1
|
Wen D, Xing H, Tang X, Wang Y, Jiang B, Li J, Liu Y, Zha L. Application of a new composite genetic marker semen-specific methylation-microhaplotype in the analysis of semen-vaginal fluid mixtures. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241565. [PMID: 39816748 PMCID: PMC11732431 DOI: 10.1098/rsos.241565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
DNA mixtures containing semen and vaginal fluid are common biological samples in forensic analysis. However, the analysis of semen-vaginal fluid mixtures remains challenging. In this study, to solve these problems, it is proposed to combine semen-specific CpG sites and closely related microhaplotype sites to form a new composite genetic marker (semen-specific methylation-microhaplotype). Six methylation-microhaplotype loci were selected. To further improve discrimination power, five methylation-SNP loci were also included. The methylation levels and genotypes of these selected loci were obtained using massively parallel sequencing technology. Except for loci MMH04ZHA019 and MMH17ZHA059, the remaining nine loci were successfully sequenced. For the successfully sequenced loci, they performed well in identifying individuals and body fluids. An allele categorization model was developed using K-nearest neighbour algorithm, which was then used to predict allele types in semen-vaginal fluid mixtures. These loci were able to confirm the presence of semen and link semen to a true donor in semen-vaginal fluid mixtures with mixing ratios of 10:1, 9:1, 5:1, 4:1, 1:1, 1:3, 1:4, 1:8 and 1:9 (semen:vaginal fluid). This preliminary study suggests that this new composite genetic marker has great potential as a supplementary tool to commonly used genetic markers (STR, etc.) for analysing semen-vaginal fluid mixtures.
Collapse
Affiliation(s)
- Dan Wen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Hao Xing
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Xuan Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Yue Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Bowei Jiang
- The First Research Institute of the Ministry of Public Security of P.R.C, No.1. Shouti South Road, Haidian District, Beijing100044, People’s Republic of China
| | - Jienan Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Ying Liu
- Department of Oral Implantology, Xiangya Hospital of Stomatology, Central South University, No72. Xiangya Road, Changsha, Hunan410028, People’s Republic of China
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| |
Collapse
|
2
|
Xiao Y, Tan M, Song J, Huang Y, Lv M, Liao M, Yu Z, Gao Z, Qu S, Liang W. Developmental validation of an mRNA kit: A 5-dye multiplex assay designed for body-fluid identification. Forensic Sci Int Genet 2024; 71:103045. [PMID: 38615496 DOI: 10.1016/j.fsigen.2024.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Identifying the sources of biosamples found at crime scenes is crucial for forensic investigations. Among the markers used for body fluid identification (BFI), mRNA has emerged as a well-studied marker because of its high specificity and remarkable stability. Despite this potential, commercially available mRNA kits specifically designed for BFI are lacking. Therefore, we developed an mRNA kit that includes 21 specific mRNA markers of body fluids, along with three housekeeping genes for BFI, to identify four forensic-relevant fluids (blood, semen, saliva, and vaginal fluids). In this study, we tested 451 single-body-fluid samples, validated the universality of the mRNA kit, and obtained a gene expression profile. We performed the validation studies in triplicates and determined the sensitivity, specificity, stability, precision, and repeatability of the mRNA kit. The sensitivity of the kit was found to be 0.1 ng. Our validation process involved the examination of 59 RNA mixtures, 60 body fluids mixtures, and 20 casework samples, which further established the reliability of the kit. Furthermore, we constructed five classifiers that can handle single-body fluids and mixtures using this kit. The classifiers output possibility values and identify the specific body fluids of interest. Our results showed the reliability and suitability of the BFI kit, and the Random Forest classifier performed the best, with 94% precision. In conclusion, we developed an mRNA kit for BFI which can be a promising tool for forensic practice.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jinlong Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yihang Huang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zailiang Yu
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Zhixiao Gao
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
3
|
Li Z, Liu N, Yuan F, Guan Z, Liu J, Liu F, Ren J, Yan J, Zhang G. Development of a novel panel for blood identification based on blood-specific CpG-linked SNP markers. Int J Legal Med 2024; 138:1205-1219. [PMID: 37853302 DOI: 10.1007/s00414-023-03105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Blood-containing mixtures often appear in murder and robbery cases, and their identification plays a significant role in solving crimes. In recent years, the co-detection of DNA methylation markers (CpG) and single nucleotide polymorphism (SNP) markers has been shown to be a promising tool for the identification of semen and its donor. However, similar research on blood stains that are frequently found at crime scenes has not yet been reported. In this study, we employed blood-specific CpG-linked SNP markers (CpG-SNP) for blood-specific genotyping and the linking of blood and its donor. The tissue-specific CpG markers were screened from the literature and further verified by combining bisulfite conversion with amplification-refractory mutation system (ARMS) technology. Meanwhile, adjacent SNP markers with a minor allele frequency (MAF) greater than 0.1 were selected within 400 bp upstream and downstream of the CpG markers. SNP genotyping was performed using SNaPshot technology on a capillary electrophoresis (CE) platform. Finally, a multiplex panel, including 19 blood-specific CpG linked to 23 SNP markers, as well as 1 semen-specific CpG, 1 vaginal secretion-specific CpG, and 1 saliva-specific CpG marker, was constructed successfully. The panel showed good tissue specificity and blood stains stored at room temperature for up to nine months and moderately degraded (4 < DI < 10) could be effectively identified. Moreover, it could also be detected when blood content in the mixed stains was as low as 1%. In addition, 15 ng of DNA used for bisulfite conversion was required for obtaining a complete profile. The cumulative discrimination power of the panel among the Han population of northern China could reach 0.999983. This is the first investigation conducted for the simultaneous identification of blood and its donor regardless of other body fluids included in mixed stains. The successful construction of the panel will play a vital role in the comprehensive analysis of blood-containing mixtures in forensic practice.
Collapse
Affiliation(s)
- Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China
| | - Na Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China
| | - Fang Yuan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China
| | - Zimeng Guan
- Department of Biotechnology, Biomedical Sciences College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China
| | - Jianbo Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
4
|
Zhang J, Yan M, Ji A, Sun Q, Ying W. Mass spectrometry-based proteomic analysis of biological stains identifies body fluids specific markers. Forensic Sci Int 2024; 357:112008. [PMID: 38522320 DOI: 10.1016/j.forsciint.2024.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The identification of biological stains and their tissue resource is an important part of forensic research. Current methods suffer from several limitations including poor sensitivity and specificity, trace samples, and sample destruction. In this study, we profiled the proteomes of menstrual blood, peripheral blood, saliva, semen, and vaginal fluid with mass spectrometry technology. Tissue-enhanced and tissue-specific proteins of each group have been proposed as potential biomarkers. These candidate proteins were further annotated and screened through the combination with the Human Protein Atlas database. Our data not only validates the protein biomarkers reported in previous studies but also identifies novel candidate biomarkers for human body fluids. These candidates lay the foundation for the development of rapid and specific forensic examination methods.
Collapse
Affiliation(s)
- Jian Zhang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Meng Yan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
5
|
Fang Y, Chen M, Cai M, Lei F, Zhu B. Selection and validation of a novel set of specific differential methylation markers and construction of a random forest prediction model for the accurate tissue origin identifications of body fluids involving young and middle-aged group of Chinese Han population. Int J Legal Med 2023; 137:1395-1405. [PMID: 37405514 DOI: 10.1007/s00414-023-03049-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
The identification of tissue origin of body fluid is helpful to the determination of the case nature and the reproduction of the case process. It has been confirmed that tissue-specific differential methylation markers could be used to identify the tissue origins of different body fluids. To select suitable tissue-specific differential methylation markers and establish the efficient typing system which could be applied to the identifications of body fluids in forensic cases involving Chinese Han individuals of young and middle-aged group, a total of 125 body fluids (venous blood, semen, vaginal fluid, saliva, and menstrual blood) were collected from healthy Chinese Han volunteers aged 20-45 years old. After genome-wide explorations of DNA methylation patterns in these five kinds of body fluids based on the Illumina Infinium Methylation EPIC BeadChip, 15 novel body fluid-specific differential CpGs were selected and verified based on the pyrosequencing method. And these identification efficiencies for target body fluids were verified by ROC curves. The pyrosequencing results indicated that the average methylation rates of nine CpGs were consistent with those of DNA methylation chip detection results, and the other five CpGs (except for cg12152558) were still helpful for the tissue origin identifications of target body fluids. Finally, a random forest classification prediction model based on these 14 CpGs was constructed to successfully identify five kinds of body fluids, and the tested accuracy rates all reached 100%.
Collapse
Affiliation(s)
- Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Man Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Li Z, Li Y, Liu N, Yuan F, Liu F, Liu J, Yun K, Yan J, Zhang G. Typing of semen-containing mixtures using ARMS-based semen-specific CpG-InDel/STR markers. Int J Legal Med 2022; 136:1163-1176. [PMID: 35633397 DOI: 10.1007/s00414-022-02843-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Mixed traces are common biological materials found at crime scenes, and their identification remains a significant challenge in the field of forensic genetics. In recent years, DNA methylation has been considered as a promising approach for body fluid identification, and length polymorphic loci are still the preferred markers for personal identification. In this study, we used tissue-specific CpG sites with linked insertion or deletion (InDel) or short tandem repeat (STR) markers (CpG-InDel/STR) for both body fluid and individual identification. The tissue-specific CpG loci, which were all selected from the previous reports, were analyzed using a combination of bisulfite conversion and amplification refractory mutation system-multiprimer-PCR technology. InDels or STRs, which were selected within 400 bp upstream or downstream of the semen-specific CpG loci, were analyzed using a capillary electrophoresis platform. Eventually, we successfully constructed a panel containing 17 semen-specific CpG-InDel/STR compound markers compassing 21 InDels/STRs, 3 body-fluid positive controls (vaginal secretion-, saliva-, and blood-specific CpG), and 1 gender identification locus. Using this panel, full genotyping of individuals could be obtained successfully with 50 ng DNA input. Semen stains stored at room temperature for 7 months and degraded samples that were heat treated for up to 6 h were still identified efficiently. For semen containing mixed stains, it is also useful when the semen content is as low as 3.03%. Moreover, the cumulative discrimination power of this panel is 0.9999998. In conclusion, it is a robust panel enabling the validation of both the tissue source and individual identification of semen containing mixed stains and can be employed as an alternative solution for forensic case investigation.
Collapse
Affiliation(s)
- Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Yidan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Na Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Fang Yuan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China.
| |
Collapse
|
7
|
Vibrational spectroscopic approaches for semen analysis in forensic investigation: State of the art and way forward. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Sharma S, Chophi R, Jossan JK, Singh R. Detection of bloodstains using attenuated total reflectance-Fourier transform infrared spectroscopy supported with PCA and PCA-LDA. MEDICINE, SCIENCE, AND THE LAW 2021; 61:292-301. [PMID: 33926284 DOI: 10.1177/00258024211010926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The most important task in a criminal investigation is to detect and identify the recovered biological stains beyond reasonable scientific doubt and preserve the sample for further DNA analysis. In the light of this fact, many presumptive and confirmatory tests are routinely employed in the forensic laboratories to determine the type of body fluid. However, the currently used techniques are specific to one type of body fluid and hence it cannot be utilized to differentiate multiple body fluids. Moreover, these tests consume the samples in due process, and thus it becomes a great limitation especially considering the fact that samples are recovered in minute quantity in forensic cases. Therefore, such limitations necessitate the use of non-destructive techniques that can be applied simultaneously to all types of bodily fluids and allow sample preservation for further analysis. In the current work, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy has been used to circumvent the aforementioned limitations. The important factors which could influence the detection of blood such as the effect of substrates, washing/chemical treatment, ageing, and dilution limits on the analysis of blood have been analysed. In addition, blood discrimination from non-blood substance (biological and non-biological in nature) has also been studied. Chemometric technique that is PCA-LDA has been used to discriminate blood from other body fluids and it resulted in 100% accurate classification. Furthermore, blood and non-blood substances including fake blood have also been classified into separate clusters with a 100% accuracy, sensitivity, and specificity. All-inclusive, this preliminary study substantiates the potential application of ATR-FTIR spectroscopy for the non-destructive identification of blood traces in simulated forensic casework conditions with 0% rate of false classification.
Collapse
Affiliation(s)
- Sweety Sharma
- Department of Forensic Science, 29766Punjabi University, Patiala, Punjab, India
| | - Rito Chophi
- Department of Forensic Science, 29766Punjabi University, Patiala, Punjab, India
| | | | - Rajinder Singh
- Department of Forensic Science, 29766Punjabi University, Patiala, Punjab, India
| |
Collapse
|
10
|
Li Z, Lv M, Peng D, Xiao X, Fang Z, Wang Q, Tian H, Zha L, Wang L, Tan Y, Liang W, Zhang L. Feasibility of using probabilistic methods to analyse microRNA quantitative data in forensically relevant body fluids: a proof-of-principle study. Int J Legal Med 2021; 135:2247-2261. [PMID: 34477924 DOI: 10.1007/s00414-021-02678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Several studies have confirmed that microRNAs (miRNAs) are promising markers for body fluid identification since they were introduced to this field. However, there is no consensus on the choice of reference genes and identification strategies. In this study, 13 potential candidate miRNAs were screened from three forensically relevant body fluid datasets, and the expression of 12 markers in five body fluids was determined using a real-time quantitative method. Two probabilistic approaches, Naive Bayes (NB) and partial least squares discriminant analysis (PLS-DA), were then applied to predict the origin of the samples to determine whether probabilistic methods are helpful in body fluid identification using miRNA quantitative data. Furthermore, 14 reference combinations were used to validate the influence of different reference choices on the predicted results simultaneously. Our results showed that in the NB model, leave-one-out cross-validation (LOOCV) achieved 100% accuracy and the prediction accuracy of the test set was 100% in most reference combinations. In the PLS-DA model, the first two components could interpret about 80% expression variance and LOOCV achieved 100% accuracy when miR-92a-3p was used as the reference. This study preliminarily proved that probabilistic approaches hold huge potential in miRNA-based body fluid identification, and the choice of references influences the prediction results to a certain extent.
Collapse
Affiliation(s)
- Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Meili Lv
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiao Xiao
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhuangyan Fang
- School of Mathematical Sciences, Peking University, Beijing, 10000, People's Republic of China
| | - Qian Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Huan Tian
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Li Wang
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yu Tan
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China. .,Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
11
|
Huang H, Liu X, Cheng J, Xu L, He X, Xiao C, Huang D, Yi S. A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids. J Forensic Sci 2021; 67:136-148. [PMID: 34431515 DOI: 10.1111/1556-4029.14872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
Identifying the source of body fluids found at a crime scene is an essential forensic step. Some methods based on DNA methylation played significant role in body fluids identification. Since DNA methylation is related to multiple factors, such as race, age, and diseases, it is necessary to know the methylation profile of a given population. In this study, we tested 19 body fluid-specific methylation markers in a Chinese Han population. A novel multiplex assay system based on the selected markers with smaller variation in methylation and stronger tissue-specific methylation were developed for the identification of body fluids. The multiplex assay were tested in 265 body fluid samples. A random forest model was established to predict the tissue source based on the methylation data of the 10 markers. The multiplex assay was evaluated by testing the sensitivity, the mixtures, and old samples. For the result, the novel multiplex assay based on 10 selected methylation markers presented good methylation profiles in all tested samples. The random forest model worked extremely well in predicting the source of body fluids, with an accuracy of 100% and 97.5% in training data and test data, respectively. The multiplex assay could accurately predict the tissue source from 0.5 ng genomic DNA, six-months-old samples and distinguish the minor component from a mixture of two components. Our results indicated that the methylation multiplex assay and the random forest model could provide a convenient tool for forensic practitioners in body fluid identification.
Collapse
Affiliation(s)
- Hongzhi Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan, Hubei, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juanbo Cheng
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linxia Xu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Gomaa R, Nader L, Jamal J. Application of DNA methylation-based markers in identification of mixed body fluid evidences simulating crime scene scenarios. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2021. [DOI: 10.1186/s41935-021-00226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epigenetic modifications are heritable and follow a non-mendelian inheritance pattern. They do not alter the DNA sequence but affect the gene expression at the transcriptional level. DNA methylation is one of these epigenetic changes and it is characteristic to each tissue and shows specificity with respect to developmental stage and age. Due to its specificity and reliability, it has emerged as a valuable tool in forensic investigation. Biological samples, such as blood, saliva, semen, or hair found at the crime scene can be used to isolate DNA and study the methylation pattern. Recent developments in molecular biology techniques allowed the study of the effects of methylation in specific tissues. DNA methylation specificity is very intense. These specific markers can be used to identify the tissue type such as blood, saliva, or semen at the crime scene and helps in the identification of the culprit. The present study aimed to validate the use of DNA methylation body fluid-specific markers in the identification of peripheral blood, menstrual blood, and semen. Additionally, it aimed to investigate the potential use of such DNA methylation markers for the identification of different body fluids mixtures simulating forensic science scenarios. Different DNA methylation markers were studied in different body fluid samples (peripheral blood, menstrual blood, and semen) individually and as mixtures. DNA extraction and bisulfite conversion were performed and followed by real-time PCR.
Results
The results of real-time PCR and the statistical analysis showed that the SPERM2 marker was better than SEU2 in the identification of semen DNA in mixed samples. However, in the identification of individual semen samples, the later marker showed better results than the first one, whereas BLM1 and MENS1 markers were successful in identifying the peripheral and menstrual blood samples, respectively.
Conclusions
This data can be readily used and applied on different forensic samples for tissue identification. Further sequencing studies are strongly recommended.
Collapse
|
13
|
Evaluation of one-step RT-PCR multiplex assay for body fluid identification. Int J Legal Med 2021; 135:1727-1735. [PMID: 33666691 DOI: 10.1007/s00414-021-02535-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/10/2021] [Indexed: 01/27/2023]
Abstract
The discrimination of body fluid stains provides crucial evidence during the investigation of criminal cases. Previous studies have demonstrated the practical value of mRNA profiling in body fluid identification. Conventional strategy of mRNA profiling entails reverse transcription and PCR amplification in two separate procedures with different buffer systems. In this study, we subjected the one-step multiplex reverse transcription PCR strategy to mRNA profiling with the inclusion of the same 18 tissue-specific biomarkers in the F18plex system targeting peripheral blood, menstrual blood, vaginal secretion, saliva, semen, and urine. The Qiagen OneStep RT-PCR kit and Titanium One-Step RT-PCR kit were applied to multiplex construction, while reproducible profiling results were obtained with both kits. Compared to the F18plex system, similar expression profiles of biomarkers were obtained in targeted tissues, while expected cross-reaction was observed in non-targeted body fluids. However, CYP2B7P1 and SPINK5 were detected in menstrual blood samples, which was not observed using the F18plex system. Full-profiling results were obtained in all samples using 0.1 ng peripheral blood and semen RNA, and 1 ng menstrual blood, vaginal secretion, saliva, and urine RNA. In conclusion, the application of one-step mRNA profiling strategy could be a reliable and economical method for the simplified, specific, and simultaneous analysis of tissue-specific biomarkers for the discrimination of body fluid origin.
Collapse
|
14
|
Mistek-Morabito E, Lednev IK. Discrimination of menstrual and peripheral blood traces using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy and chemometrics for forensic purposes. Anal Bioanal Chem 2021; 413:2513-2522. [PMID: 33580831 DOI: 10.1007/s00216-021-03206-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Body fluid traces can provide highly valuable clues in forensic investigations. In particular, bloodstains are a common occurrence in criminal investigation, and the discrimination of menstrual and peripheral blood is a crucial step for casework involving rape and sexual assault. Most of the current protocols require the detection of characteristic menstrual blood components using sophisticated procedures that need to be performed in a laboratory. The present study uses attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy as a nondestructive technique for discriminating menstrual and peripheral blood traces. This method incorporates statistical analysis and was evaluated by internal and external validation testing. A partial least squares discriminant analysis (PLSDA) classification model was created for differentiating the two types of blood in a binary manner. Excellent separation between menstrual and peripheral blood samples was achieved during internal validation. External validation resulted in 100% accuracy for predicting a sample as peripheral or menstrual blood. This study demonstrates that ATR FT-IR spectroscopy combined with chemometrics is a reliable approach for rapid and nondestructive discrimination of menstrual and peripheral bloodstains. It offers a significant advantage to forensic science due to the availability of portable instruments and the potential for bloodstain analysis at a crime scene. Graphical abstract.
Collapse
Affiliation(s)
- Ewelina Mistek-Morabito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
15
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
16
|
Alghanim H, Balamurugan K, McCord B. Development of DNA methylation markers for sperm, saliva and blood identification using pyrosequencing and qPCR/HRM. Anal Biochem 2020; 611:113933. [PMID: 32891597 DOI: 10.1016/j.ab.2020.113933] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Discrimination of body fluids can provide important information in the investigation of crime scenes. The goal of this project was to identify new sets of tissue specific differentially methylated regions (tDMRs) and develop assays that can be utilized for forensic discrimination of body fluids, in particular sperm, saliva and blood. In this study, a sample set containing semen with sperm, semen without sperm, buccal swabs, saliva (oral fluids), venous blood, menstrual blood, vaginal secretions, and sweat/skin samples were used to develop four assays. Two methods for the analysis of DNA methylation biomarkers were developed in this paper: pyrosequencing and quantitative PCR/high resolution melt (HRM) analysis. Using an epigenome wide association study, two markers, NMUR2 and UBE2U, were found to be specific for sperm, based on the fact that mean DNA methylation levels for semen (containing sperm cells) were significantly lower than mean DNA methylation levels of other body fluids. In addition, one marker (SA-6) was hypermethylated in saliva when compared to other body fluids. The assays developed for NMUR2, UBE2U and SA-6 markers can be applied in forensic tissue identification using both pyrosequencing and HRM analysis. Additionally, a set of CpG sites in the AHRR locus were hypomethylated in blood when compared to other tissues using pyrosequencing. However, this locus was not amenable to HRM analysis. Overall, this work demonstrates the discovery and application of tDMRs for forensic applications.
Collapse
Affiliation(s)
- Hussain Alghanim
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA; General Department of Forensic Science and Criminology, Dubai Police, Dubai, United Arab Emirates
| | - Kuppareddi Balamurugan
- School of Criminal Justice, Forensic Science and Security, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
17
|
Fujimoto S, Hamano Y, Ichioka K, Manabe S, Hirai E, Ogawa O, Tamaki K. Rapid semen identification from mixed body fluids using methylation-sensitive high-resolution melting analysis of the DACT1 gene. Leg Med (Tokyo) 2020; 48:101806. [PMID: 33189063 DOI: 10.1016/j.legalmed.2020.101806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
In forensic genetics, a suspect is assigned to a component of a DNA mixture profile, and a probabilistic interpretation is then usually performed. However, it is difficult to determine what types of body fluid the component is from. Previous studies have reported that the fourth exon of the Dishevelled binding antagonist of beta catenin 1 (DACT1) gene is hypomethylated in a semen DNA-specific manner. In the present study, we evaluated whether the DACT1 gene could be effectively used to identify semen in body fluid mixtures and were able to semi-quantify the semen DNA content in mixed fluids. Our results showed that the DACT1 gene was useful in discriminating semen from venous blood and saliva. However, the amount of sperm in semen can affect semen identification. In addition, SI (the semen DNA content index), which we developed, was useful to determine whether the semen compromised majority, almost half, or was in the minority of the components in a mixed fluid. This technique is based on the methylation-sensitive high-resolution melting (MS-HRM) technology, which is time-, cost-, and labour-effective, and could be adopted in routine criminal investigations.
Collapse
Affiliation(s)
- Shuntaro Fujimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuya Hamano
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Forensic Science Laboratory, Kyoto Prefectural Police Headquarters, Kyoto, Japan
| | - Kentaro Ichioka
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Ichioka Urological Clinic, Symphonia-Oike1F, Higashinotoin-Nijo Sagaru, Kyoto, Japan
| | - Sho Manabe
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eriko Hirai
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
18
|
Ghai M, Naidoo N, Evans DL, Kader F. Identification of novel semen and saliva specific methylation markers and its potential application in forensic analysis. Forensic Sci Int Genet 2020; 49:102392. [PMID: 32979622 DOI: 10.1016/j.fsigen.2020.102392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Differential DNA methylation in human tissues has been widely used to develop markers for body fluid identification in forensics. In the present study, identification of potential tissue specific differentially methylated regions (tDMRs) was based on mining differentially expressed genes in surrogate tissues for blood, saliva, semen and vaginal fluid. Genes specifically over expressed in one of the surrogate tissues viz: blood, salivary glands, testis, prostrate, cervix, uterus and ovary were identified from genome wide expression datasets. We hypothesized that over expression in surrogate tissues for body fluids could be correlated with differential methylation. Methylation information from two methylation datasets, NGSmethDB and ENCODE were integrated and heavily methylated gene body CpG islands (CGI) representing the body fluids were extracted. From a total of 53 potential genes the present study reports, two genes, ZNF282 and HPCAL1 which were preferentially expressed in cervix with comparatively reduced expression in other surrogate tissues. Methylated CGIs were targeted to design primers for methylation specific PCR (MSP) and bisulphite sequencing (BS). The ZNF282 CpG sites displayed semen-specific hypomethylation while HPCAL1 CpGs showed saliva-specific hypomethylation. Clone-based bisulphite sequencing also revealed significant hypomethylation in the target body fluids. To evaluate the stability of methylation profiles, the ZNF282 tDMR was tested and each body fluid was subjected to five different forensic simulated conditions (dry at room temperature, wet in an exicator, outside on the ground, sprayed with alcohol and sprayed with bleach) for 50 days. Under the condition "outside on the ground", saliva showed a significant decrease in methylation level by bisulphite sequencing analysis over time. Complete methylation profiles were obtained only for vaginal fluid under all conditions and no differences in methylation levels were observed for this fluid after 50 days. Thus, ZNF282 and HPCAL1 tDMRs can be used as reliable semen and saliva identification markers respectively.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Natalie Naidoo
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Dyfed Lloyd Evans
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa; South African Sugarcane Research Institute, Durban, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
19
|
Evaluating the use of hypoxia sensitive markers for body fluid stain age prediction. Sci Justice 2020; 60:547-554. [PMID: 33077038 DOI: 10.1016/j.scijus.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 01/30/2023]
Abstract
To augment DNA profiling and body fluid identification techniques efforts are being made to increase the amount of information available from a crime scene stain, which includes efforts to identify externally visible characteristics through phenotypic analysis. A key question surrounding crime scene stains is the length of time between deposition of the stain and its subsequent recovery, in that is the stain recovered related to the incident in question or from a previously deposited stain number of weeks earlier? The inability to answer this fundamental question has a detrimental effect upon the successful completion of a criminal investigation. Once a body fluid leaves the body, the oxygen concentration in the environment changes; therefore, it may be that this change could cause a change in the expression of hypoxia-sensitive biomarkers. Here, a range of bloodstains, liquid saliva and liquid semen samples were collected at 0 days, 7 days, 14 days, 21 days and 28 days of degrading at room temperature (19-22 °C), before undergoing total RNA extraction and cDNA synthesis. Blood was recovered from filter paper with 3 mm2, with saliva and semen being left in their tubes and swabbed at the appropriate times. All samples then underwent quantitative PCR targeting Vascular Endothelial Growth Factor A (VEGFA) and Hypoxia-Inducible Factor 1 Alpha (HIF1A), with B-Actin (ACTB) as a reference gene. A range of linear and quadratic correlation values was obtained from the qPCR data and used to develop a predictive model with a mean absolute deviation (MAD) of 4.2, 2.1, and 5 days for blood, saliva, and semen respectively. Blind testing indicated that a stain age prediction model based upon VEGFA with ACTB as a reference gene could be used on samples up to four weeks old with a margin of error ranging from 2 days through to 5 days. While a sizeable potential time frame exists using this model; this represents a significant step towards the target of having an accurate stain age prediction model.
Collapse
|
20
|
Kader F, Ghai M, Zhou M. Ethnicity, age and disease-associated variation in body fluid-specific CpG sites in a diverse South African cohort. Forensic Sci Int 2020; 314:110372. [PMID: 32623090 DOI: 10.1016/j.forsciint.2020.110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Tissue-specific differential DNA methylation has been an attractive target for the development of markers for discrimination of body fluids found at crime scenes. Though mostly stable, DNA methylation patterns have been shown to vary between different ethnic groups, in different age groups as well as between healthy and diseased individuals. To the best of our knowledge, none of the markers for body fluid identification have been applied to different ethnic groups to ascertain if variability exists. In the present study, saliva and blood were collected to determine the effects of ethnicity (Blacks, Whites, Coloureds and Indians), age (20-30 years, 40-50years and above 60 years) and diabetes on methylation profiles of potential saliva- and blood-specific DMSs. Both DMSs were previously shown to exhibit hypermethylation in their target body fluids at single CpG sites, however in the present study, additional CpG sites flanking the reported sites were also screened. Bisulfite sequencing revealed that Coloureds showed highest methylation levels for both body fluids, and blacks displayed significant differences between other ethnic groups in the blood-specific CpG sites. A decline in methylation for both potential DMRs was observed with increasing age. Heavily methylated CpG sites in different ethnic groups and previously reported DMSs displayed hypomethylation with increasing age and disease status. Diabetic status did not show any significant difference in methylation when compared to healthy counterparts. Thus, the use of methylation markers for forensics needs thorough investigation of influence of external factors and ideally, several CpG sites should be co-analysed instead of a single DMS.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Marvellous Zhou
- South African Sugarcane Research Institute, Mount Edgecombe, Durban, South Africa; University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.
| |
Collapse
|
21
|
Díez López C, Montiel González D, Haas C, Vidaki A, Kayser M. Microbiome-based body site of origin classification of forensically relevant blood traces. Forensic Sci Int Genet 2020; 47:102280. [PMID: 32244163 DOI: 10.1016/j.fsigen.2020.102280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Human blood traces are amongst the most commonly encountered biological stains collected at crime scenes. Identifying the body site of origin of a forensic blood trace can provide crucial information in many cases, such as in sexual and violent assaults. However, means for reliably and accurately identifying from which body site a forensic blood trace originated are missing, but would be highly valuable in crime scene investigations. With this study, we introduce a taxonomy-independent deep neural network approach based on massively parallel microbiome sequencing, which delivers accurate body site of origin classification of forensically-relevant blood samples, such as menstrual, nasal, fingerprick, and venous blood. A total of 50 deep neural networks were trained using a large 16S rRNA gene sequencing dataset from 773 reference samples, including 220 female urogenital tract, 190 nasal cavity, 213 skin, and 150 venous blood samples. Validation was performed with de-novo generated 16S rRNA gene massively parallel sequencing (MPS) data from 94 blood test samples of four different body sites, and achieved high classification accuracy with AUC values at 0.992 for menstrual blood (N = 23), 0.978 for nasal blood (N = 16), 0.978 for fingerprick blood (N = 30), and 0.990 for venous blood (N = 25). The obtained highly accurate classification of menstrual blood was independent of the day of the menses, as established in additional 86 menstrual blood test samples. Accurate body site of origin classification was also revealed for 45 fresh and aged mock casework blood samples from all four body sites. Our novel microbiome approach works based on the assumption that a sample is from blood, as can be obtained in forensic practise from prior presumptive blood testing, and provides accurate information on the specific body source of blood, with high potentials for future forensic applications.
Collapse
Affiliation(s)
- Celia Díez López
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
22
|
Sharma S, Singh R. Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics. Int J Legal Med 2019; 134:411-432. [PMID: 31814056 DOI: 10.1007/s00414-019-02222-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Semen is most frequently encountered body fluid in forensic cases apart from blood especially in sexual assault cases. The presence and absence of semen can help in conviction or exoneration of a suspect by either confirming or refuting the claims put forward by the suspect and the victim. However, in the wake of limited studies on non-destructive and rapid analysis of semen, it is fairly difficult. Therefore, it is an increasing demand to pioneer the application of available analytical methods in such manner that non-destructive, automated, rapid, and reliable identification and discrimination of body fluids can be established. In the present study, such a methodological application of attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy has been put forward as one of the initial steps towards the identification and discrimination/classification of seminal fluid from vaginal fluid and other human biological as well as non-biological look-alike semen substances using chemometric tools which are principal component analysis (PCA), partial least square regression (PLSR), and linear discriminant analysis (LDA). Effect of other simulated factors such as substrate interference, mixing with other body fluids, dilutions, and washing and chemical treatments to the samples has been studied. PCA resulted in 98.8% of accuracy for the discrimination of seminal fluid from vaginal fluid whilst 100% accuracy was obtained using LDA method. One hundred percent discrimination was achieved to discriminate semen from other biological fluids using PLSR and LDA, and from non-biological substances using PCA-LDA models. Furthermore, results of the effect of substrates, chemical treatment, mixing with vaginal secretions, and dilution have also been described.
Collapse
Affiliation(s)
- Sweety Sharma
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajinder Singh
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
23
|
Kader F, Ghai M, Olaniran AO. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med 2019; 134:1-20. [PMID: 31713682 DOI: 10.1007/s00414-019-02181-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Body fluid identification in crime scene investigations aids in reconstruction of crime scenes. Several studies have identified and reported differentially methylated sites (DMSs) and regions (DMRs) which differ between forensically relevant tissues (tDMRs) and body fluids. Diverse factors affect methylation patterns such as the environment, diets, lifestyle, disease, ethnicity, genetic variation, amongst others. Thus, it is important to analyse the stability of markers employed for forensic identification. Furthermore, even though epigenetic modifications are described as stable and heritable, epigenetic inheritance of potential markers for body fluid identification needs to be assessed in the long term. Here, we discuss the current status of reported DNA methylation-based markers and their verification studies. Such thorough investigation is crucial to develop a stable panel of DNA methylation-based markers for accurate body fluid identification.
Collapse
Affiliation(s)
- Farzeen Kader
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| |
Collapse
|
24
|
Gauthier QT, Cho S, Carmel JH, McCord BR. Development of a body fluid identification multiplex via DNA methylation analysis. Electrophoresis 2019; 40:2565-2574. [DOI: 10.1002/elps.201900118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Quentin T. Gauthier
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Sohee Cho
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
- Institute of Forensic ScienceSeoul National University College of Medicine Seoul South Korea
| | - Justin H. Carmel
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Bruce R. McCord
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| |
Collapse
|
25
|
Developmental validation of an enhanced mRNA-based multiplex system for body fluid and cell type identification. Sci Justice 2019; 59:217-227. [DOI: 10.1016/j.scijus.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/16/2018] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
|
26
|
Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int J Legal Med 2019; 133:1321-1331. [PMID: 30810820 DOI: 10.1007/s00414-019-02027-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Messenger RNA (mRNA) markers have been extensively investigated for the identification of forensically relevant body fluids and tissues based on their expression profiles among cell types. As products of the backsplicing of pre-mRNAs, circular RNAs (circRNAs) share exonic sequences with their linear counterparts. The inclusion of circRNAs in mRNA profiling is shown to facilitate the detection of biomarkers in the identification of body fluids. In this study, we identified the expression of circRNAs of 14 out of 45 biomarkers from five body fluid types using outward-facing primer sets and revealed the ratio of circular to total transcripts of biomarkers by RNase R treatment. Furthermore, our results of qPCR analysis show that the inclusion of circRNAs in the detection of biomarkers, including HBA and ALAS2 for blood; MMP7 and MMP10 for menstrual blood; HTN3 for saliva; SPINK5, SERPINB3, ESR1, and CYP2B7P1 for vaginal secretions; TGM4, KLK3, and PRM2 for semen; and SLC22A6 and MIOX for urine, does not impair the specificity of these biomarkers. Additionally, a high copy number of targets from linear transcripts could be employed to increase the detection sensitivity of TGM4 and KLK3 with a low expression level of circRNAs in urine samples. Altogether, these results will help with the development of robust multiplex assays for body fluid identification.
Collapse
|
27
|
Specific microbes of saliva and vaginal fluid of Guangdong Han females based on 16S rDNA high-throughput sequencing. Int J Legal Med 2019; 133:699-710. [DOI: 10.1007/s00414-018-1986-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023]
|
28
|
Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 2018; 37:180-195. [PMID: 30176440 DOI: 10.1016/j.fsigen.2018.08.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023]
Abstract
Forensic epigenetics, i.e., investigating epigenetics variation to resolve forensically relevant questions unanswerable with standard forensic DNA profiling has been gaining substantial ground over the last few years. Differential DNA methylation among tissues and individuals has been proposed as useful resource for three forensic applications i) determining the tissue type of a human biological trace, ii) estimating the age of an unknown trace donor, and iii) differentiating between monozygotic twins. Thus far, forensic epigenetic investigations have used a wide range of methods for CpG marker discovery, prediction modelling and targeted DNA methylation analysis, all coming with advantages and disadvantages when it comes to forensic trace analysis. In this review, we summarize the most recent literature on these three main topics of current forensic epigenetic investigations and discuss limitations and practical considerations in experimental design and data interpretation, such as technical and biological biases. Moreover, we provide future perspectives with regard to new research questions, new epigenetic markers and recent technological advances that - as we envision - will move the field towards forensic epigenomics in the near future.
Collapse
|
29
|
Jung JY, Yoon HK, An S, Lee JW, Ahn ER, Kim YJ, Park HC, Lee K, Hwang JH, Lim SK. Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Sci Rep 2018; 8:10852. [PMID: 30022122 PMCID: PMC6052055 DOI: 10.1038/s41598-018-29264-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
This study developed a new method for forensic saliva identification using three oral bacteria, Streptococcus salivarius, Streptococcus sanguinis, and Neisseria subflava, combined with a real-time polymerase chain reaction (RT-PCR) system we called OB mRT-PCR. Analytical sensitivity results showed that the target bacteria were amplified at 102-107 copies/reaction, and analytical specificity was assessed using 24 other viruses, bacteria, and protozoa. To evaluate the OB mRT-PCR kit for forensic applications, saliva from 140 Korean individuals was tested, and at least two target bacteria were detected in all the samples. Additional studies on non-saliva samples demonstrated the specificity of the kit. Comparison of the kit with two conventional saliva test methods, the SALIgAE and RSID-Saliva assays, indicated that it was more sensitive and applicable to saliva samples in long-term storage (up to 14 weeks). Additionally, through amplification of mock forensic items and old DNA samples (isolated without lysis of the bacterial cells, regardless of their Gram-positivity), we found that the kit was applicable to not only saliva swabs, but also DNA samples. We suggest that this simple RT-PCR-based experimental method is feasible for rapid on-site analysis, and we expect this kit to be useful for saliva detection in old forensic DNA samples.
Collapse
Affiliation(s)
- Ju Yeon Jung
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Hyun Kyu Yoon
- JS Biotech, Business Incubation Center, Kyungbok University, 425 Kyungbokdae-ro, Jinjeop-eup, Namyangju-si, Gyeonggi-do, 12051, Republic of Korea
| | - Sanghyun An
- DNA Analysis Division, Seoul Institute, National Forensic Service, 139, Jiyang-ro, Yangcheon-gu, Seoul, 08036, Republic of Korea
| | - Jee Won Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Eu-Ree Ahn
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Yeon-Ji Kim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Hyun-Chul Park
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Kyungmyung Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Jung Ho Hwang
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Si-Keun Lim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea.
| |
Collapse
|
30
|
Richards R, Patel J, Stevenson K, Harbison S. Evaluation of massively parallel sequencing for forensic DNA methylation profiling. Electrophoresis 2018; 39:2798-2805. [DOI: 10.1002/elps.201800086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Richards
- Forensic Science Programme, School of Chemical Sciences; University of Auckland; Auckland New Zealand
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - Jayshree Patel
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - Kate Stevenson
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - SallyAnn Harbison
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| |
Collapse
|
31
|
Samsuwan J, Muangsub T, Yanatatsaneejit P, Mutirangura A, Kitkumthorn N. Combined Bisulfite Restriction Analysis for brain tissue identification. Forensic Sci Int 2018; 286:42-45. [PMID: 29558685 DOI: 10.1016/j.forsciint.2018.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings.
Collapse
Affiliation(s)
- Jarunya Samsuwan
- Sub Division of Forensic Biochemistry, Institute of Forensic Medicine, Police General Hospital, Royal Thai Police, Bangkok 10330, Thailand
| | - Tachapol Muangsub
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
32
|
Abstract
Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Holtkötter H, Schwender K, Wiegand P, Peiffer H, Vennemann M. Improving body fluid identification in forensic trace evidence—construction of an immunochromatographic test array to rapidly detect up to five body fluids simultaneously. Int J Legal Med 2017; 132:83-90. [DOI: 10.1007/s00414-017-1724-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
34
|
Holtkötter H, Dias Filho CR, Schwender K, Stadler C, Vennemann M, Pacheco AC, Roca G. Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault-validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer. Int J Legal Med 2017; 132:683-690. [PMID: 29058082 PMCID: PMC5919992 DOI: 10.1007/s00414-017-1719-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023]
Abstract
Sexual assault is a serious offense and identification of body fluids originating from sexual activity has been a crucial aspect of forensic investigations for a long time. While reliable tests for the detection of semen and saliva have been successfully implemented into forensic laboratories, the detection of other body fluids, such as vaginal or menstrual fluid, is more challenging. Especially, the discrimination between peripheral and menstrual blood can be highly relevant for police investigations because it provides potential evidence regarding the issue of consent. We report the forensic validation of an immunochromatographic test that allows for such discrimination in forensic stains, the SERATEC PMB test, and its performance on real casework samples. The PMB test is a duplex test combining human hemoglobin and D-dimer detection and was developed for the identification of blood and menstrual fluid, both at the crime scene and in the laboratory. The results of this study showed that the duplex D-dimer/hemoglobin assay reliably detects the presence of human hemoglobin and identifies samples containing menstrual fluid by detecting the presence of D-dimers. The method distinguished between menstrual and peripheral blood in a swab from a historical artifact and in real casework samples of alleged sexual assaults. Results show that the development of the new duplex test is a substantial progress towards analyzing and interpreting evidence from sexual assault cases.
Collapse
Affiliation(s)
- Hannah Holtkötter
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | | | - Kristina Schwender
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Christian Stadler
- SERATEC Gesellschaft für Biotechnologie mbH, Ernst-Ruhstrat-Straße 5, 37079, Göttingen, Germany
| | - Marielle Vennemann
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Ana Claudia Pacheco
- Superintendência de Polícia Técnico-Científica, Instituto de Criminalística, São Paulo, Brazil
| | - Gabriela Roca
- SERATEC Gesellschaft für Biotechnologie mbH, Ernst-Ruhstrat-Straße 5, 37079, Göttingen, Germany.
| |
Collapse
|
35
|
Evaluation of the inclusion of circular RNAs in mRNA profiling in forensic body fluid identification. Int J Legal Med 2017; 132:43-52. [PMID: 28948359 DOI: 10.1007/s00414-017-1690-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/12/2017] [Indexed: 01/16/2023]
Abstract
The use of messenger RNA (mRNA) profiling is considered a promising method in the identification of forensically relevant body fluids which can provide crucial information for reconstructing a potential crime. However, casework samples are usually of limited quantity or have been subjected to degradation, which requires improvement of body fluid identification. Circular RNAs (circRNAs), a class of products from the backsplicing of pre-mRNAs, are shown to have high abundance, remarkable stability, and cell type-specific expression in human cells. In this study, we investigated whether the inclusion of circRNAs in mRNA profiling improve the detection of biomarkers including δ-aminolevulinate synthase 2 (ALAS2) and matrix metallopeptidase 7 (MMP7) in body fluid identification. The major circRNAs of ALAS2 and MMP7 were first identified and primer sets for the simultaneous detection of linear and circular transcripts were developed. The inclusion of circRNAs in mRNA profiling showed improved detection sensitivity and stability of biomarkers revealed by using serial dilutions, mixed samples, and menstrual bloodstains as well as degraded and aged samples. Therefore, the inclusion of circRNAs in mRNA profiling should facilitate the detection of mRNA markers in forensic body fluid identification.
Collapse
|
36
|
Naue J, Hoefsloot HCJ, Mook ORF, Rijlaarsdam-Hoekstra L, van der Zwalm MCH, Henneman P, Kloosterman AD, Verschure PJ. Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. Forensic Sci Int Genet 2017; 31:19-28. [PMID: 28841467 DOI: 10.1016/j.fsigen.2017.07.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 01/24/2023]
Abstract
The use of DNA methylation (DNAm) to obtain additional information in forensic investigations showed to be a promising and increasing field of interest. Prediction of the chronological age based on age-dependent changes in the DNAm of specific CpG sites within the genome is one such potential application. Here we present an age-prediction tool for whole blood based on massive parallel sequencing (MPS) and a random forest machine learning algorithm. MPS allows accurate DNAm determination of pre-selected markers and neighboring CpG-sites to identify the best age-predictive markers for the age-prediction tool. 15 age-dependent markers of different loci were initially chosen based on publicly available 450K microarray data, and 13 finally selected for the age tool based on MPS (DDO, ELOVL2, F5, GRM2, HOXC4, KLF14, LDB2, MEIS1-AS3, NKIRAS2, RPA2, SAMD10, TRIM59, ZYG11A). Whole blood samples of 208 individuals were used for training of the algorithm and a further 104 individuals were used for model evaluation (age 18-69). In the case of KLF14, LDB2, SAMD10, and GRM2, neighboring CpG sites and not the initial 450K sites were chosen for the final model. Cross-validation of the training set leads to a mean absolute deviation (MAD) of 3.21 years and a root-mean square error (RMSE) of 3.97 years. Evaluation of model performance using the test set showed a comparable result (MAD 3.16 years, RMSE 3.93 years). A reduced model based on only the top 4 markers (ELOVL2, F5, KLF14, and TRIM59) resulted in a RMSE of 4.19 years and MAD of 3.24 years for the test set (cross validation training set: RMSE 4.63 years, MAD 3.64 years). The amplified region was additionally investigated for occurrence of SNPs in case of an aberrant DNAm result, which in some cases can be an indication for a deviation in DNAm. Our approach uncovered well-known DNAm age-dependent markers, as well as additional new age-dependent sites for improvement of the model, and allowed the creation of a reliable and accurate epigenetic tool for age-prediction without restriction to a linear change in DNAm with age.
Collapse
Affiliation(s)
- Jana Naue
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH Amsterdam, The Netherlands.
| | - Huub C J Hoefsloot
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Olaf R F Mook
- Amsterdam Medical Center, Clinical Genetics, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Laura Rijlaarsdam-Hoekstra
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Marloes C H van der Zwalm
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam Medical Center, Clinical Genetics, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Ate D Kloosterman
- Netherlands Forensic Institute, Biological Traces, Laan van Ypenburg 6, 2497GB Den Haag, The Netherlands; University of Amsterdam, Institute for Biodiversity and Dynamics, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Pernette J Verschure
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Holtkötter H, Beyer V, Schwender K, Glaub A, Johann KS, Schürenkamp M, Sibbing U, Banken S, Wiegand P, Pfeiffer H, Dennany L, Vennemann M, Vennemann M. Independent validation of body fluid-specific CpG markers and construction of a robust multiplex assay. Forensic Sci Int Genet 2017; 29:261-268. [DOI: 10.1016/j.fsigen.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022]
|
38
|
Lee HY, Lee SD, Shin KJ. Forensic DNA methylation profiling from evidence material for investigative leads. BMB Rep 2017; 49:359-69. [PMID: 27099236 PMCID: PMC5032003 DOI: 10.5483/bmbrep.2016.49.7.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/30/2022] Open
Abstract
DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369]
Collapse
Affiliation(s)
- Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
39
|
Fachet C, Quarino L, Karnas KJ. High resolution melt curve analysis based on methylation status for human semen identification. Forensic Sci Med Pathol 2016; 13:86-91. [DOI: 10.1007/s12024-016-9825-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 11/24/2022]
|
40
|
Lin YC, Tsai LC, Lee JCI, Su CW, Tzen JTC, Linacre A, Hsieh HM. Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system. Forensic Sci Int Genet 2016; 25:157-165. [DOI: 10.1016/j.fsigen.2016.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
41
|
Vidaki A, Giangasparo F, Syndercombe Court D. Discovery of potential DNA methylation markers for forensic tissue identification using bisulphite pyrosequencing. Electrophoresis 2016; 37:2767-2779. [DOI: 10.1002/elps.201600261] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Athina Vidaki
- Department of Pharmacy and Forensic Science; King's College London; Franklin-Wilkins Building London UK
| | - Federica Giangasparo
- Department of Pharmacy and Forensic Science; King's College London; Franklin-Wilkins Building London UK
| | - Denise Syndercombe Court
- Department of Pharmacy and Forensic Science; King's College London; Franklin-Wilkins Building London UK
| |
Collapse
|
42
|
Jung SE, Cho S, Antunes J, Gomes I, Uchimoto ML, Oh YN, Di Giacomo L, Schneider PM, Park MS, van der Meer D, Williams G, McCord B, Ahn HJ, Choi DH, Lee YH, Lee SD, Lee HY. A collaborative exercise on DNA methylation based body fluid typing. Electrophoresis 2016; 37:2759-2766. [DOI: 10.1002/elps.201600256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/01/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Sang-Eun Jung
- Department of Forensic Medicine; Yonsei University College of Medicine; Seoul South Korea
| | - Sohee Cho
- Institute of Forensic Science; Seoul National University College of Medicine; Seoul South Korea
| | - Joana Antunes
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Iva Gomes
- Institute of Legal Medicine, Faculty of Medicine; University of Cologne; Cologne Germany
| | - Mari L. Uchimoto
- Forensic and Analytical Research Centre; University of Huddersfield; Queensgate Huddersfield West Yorkshire UK
- School of Biomedical and Forensic Science; Anglia Ruskin University, Cambridge Campus; East Road Cambridge UK
| | - Yu Na Oh
- Division of DNA Analysis, Department of Forensic Medicine, Scientific Investigation Laboratory, Criminal Investigation Command; Ministry of National Defense; Seoul South Korea
| | - Lisa Di Giacomo
- Institute of Legal Medicine, Faculty of Medicine; University of Cologne; Cologne Germany
| | - Peter M. Schneider
- Institute of Legal Medicine, Faculty of Medicine; University of Cologne; Cologne Germany
| | - Min Sun Park
- Forensic DNA Division; National Forensic Service; Wonju Gangwon-do South Korea
| | - Dieudonne van der Meer
- Forensic and Analytical Research Centre; University of Huddersfield; Queensgate Huddersfield West Yorkshire UK
| | - Graham Williams
- Forensic and Analytical Research Centre; University of Huddersfield; Queensgate Huddersfield West Yorkshire UK
| | - Bruce McCord
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Hee-Jung Ahn
- Division of DNA Analysis, Department of Forensic Medicine, Scientific Investigation Laboratory, Criminal Investigation Command; Ministry of National Defense; Seoul South Korea
| | - Dong Ho Choi
- Forensic DNA Division; National Forensic Service; Wonju Gangwon-do South Korea
| | - Yang Han Lee
- Forensic DNA Division; National Forensic Service; Wonju Gangwon-do South Korea
| | - Soong Deok Lee
- Institute of Forensic Science; Seoul National University College of Medicine; Seoul South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine; Yonsei University College of Medicine; Seoul South Korea
| |
Collapse
|
43
|
Watanabe K, Akutsu T, Takamura A, Sakurada K. Evaluation of a blood-specific DNA methylated region and trial for allele-specific blood identification from mixed body fluid DNA. Leg Med (Tokyo) 2016; 22:49-53. [DOI: 10.1016/j.legalmed.2016.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
|
44
|
Antunes J, Balamurugan K, Duncan G, McCord B. Tissue-Specific DNA Methylation Patterns in Forensic Samples Detected by Pyrosequencing®. Methods Mol Biol 2016; 1315:397-409. [PMID: 26103913 DOI: 10.1007/978-1-4939-2715-9_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In certain circumstances the outcome of a trial may hinge on the ability of a forensic laboratory to determine the identity of biological stains present at crime scenes. An example of such a situation would be the detection of blood, saliva, vaginal fluid, or other body fluid in a specific location whereby its presence would reinforce the victim's or suspect's version of the events that happened during the commission of a crime. However, current serological methods used for identifying body fluids may lack the sensitivity and specificity to identify these fluids, particularly for trace levels. New procedures using proteomic methods and RNA-based gene expression show promise in addressing this issue; however, concerns about stability and relative levels of gene expression remain. An alternative approach is to utilize patterns of epigenetic DNA methylation. DNA methylation is an epigenetic mechanism that regulates the specificity of genes being expressed or silenced in cells. Regions in the human genome referred to as tissue-specific differentially methylated regions account for unique patterns of DNA methylation that are specific for each cell type. This chapter addresses the application of bisulfite-modified PCR combined with Pyrosequencing(®) to detect tissue-specific DNA methylation patterns and perform trace serological analysis. The quantitative nature and precision available with Pyrosequencing presents major advantages in these studies as it permits detection of and contrast between cells with differential levels of methylation. The procedure can be applied to a variety of biological fluids which may be present at crime scenes.
Collapse
Affiliation(s)
- Joana Antunes
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | | | | | | |
Collapse
|
45
|
Lin YC, Tsai LC, Lee JCI, Liu KL, Tzen JTC, Linacre A, Hsieh HM. Novel identification of biofluids using a multiplex methylation-specific PCR combined with single-base extension system. Forensic Sci Med Pathol 2016; 12:128-38. [DOI: 10.1007/s12024-016-9763-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
46
|
Forat S, Huettel B, Reinhardt R, Fimmers R, Haidl G, Denschlag D, Olek K. Methylation Markers for the Identification of Body Fluids and Tissues from Forensic Trace Evidence. PLoS One 2016; 11:e0147973. [PMID: 26829227 PMCID: PMC4734623 DOI: 10.1371/journal.pone.0147973] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
The identification of body fluids is an essential tool for clarifying the course of events at a criminal site. The analytical problem is the fact that the biological material has been very often exposed to detrimental exogenous influences. Thereby, the molecular substrates used for the identification of the traces may become degraded. So far, most protocols utilize cell specific proteins or RNAs. Instead of measuring these more sensitive compounds this paper describes the application of the differential DNA-methylation. As a result of two genome wide screenings with the Illumina HumanMethylation BeadChips 27 and 450k we identified 150 candidate loci revealing differential methylation with regard to the body fluids venous blood, menstrual blood, vaginal fluid, saliva and sperm. Among them we selected 9 loci as the most promising markers. For the final determination of the methylation degree we applied the SNuPE-method. Because the degree of methylation might be modified by various endogenous and exogenous factors, we tested each marker with approximately 100 samples of each target fluid in a validation study. The stability of the detection procedure is proved in various simulated forensic surroundings according to standardized conditions. We studied the potential influence of 12 relatively common tumors on the methylation of the 9 markers. For this purpose the target fluids of 34 patients have been analysed. Only the cervix carcinoma might have an remarkable effect because impairing the signal of both vaginal markers. Using the Illumina MiSeq device we tested the potential influence of cis acting sequence variants on the methylation degree of the 9 markers in the specific body fluid DNA of 50 individuals. For 4 marker loci we observed such an influence either by sole SNPs or haplotypes. The identification of each target fluid is possible in arbitrary mixtures with the remaining four body fluids. The sensitivity of the individual body fluid tests is in the same range as for the forensic STR-analysis. It is the first forensic body fluid protocol which considers the exogenic and endogenic parameters potentially interfering with the true results.
Collapse
Affiliation(s)
- Sophia Forat
- Labor für Abstammungsbegutachtungen GmbH, Rheinbach, Germany
- * E-mail: (KO); (SF)
| | - Bruno Huettel
- Max Planck Genome Centre Cologne Institute for Breeding Research, Cologne, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne Institute for Breeding Research, Cologne, Germany
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Gerhard Haidl
- Department of Dermatology, Andrology Unit, University of Bonn, Bonn, Germany
| | - Dominik Denschlag
- Department of OB/GYN Hochtaunuskliniken Bad Homburg, Bad Homburg, Germany
| | - Klaus Olek
- Labor für Abstammungsbegutachtungen GmbH, Rheinbach, Germany
- * E-mail: (KO); (SF)
| |
Collapse
|
47
|
Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 2015; 18:21-32. [DOI: 10.1016/j.fsigen.2014.11.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
|
48
|
Watanabe K, Akutsu T, Sakurada K. Development of a Real-Time PCR-Based Method for Analyzing Semen-Specific Unmethylated DNA Regions and Methylation Status in Aged Body Fluid Stains. J Forensic Sci 2015; 61 Suppl 1:S208-12. [DOI: 10.1111/1556-4029.12941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 12/26/2014] [Accepted: 03/01/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Ken Watanabe
- National Research Institute of Police Science; Kashiwa Chiba 277-0822 Japan
| | - Tomoko Akutsu
- National Research Institute of Police Science; Kashiwa Chiba 277-0822 Japan
| | - Koichi Sakurada
- National Research Institute of Police Science; Kashiwa Chiba 277-0822 Japan
| |
Collapse
|
49
|
Methylation-sensitive restriction enzyme nested real time PCR, a potential approach for sperm DNA identification. J Forensic Leg Med 2015; 34:34-9. [DOI: 10.1016/j.jflm.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/19/2022]
|
50
|
Lee HY, An JH, Jung SE, Oh YN, Lee EY, Choi A, Yang WI, Shin KJ. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers. Forensic Sci Int Genet 2015; 17:17-24. [PMID: 25796047 DOI: 10.1016/j.fsigen.2015.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/06/2015] [Accepted: 03/10/2015] [Indexed: 11/26/2022]
Abstract
The identification of body fluids found at crime scenes can contribute to solving crimes by providing important insights into crime scene reconstruction. In the present study, body fluid-specific epigenetic marker candidates were identified from genome-wide DNA methylation profiling of 42 body fluid samples including blood, saliva, semen, vaginal fluid and menstrual blood using the Illumina Infinium HumanMethylation450 BeadChip array. A total of 64 CpG sites were selected as body fluid-specific marker candidates by having more than 20% discrepancy in DNA methylation status between a certain type of body fluid and other types of body fluids and to have methylation or unmethylation pattern only in a particular type of body fluid. From further locus-specific methylation analysis in additional samples, 1 to 3 CpG sites were selected for each body fluid. Then, a multiplex methylation SNaPshot reaction was constructed to analyze methylation status of 8 body fluid-specific CpG sites. The developed multiplex reaction positively identifies blood, saliva, semen and the body fluid which originates from female reproductive organ in one reaction, and produces successful DNA methylation profiles in aged or mixed samples. Although it remains to be investigated whether this approach is more sensitive, more practical than RNA- or peptide-based assays and whether it can be successfully applied to forensic casework, the results of the present study will be useful for the forensic investigators dealing with body fluid samples.
Collapse
Affiliation(s)
- Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea.
| | - Ja Hyun An
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Sang-Eun Jung
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Yu Na Oh
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Eun Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Ajin Choi
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Woo Ick Yang
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| |
Collapse
|