1
|
Eticha T, Zhu M, Dong Z, Tessema SS, Alboull AMA, Ma D, Xu G. Single-electrode electrochemiluminescence immunosensor for multiplex detection of Aquaporin-4 antibody using metal-organic gels as coreactant. Biosens Bioelectron 2025; 272:117128. [PMID: 39764981 DOI: 10.1016/j.bios.2025.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Reliable detection of Aquaporin-4 (AQP4) antibodies is crucial for diagnosing Neuromyelitis Optica spectrum disorder (NMOSD). However, cell-based assays, the most reliable approach, are limited by inadequate instruments. This study reports the use of silver metal-organic gels (Ag-MOGs) as coreactants in a single-electrode electrochemical system (SEES)-based electrochemiluminescence (ECL) immunosensor for multiplex detection of AQP4 antibodies. The immunosensor was constructed by modifying the carbon nanotube single-electrode with Ag-MOGs, incubating it with AQP4 peptides, and ultimately enabling the immobilization of AQP4 antibodies. Voltage-induced potential gradients at the electrode triggered the Ru(bpy)32+ ECL reaction, and reduced emissions caused by AQP4 antibodies were recorded using a smartphone. Under optimal conditions, the immunosensor exhibited a strong linearity (10-1000 ng/mL) with a detection limit of 2.8 ng/mL. Validation of its accuracy, precision, dilutability, and selectivity confirmed robust performance across the diverse parameters. Furthermore, it successfully detected AQP4 antibodies in serum samples from seropositive NMOSD patients. The platform's single electrode design and multiplex capability make it simple, fast and cost-effective. Enhanced accessibility and user-friendliness could position this system as a transformative tool for improving disease diagnosis and treatment, particularly in resource-limited regions.
Collapse
Affiliation(s)
- Tadele Eticha
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Zhiyong Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Solomon Sime Tessema
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Ala'a Mhmoued Abdllh Alboull
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, 130000, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Gupta B, Sharma PK, Malviya R. Carbon Nanotubes for Targeted Therapy: Safety, Efficacy, Feasibility and Regulatory Aspects. Curr Pharm Des 2024; 30:81-99. [PMID: 38185892 DOI: 10.2174/0113816128282085231226065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
It is crucial that novel and efficient drug delivery techniques be created in order to improve the pharmacological profiles of a wide variety of classes of medicinal compounds. Carbon nanotubes (CNTs) have recently come to the forefront as an innovative and very effective technique for transporting and translocating medicinal compounds. CNTs were suggested and aggressively researched as multifunctional novel transporters designed for targeted pharmaceutical distribution and used in diagnosis. CNTs can act as vectors for direct administration of pharmaceuticals, particularly chemotherapeutic medications. Multi-walled CNTs make up the great majority of CNT transporters, and these CNTs were used in techniques to target cancerous cells. It is possible to employ Carbon nanotubes (CNTs) to transport bioactive peptides, proteins, nucleic acids, and medicines by functionalizing them with these substances. Due to their low toxicity and absence of immunogenicity, carbon nanotubes are not immunogenic. Ammonium-functionalized carbon nanotubes are also attractive vectors for gene-encoding nucleic acids. CNTs that have been coupled with antigenic peptides have the potential to be developed into a novel and efficient approach for the use of synthetic vaccines. CNTs bring up an enormous number of new avenues for future medicine development depending on targets within cells, which have until now been difficult to access. This review focuses on the numerous applications of various CNT types used as medicine transport systems and on the utilization of CNTs for therapeutical purposes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
McCue C, Girard HL, Varanasi KK. Enhancing Protein Crystal Nucleation Using In Situ Templating on Bioconjugate-Functionalized Nanoparticles and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12622-12630. [PMID: 36853011 PMCID: PMC10020963 DOI: 10.1021/acsami.2c17208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Although protein crystallization offers a promising alternative to chromatography for lower-cost protein purification, slow nucleation kinetics and high protein concentration requirements are major barriers for using crystallization as a viable strategy in downstream protein purification. Here, we demonstrate that nanoparticles functionalized with bioconjugates can result in an in situ template for inducing rapid crystallization of proteins at low protein concentration conditions. We use a microbatch crystallization setup to show that the range of successful crystallization conditions is expanded by the presence of functionalized nanoparticles. Furthermore, we use a custom machine learning-enabled emulsion crystallization setup to rigorously quantify nucleation parameters. We show that bioconjugate-functionalized nanoparticles can result in up to a 7-fold decrease in the induction time and a 3-fold increase in the nucleation rate of model proteins compared to those in control environments. We thus provide foundational insight that could enable crystallization to be used in protein manufacturing by reducing both the protein concentration and the time required to nucleate protein crystals.
Collapse
|
4
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
5
|
Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the "Click Chemistry" Toolbox for the Design, Synthesis, and Resulting Applications of Innovative and Efficient Separative Supports: Time for Assessment. Macromol Rapid Commun 2022; 43:e2200210. [PMID: 35700224 DOI: 10.1002/marc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the rapid expansion of click chemistry methodology in various domains closely related to organic chemistry. It has notably been widely developed in the area of surface chemistry, mainly because of the high-yielding character of reactions of the "click" type. Especially, this powerful chemical reaction toolbox has been adapted to the preparation of stationary phases from the corresponding chromatographic supports. A plethora of selectors can thus be immobilized on either organic, inorganic, or hybrid stationary phases that can be used in different chromatographic modes. This review first highlights the few different chemical ligation strategies of the "click" type that are up to now mainly devoted to the development of functionalized supports for separation sciences. Then, it gives in a second part an up-to-date survey of the different studies dedicated to the preparation of click chemistry-based chromatographic supports while highlighting the powerful and versatile character of the "click" ligation strategy for the design, synthesis, and developments of more and more complex systems that can find promising applications in the area of analytical sciences, in domains as varied as enantioselective separation, glycomics, proteomics, genomics, metabolomics, etc.
Collapse
Affiliation(s)
- Benjamin Le Droumaguet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Mohamed Guerrouache
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| |
Collapse
|
6
|
Saxer S, Erdogan O, Paniagua C, Chavanieu A, Garric X, Darcos V. Protein‐Polymer Bioconjugates Prepared by Post‐Polymerization Modification of Alternating Copolymers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samantha Saxer
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| | - Omer Erdogan
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| | | | | | - Xavier Garric
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| | - Vincent Darcos
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| |
Collapse
|
7
|
Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6707. [PMID: 34772234 PMCID: PMC8588285 DOI: 10.3390/ma14216707] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
Current discoveries as well as research findings on various types of carbon nanostructures have inspired research into their utilization in a number of fields. These carbon nanostructures offer uses in pharmacy, medicine and different therapies. One such unique carbon nanostructure includes carbon nanotubes (CNTs), which are one-dimensional allotropes of carbon nanostructure that can have a length-to-diameter ratio greater than 1,000,000. After their discovery, CNTs have drawn extensive research attention due to their excellent material properties. Their physical, chemical and electronic properties are excellent and their composites provide great possibilities for enormous nanometer applications. The current study provides a systematic review based on prior literature review and data gathered from various sources. The various research studies from many research labs and organizations were systematically retrieved, collected, compiled and written. The entire collection and compilation of this review concluded the use of CNT approaches and their efficacy and safety for the treatment of various diseases such as brain tumors or cancer via nanotechnology-based drug delivery, phototherapy, gene therapy, antiviral therapy, antifungal therapy, antibacterial therapy and other biomedical applications. The current review covers diverse applications of CNTs in designing a range of targeted drug delivery systems and application for various therapies. It concludes with a discussion on how CNTs based medicines can expand in the future.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Rohit R. Bhosale
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Institute of Medical Sciences “Deemed To Be University”, Karad 415539, Maharashtra, India;
| | - Riyaz A. M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Kasturi C. Mahima
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Asha P. Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Y. Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Hosahalli V. Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| |
Collapse
|
8
|
Kiran P, Khan A, Neekhra S, Pallod S, Srivastava R. Nanohybrids as Protein-Polymer Conjugate Multimodal Therapeutics. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:676025. [PMID: 35047929 PMCID: PMC8757875 DOI: 10.3389/fmedt.2021.676025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Protein therapeutic formulations are being widely explored as multifunctional nanotherapeutics. Challenges in ensuring susceptibility and efficacy of nanoformulation still prevail owing to various interactions with biological fluids before reaching the target site. Smart polymers with the capability of masking drugs, ease of chemical modification, and multi-stimuli responsiveness can assist controlled delivery. An active moiety like therapeutic protein has started to be known as an important biological formulation with a diverse medicinal prospect. The delivery of proteins and peptides with high target specificity has however been tedious, due to their tendency to aggregate formation in different environmental conditions. Proteins due to high chemical reactivity and poor bioavailability are being researched widely in the field of nanomedicine. Clinically, multiple nano-based formulations have been explored for delivering protein with different carrier systems. A biocompatible and non-toxic polymer-based delivery system serves to tailor the polymer or drug better. Polymers not only aid delivery to the target site but are also responsible for proper stearic orientation of proteins thus protecting them from internal hindrances. Polymers have been shown to conjugate with proteins through covalent linkage rendering stability and enhancing therapeutic efficacy prominently when dealing with the systemic route. Here, we present the recent developments in polymer-protein/drug-linked systems. We aim to address questions by assessing the properties of the conjugate system and optimized delivery approaches. Since thorough characterization is the key aspect for technology to enter into the market, correlating laboratory research with commercially available formulations will also be presented in this review. By examining characteristics including morphology, surface properties, and functionalization, we will expand different hybrid applications from a biomaterial stance applied in in vivo complex biological conditions. Further, we explore understanding related to design criteria and strategies for polymer-protein smart nanomedicines with their potential prophylactic theranostic applications. Overall, we intend to highlight protein-drug delivery through multifunctional smart polymers.
Collapse
Affiliation(s)
- Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shubham Pallod
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
9
|
Nicoletti M, Gambarotti C, Fasoli E. Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1163:122504. [PMID: 33412504 DOI: 10.1016/j.jchromb.2020.122504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023]
Abstract
In Nanomedicine, carbon-based nanomaterials, like Carbon Nanotubes (CNT), are considered potential candidates as drug delivery systems. In vivo adsorption of physiological proteins onto carbon nanotubes, through noncovalent interactions, forms a protein corona or bio corona, able to influence biological properties and biocompatibility of CNT. This study aimed to explore the composition of protein corona formed onto PEGylated Multi-Walled Carbon Nanotubes (MWCNT-PEG5k), after their incubation in human plasma. Plasma proteins were sequentially eluted in different conditions by using both native and denaturant buffers, useful to characterize soft and hard corona. Proteomic methods and mass spectrometry analysis have identified proteins in soft corona, involved in the regulation of immune response and in the CNT transport, and biomolecules in hard corona with a role in the maintenance of host homeostasis. These promising results have demonstrated the potential of PEGylated Multi-Walled Carbon Nanotubes as future candidates for drug delivery.
Collapse
Affiliation(s)
- Maria Nicoletti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
10
|
Theodorou A, Mandriotis P, Anastasaki A, Velonia K. Oxygen tolerant, photoinduced controlled radical polymerization approach for the synthesis of giant amphiphiles. Polym Chem 2021. [DOI: 10.1039/d0py01608j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New families of amphiphilic protein–polymer bioconjugates readily synthesized via an oxygen tolerant, photoinduced RDRP approach.
Collapse
Affiliation(s)
- Alexis Theodorou
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Petros Mandriotis
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Athina Anastasaki
- Laboratory of Polymeric Materials
- Department of Materials
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Kelly Velonia
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| |
Collapse
|
11
|
Brogan APS. Preparation and application of solvent-free liquid proteins with enhanced thermal and anhydrous stabilities. NEW J CHEM 2021. [DOI: 10.1039/d1nj00467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective details a robust chemical modification strategy to protect proteins from temperature, aggregation, and non-aqueous environments.
Collapse
|
12
|
Smyth P, Gibson TJ, Irvine G, Black G, Lavery D, Semsarilar M, Scott CJ, Themistou E. pH-Responsive benzaldehyde-functionalized PEG-based polymeric nanoparticles for drug delivery: Effect of preparation method on morphology, dye encapsulation and attachment. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Belén LH, Rangel-Yagui CDO, Beltrán Lissabet JF, Effer B, Lee-Estevez M, Pessoa A, Castillo RL, Farías JG. From Synthesis to Characterization of Site-Selective PEGylated Proteins. Front Pharmacol 2019; 10:1450. [PMID: 31920645 PMCID: PMC6930235 DOI: 10.3389/fphar.2019.01450] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Covalent attachment of therapeutic proteins to polyethylene glycol (PEG) is widely used for the improvement of its pharmacokinetic and pharmacological properties, as well as the reduction in reactogenicity and related side effects. This technique named PEGylation has been successfully employed in several approved drugs to treat various diseases, even cancer. Some methods have been developed to obtain PEGylated proteins, both in multiple protein sites or in a selected amino acid residue. This review focuses mainly on traditional and novel examples of chemical and enzymatic methods for site-selective PEGylation, emphasizing in N-terminal PEGylation, that make it possible to obtain products with a high degree of homogeneity and preserve bioactivity. In addition, the main assay methods that can be applied for the characterization of PEGylated molecules in complex biological samples are also summarized in this paper.
Collapse
Affiliation(s)
- Lisandra Herrera Belén
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge F. Beltrán Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Brian Effer
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo L. Castillo
- Department of Internal Medicine East, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
14
|
Alaneed R, Hauenschild T, Mäder K, Pietzsch M, Kressler J. Conjugation of Amine-Functionalized Polyesters With Dimethylcasein Using Microbial Transglutaminase. J Pharm Sci 2019; 109:981-991. [PMID: 31682828 DOI: 10.1016/j.xphs.2019.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Protein-polymer conjugates have been used as therapeutics because they exhibit frequently higher stability, prolonged in vivo half-life, and lower immunogenicity compared with native proteins. The first part of this report describes the enzymatic synthesis of poly(glycerol adipate) (PGA(M)) by transesterification between glycerol and dimethyl adipate using lipase B from Candida antarctica. PGA(M) is a hydrophilic, biodegradable but water insoluble polyester. By acylation, PGA(M) is modified with 6-(Fmoc-amino)hexanoic acid and with hydrophilic poly(ethylene glycol) side chains (mPEG12) rendering the polymer highly water soluble. This is followed by the removal of protecting groups, fluorenylmethyloxycarbonyl, to generate polyester with primary amine groups, namely PGA(M)-g-NH2-g-mPEG12. 1H NMR spectroscopy, FTIR spectroscopy, and gel permeation chromatography have been used to determine the chemical structure and polydispersity index of PGA(M) before and after modification. In the second part, we discuss the microbial transglutaminase-mediated conjugation of the model protein dimethylcasein with PGA(M)-g-NH2-g-mPEG12 under mild reaction conditions. SDS-PAGE proves the protein-polyester conjugation.
Collapse
Affiliation(s)
- Razan Alaneed
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany; Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Till Hauenschild
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany.
| | - Jörg Kressler
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany.
| |
Collapse
|
15
|
Lu L, Zhang L, Yuan L, Zhu T, Chen W, Wang G, Wang Q. Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases. Chembiochem 2019; 20:1394-1399. [PMID: 30697892 DOI: 10.1002/cbic.201900061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/17/2023]
Abstract
Polymer-protein core-shell nanoparticles have been explored for enzyme immobilization. This work reports on the development of functional polymeric micelles for immobilizing His6 -tagged cellulases with controlled spatial orientation of enzymes, resulting in "artificial cellulosomes" for effective cellulose hydrolysis. Poly(styrene)-b-poly(styrene-alt-maleic anhydride) was prepared through one-pot reversible addition-fragmentation chain-transfer polymerization and modified with nitrilotriacetic acid (NTA) to afford an amphiphilic block copolymer. The self-assembled polymer was mixed with a solution of NiSO4 to form Ni-NTA-functionalized micelles, which could successfully capture His6 -tagged cellulases and form hierarchically structured core-shell nanoparticles with cellulases as the corona. Because the anchored enzymes are site-specifically oriented and in close proximity, synergistic catalysis that results in over twofold activity enhancement has been achieved.
Collapse
Affiliation(s)
- Lin Lu
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, USA
| | - Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, USA
| | - Liang Yuan
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, USA
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA
| | - Guiren Wang
- Department of Mechanical Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, USA
| |
Collapse
|
16
|
Lorenz M, Paganini C, Storti G, Morbidelli M. Macroporous Polymer⁻Protein Hybrid Materials for Antibody Purification by Combination of Reactive Gelation and Click-Chemistry. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1580. [PMID: 31091797 PMCID: PMC6566266 DOI: 10.3390/ma12101580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/03/2022]
Abstract
Clickable core-shell nanoparticles based on poly(styrene-co-divinylbenzene-co-vinylbenzylazide) have been synthesized via emulsion polymerization. The 38 nm sized particles have been swollen by divinyl benzene (DVB) and 2,2'-azobis(2-methylpropionitrile) (AIBN) and subsequently processed under high shear rates in a Z-shaped microchannel giving macroporous microclusters (100 µm), through the reactive gelation process. The obtained clusters were post-functionalized by "click-chemistry" with propargyl-PEG-NHS-ester and propargylglicidyl ether, yielding epoxide or NHS-ester activated polymer supports for bioconjugation. Macroporous affinity materials for antibody capturing were produced by immobilizing recombinant Staphylococcus aureus protein A on the polymeric support. Coupling chemistry exploiting thiol-epoxide ring-opening reactions with cysteine-containing protein A revealed up to three times higher binding capacities compared to the protein without cysteine. Despite the lower binding capacities compared to commercial affinity phases, the produced polymer-protein hybrids can serve as stationary phases for immunoglobulin affinity chromatography as the materials revealed superior intra-particle mass transports.
Collapse
Affiliation(s)
- Marcel Lorenz
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Giuseppe Storti
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Umapathi R, Kumar K, Rani GM, Venkatesu P. Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. J Colloid Interface Sci 2019; 541:1-11. [DOI: 10.1016/j.jcis.2019.01.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
|
18
|
Reichenwallner J, Thomas A, Steinbach T, Eisermann J, Schmelzer CEH, Wurm F, Hinderberger D. Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation. Biomacromolecules 2019; 20:1118-1131. [DOI: 10.1021/acs.biomac.9b00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jörg Reichenwallner
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Anja Thomas
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Steinbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jana Eisermann
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Christian E. H. Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Strasse 1, 06120 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Frederik Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
19
|
|
20
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Alhans R, Singh A, Singhal C, Narang J, Wadhwa S, Mathur A. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:273-279. [PMID: 29853092 DOI: 10.1016/j.msec.2018.04.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 03/13/2018] [Accepted: 04/24/2018] [Indexed: 11/24/2022]
Abstract
In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes.
Collapse
Affiliation(s)
- Ruby Alhans
- Amity Institute of Nanotechnology, Amity University, Noida 201301, UP, India
| | - Anukriti Singh
- NIBEC, Ulster University, Jordanstown Campus, Newtownabbey, Belfast BT37 0QB, UK
| | - Chaitali Singhal
- Amity Institute of Nanotechnology, Amity University, Noida 201301, UP, India
| | - Jagriti Narang
- Amity Institute of Nanotechnology, Amity University, Noida 201301, UP, India.
| | - Shikha Wadhwa
- Amity Institute of Nanotechnology, Amity University, Noida 201301, UP, India
| | - Ashish Mathur
- NIBEC, Ulster University, Jordanstown Campus, Newtownabbey, Belfast BT37 0QB, UK.
| |
Collapse
|
22
|
White CJ, Bode JW. PEGylation and Dimerization of Expressed Proteins under Near Equimolar Conditions with Potassium 2-Pyridyl Acyltrifluoroborates. ACS CENTRAL SCIENCE 2018; 4:197-206. [PMID: 29532019 PMCID: PMC5833003 DOI: 10.1021/acscentsci.7b00432] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 05/27/2023]
Abstract
The covalent conjugation of large, functionalized molecules remains a frontier in synthetic chemistry, as it requires rapid, chemoselective reactions. The potassium acyltrifluoroborate (KAT)-hydroxylamine amide-forming ligation shows promise for conjugations of biomolecules under aqueous, acidic conditions, but the variants reported to date are not suited to ligations at micromolar concentrations. We now report that 2-pyridyl KATs display significantly enhanced ligation kinetics over their aryl counterparts. Following their facile, one-step incorporation onto the termini of polyethylene glycol (PEG) chains, we show that 2-pyridyl KATs can be applied to the construction of protein-polymer conjugates in excellent (>95%) yield. Four distinct expressed, folded proteins equipped with a hydroxylamine could be PEGylated with 2-20 kDa 2-pyridyl mPEG KATs in high yield and with near-equimolar amounts of coupling partners. Furthermore, the use of a bis 2-pyridyl PEG KAT enables the covalent homodimerization of proteins with good conversion. The 2-pyridyl KAT ligation offers an effective alternative to conventional protein-polymer conjugation by operating under aqueous acidic conditions well suited for the handling of folded proteins.
Collapse
Affiliation(s)
- Christopher J. White
- Laboratorium für Organische Chemie,
Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie,
Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
23
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
24
|
Gu Y, Wu X, Liu H, Pan Q, Chen Y. Photoswitchable Heparinase III for Enzymatic Preparation of Low Molecular Weight Heparin. Org Lett 2017; 20:48-51. [DOI: 10.1021/acs.orglett.7b03340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yayun Gu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Huan Liu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Qi Pan
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| |
Collapse
|
25
|
Healey RD, Lebhar H, Hornung S, Thordarson P, Marquis CP. An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chem 2017; 237:825-832. [DOI: 10.1016/j.foodchem.2017.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 11/27/2022]
|
26
|
Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.010] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments. Biointerphases 2017; 12:011004. [DOI: 10.1116/1.4978922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Cohen-Karni D, Kovaliov M, Ramelot T, Konkolewicz D, Graner S, Averick S. Grafting challenging monomers from proteins using aqueous ICAR ATRP under bio-relevant conditions. Polym Chem 2017. [DOI: 10.1039/c7py00669a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aqueous ICAR ATRP was applied to graft well defined acrylamide, N,N-dimethylacrylamide and N-vinylimidazole homo and block copolymers from a model protein initiator (bovine serum albumin (BSA)) under bio-relevant conditions.
Collapse
Affiliation(s)
- Devora Cohen-Karni
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pitts-burgh
- USA
| | - Marina Kovaliov
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pitts-burgh
- USA
| | - Theresa Ramelot
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | | - Scott Graner
- Department of Pathology
- Allegheny Health Network
- Allegheny General Hospital
- Pittsburgh
- USA
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pitts-burgh
- USA
| |
Collapse
|
30
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
31
|
Edwards E, Roychoudhury R, Schwarz B, Jordan P, Lisher J, Uchida M, Douglas T. Co-localization of catalysts within a protein cage leads to efficient photochemical NADH and/or hydrogen production. J Mater Chem B 2016; 4:5375-5384. [PMID: 32263461 DOI: 10.1039/c6tb01175f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Using the interior of the P22 virus-like particle (VLP) we have co-localized and constrained multiple copies of a photosensitizer (Eosin-Y) and a NADH/hydrogen catalyst (cobaloxime). These small molecules were conjugated to an amine bearing polymer framework synthesized within the confines of the P22 capsid by atom transfer radical polymerization (ATRP). Using aminoethyl methacrylate (AEMA) and bis-acrylamide as the monomers we introduced a crosslinked polymer framework with addressable amines and conjugated each of the small molecules through an isothiocyanate moiety. With precise control over the average labeling stoichiometry, we conjugated the Eosin-Y and cobaloxime catalysts to the polymer such that they were co-localized on the interior of the P22 VLP. This co-localization facilitated the photochemical production of NADH from NAD+ under aqueous conditions with a maximum turnover of 11.40 × 10-3 s-1. The reaction products could be switched from NADH to H2 production by increasing the relative stoichiometry of the cobaloxime labeling. The co-confinement of this coupled catalytic system within the VLP P22 creates a nano-material whose turnover activity is independent of the bulk concentration. These constructs are an example of a biomimetic materials design and synthesis approach in which efficient photochemical production of both NADH and hydrogen can be controlled by co-localizing catalysts within a virus-like particle.
Collapse
Affiliation(s)
- Ethan Edwards
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Collins J, Kempe K, Wilson P, Blindauer CA, McIntosh MP, Davis TP, Whittaker MR, Haddleton DM. Stability Enhancing N-Terminal PEGylation of Oxytocin Exploiting Different Polymer Architectures and Conjugation Approaches. Biomacromolecules 2016; 17:2755-66. [PMID: 27419537 DOI: 10.1021/acs.biomac.6b00919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxytocin, a cyclic nine amino acid neurohypophyseal hormone therapeutic, is effectively used in the control of postpartum hemorrhaging (PPH) and is on the WHO List of Essential Medicines. However, oxytocin has limited shelf life stability in aqueous solutions, particularly at temperatures in excess of 25 °C and injectable aqueous oxytocin formulations require refrigeration (<8 °C). This is particularly problematic in the hot climates often found in many developing countries where daytime temperatures can exceed 40 °C and where reliable cold-chain storage is not always achievable. The purpose of this study was to develop N-terminal amine targeted PEGylation strategies utilizing both linear PEG and polyPEG "comb" polymers as an effective method for stabilizing solution formulations of this peptide for prolonged storage in the absence of efficient cold-chain storage. The conjugation chemistries investigated herein include irreversible amine targeted conjugation methods utilizing NHS ester and aldehyde reductive amination chemistry. Additionally, one reversible conjugation method using a Schiff base approach was explored to allow for the release of the native peptide, thus, ensuring that biological activity remains unaffected. The reversibility of this approach was investigated for the different polymer architectures, alongside a nonpolymer oxytocin analogue to monitor how pH can tune native peptide release. Elevated temperature degradation studies of the polymer conjugates were evaluated to assess the stability of the PEGylated analogues in comparison to the native peptide in aqueous formulations to mimic storage conditions in developing nations and regions where storage under appropriate conditions is challenging.
Collapse
Affiliation(s)
- Jennifer Collins
- Department of Chemistry, University of Warwick , CV4 7AL, Coventry, United Kingdom
| | - Kristian Kempe
- Department of Chemistry, University of Warwick , CV4 7AL, Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Paul Wilson
- Department of Chemistry, University of Warwick , CV4 7AL, Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Claudia A Blindauer
- Department of Chemistry, University of Warwick , CV4 7AL, Coventry, United Kingdom
| | - Michelle P McIntosh
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - David M Haddleton
- Department of Chemistry, University of Warwick , CV4 7AL, Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| |
Collapse
|
33
|
Tay T, Köse E, Keçili R, Say R. Design and Preparation of Nano-Lignin Peroxidase (NanoLiP) by Protein Block Copolymerization Approach. Polymers (Basel) 2016; 8:polym8060223. [PMID: 30979315 PMCID: PMC6432496 DOI: 10.3390/polym8060223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
This study describes the preparation of nanoprotein particles having lignin peroxidase (LiP) using a photosensitive microemulsion polymerization technique. The protein-based nano block polymer was synthesized by cross-linking of ligninase enzyme with ruthenium-based aminoacid monomers. This type polymerization process brought stability in different reaction conditions, reusability and functionality to the protein-based nano block polymer system when compared the traditional methods. After characterization of the prepared LiP copolymer nanoparticles, enzymatic activity studies of the nanoenzymes were carried out using tetramethylbenzidine (TMB) as the substrate. The parameters such as pH, temperature and initial enzyme concentration that affect the activity, were investigated by using prepared nanoLip particles and compared to free LiP. The reusability of the nano-LiP particles was also investigated and the obtained results showed that the nano-LiP particles exhibited admirable potential as a reusable catalyst.
Collapse
Affiliation(s)
- Turgay Tay
- Department of Chemistry, Anadolu University, 26470 Eskisehir, Turkey.
| | - Ender Köse
- Karen Biotechnol Ltd., Anadolu University, Technol Pk, 26470 Eskisehir, Turkey.
| | - Rüstem Keçili
- Yunus Emre Vocational School, Department of Medical Services and Techniques, Anadolu University, 26470 Eskisehir, Turkey.
| | - Rıdvan Say
- Department of Chemistry, Anadolu University, 26470 Eskisehir, Turkey.
| |
Collapse
|
34
|
Cao L, Shi X, Cui Y, Yang W, Chen G, Yuan L, Chen H. Protein–polymer conjugates prepared via host–guest interactions: effects of the conjugation site, polymer type and molecular weight on protein activity. Polym Chem 2016. [DOI: 10.1039/c6py00882h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein–polymer conjugates are prepared via host–guest interactions and the effects of various parameters on protein activity are investigated.
Collapse
Affiliation(s)
- Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiujuan Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuecheng Cui
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Weikang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
35
|
Su H, Koo JM, Cui H. One-component nanomedicine. J Control Release 2015; 219:383-395. [PMID: 26423237 PMCID: PMC4656119 DOI: 10.1016/j.jconrel.2015.09.056] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/06/2023]
Abstract
One-component nanomedicine (OCN) represents an emerging class of therapeutic nanostructures that contain only one type of chemical substance. This one-component feature allows for fine-tuning and optimization of the drug loading and physicochemical properties of nanomedicine in a precise manner through molecular engineering of the underlying building blocks. Using a precipitation procedure or effective molecular assembly strategies, molecularly crafted therapeutic agents (e.g. polymer-drug conjugates, small molecule prodrugs, or drug amphiphiles) could involuntarily aggregate, or self-assemble into nanoscale objects of well-defined sizes and shapes. Unlike traditional carrier-based nanomedicines that are inherently multicomponent systems, an OCN does not require the use of additional carriers and could itself possess desired physicochemical features for preferential accumulation at target sites. We review here recent progress in the molecular design, conjugation methods, and fabrication strategies of OCN, and analyze the opportunities that this emerging platform could open for the new and improved treatment of devastating diseases such as cancer.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Jin Mo Koo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA.
| |
Collapse
|
36
|
Li S, Beringer LT, Chen S, Averick S. Combination of AGET ATRP and SuFEx for post-polymerization chain-end modifications. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.09.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Moatsou D, Li J, Ranji A, Pitto-Barry A, Ntai I, Jewett MC, O’Reilly RK. Self-Assembly of Temperature-Responsive Protein-Polymer Bioconjugates. Bioconjug Chem 2015; 26:1890-9. [PMID: 26083370 PMCID: PMC4577958 DOI: 10.1021/acs.bioconjchem.5b00264] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/12/2015] [Indexed: 12/13/2022]
Abstract
We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed "click" chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition.
Collapse
Affiliation(s)
- Dafni Moatsou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jian Li
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Arnaz Ranji
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Anaïs Pitto-Barry
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ioanna Ntai
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
38
|
Boye S, Ennen F, Scharfenberg L, Appelhans D, Nilsson L, Lederer A. From 1D Rods to 3D Networks: A Biohybrid Topological Diversity Investigated by Asymmetrical Flow Field-Flow Fractionation. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00824] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Susanne Boye
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Franka Ennen
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität
Dresden, 01062 Dresden, Germany
| | - Linda Scharfenberg
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität
Dresden, 01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Lars Nilsson
- Food
Colloids Group and Lund Center for Field-Flow Fractionation, Department
of Food Technology, Engineering and Nutrition, Faculty of Engineering
LTH, Lund University, Lund, Sweden
| | - Albena Lederer
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität
Dresden, 01062 Dresden, Germany
| |
Collapse
|
39
|
Zhao W, Liu F, Chen Y, Bai J, Gao W. Synthesis of well-defined protein–polymer conjugates for biomedicine. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. NATURE MATERIALS 2015; 14:143-59. [PMID: 25401924 DOI: 10.1038/nmat4106] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The chemical structure and function of biomacromolecules has evolved to fill many essential roles in biological systems. More specifically, proteins, peptides, nucleic acids and polysaccharides serve as vital structural components, and mediate chemical transformations and energy/information storage processes required to sustain life. In many cases, the properties and applications of biological macromolecules can be further expanded by attaching synthetic macromolecules. The modification of biomacromolecules by attaching a polymer that changes its properties in response to environmental variations, thus affecting the properties of the biomacromolecule, has led to the emergence of a new family of polymeric biomaterials. Here, we summarize techniques for conjugating responsive polymers to biomacromolecules and highlight applications of these bioconjugates reported so far. In doing so, we aim to show how advances in synthetic tools could lead to rapid expansion in the variety and uses of responsive bioconjugates.
Collapse
Affiliation(s)
- Isidro Cobo
- Key Centre for Polymers &Colloids, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ming Li
- Tyco Fire Protection Products, Mansfield, Texas 76063, USA
| | - Brent S Sumerlin
- George &Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Sébastien Perrier
- 1] Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK [2] Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
41
|
Wang D, Ni K, Ren Y, Wei D. Site-directed modification of genetically engineered Proteus sp. lipase K107 variants with a polyethylene glycol derivative. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Hvasanov D, Nam EV, Peterson JR, Pornsaksit D, Wiedenmann J, Marquis CP, Thordarson P. One-Pot Synthesis of High Molecular Weight Synthetic Heteroprotein Dimers Driven by Charge Complementarity Electrostatic Interactions. J Org Chem 2014; 79:9594-602. [DOI: 10.1021/jo501713t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | - Jörg Wiedenmann
- National
Oceanography Center, University of Southampton, Southampton SO14 3ZH, United Kingdom
| | | | | |
Collapse
|
43
|
Humenik M, Scheibel T. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates. ACS NANO 2014; 8:1342-1349. [PMID: 24405063 DOI: 10.1021/nn404916f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-assembling protein nanofibrils are promising structures for the "bottom-up" fabrication of bionanomaterials. Here, the recombinant protein eADF4(C16), a variant of Araneus diadematus dragline silk ADF4, which self-assembles into nanofibrils, and short oligonucleotides were modified for site-specific azide-alkyne coupling. Corresponding oligonuleotide-eADF4(C16) "click" conjugates were hybridized in linear or branched fashion according to the designed complementarities of the DNA moieties. Self-assembly properties of higher ordered structures of the spider silk-DNA conjugates were dominated by the silk component. Assembled β-sheet rich conjugate fibrils were similar in appearance to fibrils of unmodified eADF4(C16) but enabled the specific attachment of neutravidin-modified gold nanoparticles on their surface directed by complementary biotin-oligonucleotides, providing the basis for functionalization of such conjugates.
Collapse
Affiliation(s)
- Martin Humenik
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30, 95440 Bayreuth, Germany
| | | |
Collapse
|
44
|
Esfandiary E, Valiani A, Hashemibeni B, Moradi I, Narimani M. The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in-vitro. Adv Biomed Res 2014; 3:40. [PMID: 24627848 PMCID: PMC3949349 DOI: 10.4103/2277-9175.125729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/09/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Carbon nanotubes (CNTs) have a large variety of applications in tissue engineering and biomedical devices. The biocompatibility and cytotoxicity of CNTs have been studied widely, however, up until now; there was uncertainty on how nanosized materials behave in the human body and stem cells. The current study describes the functionalized carbon nanotubes on adipose-derived stem cells (ADSCs) for viability and proliferation purposes in vitro. MATERIALS AND METHODS After chemical modification of the CNTs, the ADSCs were cultured in Dulbecco's Modified Eagle's. Medium (DMEM) having doses of 0.1, 1, 10, 20, 50, and 100 μg/ml of CNTs. On the third and seventh days of the experiment, the cellular viability, proliferation, and stemness were determined, using the MTT, trypan Blue, and flow cytometry assays in variable CNTs dosage. RESULTS In doses of 0.1 and 1 μg/ml, the expression of the surface markers were similar to the control groups on day three, but decreased in higher dosages on day seven. The viability of both groups was the same on day three, but in comparison to the control groups, was found to decrease in the higher dosages on day seven. CONCLUSION The effect of CNTs on the viability and proliferation of ADSCs is a function of time and the doses used. Through further investigation by using these particles, we expect that we should be able to increase the viability and proliferation of ADSCs.
Collapse
Affiliation(s)
- E Esfandiary
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - A Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - B Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - I Moradi
- Nanotechnology Consultancy and Development Center, Padova, Italy
| | - M Narimani
- Central Lab Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
45
|
|
46
|
Atom transfer radical polymerization on the interior of the P22 capsid and incorporation of photocatalytic monomer crosslinks. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Goldstein DC, Peterson JR, Cheng YY, Clady RGC, Schmidt TW, Thordarson P. Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes. Molecules 2013; 18:8959-75. [PMID: 23896620 PMCID: PMC6270445 DOI: 10.3390/molecules18088959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 11/20/2022] Open
Abstract
We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the “chemistry on the complex” strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition “click chemistry” reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in “click chemistry” facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.
Collapse
Affiliation(s)
- Daniel C. Goldstein
- School of Chemistry, The University of New South Wales, NSW 2052, Australia; E-Mails: (D.C.G.); (J.R.P.)
| | - Joshua R. Peterson
- School of Chemistry, The University of New South Wales, NSW 2052, Australia; E-Mails: (D.C.G.); (J.R.P.)
| | - Yuen Yap Cheng
- School of Chemistry, The University of Sydney, NSW 2006, Australia; E-Mails: (Y.Y.C.), (R.G.C.C.); (T.W.S.)
| | - Raphael G. C. Clady
- School of Chemistry, The University of Sydney, NSW 2006, Australia; E-Mails: (Y.Y.C.), (R.G.C.C.); (T.W.S.)
| | - Timothy W. Schmidt
- School of Chemistry, The University of Sydney, NSW 2006, Australia; E-Mails: (Y.Y.C.), (R.G.C.C.); (T.W.S.)
| | - Pall Thordarson
- School of Chemistry, The University of New South Wales, NSW 2052, Australia; E-Mails: (D.C.G.); (J.R.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-2-9385-54478; Fax: +61-2-9385-6141
| |
Collapse
|
48
|
Preparation and antioxidant activity of albumin binding Salen Schiff-base metal complexes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5787-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Wei K, Li J, Chen G, Jiang M. Dual Molecular Recognition Leading to a Protein-Polymer Conjugate and Further Self-Assembly. ACS Macro Lett 2013; 2:278-283. [PMID: 35581897 DOI: 10.1021/mz400036t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular conjugation between native protein concanavalin A (ConA) and synthetic polymer PEG (polyethylene glycol) was achieved by dual molecular recognition interactions via a linker, βCD-Man, of which β-cyclodextrin (βCD) and α-mannopyranoside (Man) recognized the adamantane (Ada) end of PEG and lectin ConA orthogonally. Further self-assembly of the resultant supra-conjugates of ConA-PEG was induced by the addition of αCD, which was selectively threaded by PEG chains, leading to nanoparticles in dilute solution or hydrogel at a higher concentration. The moduli of the obtained hydrogel were three magnitudes higher than those of the control sample without ConA, showing the dramatic cross-linking effect of ConA achieved by its rather weak interaction with α-d-mannopyranoside.
Collapse
Affiliation(s)
- Kongchang Wei
- State Key Laboratory
of Molecular Engineering
of Polymers and Department of Macromolecular
Science, Fudan University,
Shanghai 200433, China
| | - Jun Li
- State Key Laboratory
of Molecular Engineering
of Polymers and Department of Macromolecular
Science, Fudan University,
Shanghai 200433, China
| | - Guosong Chen
- State Key Laboratory
of Molecular Engineering
of Polymers and Department of Macromolecular
Science, Fudan University,
Shanghai 200433, China
| | - Ming Jiang
- State Key Laboratory
of Molecular Engineering
of Polymers and Department of Macromolecular
Science, Fudan University,
Shanghai 200433, China
| |
Collapse
|
50
|
Abstract
Carbon nanotubes (CNTs) are allotropes of carbon with a nanostructure that can have a length-to-diameter ratio greater than 1,000,000. Techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, and chemical vapor deposition. Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing, and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. The high surface-to-volume ratio offered by nanoparticles resulted in the concentration of the immobilized entity being considerably higher than that afforded by other materials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Various immobilization methods have been developed, and in particular, specific attachment of enzymes on carbon nanotubes has been an important focus of attention. With the growing attention paid to cascade enzymatic reaction, it is possible that multienzyme coimmobilization would be one of the next goals in the future. In this paper, we focus on advances in methodology for enzyme immobilization on carbon nanotubes.
Collapse
|