to Evaluate the Recovery Efficiency of Cell-Free DNA Extraction and Bisulfite Modification. Clin Chem 2021; 67:1201-1209. [PMID: 34151944 DOI: 10.1093/clinchem/hvab095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Despite improvements in the genetic and epigenetic analysis of cell-free DNA (cfDNA), there has been limited focus on assessing the preanalytical variables of recovery efficiency following cfDNA extraction and bisulfite modification. Quantification of recovery efficiency after these steps can facilitate quality assurance and improve reliability when comparing serial samples. METHODS We developed an exogenous DNA Construct to Evaluate the Recovery Efficiency of cfDNA extraction and BISulfite modification (CEREBIS) after cfDNA extraction and/or subsequent bisulfite modification from plasma. The strategic placement of cytosine bases in the 180 bp CEREBIS enabled PCR amplification of the construct by a single primer set both after plasma DNA extraction and following subsequent bisulfite modification. RESULTS Plasma samples derived from 8 organ transplant donors and 6 serial plasma samples derived from a liver transplant recipient were spiked with a known number of copies of CEREBIS. Recovery of CEREBIS after cfDNA extraction and bisulfite modification was quantified with high analytical accuracy by droplet digital PCR. The use of CEREBIS and quantification of its recovery was useful in identifying problematic extractions. Furthermore, its use was shown to be invaluable towards improving the reliability of the analysis of serial samples. CONCLUSIONS CEREBIS can be used as a spike-in control to address the preanalytical variable of recovery efficiency both after cfDNA extraction from plasma and following bisulfite modification. Our approach can be readily implemented and its application may have significant benefits, especially in settings where longitudinal quantification of cfDNA for disease monitoring is necessary.
Collapse
Affiliation(s)
- Su Kah Goh
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, Austin Hospital, HPB & Transplant Unit, Melbourne, Victoria, Australia.,Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel R A Cox
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, Austin Hospital, HPB & Transplant Unit, Melbourne, Victoria, Australia.,Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia
| | - Boris Ka Leong Wong
- Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Ashan Musafer
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Tom Witkowski
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Hongdo Do
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,The University of Melbourne, Parkville Precinct, Victoria, Australia.,Pathology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, Austin Hospital, HPB & Transplant Unit, Melbourne, Victoria, Australia
| | - Alexander Dobrovic
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| |
Collapse
|
49
|
Bohers E, Viailly PJ, Jardin F. cfDNA Sequencing: Technological Approaches and Bioinformatic Issues. Pharmaceuticals (Basel) 2021; 14:ph14060596. [PMID: 34205827 PMCID: PMC8234829 DOI: 10.3390/ph14060596] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
In the era of precision medicine, it is crucial to identify molecular alterations that will guide the therapeutic management of patients. In this context, circulating tumoral DNA (ctDNA) released by the tumor in body fluids, like blood, and carrying its molecular characteristics is becoming a powerful biomarker for non-invasive detection and monitoring of cancer. Major recent technological advances, especially in terms of sequencing, have made possible its analysis, the challenge still being its reliable early detection. Different parameters, from the pre-analytical phase to the choice of sequencing technology and bioinformatic tools can influence the sensitivity of ctDNA detection.
Collapse
|
50
|
Kim JJ, Park K, Han YR, Kim SH, Oh SB, Oh SY, Hong YJ, Yun MS. Verification of performance of a direct fluorescent assay for cell-free DNA quantification, stability according to pre-analytical storage conditions, and the effect of freeze-thawing. Biomed Rep 2021; 15:68. [PMID: 34257964 PMCID: PMC8243239 DOI: 10.3892/br.2021.1444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
A simple fluorescence-based cell-free DNA (CFD) assay has been previously developed that can directly measure nucleic acids without prior DNA extraction and amplification. However, studies on fluorescence-based CFD are lacking. In particular, there is no known information regarding the stability with regard to pre-analytical storage conditions in relation to time and temperature, or on the influence of freeze-thawing. Plasma was directly assayed to measure CFD using PicoGreen™ reagent. Standard linearity and accuracy were confirmed using salmon sperm DNA. Whole blood was left at room temperature (RT) and at 4˚C, and then plasma was separated. The CFD was also measured using thawed plasma after 1 week of freezing. As a correlation with a sperm DNA concentration, CFD demonstrated linearity over a wide range of concentrations, with a 0.998 correlation coefficient. The CFD level showed a change of up to 2.5 µg/ml according to pre-analytical storage time, and the changes were not consistent over time. The CFD values at RT after 1 h were similar to the baseline values, and the relative standard deviation was lowest under this condition. The CFD values between 4˚C and RT were similar over all time periods assessed. After freeze-thawing, the change in CFD value was reduced compared to that before freezing. The present study showed that CFD measurements using plasma processed within 1 h were optimal. Additionally, the effects of substantial changes according to storage conditions were reduced after freeze-thawing, and thus studies using stored samples is viable and relevant.
Collapse
Affiliation(s)
- Jae-Joon Kim
- Medical Oncology and Hematology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Kwonoh Park
- Medical Oncology and Hematology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Yu Ran Han
- Bionoxx Inc., Seongnam-si, Gyeonggi, Gyeongsangnam-do 50612, Republic of Korea
| | - Syed Hyun Kim
- Bionoxx Inc., Seongnam-si, Gyeonggi, Gyeongsangnam-do 50612, Republic of Korea
| | - Sang-Bo Oh
- Medical Oncology and Hematology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - So Yeon Oh
- Medical Oncology and Hematology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Yun Jeong Hong
- Department of Neurology, Uijeongbu St. Mary's Hospital, Catholic University of Korea, Seoul Special City, Gyeongsangnam-do 50612, Republic of Korea
| | - Mi Sook Yun
- Division of Biostatistics, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|