1
|
Kotsyuba E, Pahlevaniane A, Maslennikov S, Dyachuk V. Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus. BIOLOGY 2024; 13:35. [PMID: 38248466 PMCID: PMC10813508 DOI: 10.3390/biology13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
This article presents recent findings as regards distribution of cells producing serotonin and dopamine in the larval central nervous system at different developmental stages, including four pelagic larval stages (zoea I-IV), a semibenthic postlarval stage glaucothoe (megalopa), benthic juveniles, and adult red king crabs, Paralithodes camtschaticus, made by using immunocytochemistry and confocal laser scanning microscopy. We have shown that the serotonergic and dopaminergic neurons are present long before the onset of metamorphosis. In the red king crab b larval nervous system, the changes become particularly pronounced during the first metamorphosis from zoea IV to glaucothoe, which may be related to the development of the segmental appendages and maturation of motor behaviors in decapods. This work presents the distribution and dynamics of the development of serotonergic and dopaminergic neuronal networks in king crab show, the potential roles of serotonin and dopamine in the modulation of olfactory and visual processing in the early stages of larval development, and also the mechanosensory and chemosensory processing in the glaucothoe stage during settlement and in their transition from a pelagic to benthic lifestyle.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (E.K.); (A.P.); (S.M.)
| |
Collapse
|
2
|
Stein W, DeMaegd ML, Benson AM, Roy RS, Vidal-Gadea AG. Combining Old and New Tricks: The Study of Genes, Neurons, and Behavior in Crayfish. Front Physiol 2022; 13:947598. [PMID: 35874546 PMCID: PMC9297122 DOI: 10.3389/fphys.2022.947598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na+/K+-pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, Procambarus virginalis, is suited to become a genetic model system for crustacean neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the ‘Receptor-mediated ovary transduction of cargo’ (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| | - Margaret L. DeMaegd
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Center for Neural Sciences, New York University, New York, NY, United States
| | - Abigail M. Benson
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Rajit S. Roy
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Andrés G. Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| |
Collapse
|
3
|
Lan T, Zhao Y, Zhao F, He Y, Martinez P, Strausfeld NJ. Leanchoiliidae reveals the ancestral organization of the stem euarthropod brain. Curr Biol 2021; 31:4397-4404.e2. [PMID: 34416180 DOI: 10.1016/j.cub.2021.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Fossils provide insights into how organs may have diversified over geological time.1 However, diversification already accomplished early in evolution can obscure ancestral events leading to it. For example, already by the mid-Cambrian period, euarthropods had condensed brains typifying modern mandibulate lineages.2 However, the demonstration that extant euarthropods and chordates share orthologous developmental control genes defining the segmental fore-, mid-, and hindbrain suggests that those character states were present even before the onset of the Cambrian.3 Fossilized nervous systems of stem Euarthropoda might, therefore, be expected to reveal ancestral segmental organization, from which divergent arrangements emerged. Here, we demonstrate unsurpassed preservation of cerebral tissue in Kaili leanchoiliids revealing near-identical arrangements of bilaterally symmetric ganglia identified as the proto-, deuto-, and tritocerebra disposed behind an asegmental frontal domain, the prosocerebrum, from which paired nerves extend to labral ganglia flanking the stomodeum. This organization corresponds to labral connections hallmarking extant euarthropod clades4 and to predicted transformations of presegmental ganglia serving raptorial preocular appendages of Radiodonta.5 Trace nervous system in the gilled lobopodian Kerygmachela kierkegaardi6 suggests an even deeper prosocerebral ancestry. An asegmental prosocerebrum resolves its location relative to the midline asegmental sclerite of the radiodontan head, which persists in stem Euarthropoda.7 Here, data from two Kaili Leanchoilia, with additional reference to Alalcomenaeus,8,9 demonstrate that Cambrian stem Euarthropoda confirm genomic and developmental studies10-15 claiming that the most frontal domain of the euarthropod brain is a unique evolutionary module distinct from, and ancestral to, the fore-, mid-, and hindbrain.
Collapse
Affiliation(s)
- Tian Lan
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, The College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, Guizhou, China.
| | - Yuanlong Zhao
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - You He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Pedro Martinez
- Departament de Genetica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain; Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona 08010, Spain
| | | |
Collapse
|
4
|
Brenneis G, Schwentner M, Giribet G, Beltz BS. Insights into the genetic regulatory network underlying neurogenesis in the parthenogenetic marbled crayfish Procambarus virginalis. Dev Neurobiol 2021; 81:939-974. [PMID: 34554654 DOI: 10.1002/dneu.22852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
Nervous system development has been intensely studied in insects (especially Drosophila melanogaster), providing detailed insights into the genetic regulatory network governing the formation and maintenance of the neural stem cells (neuroblasts) and the differentiation of their progeny. Despite notable advances over the last two decades, neurogenesis in other arthropod groups remains by comparison less well understood, hampering finer resolution of evolutionary cell type transformations and changes in the genetic regulatory network in some branches of the arthropod tree of life. Although the neurogenic cellular machinery in malacostracan crustaceans is well described morphologically, its genetic molecular characterization is pending. To address this, we established an in situ hybridization protocol for the crayfish Procambarus virginalis and studied embryonic expression patterns of a suite of key genes, encompassing three SoxB group transcription factors, two achaete-scute homologs, a Snail family member, the differentiation determinants Prospero and Brain tumor, and the neuron marker Elav. We document cell type expression patterns with notable similarities to insects and branchiopod crustaceans, lending further support to the homology of hexapod-crustacean neuroblasts and their cell lineages. Remarkably, in the crayfish head region, cell emigration from the neuroectoderm coupled with gene expression data points to a neuroblast-independent initial phase of brain neurogenesis. Further, SoxB group expression patterns suggest an involvement of Dichaete in segmentation, in concordance with insects. Our target gene set is a promising starting point for further embryonic studies, as well as for the molecular genetic characterization of subregions and cell types in the neurogenic systems in the adult crayfish brain.
Collapse
Affiliation(s)
- Georg Brenneis
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA.,Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| | - Martin Schwentner
- Naturhistorisches Museum Wien, Vienna, Austria.,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA
| |
Collapse
|
5
|
Carneiro VC, Lyko F. Rapid Epigenetic Adaptation in Animals and Its Role in Invasiveness. Integr Comp Biol 2021; 60:267-274. [PMID: 32333755 PMCID: PMC7526798 DOI: 10.1093/icb/icaa023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invasive species represent a serious ecological threat for many ecosystems worldwide and provide a unique opportunity to investigate rapid adaptation and evolution. Genetic variation allows populations of organisms to be both robust and adaptable to different environmental conditions over evolutionary timeframes. In contrast, invasive animals can rapidly adapt to new environments, with minimal genetic diversity. Thus, the extent to which environmental effects can trigger epigenetic responses is particularly interesting for understanding the role of epigenetics in rapid adaptation. In this review, we provide a brief overview of the different epigenetic mechanisms that control gene expression, and emphasize the importance of epigenetics for environmental adaptation. We also discuss recent publications that provide important examples for the role of epigenetic mechanisms in environmental adaptation. Furthermore, we present an overview of the current knowledge about epigenetic modulation as an adaptive strategy for invasive species. A particularly interesting example is provided by the marbled crayfish, a novel, monoclonal freshwater crayfish species that has colonized diverse habitats within a few years. Finally, we address important limitations of current approaches and highlight the potential importance of less well-known mechanisms for non-genetic organismal adaptation.
Collapse
Affiliation(s)
- Vitor Coutinho Carneiro
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Budd GE. The origin and evolution of the euarthropod labrum. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101048. [PMID: 33862532 DOI: 10.1016/j.asd.2021.101048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 05/16/2023]
Abstract
A widely (although not universally) accepted model of arthropod head evolution postulates that the labrum, a structure seen in almost all living euarthropods, evolved from an anterior pair of appendages homologous to the frontal appendages of onychophorans. However, the implications of this model for the interpretation of fossil arthropods have not been fully integrated into reconstructions of the euarthropod stem group, which remains in a state of some disorder. Here I review the evidence for the nature and evolution of the labrum from living taxa, and reconsider how fossils should be interpreted in the light of this. Identification of the segmental identity of head appendage in fossil arthropods remains problematic, and often rests ultimately on unproven assertions. New evidence from the Cambrian stem-group euarthropod Parapeytoia is presented to suggest that an originally protocerebral appendage persisted well up into the upper stem-group of the euarthropods, which prompts a re-evaluation of widely-accepted segmental homologies and the interpretation of fossil central nervous systems. Only a protocerebral brain was implicitly present in a large part of the euarthropod stem group, and the deutocerebrum must have been a relatively late addition.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala, SE 752 36, Sweden.
| |
Collapse
|
7
|
Passantino A, Elwood RW, Coluccio P. Why Protect Decapod Crustaceans Used as Models in Biomedical Research and in Ecotoxicology? Ethical and Legislative Considerations. Animals (Basel) 2021; 11:ani11010073. [PMID: 33401555 PMCID: PMC7823715 DOI: 10.3390/ani11010073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Current European legislation that protects animals used for scientific purposes excludes decapod crustaceans (for example, lobster, crab and crayfish) on the grounds that they are non-sentient and, therefore, incapable of suffering. However, recent work suggests that this view requires substantial revision. Our current understanding of the nervous systems and behavior of decapods suggests an urgent need to amend and update all relevant legislation. This paper examines recent experiments that suggest sentience and how that work has changed current opinion. It reflects on the use of decapods as models in biomedical research and in ecotoxicology, and it recommends that these animals should be included in the European protection legislation. Abstract Decapod crustaceans are widely used as experimental models, due to their biology, their sensitivity to pollutants and/or their convenience of collection and use. Decapods have been viewed as being non-sentient, and are not covered by current legislation from the European Parliament. However, recent studies suggest it is likely that they experience pain and may have the capacity to suffer. Accordingly, there is ethical concern regarding their continued use in research in the absence of protective measures. We argue that their welfare should be taken into account and included in ethical review processes that include the assessment of welfare and the minimization or alleviation of potential pain. We review the current use of these animals in research and the recent experiments that suggest sentience in this group. We also review recent changes in the views of scientists, veterinary scientists and animal charity groups, and their conclusion that these animals are likely to be sentient, and that changes in legislation are needed to protect them. A precautionary approach should be adopted to safeguard these animals from possible pain and suffering. Finally, we recommend that decapods be included in the European legislation concerning the welfare of animals used in experimentation.
Collapse
Affiliation(s)
- Annamaria Passantino
- Department of Veterinary Sciences, University of Messina-Polo Universitario Annunziata, 98168 Messina, Italy
- Correspondence:
| | - Robert William Elwood
- School of Biological Sciences, Queen’s University, Belfast BT9 5DL, Northern Ireland, UK;
| | - Paolo Coluccio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| |
Collapse
|
8
|
Immunolocalization of Neurotransmitters and Neuromodulators in the Developing Crayfish Brain. Methods Mol Biol 2020; 2047:271-291. [PMID: 31552660 DOI: 10.1007/978-1-4939-9732-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of neurosciences, the crayfish nervous system is an important model for understanding how arthropods process sensory stimuli and generate specific behaviors. Furthermore, crayfish embryos have been important study objects for well over 200 years. Immunohistochemistry against neurotransmitters, neuromodulators, and neurohormones is widely used to analyze the ontogeny of neurons in the emerging brain of several crustacean species and to date represents one of the most powerful approaches to analyze aspects of brain development in this group of organisms. In recent years, the analysis of brain development in crustaceans has gained new momentum by the establishment of the Marmorkrebs Procambarus virginalis (Marbled Crayfish), a parthenogenetic crayfish, as new model system. The embryonic development of marbled crayfish is well characterized and these animals can be easily cultivated in the lab. This chapter describes protocols for immunolocalization of neuroactive substances in the developing crayfish brain.
Collapse
|
9
|
Frase T, Richter S. The brain and the corresponding sense organs in calanoid copepods - Evidence of vestiges of compound eyes. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 54:100902. [PMID: 31991325 DOI: 10.1016/j.asd.2019.100902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Copepoda is one of the crustacean taxa with still unresolved phylogenetic relationships within Tetraconata. Recent phylogenomic studies place them close to Malacostraca and Cirripedia. Little is known about the morphological details of the copepod nervous system, and the available data are sometimes contradictory. We investigated several representatives of the subgroup Calanoida using immunohistochemical labeling against alpha-tubulin and various neuroactive substances, combining this with confocal laser scanning analysis and 3D reconstruction. Our results show that the studied copepods exhibit only a single anterior protocerebral neuropil which is connected to the nerves of two protocerebral sense organs: the frontal filament organ and a photoreceptor known as the Gicklhorn's organ. We suggest, on the basis of its position and the innervation it provides, that Gicklhorn's organ is homologous to the compound eye in arthropods. With regard to the frontal filament organ, we reveal detailed innervation to the lateral protocerebrum and the appearance of spherical bodies that stain intensely against alpha tubulin. A potential homology of these bodies to the onion bodies in malacostacan crustaceans and in Mystacocarida is suggested. The nauplius eye in all the examined calanoids shows the same basic pattern of innervation with the middle cup sending its neurites into the median nerve, while the axons of the lateral cups proceed into both the median and the lateral nerves. The early development of the axonal scaffold of the nauplius eye neuropil from the proximal parts of the nauplius eye nerves follows the same pattern as in other crustaceans. In our view, this specific innervation pattern is a further feature supporting the homology of the nauplius eye in crustaceans.
Collapse
Affiliation(s)
- Thomas Frase
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055, Rostock, Germany.
| | - Stefan Richter
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055, Rostock, Germany
| |
Collapse
|
10
|
Wang Y, Wang B, Shao X, Liu M, Jiang K, Wang M, Wang L. A comparative transcriptomic analysis in late embryogenesis of the red claw crayfish Cherax quadricarinatus. Mol Genet Genomics 2019; 295:299-311. [DOI: 10.1007/s00438-019-01621-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
|
11
|
Ložek F, Kuklina I, Grabicová K, Kubec J, Buřič M, Grabic R, Randák T, Císař P, Kozák P. Behaviour and cardiac response to stress in signal crayfish exposed to environmental concentrations of tramadol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105217. [PMID: 31200331 DOI: 10.1016/j.aquatox.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Evidence of the ecological and biological impact of pharmaceuticals in surface waters on aquatic organisms is increasing. Tramadol is a synthetic opioid analgesic used to treat chronic and acute pain. To investigate its long-term effects at environmentally relevant levels, we evaluated heart rate (HR) and locomotion of signal crayfish Pacifastacus leniusculus during a 21-day exposure to 1 μg L-1 tramadol followed by 14 days depuration. Locomotion and HR were recorded over a period 30 min before and 30 min after exposure to physiological fluids of an injured conspecific, a natural stressor, four times during the tramadol exposure and four times during depuration. A significant increase in HR following stress induction was found in the majority of tramadol-exposed and control crayfish, as well as significant group-specific HR changes between both groups. Locomotor activity during tramadol treatment differed from that during depuration, in general showing less time spent in locomotion and lower distance moved. The tramadol exposed crayfish exhibited higher velocity during depuration than during the exposure period. Results may suggest a potential shift in prey-predator relationships.
Collapse
Affiliation(s)
- F Ložek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic.
| | - I Kuklina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - K Grabicová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - J Kubec
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - M Buřič
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - R Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - T Randák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - P Císař
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - P Kozák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| |
Collapse
|
12
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
13
|
|
14
|
Nischik ES, Krieger J. Evaluation of standard imaging techniques and volumetric preservation of nervous tissue in genetically identical offspring of the crayfish Procambarus fallax cf. virginalis (Marmorkrebs). PeerJ 2018; 6:e5181. [PMID: 30018856 PMCID: PMC6044273 DOI: 10.7717/peerj.5181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/18/2018] [Indexed: 01/24/2023] Open
Abstract
In the field of comparative neuroanatomy, a meaningful interspecific comparison demands quantitative data referring to method-specific artifacts. For evaluating the potential of state-of-the-art imaging techniques in arthropod neuroanatomy, micro-computed X-ray microscopy (μCT) and two different approaches using confocal laser-scanning microscopy (cLSM) were applied to obtain volumetric data of the brain and selected neuropils in Procambarus fallax forma virginalis (Crustacea, Malacostraca, Decapoda). The marbled crayfish P. fallax cf. virginalis features a parthogenetic reproduction generating genetically identical offspring from unfertilized eggs. Therefore, the studied organism provides ideal conditions for the comparative analysis of neuroanatomical imaging techniques and the effect of preceding sample preparations of nervous tissue. We found that wet scanning of whole animals conducted with μCT turned out to be the least disruptive method. However, in an additional experiment it was discovered that fixation in Bouin’s solution, required for μCT scans, resulted in an average tissue shrinkage of 24% compared to freshly dissected and unfixed brains. The complete sample preparation using fixation in half-strength Karnovsky’s solution of dissected brains led to an additional volume decrease of 12.5%, whereas the preparation using zinc-formaldehyde as fixative resulted in a shrinkage of 5% in comparison to the volumes obtained by μCT. By minimizing individual variability, at least for aquatic arthropods, this pioneer study aims for the inference of method-based conversion factors in the future, providing a valuable tool for reducing quantitative neuroanatomical data already published to a common denominator. However, volumetric deviations could be shown for all experimental protocols due to methodological noise and/or phenotypic plasticity among genetically identical individuals. MicroCT using undried tissue is an appropriate non-disruptive technique for allometry of arthropod brains since spatial organ relationships are conserved and tissue shrinkage is minimized. Collecting tissue-based shrinkage factors according to specific sample preparations might allow a better comparability of volumetric data from the literature, even if another technique was applied.
Collapse
Affiliation(s)
- Emanuel S Nischik
- Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, Greifswald, Germany
| | - Jakob Krieger
- Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Spitzner F, Meth R, Krüger C, Nischik E, Eiler S, Sombke A, Torres G, Harzsch S. An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front Zool 2018; 15:27. [PMID: 29989069 PMCID: PMC6035453 DOI: 10.1186/s12983-018-0271-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The life history stages of brachyuran crustaceans include pelagic larvae of the Zoea type which grow by a series of moults from one instar to the next. Zoeae actively feed and possess a wide range of organ systems necessary for autonomously developing in the plankton. They also display a rich behavioural repertoire that allows for responses to variations in environmental key factors such as light, hydrostatic pressure, tidal currents, and temperature. Brachyuran larvae have served as distinguished models in the field of Ecological Developmental Biology fostering our understanding of diverse ecophysiological aspects such as phenotypic plasticity, carry-over effects on life-history traits, and adaptive mechanisms that enhance tolerance to fluctuations in environmental abiotic factors. In order to link such studies to the level of tissues and organs, this report analyses the internal anatomy of laboratory-reared larvae of the European shore crab Carcinus maenas. This species has a native distribution extending across most European waters and has attracted attention because it has invaded five temperate geographic regions outside of its native range and therefore can serve as a model to analyse thermal tolerance of species affected by rising sea temperatures as an effect of climate change. RESULTS Here, we used X-ray micro-computed tomography combined with 3D reconstruction to describe organogenesis in brachyuran larvae. We provide a detailed atlas of the larval internal organization to complement existing descriptions of its external morphology. In a multimethodological approach, we also used cuticular autofluorescence and classical histology to analyse the anatomy of selected organ systems. CONCLUSIONS Much of our fascination for the anatomy of brachyuran larvae stems from the opportunity to observe a complex organism on a single microscopic slide and the realization that the entire decapod crustacean bauplan unfolds from organ anlagen compressed into a miniature organism in the sub-millimetre range. The combination of imaging techniques used in the present study provides novel insights into the bewildering diversity of organ systems that brachyuran larvae possess. Our analysis may serve as a basis for future studies bridging the fields of evolutionary developmental biology and ecological developmental biology.
Collapse
Affiliation(s)
- Franziska Spitzner
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Rebecca Meth
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Christina Krüger
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Emanuel Nischik
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Stefan Eiler
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A/F, 11418 Stockholm, Sweden
| | - Andy Sombke
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Gabriela Torres
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| |
Collapse
|
16
|
Buřič M, Grabicová K, Kubec J, Kouba A, Kuklina I, Kozák P, Grabic R, Randák T. Environmentally relevant concentrations of tramadol and citalopram alter behaviour of an aquatic invertebrate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:226-232. [PMID: 29778006 DOI: 10.1016/j.aquatox.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution by pharmaceutically active compounds, used in quantities similar to those of pesticides and other organic micropollutants, is increasingly recognized as a major threat to the aquatic environment. These compounds are only partly removed from wastewaters and, despite their low concentrations, directly and indirectly affect behaviour of freshwater organisms in natural habitats. The aim of this study was to behaviourally assess the effects of an opioid painkiller (tramadol) and antidepressant drug (citalopram) on behaviour patterns of a clonal model species, marbled crayfish. Animals exposed to environmentally relevant concentrations of both tested compounds (∼1 μg l-1) exhibited significantly lower velocity and shorter distance moved than controls. Crayfish exposed to tramadol spent more time in shelters. Results were obtained by a simple and rapid method recommended as suitable for assessment of behaviour in aquatic organisms exposed to single pollutants and combinations.
Collapse
Affiliation(s)
- M Buřič
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic.
| | - K Grabicová
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - J Kubec
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - A Kouba
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - I Kuklina
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - P Kozák
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - R Grabic
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - T Randák
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| |
Collapse
|
17
|
Vogt G. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. J Biosci 2018. [DOI: 10.1007/s12038-018-9741-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Lin C, Cronin TW. Two visual systems in one eyestalk: The unusual optic lobe metamorphosis in the stomatopod Alima pacifica. Dev Neurobiol 2017; 78:3-14. [PMID: 29082670 DOI: 10.1002/dneu.22550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 11/11/2022]
Abstract
The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia-like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband-row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last-stage stomatopod larvae possess double-retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last-stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3-14, 2018.
Collapse
Affiliation(s)
- Chan Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| |
Collapse
|
19
|
Thoen HH, Strausfeld NJ, Marshall J. Neural organization of afferent pathways from the stomatopod compound eye. J Comp Neurol 2017; 525:3010-3030. [PMID: 28577301 DOI: 10.1002/cne.24256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 05/16/2017] [Indexed: 01/01/2023]
Abstract
Crustaceans and insects share many similarities of brain organization suggesting that their common ancestor possessed some components of those shared features. Stomatopods (mantis shrimps) are basal eumalacostracan crustaceans famous for their elaborate visual system, the most complex of which possesses 12 types of color photoreceptors and the ability to detect both linearly and circularly polarized light. Here, using a palette of histological methods we describe neurons and their neuropils most immediately associated with the stomatopod retina. We first provide a general overview of the major neuropil structures in the eyestalks lateral protocerebrum, with respect to the optical pathways originating from the six rows of specialized ommatidia in the stomatopod's eye, termed the midband. We then focus on the structure and neuronal types of the lamina, the first optic neuropil in the stomatopod visual system. Using Golgi impregnations to resolve single neurons we identify cells in different parts of the lamina corresponding to the three different regions of the stomatopod eye (midband and the upper and lower eye halves). While the optic cartridges relating to the spectral and polarization sensitive midband ommatidia show some specializations not found in the lamina serving the upper and lower eye halves, the general morphology of the midband lamina reflects cell types elsewhere in the lamina and cell types described for other species of Eumalacostraca.
Collapse
Affiliation(s)
- Hanne H Thoen
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona, 85721
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
20
|
Follmann R, Goldsmith CJ, Stein W. Spatial distribution of intermingling pools of projection neurons with distinct targets: A 3D analysis of the commissural ganglia in Cancer borealis. J Comp Neurol 2017; 525:1827-1843. [PMID: 28001296 DOI: 10.1002/cne.24161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/12/2016] [Accepted: 12/11/2016] [Indexed: 01/03/2023]
Abstract
Projection neurons play a key role in carrying long-distance information between spatially distant areas of the nervous system and in controlling motor circuits. Little is known about how projection neurons with distinct anatomical targets are organized, and few studies have addressed their spatial organization at the level of individual cells. In the paired commissural ganglia (CoGs) of the stomatogastric nervous system of the crab Cancer borealis, projection neurons convey sensory, motor, and modulatory information to several distinct anatomical regions. While the functions of descending projection neurons (dPNs) which control downstream motor circuits in the stomatogastric ganglion are well characterized, their anatomical distribution as well as that of neurons projecting to the labrum, brain, and thoracic ganglion have received less attention. Using cell membrane staining, we investigated the spatial distribution of CoG projection neurons in relation to all CoG neurons. Retrograde tracing revealed that somata associated with different axonal projection pathways were not completely spatially segregated, but had distinct preferences within the ganglion. Identified dPNs had diameters larger than 70% of CoG somata and were restricted to the most medial and anterior 25% of the ganglion. They were contained within a cluster of motor neurons projecting through the same nerve to innervate the labrum, indicating that soma position was independent of function and target area. Rather, our findings suggest that CoG neurons projecting to a variety of locations follow a generalized rule: for all nerve pathway origins, the soma cluster centroids in closest proximity are those whose axons project down that pathway.
Collapse
Affiliation(s)
- Rosangela Follmann
- School of Biological Sciences, Illinois State University, Normal, Illinois
| | | | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois
| |
Collapse
|
21
|
Frase T, Richter S. Nervous system development in the fairy shrimpBranchinellasp. (Crustacea: Branchiopoda: Anostraca): Insights into the development and evolution of the branchiopod brain and its sensory organs. J Morphol 2016; 277:1423-1446. [DOI: 10.1002/jmor.20585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/22/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Frase
- Universität Rostock, Institut für Biowissensschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; D-18055 Rostock Germany
| | - Stefan Richter
- Universität Rostock, Institut für Biowissensschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; D-18055 Rostock Germany
| |
Collapse
|
22
|
Krieger J, Braun P, Rivera NT, Schubart CD, Müller CH, Harzsch S. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction? PeerJ 2015; 3:e1433. [PMID: 26713228 PMCID: PMC4690415 DOI: 10.7717/peerj.1433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the "true crabs" (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal's life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.
Collapse
Affiliation(s)
- Jakob Krieger
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Philipp Braun
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Nicole T. Rivera
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Christoph D. Schubart
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, Department of General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Brenneis G, Scholtz G. Serotonin-immunoreactivity in the ventral nerve cord of Pycnogonida--support for individually identifiable neurons as ancestral feature of the arthropod nervous system. BMC Evol Biol 2015; 15:136. [PMID: 26156705 PMCID: PMC4496856 DOI: 10.1186/s12862-015-0422-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/23/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The arthropod ventral nerve cord features a comparably low number of serotonin-immunoreactive neurons, occurring in segmentally repeated arrays. In different crustaceans and hexapods, these neurons have been individually identified and even inter-specifically homologized, based on their soma positions and neurite morphologies. Stereotypic sets of serotonin-immunoreactive neurons are also present in myriapods, whereas in the investigated chelicerates segmental neuron clusters with higher and variable cell numbers have been reported. This led to the suggestion that individually identifiable serotonin-immunoreactive neurons are an apomorphic feature of the Mandibulata. To test the validity of this neurophylogenetic hypothesis, we studied serotonin-immunoreactivity in three species of Pycnogonida (sea spiders). This group of marine arthropods is nowadays most plausibly resolved as sister group to all other extant chelicerates, rendering its investigation crucial for a reliable reconstruction of arthropod nervous system evolution. RESULTS In all three investigated pycnogonids, the ventral walking leg ganglia contain different types of serotonin-immunoreactive neurons, the somata of which occurring mostly singly or in pairs within the ganglionic cortex. Several of these neurons are readily and consistently identifiable due to their stereotypic soma position and characteristic neurite morphology. They can be clearly homologized across different ganglia and different specimens as well as across the three species. Based on these homologous neurons, we reconstruct for their last common ancestor (presumably the pycnogonid stem species) a minimal repertoire of at least seven identified serotonin-immunoreactive neurons per hemiganglion. Beyond that, each studied species features specific pattern variations, which include also some neurons that were not reliably labeled in all specimens. CONCLUSIONS Our results unequivocally demonstrate the presence of individually identifiable serotonin-immunoreactive neurons in the pycnogonid ventral nerve cord. Accordingly, the validity of this neuroanatomical feature as apomorphy of Mandibulata is questioned and we suggest it to be ancestral for arthropods instead. The pronounced disparities between the segmental pattern in pycnogonids and the one of studied euchelicerates call for denser sampling within the latter taxon. By contrast, overall similarities between the pycnogonid and myriapod patterns may be indicative of single cell homologies in these two taxa. This notion awaits further substantiation from future studies.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, 10115, Berlin, Germany.
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
24
|
Jirikowski GJ, Wolff C, Richter S. Evolution of eumalacostracan development-new insights into loss and reacquisition of larval stages revealed by heterochrony analysis. EvoDevo 2015; 6:4. [PMID: 25973168 PMCID: PMC4429915 DOI: 10.1186/2041-9139-6-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/20/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Within Malacostraca (Crustacea), direct development and development through diverse forms of larvae are found. Recent investigations suggest that larva-related developmental features have undergone heterochronic evolution in Malacostraca. In the light of current phylogenetic hypotheses, the free-swimming nauplius larva was lost in the lineage leading to Malacostraca and evolved convergently in the malacostracan groups Dendrobranchiata and Euphausiacea. Here we reconstruct the evolutionary history of eumalacostracan (Malacostraca without Phyllocarida) development with regard to early appendage morphogenesis, muscle and central nervous system development, and determine the heterochronic transformations involved in changes of ontogenetic mode. RESULTS Timing of 33 developmental events from the different tissues was analyzed for six eumalacostracan species (material for Euphausiacea was not available) and one outgroup, using a modified version of Parsimov-based genetic inference (PGi). Our results confirm previous suggestions that the event sequence of nauplius larva development is partly retained in embryogenesis of those species which do not develop such a larva. The ontogenetic mode involving a nauplius larva was likely replaced by direct development in the malacostracan stem lineage. Secondary evolution of the nauplius larva of Dendrobranchiata from this ancestral condition, involved only a very small number of heterochronies, despite the drastic change of life history. In the lineage leading to Peracarida, timing patterns of nauplius-related development were lost. Throughout eumalacostracan evolution, events related to epidermal and neural tissue development were clearly less affected by heterochrony than events related to muscle development. CONCLUSIONS Weak integration between mesodermal and ectodermal development may have allowed timing in muscle formation to be altered independently of ectodermal development. We conclude that heterochrony in muscle development played a crucial role in evolutionary loss and secondary evolution of a nauplius larva in Malacostraca.
Collapse
Affiliation(s)
- Günther Joseph Jirikowski
- />Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universität Rostock, Universitätsplatz 2, 18055 Rostock, Germany
| | - Carsten Wolff
- />Institut für Biologie, Vergleichende Zoologie, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| | - Stefan Richter
- />Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universität Rostock, Universitätsplatz 2, 18055 Rostock, Germany
| |
Collapse
|
25
|
Development of the nervous system in Cephalocarida (Crustacea): early neuronal differentiation and successive patterning. ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-014-0248-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Brenneis G, Stollewerk A, Scholtz G. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 2013; 4:32. [PMID: 24289241 PMCID: PMC3879066 DOI: 10.1186/2041-9139-4-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. RESULTS We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. CONCLUSIONS Embryonic neurogenesis of Pseudopallene sp. combines features of central nervous system development that have been hitherto described separately in different arthropod taxa. The two-phase character of pycnogonid neurogenesis calls for a thorough reinvestigation of other non-model arthropods over the entire course of neurogenesis. With the currently available data, a common origin of pycnogonid neural stem cells and tetraconate neuroblasts remains unresolved. To acknowledge this, we present two possible scenarios on the evolution of arthropod neurogenesis, whereby Myriapoda play a key role in the resolution of this issue.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| |
Collapse
|
27
|
Stegner ME, Brenneis G, Richter S. The ventral nerve cord in Cephalocarida (Crustacea): New insights into the ground pattern of Tetraconata. J Morphol 2013; 275:269-94. [DOI: 10.1002/jmor.20213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Martin E.J. Stegner
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| |
Collapse
|
28
|
Zieger E, Bräunig P, Harzsch S. A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the marbled crayfish and the migratory locust: evidence for a homologous protocerebral group of neurons. ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:507-520. [PMID: 24067539 DOI: 10.1016/j.asd.2013.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
It is well established that the brains of adult malacostracan crustaceans and winged insects display distinct homologies down to the level of single neuropils such as the central complex and the optic neuropils. We wanted to know if developing insect and crustacean brains also share similarities and therefore have explored how neurotransmitter systems arise during arthropod embryogenesis. Previously, Sintoni et al. (2007) had already reported a homology of an individually identified cluster of neurons in the embryonic crayfish and insect brain, the secondary head spot cells that express the Engrailed protein. In the present study, we have documented the ontogeny of the serotonergic system in embryonic brains of the Marbled Crayfish in comparison to Migratory Locust embryos using immunohistochemical methods combined with confocal laser-scan microscopy. In both species, we found a cluster of early emerging serotonin-immunoreactive neurons in the protocerebrum with neurites that cross to the contralateral brain hemisphere in a characteristic commissure suggesting a homology of this cell cluster. Our study is a first step towards a phylogenetic analysis of neurotransmitter system development and shows that, as for the ventral nerve cord, traits related to neurogenesis in the brain can provide valuable hints for resolving the much debated question of arthropod phylogeny.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Ernst Moritz Arndt Universität Greifswald, Fachbereich Biologie, Zoologisches Institut und Museum, AG Cytology und Evolutionsbiologie, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - Peter Bräunig
- Unit for "Developmental Biology and Morphology of Animals", Institute for Biology II, RWTH Aachen University, Lukasstr. 1, D-52070 Aachen, Germany
| | - Steffen Harzsch
- Ernst Moritz Arndt Universität Greifswald, Fachbereich Biologie, Zoologisches Institut und Museum, AG Cytology und Evolutionsbiologie, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
29
|
Geiselbrecht H, Melzer RR. Nervous systems in 3D: a comparison of Caridean, anomuran, and brachyuran zoea-I (Decapoda). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:511-24. [PMID: 24038813 DOI: 10.1002/jez.b.22528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/22/2013] [Accepted: 07/31/2013] [Indexed: 11/06/2022]
Abstract
Using serial semi-thin sections and digital 3D-reconstructions we studied the nervous systems of zoea-I larvae in three decapod species, Hippolyte inermis (Leach, 1815), Porcellana platycheles (Pennant, 1777), and Pachygrapsus marmoratus (Fabricius, 1787). These taxa represent three decapod lineages, that is, Caridea, Anomura, and Brachyura, each characterized by specific zoea-I morphology. Special attention was paid to development of ganglia, neuropil composition, and segmental nerves. In all zoeae studied, the overall elements, for example, the segmental ganglia, their neuropils and most of the nerves of the adult decapod nervous system are present. Ongoing differentiation processes are observable as well, most obvious in segments with well-developed limbs the ganglia are in a more advanced stage of differentiation and more voluminous compared to segments with only limb buds or without externally visible limb anlagen. Intra- and interspecific comparisons indicate that neuromere differentiation thus deviates from a simple anterior-posterior gradient as, for example, posterior thoracic neuromeres are less developed than those of the pleon. In addition, the differences in the progress of the development of ganglia between the studied taxa can best be attributed to heterochronic mechanisms. Taxon and stage-specific morphologies indicate that neuronal architecture reflects both, morphogenesis to the adult stage and specific larval adaptions, and provides sets of characters relevant to understanding the corresponding phylogeny.
Collapse
Affiliation(s)
- Hannes Geiselbrecht
- Zoologische Staatssammlung München, München, Germany; Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | |
Collapse
|
30
|
Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda? BMC Evol Biol 2013; 13:119. [PMID: 23758940 PMCID: PMC3687579 DOI: 10.1186/1471-2148-13-119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin. Results The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing. Conclusions The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal’s trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda.
Collapse
|
31
|
Kenning M, Müller C, Wirkner CS, Harzsch S. The Malacostraca (Crustacea) from a neurophylogenetic perspective: New insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). ZOOL ANZ 2013. [DOI: 10.1016/j.jcz.2012.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Polanska MA, Tuchina O, Agricola H, Hansson BS, Harzsch S. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab. Mol Brain 2012; 5:29. [PMID: 22967845 PMCID: PMC3523048 DOI: 10.1186/1756-6606-5-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal's first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins) integrate into this system, a large family of neuropeptides that share the C-terminal motif -YXFGLamide. RESULTS We used an antiserum that was raised against the A-type Diploptera punctata (Dip)-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae). Allatostatin A-like immunoreactivity (ASTir) was widely distributed in the animal's brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory glomeruli are also mostly distinct. CONCLUSIONS We discuss our findings against the background of the known neurotransmitter complexity in the crustacean olfactory pathway and summarize what is now about the neuronal connectivity in the olfactory glomeruli. A-type allatostatins, in addition to their localization in protocerebral brain areas, seem to be involved in modulating the olfactory signal at the level of the deutocerebrum. They contribute to the complex local circuits within the crustacean olfactory glomeruli the connectivity within which as yet is completely unclear. Because the glomeruli of C. clypeatus display a distinct pattern of regionalization, their olfactory systems form an ideal model to explore the functional relevance of glomerular compartments and diversity of local olfactory interneurons for olfactory processing in crustaceans.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
33
|
Soedarini B, Klaver L, Roessink I, Widianarko B, van Straalen NM, van Gestel CAM. Copper kinetics and internal distribution in the marbled crayfish (Procambarus sp.). CHEMOSPHERE 2012; 87:333-8. [PMID: 22212897 DOI: 10.1016/j.chemosphere.2011.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/08/2011] [Indexed: 05/25/2023]
Abstract
Metal pollution e.g. copper, in water bodies occurs worldwide. Although copper is an essential trace metal, at certain levels it is still considered as pollutant. The aim of this study was to investigate the effect of exposure concentration on copper bioaccumulation in marbled crayfish (Procambarus sp.) by determining uptake and elimination kinetics. Crayfish were exposed to sub-lethal copper concentrations (average measured concentrations of 0.031 and 0.38 mg Cu L(-1)) for 14 d and transferred to copper-free water for another 14 d. At different time points during the uptake and elimination phases copper concentrations were measured in five organs (exoskeleton, gills, muscle, ovaries and hepatopancreas). At 0.031 mg Cu L(-1), copper levels in the crayfish organs were not significantly increased compared to the control animals, suggesting effective regulation. Exposure to 0.38 mg Cu L(-1) did lead to not significantly increased copper levels in muscles and ovaries, while the gills and exoskeleton, which are in direct contact with the water, showed significantly higher copper concentrations. In these four organs, copper showed fast uptake kinetics with equilibrium reached within 10 d of exposure. Copper accumulation was highest in the hepatopancreas; uptake in this storage organ steadily increased with time and did not reach equilibrium within the 14-d exposure period. Copper accumulation levels in the marbled crayfish found in this study were hepatopancreas>gills>exoskeleton>muscle.
Collapse
Affiliation(s)
- B Soedarini
- Department of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Krieger J, Sombke A, Seefluth F, Kenning M, Hansson BS, Harzsch S. Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs. Cell Tissue Res 2012; 348:47-69. [DOI: 10.1007/s00441-012-1353-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/27/2012] [Indexed: 12/12/2022]
|
35
|
Sintoni S, Benton JL, Beltz BS, Hansson BS, Harzsch S. Neurogenesis in the central olfactory pathway of adult decapod crustaceans: development of the neurogenic niche in the brains of procambarid crayfish. Neural Dev 2012; 7:1. [PMID: 22225949 PMCID: PMC3266201 DOI: 10.1186/1749-8104-7-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/06/2012] [Indexed: 12/13/2022] Open
Abstract
Background In the decapod crustacean brain, neurogenesis persists throughout the animal's life. After embryogenesis, the central olfactory pathway integrates newborn olfactory local and projection interneurons that replace old neurons or expand the existing population. In crayfish, these neurons are the descendants of precursor cells residing in a neurogenic niche. In this paper, the development of the niche was documented by monitoring proliferating cells with S-phase-specific markers combined with immunohistochemical, dye-injection and pulse-chase experiments. Results Between the end of embryogenesis and throughout the first post-embryonic stage (POI), a defined transverse band of mitotically active cells (which we will term 'the deutocerebral proliferative system' (DPS) appears. Just prior to hatching and in parallel with the formation of the DPS, the anlagen of the niche appears, closely associated with the vasculature. When the hatchling molts to the second post-embryonic stage (POII), the DPS differentiates into the lateral (LPZ) and medial (MPZ) proliferative zones. The LPZ and MPZ are characterized by a high number of mitotically active cells from the beginning of post-embryonic life; in contrast, the developing niche contains only very few dividing cells, a characteristic that persists in the adult organism. Conclusions Our data suggest that the LPZ and MPZ are largely responsible for the production of new neurons in the early post-embryonic stages, and that the neurogenic niche in the beginning plays a subordinate role. However, as the neuroblasts in the proliferation zones disappear during early post-embryonic life, the neuronal precursors in the niche gradually become the dominant and only mechanism for the generation of new neurons in the adult brain.
Collapse
Affiliation(s)
- Silvia Sintoni
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
36
|
Vogt G. Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. J Biosci 2011; 36:377-82. [PMID: 21654090 DOI: 10.1007/s12038-011-9070-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Wilson CH, Hartline DK. Novel organization and development of copepod myelin. i. ontogeny. J Comp Neurol 2011; 519:3259-80. [DOI: 10.1002/cne.22695] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Ungerer P, Geppert M, Wolff C. Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana. Integr Zool 2011; 6:28-44. [PMID: 21392360 DOI: 10.1111/j.1749-4877.2010.00227.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the formation of the major axon pathways in the embryonic central and peripheral nervous systems of the amphipod crustacean Orchestia cavimana Heller, 1865 by means of antibody staining against acetylated alpha-tubulin. The data add to a long list of previous studies of various other aspects of development in Orchestia and provide a basis for future studies of neurogenesis on a deeper cellular and molecular level. Orchestia exhibits a tripartite dorsal brain, which is a characteristic feature of euarthropods. Its anlagen are the first detectable structures in the developing nervous system and can be traced back to distinct neuronal cell clusters in the early embryo. The development of the ventral nervous system proceeds with an anteroposterior gradient of development. In each trunk segment, the longitudinal connectives and the anterior commissure form first, followed by the intersegmental nerve, the posterior commissure and segmental nerves, respectively. A single commissure of a vestigial seventh pleonal segment is found. In the peripheral nervous system we observe a spatial and temporal pattern of leg innervation, which is strikingly similar in both limb types, the uniramous pereopods and the biramous pleopods. A proximal leg nerve splitting distally into two separated nerves probably reflects a general feature of crustaceans.
Collapse
Affiliation(s)
- Petra Ungerer
- Humboldt University Berlin, Department of Biology, Comparative Zoology, Berlin, Germany
| | | | | |
Collapse
|
39
|
Missbach C, Harzsch S, Hansson BS. New insights into an ancient insect nose: the olfactory pathway of Lepismachilis y-signata (Archaeognatha: Machilidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:317-333. [PMID: 21665539 DOI: 10.1016/j.asd.2011.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 03/07/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Hexapods most likely derived from an aquatic ancestor, which they shared with crustaceans. During the transition from water to land, their sensory systems had to face the new physiological demands that terrestrial conditions impose. This process also concerns the sense of smell and, more specifically, detection of volatile, air-borne chemicals. In insects, olfaction plays an important role in orientation, mating choice, and food and host finding behavior. The first integration center of odor information in the insect brain is the antennal lobe, which is targeted by the afferents from olfactory sensory neurons on the antennae. Within the antennal lobe of most pterygote insects, spherical substructures called olfactory glomeruli are present. In order to gain insights into the evolution of the structure of the central olfactory pathway in insects, we analyzed a representative of the wingless Archaeognatha or jumping bristletails, using immunocytochemistry, antennal backfills and histological section series combined with 3D reconstruction. In the deutocerebrum of Lepismachilis y-signata, we found three different neuropil regions. Two of them show a glomerular organization, but these glomeruli differ in their shape from those in all other insect groups. The connection of the glomerular neuropils to higher brain centers remains unclear and mushroom bodies are absent as reported from other archaeognathan species. We discuss the evolutionary implications of these findings.
Collapse
Affiliation(s)
- Christine Missbach
- Max-Planck-Institute for Chemical Ecology, Department of Neuroethology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
40
|
Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 2010; 7:29. [PMID: 21062451 PMCID: PMC2996375 DOI: 10.1186/1742-9994-7-29] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. RESULTS We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. CONCLUSIONS The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.
Collapse
Affiliation(s)
- Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Rudi Loesel
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Günter Purschke
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Andreas Schmidt-Rhaesa
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Thomas Stach
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Lars Vogt
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Andreas Wanninger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Carmen Döring
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Simone Faller
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Martin Fritsch
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Peter Grobe
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Carsten M Heuer
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Sabrina Kaul
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Ole S Møller
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Carsten HG Müller
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Verena Rieger
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Birgen H Rothe
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Martin EJ Stegner
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Steffen Harzsch
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| |
Collapse
|
41
|
Sombke A, Harzsch S, Hansson BS. Organization of Deutocerebral Neuropils and Olfactory Behavior in the Centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses 2010; 36:43-61. [DOI: 10.1093/chemse/bjq096] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
42
|
Fritsch M, Richter S. The formation of the nervous system during larval development in Triops cancriformis (Bosc) (crustacea, Branchiopoda): An immunohistochemical survey. J Morphol 2010; 271:1457-81. [DOI: 10.1002/jmor.10892] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front Zool 2010; 7:25. [PMID: 20831795 PMCID: PMC2945339 DOI: 10.1186/1742-9994-7-25] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae), is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae) such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide. RESULTS The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side) associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two suggest that B. latro has visual and mechanosensory skills that are comparable to those of marine Crustacea. CONCLUSIONS In parallel to previous behavioral findings that B. latro has aerial olfaction, our results indicate that their central olfactory pathway is indeed most prominent. Similar findings from the closely related terrestrial hermit crab Coenobita clypeatus suggest that in Coenobitidae, olfaction is a major sensory modality processed by the brain, and that for these animals, exploring the olfactory landscape is vital for survival in their terrestrial habitat. Future studies on terrestrial members of other crustacean taxa such as Isopoda, Amphipoda, Astacida, and Brachyura will shed light on how frequently the establishment of an aerial sense of olfaction evolved in Crustacea during the transition from sea to land. Amounting to ca. 1,000,000, the numbers of interneurons that analyse the olfactory input in B. latro brains surpasses that in other terrestrial arthropods, as e.g. the honeybee Apis mellifera or the moth Manduca sexta, by two orders of magnitude suggesting that B. latro in fact is a land-living arthropod that has devoted a substantial amount of nervous tissue to the sense of smell.
Collapse
Affiliation(s)
- Jakob Krieger
- Institute of Zoology, Department of Cytology and Evolution, University of Greifswald, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Renate E Sandeman
- Justus-Liebig-Universität Gießen, Fachbereich 06 Psychologie und Sportwissenschaft, Abteilung für Entwicklungspsychologie, Otto-Behaghel-Strasse 10F, D-35394 Giessen, Germany
| | - David C Sandeman
- Wellesley College, 106 Central Street, Wellesley College, Department of Biological Sciences, Wellesley, MA 02481-8203, USA
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Steffen Harzsch
- Institute of Zoology, Department of Cytology and Evolution, University of Greifswald, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany.,Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
44
|
Muscle development in the marbled crayfish--insights from an emerging model organism (Crustacea, Malacostraca, Decapoda). Dev Genes Evol 2010; 220:89-105. [PMID: 20711608 DOI: 10.1007/s00427-010-0331-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
The development of the crustacean muscular system is still poorly understood. We present a structural analysis of muscle development in an emerging model organism, the marbled crayfish--a representative of the Cambaridae. The development and differentiation of muscle tissue and its relation to the mesoderm-forming cells are described using fluorescent and non-fluorescent imaging tools. We combined immunohistochemical staining for early isoforms of myosin heavy chain with phallotoxin staining of F-actin, which distinguishes early and more differentiated myocytes. We were thus able to identify single muscle precursor cells that serve as starting points for developing muscular units. Our investigations show a significant developmental advance in head appendage muscles and in the posterior end of the longitudinal trunk muscle strands compared to other forming muscle tissues. These findings are considered evolutionary relics of larval developmental features. Furthermore, we document the development of the muscular heart tissue from myogenic precursors and the formation and differentiation of visceral musculature.
Collapse
|
45
|
Liu Y, Huang M, Zhang Y, Li H, Xiao L, Liu J, Yuan B, Qin M, Li C, Yang M, Cai W. Screening genes related to development and injury of the mouse optic nerve by cDNA microarrays. Cell Mol Neurobiol 2010; 30:869-76. [PMID: 20336483 DOI: 10.1007/s10571-010-9515-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/10/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to screen genes related to the development and injury of the mouse optic nerve so as to provide possible target genes for gene-engineering therapy of central nervous system (CNS) injury. Gene expression was profiled by cDNA microarrays in the mouse superior colliculus at 8-time points during the development or following injury of the optic nerve; consequently, 1,095 highly expressed genes (ratio > or =2) were identified. Then, these genes were categorized functionally; there were 561 genes (51.19%) with unidentified functions and 534 genes (48.81%) with identified or partially identified functions. After discounting the overlapping genes, 486 genes with identified or partially identified functions were categorized into 17 functional groups. The 17 functional groups were as follows: I transcription regulation, II signal transduction, III protein synthesis, IV materials transporting, V RNA processing, VI metabolism-related genes, VII cell cycle or apoptosis-related genes, VIII extracellular matrix, IX protein folding and degradation, X cytoskeleton, XI histone metabolism, XII nervous system specific functional genes, XIII tumor related genes, XIV DNA replication and repair, XV axon growth and guidance, XVI immune response, and XVII cell adhesion. These genes may play key roles in the development, injury, and repairment of the optic nerve.
Collapse
Affiliation(s)
- Yunlai Liu
- Department of Histology & Embryology, The Third Military Medical University, Chongqing, 400038, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Brenneis G, Richter S. Architecture of the nervous system in mystacocarida (Arthropoda, crustacea)--an immunohistochemical study and 3D reconstruction. J Morphol 2010; 271:169-89. [PMID: 19708064 DOI: 10.1002/jmor.10789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mystacocarida is a species-poor group of minute crustaceans with unclear phylogenetic affinities. Previous studies have highlighted the putative "primitiveness" of several mystacocarid features, including the architecture of the nervous system. Recent studies on arthropod neuroarchitecture have provided a wealth of characters valuable for phylogenetic reconstructions. To permit and facilitate comparison with these data, we used immunohistochemical labeling (against acetylated alpha-tubulin, serotonin and FMRFamide) on the mystacocarid Derocheilocaris remanei, analyzing it with confocal laser-scanning microscopy and 3D reconstruction. The mystacocarid brain is fairly elongated, exhibiting a complicated stereotypic arrangement of neurite bundles. However, none of the applied markers provided evidence of structured neuropils such as a central body or olfactory glomeruli. A completely fused subesophageal ganglion is not present, all segmental soma clusters of the respective neuromeres still being delimitable. The distinct mandibular commissure comprises neurite bundles from more anterior regions, leading us to propose that it may have fused with an ancestral posterior tritocerebral commissure. The postcephalic ventral nervous system displays a typical ladder-like structure with separated ganglia which bears some resemblance to larval stages in other crustaceans. Ganglia and commissures are also present in the first three limbless "abdominal" segments, which casts doubt on the notion of a clear-cut distinction between thorax and abdomen. An unpaired longitudinal median neurite bundle is present and discussed as a potential tetraconate autapomorphy. Additionally, a paired latero-longitudinal neurite bundle extends along the trunk. It is connected to the intersegmental nerves and most likely fulfils neurohemal functions. We report the complete absence of serotonin-ir neurons in the ventral nervous system, which is a unique condition in arthropods and herein interpreted as a derived character.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften/Allgemeine und Spezielle Zoologie, Universitätsplatz 2, 18055 Rostock, Germany
| | | |
Collapse
|
47
|
Mayer G, Whitington PM. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol 2009; 335:263-75. [PMID: 19683520 DOI: 10.1016/j.ydbio.2009.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/02/2009] [Accepted: 08/10/2009] [Indexed: 12/20/2022]
Abstract
A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran "ventral organs," previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda+Onychophora+Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.
Collapse
Affiliation(s)
- Georg Mayer
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
48
|
Pygmy squids and giant brains: Mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Methods 2009; 179:63-7. [DOI: 10.1016/j.jneumeth.2009.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/12/2009] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
|
49
|
Bitsch J, Bitsch C. The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. ACTA ZOOL-STOCKHOLM 2009. [DOI: 10.1111/j.1463-6395.2009.00402.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Harzsch S, Dircksen H, Beltz BS. Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 2008; 335:417-29. [PMID: 19034522 DOI: 10.1007/s00441-008-0728-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
We have examined the development of pigment-dispersing hormone (PDH)-immunoreactive neurons in embryos of the American lobster Homarus americanus Milne Edwards, 1837 (Decapoda, Reptantia, Homarida) by using an antiserum against beta-PDH. This peptide is detectable in the terminal medulla of the eyestalks and the protocerebrum where PDH immunoreactivity is present as early as 20% of embryonic development. During ontogenesis, an elaborate system of PDH-immunoreactive neurons and fibres develops in the eyestalks and the protocerebrum, whereas less labelling is present in the deuto- and tritocerebrum and the ventral nerve cord. The sinus gland is innervated by PDH neurites at hatching. This pattern of PDH immunoreactivity has been compared with that found in various insect species. Neurons immunoreactive to pigment-dispersing factor in the medulla have been shown to be a central component of the system that generates the circadian rhythm in insects. Our results indicate that, in view of the position of the neuronal somata and projection patterns of their neurites, the immunolabelled medulla neurons in insects have homologous counterparts in the crustacean eyestalk. Since locomotory and other activities in crustaceans follow distinct circadian rhythms comparable with those observed in insects, we suggest that PDH-immunoreactive medulla neurons in crustaceans are involved in the generation of these rhythms.
Collapse
Affiliation(s)
- Steffen Harzsch
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | | | | |
Collapse
|