1
|
Tang Y, Chen S, Chen L, Ouyang K, Chen H, Wang W. Effects of a diet supplemented with polysaccharides from Pogostemon cablin on growth performance, meat quality, and antioxidant capacity in Chongren Partridge chickens. Front Vet Sci 2024; 11:1381188. [PMID: 38863448 PMCID: PMC11165624 DOI: 10.3389/fvets.2024.1381188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
In this study, the Pogostemon cablin polysaccharides (PCPs) were heteropolysaccharides with molecular weights of 63.17 kDa and 8.99 kDa, and their total carbohydrate content was 76.17 ± 0.23%, uronic acid content was 19.92 ± 0.42%, and protein content was 1.24 ± 0.07%. PCP is composed of arabinose, galactose, glucose, and glucuronic acid, with a molar ratio of 0.196:0.249:0.451:0.104. In addition, we further investigated the effects of the diet supplemented with different doses of PCP on growth performance, meat quality, and anti-oxidant capacity in Chongren Partridge chickens. A total of 200 chickens were randomly allocated into 4 treatments, and fed with a basal diet of 0 (CON), 200 (LPCP), 400 (MPCP), and 800 (HPCP) mg/kg PCP for a 14-day prefeeding period and a formal experimental period of 56 days. Results showed that dietary PCP significantly increased final body weight (BW), average daily gain (ADG), and decreased feed-to-gain ratio (F/G) from days 1 to 56. Meanwhile, dietary PCP reduced yellowness (b∗) values and increased redness (a∗) values at 24 h in breast muscles (p < 0.05). Furthermore, LPCP and MPCP significantly increased the level of guanylic acid (GMP) (p < 0.05). MPCP increased the content of free amino acids (isoleucine, leucine, lysine, methionine, threonine, valine, alanine, glutamic acid, serine, cysteine), total essential amino acid (EAA), total flavor amino acid (FAA), total AA, the content of fatty acids (c14:1, c16:1, and c22:2), and monounsaturated fatty acids (MUFAs) in the breast muscle when compared to CON (p < 0.05). In addition, MPCP significantly reduced the content of malondialdehyde (MDA) and increased the transcript abundances of fatty acid desaturase 2 (FADS2), fatty acid synthase (FAS), lipoprotein lipase (LPL), and sterol regulatory element binding protein-1 (SREBP-1) in the breast muscles of the chickens (p < 0.05). In light of the aforementioned results, PCP at 400 mg/kg could be used as an effective additive because it not only promotes the growth performance of Chongren Partridge chickens but also shows a conducive role in meat quality, especially in meat flavor.
Collapse
Affiliation(s)
- Yantian Tang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Si Chen
- School of Life Science and Pharmacy, Jiujiang University, Jiujiang, China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hui Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
2
|
Yan E, Guo J, Yin J. Nutritional regulation of skeletal muscle energy metabolism, lipid accumulation and meat quality in pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:185-192. [PMID: 37808951 PMCID: PMC10556049 DOI: 10.1016/j.aninu.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 10/10/2023]
Abstract
The quality of pork determines consumers' purchase intention, which directly affects the economic value of pork. Minimizing the proportion of inferior pork and producing high quality pork are the ultimate goals of the pig industry. Muscle energy metabolism, serving as a regulative hub in organism energy expenditure and storage as a fat deposit, is compatible with myofiber type composition, affecting meat color, intramuscular fat content, tenderness, pH values and drip loss. Increasing data illustrate that dietary nutrients and bioactive ingredients affect muscle energy metabolism, white adipose browning and fat distribution, and myofiber type composition in humans, and rodents. Recently, some studies have shown that modulating muscle energy metabolism and lipid accumulation through nutritional approaches could effectively improve meat quality. This article reviews the progress and development in this field, and specifically discusses the impacts of dietary supply of amino acids, lipids, and gut microbiota as well as maternal nutrition on skeletal muscle energy metabolism, lipid accumulation and meat quality of pigs, so as to provide comprehensive overview with respect to effective avenues for improving meat quality.
Collapse
Affiliation(s)
- Enfa Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Rocha GC, Duarte ME, Kim SW. Advances, Implications, and Limitations of Low-Crude-Protein Diets in Pig Production. Animals (Basel) 2022; 12:3478. [PMID: 36552397 PMCID: PMC9774321 DOI: 10.3390/ani12243478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Currently, five crystalline essential amino acids (Lys, Met, Thr, Trp, and Val) are generally used, allowing formulation of low-crude-protein (CP) diets. Moreover, Ile may also be used depending on its economic value and the specific feeding program. Experimentally, it has been shown that further reduced CP levels can be achieved by supplemental His, Leu, and Phe to the diets. However, decreasing the dietary CP level while maintaining optimal ratios of amino acids has shown contradictory effects on pigs' growth performance. Due to the divergence in the literature and the importance for practical formulation strategies in the swine industry, a literature review and a meta-analysis were performed to estimate the minimum CP level that would not compromise pig performance. Based on the present review, there is a minimum CP level after which the growth performance of pigs can be compromised, even though diets are balanced for essential amino acids. Considering average daily gain and gain to feed, respectively, these levels were estimated to be 18.4% CP (95% confidence interval [CI]: 16.3 to 18.4) and 18.3% CP (95% CI: 17.4 to 19.2) for nursery, 16.1% CP (95% CI: 16.0 to 16.2) and 16.3% CP (95% CI: 14.5 to 18.0) for growing, and 11.6% CP (95% CI: 10.8 to 12.3) and 11.4% CP (95% CI: 10.3 to 12.5) for finishing pigs.
Collapse
Affiliation(s)
- Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Yu J, Zheng C, Zheng J, Duan G, Guo Q, Zhang P, Wan M, Duan Y. Development of Intestinal Injury and Restoration of Weaned Piglets under Chronic Immune Stress. Antioxidants (Basel) 2022; 11:antiox11112215. [PMID: 36358587 PMCID: PMC9686571 DOI: 10.3390/antiox11112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to investigate the effects of lipopolysaccharide (LPS)-induced chronic immune stress on intestinal morphology and function, immune system, oxidative status, and mitochondrial function in piglets. Fifty healthy Duroc × Landrace × Yorkshire piglets (21 ± 2 days old, barrow, 6.98 ± 0.14 kg body weight) were selected and randomly allotted to five groups, which were slaughtered at 0 (0 group), 1, 5, 9, and 15 d of LPS injection. The results showed that compared with the piglets without LPS injection, LPS injection significantly impaired the intestinal morphology and permeability at 1, 5, and 9 d, as manifested by the increased serum lactic acid and decreased ratio of villus height to crypt depth (p < 0.05). Moreover, intestinal inflammation and oxidative and mitochondrial injury were caused at 1 d, as manifested by upregulated IL-6 mRNA expression, increased malondialdehyde content, and impaired mitochondrial morphology (p < 0.05). However, these parameters were restored to levels identical to 0 group at 9~15 d, accompanied by significantly increased antioxidant capacity, enhanced protein expression of CD3+ and CD68+, and upregulated mRNA abundance of genes related to mitochondrial biogenesis and functions (p < 0.05). Collectively, these results suggest that the intestinal injury of piglets caused by chronic immune stress could be self-repaired.
Collapse
Affiliation(s)
- Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: ; Tel.: +86-0731-8461-9767
| |
Collapse
|
5
|
Fermented mixed feed alters growth performance, carcass traits, meat quality and muscle fatty acid and amino acid profiles in finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:87-95. [PMID: 36632618 PMCID: PMC9822949 DOI: 10.1016/j.aninu.2022.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
This study was conducted to investigate the effects of fermented mixed feed (FMF) on growth performance, carcass traits, meat quality, muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs. In the present study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen. The dietary treatments included a basal diet (CON), a basal diet + 5% FMF and a basal diet + 10% FMF. The experiment lasted 38 d after 4 d of acclimation. The results showed that 5% and 10% FMF significantly increased the average daily gain (ADG) of the females but not the males (P < 0.05), but FMF supplementation showed no impact on carcass traits. Moreover, 10% FMF supplementation increased the meat color45 min and meat color24 h values, while it decreased the shear force relative to CON (P < 0.05). In addition, 10% FMF significantly increased the contents of flavor amino acids (FAA), total essential AA (EAA), total non-EAA (NEAA) and total AA relative to CON (P < 0.05). Furthermore, the diet supplemented with 10% FMF significantly increased the concentration of n-3 polyunsaturated fatty acids (PUFA), n-6 PUFA and total PUFA, and the PUFA to saturated fatty acids ratio (P < 0.05), suggesting that FMF supplementation increased meat quality. Moreover, compared with the CON, 10% FMF supplementation increased the mRNA expression of lipogenic genes, including CEBPα, PPARγ, SREBP1 and FABP4, and upregulated the expression of unsaturated fatty acid synthesis (ACAA1 and FADS2). Together, our results suggest that 10% FMF dietary supplementation improved the female pigs' growth performance, improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs. This study provides a reference for the production of high-quality pork.
Collapse
|
6
|
Dietary isoleucine affects muscle fatty acid and amino acid profiles through regulating lipid metabolism and autophagy in hybrid catfish Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂. ANIMAL NUTRITION 2022; 11:369-380. [PMID: 36329685 PMCID: PMC9618983 DOI: 10.1016/j.aninu.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/07/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
The present study explored the impacts of Ile on muscle fatty acid and amino acid profiles, lipid metabolism, and autophagy in hybrid catfish. Seven isonitrogenous (387.8 g/kg protein) semi-purified diets were formulated to contain 5.0 (control), 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile/kg diet respectively. The fish (initial weight of 33.11 ± 0.09 g) were randomly assigned to 7 groups for a 56-day trial. Each group has 3 replicates with 30 fish per replicate, fed at 08:00 and 18:00 each day. Results showed that muscle protein and lipid, C14:0, C18:0, C22:0, C14:1, C18:1n-9, polyunsaturated fatty acid (PUFA), Arg, Ile, Ala, Cys, Gly, Tyr, essential amino acid (EAA), and total amino acid (TAA) contents and flavor amino acid (FAA)/TAA in muscle had positive linear and/or quadratic responses to dietary Ile levels (P < 0.05). Fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), acetyl-CoA carboxylase (ACC), and lipoprotein lipase (LPL) activities had positive linear and/or quadratic responses, but carnitine palmitoyl transferase 1 (CPT1) activity had a negative response with increasing dietary Ile levels (P < 0.05). The mRNA expressions of FAS, SCD, ACC, LPL, fatty acid binding protein 4 (FABP4), FATP1, sterol response element-binding protein 1c (SREBP-1c), sequestosome 1 (SQSTM1), and adenosine 5′-monophosphate-activated protein kinase (AMPK) had positive linear and/or quadratic responses to dietary Ile levels (P < 0.05). The mRNA expressions of hormone-sensitive lipase (HSL), CPT1, peroxisome proliferator-activated receptor α (PPARα), PPARγ, uncoordinated 51-like kinase 1 (ULK1), beclin1 (Becn1), autophagy-related protein 9α (Atg9α), Atg4b, Atg7, autophagy marker light chain 3 B (LC3B), and SQSTM1 in muscle had negative linear and/or quadratic responses to dietary Ile levels (P < 0.05). The p-AMPK and ULK1 protein levels, and p-AMPK/AMPK were decreased by 12.5 g Ile/kg in the diet (P < 0.05). Finally, SQSTM1 protein level had the opposite effect (P < 0.05). The above results indicate that dietary Ile improves fish muscle fatty acid and amino acid profiles potentially via respectively regulating lipid metabolism and autophagy. The Ile requirement of hybrid catfish (33 to 72 g) were estimated to be 12.63, 13.77, 13.75, 11.45, 10.50, 12.53 and 12.21 g/kg diet based on the regression analysis of protein, lipid, SFA, PUFA, FAA, EAA, and TAA muscle contents, respectively.
Collapse
|
7
|
The Effect of Dietary Leucine Supplementation on Antioxidant Capacity and Meat Quality of Finishing Pigs under Heat Stress. Antioxidants (Basel) 2022; 11:antiox11071373. [PMID: 35883864 PMCID: PMC9312205 DOI: 10.3390/antiox11071373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
This study examined the effects of dietary leucine supplements on antioxidant capacity and meat quality in growing-finishing pigs. A total of 24 crossbred (Duroc × Landrace × Yorkshire) pigs with an average initial weight of 68.33 ± 0.97 kg were randomly allotted to three treatment groups. All pigs were exposed to constant heat stress. Each group of pigs was fed a basal diet, or a diet supplemented with increasing levels of leucine (0.25% or 0.50%). The results showed that leucine intake could improve average daily gain and reduce feed/gain of finishing pigs under heat stress (p < 0.05). The supplementation of leucine could improve the carcass slant length (p = 0.09), and dramatically increased loin-eye area of the finishing pigs (p < 0.05) but had no significant effect on other carcass traits. Compared with the control group, 0.50% leucine markedly reduced drip loss and shear force of longissimus dorsi muscle, and increased pH value at 24 h after slaughter (p < 0.05). Dietary supplementation of 0.25% leucine increased the contents of inosine monophosphate and intramuscular fat in biceps femoris muscle (p < 0.05). Supplementation of 0.25% or 0.50% leucine significantly stimulated the activities of antioxidant enzymes while reduced the level of MDA in serum, liver and longissimus dorsi muscle (p < 0.05). Compared with the control group, 0.50% leucine supplementation markedly modulated the relative mRNA expression levels of genes related to muscle fiber type and mitochondrial function in longissimus dorsi muscle and the gene relative antioxidant in the liver (p < 0.05). In conclusion, dietary leucine supplementation could improve the growth performance and meat quality of the finishing pigs under heat stress, and the pathway of Keap1-NRF2 and PGC-1α-TFAM might be involved.
Collapse
|
8
|
Xu D, Wang Y, Zhang X, Yan E, He L, Wang L, Ma C, Zhang P, Yin J. Dietary Valine/Isoleucine Ratio Impact Carcass Characteristics, Meat Edible Quality and Nutritional Values in Finishing Crossbred Duroc × Landrace × Yorkshire Pigs With Different Slaughter Weights. Front Nutr 2022; 9:899871. [PMID: 35898709 PMCID: PMC9313603 DOI: 10.3389/fnut.2022.899871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate effects of dietary ratio of valine to isoleucine [R(V/I)] on carcass characteristics and meat quality of finishing pigs and whether slaughter weight influence the effect. We carried out a 2 × 3 factorial trial with two slaughter weight (105 vs. 130 kg) and three R(V/I) (0.58, 1.23, and 2.60 at 75–100 kg body weight, and 0.70, 1.24, and 2.39 at 100–135 kg body weight for L-, N- and H-R (V/I), respectively). Data show that increasing slaughter weight significantly increased meat color (a*45 min and b*45 min), drip loss and shear force (P < 0.05). Meanwhile, increasing slaughter weight reduced sarcomere length, the proportion of protein-bound water, and most kinds of muscular total amino acid contents except for tryptophan and arginine, while increased contents of muscular free lysine, tryptophan, leucine, isoleucine, valine, alanine, and arginine in the M. longissimus thoracis (P < 0.05). Health lipid indices based on fatty acid composition of intramuscular lipid were improved as the slaughter weight increased (P < 0.05). Notably, pigs received N-R (V/I) diet improved carcass traits in terms of thinner backfat thickness and higher fat-free lean index, as well as increased meat flavor-contributing amino acids at the cost of reduced intramuscular fat content and increased shear force of cooked meat compared with the pigs fed L-R (V/I) and H-R(V/I) diets (P < 0.05). H-R (V/I) diet decreased ultimate pH value and sarcomere length of the skeletal muscle but increased the proportion of free water (T23), consequently, increased drip loss and cooking loss of fresh meat in pigs (P < 0.05). In conclusion, both slaughter weight and dietary ratio of valine to isoleucine exerted significant impacts on carcass characteristics, meat quality and nutrition values. In particular, carcass traits and meat color of lighter pigs were more susceptible to the influence of dietary R (V/I) relative to heavier pigs.
Collapse
|
9
|
The Role of Gut Microbiota in the Skeletal Muscle Development and Fat Deposition in Pigs. Antibiotics (Basel) 2022; 11:antibiotics11060793. [PMID: 35740199 PMCID: PMC9220283 DOI: 10.3390/antibiotics11060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Pork quality is a factor increasingly considered in consumer preferences for pork. The formation mechanisms determining meat quality are complicated, including endogenous and exogenous factors. Despite a lot of research on meat quality, unexpected variation in meat quality is still a major problem in the meat industry. Currently, gut microbiota and their metabolites have attracted increased attention in the animal breeding industry, and recent research demonstrated their significance in muscle fiber development and fat deposition. The purpose of this paper is to summarize the research on the effects of gut microbiota on pig muscle and fat deposition. The factors affecting gut microbiota composition will also be discussed, including host genetics, dietary composition, antibiotics, prebiotics, and probiotics. We provide an overall understanding of the relationship between gut microbiota and meat quality in pigs, and how manipulation of gut microbiota may contribute to increasing pork quality for human consumption.
Collapse
|
10
|
Huang S, Luo Q, Liao J. Analysis of the Effect of Branched Chain Amino Acids on Muscle Health Information of Swimmers Based on Multisensor Fusion and Deep Learning. Appl Bionics Biomech 2022; 2022:2573058. [PMID: 35528535 PMCID: PMC9071940 DOI: 10.1155/2022/2573058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Swimmers must fully mobilize the muscles of the whole body during exercise, and it is necessary to study the protection of swimmers from muscle damage. Now, muscle damage is increasing year by year, and more athletes are affected. Therefore, studying the causes of muscle injuries and exploring more effective treatments have become important research topics in the field of sports medicine. This study is mainly based on deep learning to analyze the protective effect of branched-chain amino acids on swimming athletes' muscle injury. Due to the complex and changeable environment and the interference of unknown factors, a single sensor cannot meet the needs of obtaining information. Therefore, people have developed the technology of multisensor information fusion to obtain enough information. Multisensor data fusion technology can synthesize the information of each sensor and then obtain more comprehensive and accurate decision-making information. This study is mainly based on multisensor fusion and deep learning to analyze the impact of branched chain amino acids on Swimmers' muscle health information. Finally, two experiments were designed in this article. The first experimental result showed that the pain level of the experimental group who took BCAA supplements was 19% lower than that of the control group that did not take the BCAA supplement within three days after exercise. The results of the second experiment show the following: after exercise, the creatine kinase activity value of the experimental group taking BCAA supplement was 4.38 ± 1.45, and the creatine kinase activity value of the control group taking placebo was 5.42 ± 2.12. It proves that BBCA can protect muscle damage by reducing the activity of creatine kinase.
Collapse
Affiliation(s)
- Shimeng Huang
- Swimming Teaching and Research Office, Guangzhou Sport University, Guangzhou, 510500 Guangdong, China
| | - Qiulan Luo
- Department of Sports, Central China Normal University, Wuhan, 430070 Hubei, China
| | - Jingwen Liao
- Science Experiment Center, Guangzhou Sport University, Guangzhou, 510500 Guangdong, China
| |
Collapse
|
11
|
Yang Y, Li F, Guo Q, Wang W, Zhang L, Yin Y, Gong S, Han M, Yin Y. Effects of Different Supplemental Levels of Eucommia ulmoides Leaf Extract in the Diet on Carcass Traits and Lipid Metabolism in Growing–Finishing Pigs. Front Vet Sci 2022; 8:828165. [PMID: 35198620 PMCID: PMC8859423 DOI: 10.3389/fvets.2021.828165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
This study examined the effects of dietary Eucommia ulmoides leaf extract (ELE) supplements on carcass traits and lipid metabolism in growing–finishing pigs. A total of 144 crossbred (Duroc × Landrace × Yorkshire) piglets with an average initial weight of 10.11 ± 0.03 kg were randomly allotted to four treatment groups, each with six replicates and six piglets per replicate. Each group of pigs was fed a basal diet or a diet supplemented with increasing levels of ELE (0.1, 0.2, or 0.3%). The results showed that adding ELE had no negative effect on the growth performance of pigs. Dietary supplements of 0.1% ELE significantly increased carcass weight (p < 0.01), dressing percentage (p < 0.01), carcass length (p < 0.05), and eye muscle area (p < 0.05). Compared with the control group, a 0.2% ELE supplement significantly increased (p < 0.01) the levels of adiponectin, insulin-like growth factor 1, and hormone-sensitive lipase and lipoprotein lipase activity in the serum. Histological examination showed that ELE inhibited fat deposition in the backfat tissue. Lipid metabolism-related biochemical indices and mRNA expression levels were improved after supplementing diets with ELE. Moreover, all three levels of ELE dramatically upregulated (p < 0.05) the protein levels of p-AMPK-α and p-ACC. In summary, adding ELE to pig diets could improve the carcass traits of growing–finishing pigs and exert a lipid-lowering effect by activating the AMPK-ACC pathway and regulating mRNA expression levels related to lipid metabolism. Supplementing the diet with 0.1–0.2% ELE is the optimal range to reduce fat deposition in pig backfat tissue.
Collapse
Affiliation(s)
- Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Fengna Li
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
12
|
Ji F, Gu L, Rong G, Hu C, Sun W, Wang D, Peng W, Lin D, Liu Q, Wu H, Dai H, Zhou H, Xu T. Using Extract From the Stems and Leaves of Yizhi (Alpiniae oxyphyllae) as Feed Additive Increases Meat Quality and Intestinal Health in Ducks. Front Vet Sci 2022; 8:793698. [PMID: 35174238 PMCID: PMC8841826 DOI: 10.3389/fvets.2021.793698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Yizhi (Alpiniae Oxyphyllae, A. oxyphylla) has been widely used as an important traditional Chinese medicinal herb for centuries. Existing studies have shown that A. oxyphylla has numerous benefits in human and animal health. We hypothesized that extract from the stems and leaves of A. oxyphylla (AOE) as a feed additive may have positive effects on animal health and products. Thus, this study was conducted to evaluate the effects of AOE as a feed additive on growth performance, serum biochemical parameters, intestinal morphology, microbial composition, and meat quality in Jiaji ducks. A total of 240 Jiaji ducks of 42 days old (1675.8 ± 44.2 g, male: female ratio = 1:1) were blocked based on body weight and randomly allocated into four dietary treatments with three replicates that each had 20 duck individuals. The dietary treatments included: basal diet, control group (CK); basal diet supplementation with 30 mg/kg (Y1), 80 mg/kg (Y2), and 130 mg/kg (Y3) AOE, respectively, and lasted for 49 days. The results showed that average daily feed intake from day 42 to day 60 was decreased with the increasing level of AOE (P < 0.05). Compared with the CK group, the groups with AOE supplementation decreased serum LDL-C level (P < 0.05), the addition of 30 mg/kg AOE increased total amino acids, essential amino acids, branched-chain amino acids, nonessential amino acids, and umami taste amino acids (P < 0.05), but decreased selenium and zinc concentrations in breast muscle (P < 0.05). In addition, the supplementation of 30 or 130 mg/kg AOE significantly increased jejunal villus height (P < 0.05) and tended to increase the ratio of villus height to crypt depth in the jejunum (P = 0.092) compared to the CK group. Moreover, the addition of 30 mg/kg AOE showed a higher abundance of genus unclassified Bacteroidales and genus unclassified Ruminococcaceae than the CK group (P < 0.05). Therefore, dietary supplementation with 30 mg/kg AOE increased meat nutrition profile and flavor through promoting amino acid contents in breast muscle, as well as maintained intestine integrity and modulated the microbial composition. In conclusion, AOE as an antibiotic alternative displayed potential in maintaining intestinal health and improving meat quality.
Collapse
Affiliation(s)
- Fengjie Ji
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Guang Rong
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chengjun Hu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiping Sun
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dingfa Wang
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiqi Peng
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dajie Lin
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Hongzhi Wu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- *Correspondence: Haofu Dai
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hanlin Zhou
| | - Tieshan Xu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Tieshan Xu
| |
Collapse
|
13
|
The Effect of Rearing Conditions on Carcass Traits, Meat Quality and the Compositions of Fatty Acid and Amino Acid of LTL in Heigai Pigs. Animals (Basel) 2021; 12:ani12010014. [PMID: 35011120 PMCID: PMC8749593 DOI: 10.3390/ani12010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary People’s demand for meat consumption has transformed from quantity to quality. The rearing condition is one of the factors affecting meat quality. However, the effects of different rearing conditions on the production of Chinese indigenous pig breeds are still barely understood. In this study, Heigai pigs (a Chinese indigenous pig breed) were raised in the indoor feeding farm and the grazing farm to investigate the effects of different rearing conditions on carcass traits, meat quality and the compositions of fatty acid and amino acid. Grazing farm pigs tended to increase shear force, while significantly increasing the saturated fatty acid ratio and decreasing the unsaturated fatty acid ratio to alter the composition of fatty acids of longissimus thoracis et lumborum. The present study provides an experimental reference for regulating the production of superior meat quality pork of Chinese local breed pigs. Abstract The present study evaluates the influence of captivity and grazing rearing conditions on the carcass traits, meat quality and fatty acid profiles of Heigai pigs. Ten Heigai pigs with market weight were randomly selected from both the indoor feeding farm and outdoor grazing farm groups (FF and GF; five pigs per group) for measuring production performance. The results showed that the shear force of longissimus thoracis et lumborum (LTL) in the GF group tended to increase (p = 0.06), and triglyceride and cholesterol contents in LTL and psoas major muscle (PMM) of the GF group significantly increased and decreased, respectively (p < 0.05). The proportion of saturated fatty acids (SFA) was significantly increased (p < 0.05) in the GF group. Meanwhile, the ratios of unsaturated fatty acid (UFA), polyunsaturated fatty acid (PUFA), monounsaturated fatty acid (MUFA) and the content of flavor amino acid of the LTL in the GF group were significantly decreased (p < 0.05). The GF upregulated the expression of MyHC-IIb and lipogenic genes, such as GLUT4 and LPL (p < 0.05), in LTL and PMM, but downregulated the expression of MyHC-I, MyHC-IIa, PPARγ and leptin (p < 0.05). In conclusion, these results suggested that the different rearing conditions can alter the meat qualities by mediating the muscle fiber type and lipid metabolism of Heigai pigs.
Collapse
|
14
|
Tolerable amounts of amino acids for human supplementation: summary and lessons from published peer-reviewed studies. Amino Acids 2021; 53:1313-1328. [PMID: 34338884 PMCID: PMC8416832 DOI: 10.1007/s00726-021-03054-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022]
Abstract
Amino acid supplementation may be indicated to correct for insufficient amino acid intake in healthy individuals, and in specific physiological or pathophysiological situations. However, there is a concern to not supplement beyond the tolerable upper intake level (UL) by determining parameters of no-observed-adverse-effect level (NOAEL) or lowest-observed-adverse-effect level (LOAEL) for each amino acid. Since the NOAEL and LOAEL values are at least one order of magnitude different when comparing the values obtained in rats and humans, the aim of this review is to evaluate to what extent the amino acid UL measured in the rat model, when referenced to the dietary usual consumption (UC) and dietary requirement (RQ) for indispensable amino acids, may be used as an approximation of the UL in humans. This review then compares the ratios of the NOAEL or LOAEL over UC and RQ in the rat model with the same ratios calculated in humans for the nine amino acids (arginine, serine, glycine, histidine, leucine, lysine, methionine, phenylalanine, and tryptophan) for which this comparison can be done. From the calculations made, it appears that for these 9 amino acids, the calculated ratios for rats and humans, although rather different for several amino acids, remains for all of them in the same order of magnitude. For tryptophan, tyrosine, and valine, the ratios calculated in rats are markedly different according to the sex of animals, raising the view that it may be also the case in humans.
Collapse
|
15
|
Guo Z, Chen X, Chen D, Li M, Yin J, Yu B, He J, Huang Z. Effects of slaughter age on carcass traits and meat quality of crossbred (Duroc × Landrace × Yorkshire) finishing pigs. Anim Biotechnol 2021; 33:339-345. [PMID: 33928841 DOI: 10.1080/10495398.2021.1916512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thirty castrated Duroc × Landrace × Yorkshire (DLY) pigs were randomly divided into three groups and slaughtered at 180, 210, and 240 days of age, respectively. Here, we found that the live weight, carcass weight, carcass length, dressing percentage, eye muscle area, backfat deposit, muscle yellowness b* value, drip loss, and cooking loss increased significantly, and the muscle pH 45 min value decreased dramatically as the slaughter age of DLY pigs extended. Moreover, increasing the slaughter age of DLY pigs could obtain higher n-3 polyunsaturated fatty acid (PUFA) percentage, crude protein, essential amino acids (EAA) contents and EAA/NEAA level, and lower n-6/n-3 PUFA level and antioxidant capacity. Together, this study suggests that the older slaughter age improves the carcass traits and nutritional value of pork, but leads to a significant decrease in pork sensory quality in DLY finishing pigs.
Collapse
Affiliation(s)
- Zhongyang Guo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
16
|
Suda Y, Sasaki N, Kagawa K, Elean M, Zhou B, Tomokiyo M, Islam MA, Rajoka MSR, Kober AKMH, Shimazu T, Egusa S, Terashima Y, Aso H, Ikeda-Ohtsubo W, Villena J, Kitazawa H. Immunobiotic Feed Developed with Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and the Soymilk By-Product Okara Improves Health and Growth Performance in Pigs. Microorganisms 2021; 9:microorganisms9050921. [PMID: 33923082 PMCID: PMC8145491 DOI: 10.3390/microorganisms9050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
Lactobacillus delbrueckii subsp. delbrueckii TUA4408L is able to differentially modulate the innate immune response of porcine intestinal epithelial cells triggered by TLR4 activation. This strain also has a remarkable ability to grow on plant substrates. These two immunological and biotechnological characteristics prompted us to evaluate whether the soymilk by-product okara fermented with the TUA4408L strain can serve as an immunobiotic feed with the ability to beneficially modulate the intestinal immunity of piglets after weaning to improve their productivity. Our in vivo studies demonstrated that the administration of immunobiotic TUA4408L-fermented okara feed significantly increased piglet growth performance and meat quality. These positive effects were associated with the ability of the TUA4408L-fermented okara feed to beneficially modulate both intestinal microbiota and immunity in pigs. The immunobiotic feed improved the abundance of the beneficial bacteria Lactobacillus and Lactococcus in the gut of pigs, reduced blood markers of inflammation, and differentially regulated the expression of inflammatory and regulatory cytokines in the intestinal mucosa. These findings indicate that the immunobiotic TUA4408L-fermented okara feed could be an economical and environmentally friendly option to improve the growth performance and immune health of pigs.
Collapse
Affiliation(s)
- Yoshihito Suda
- Department of Food Resource Development, School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan; (Y.S.); (N.S.); (K.K.)
| | - Nana Sasaki
- Department of Food Resource Development, School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan; (Y.S.); (N.S.); (K.K.)
| | - Kyoma Kagawa
- Department of Food Resource Development, School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan; (Y.S.); (N.S.); (K.K.)
- Graduate School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai 982-0215, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina;
| | - Binghui Zhou
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Md. Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - A. K. M. Humayun Kober
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Department of Dairy and Poultry Science, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Tomoyuki Shimazu
- Department of Food Science and Business, School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan;
| | - Shintaro Egusa
- Research and Development Division, Marusan-Ai Co., Ltd., Okazaki 444-2193, Japan; (S.E.); (Y.T.)
| | - Yuji Terashima
- Research and Development Division, Marusan-Ai Co., Ltd., Okazaki 444-2193, Japan; (S.E.); (Y.T.)
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina;
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Correspondence: (J.V.); (H.K.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (M.T.); (M.A.I.); (M.S.R.R.); (A.K.M.H.K.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Correspondence: (J.V.); (H.K.)
| |
Collapse
|
17
|
Zheng C, Song B, Guo Q, Zheng J, Li F, Duan Y, Peng C. Alterations of the Muscular Fatty Acid Composition and Serum Metabolome in Bama Xiang Mini-Pigs Exposed to Dietary Beta-Hydroxy Beta-Methyl Butyrate. Animals (Basel) 2021; 11:ani11051190. [PMID: 33919223 PMCID: PMC8143165 DOI: 10.3390/ani11051190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pork is the most consumed meat source for humans, and the utilization of nutritional approaches to produce pork with an appropriate content of intramuscular fat (IMF) and a balanced ratio of different kinds of fatty acid is an important objective pursuit of swine production. We speculated that dietary supplementation of beta-hydroxy beta-methyl butyrate (HMB) may provide benefits in lipid metabolism of skeletal muscle. In this study, we try to investigate the effects of dietary HMB supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. We found that HMB supplementation could decrease the IMF content and increase n3 polyunsaturated fatty acids as well as regulate the related metabolites (N-Methyl-l-glutamate and nummularine A) in the serum of Bama Xiang mini-pigs, thus improving their meat quality. Abstract This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, or 1.28% HMB for 60 days. Throughout the experiments, they had free access to clean drinking water and diets. Data of this study were analyzed by one-way ANOVA using the SAS 8.2 software package, followed by a Tukey’s studentized range test to explore treatment effects. The results showed that compared to the control, 0.13% HMB decreased the intramuscular fat (IMF) content and increased polyunsaturated fatty acids (PUFAs) in Longissimus thoracis muscle (LTM), and increased the n3 PUFAs in soleus muscles (SM, p < 0.05). Moreover, HMB supplementation led to alterations in the mRNA expression of genes related to lipid metabolism. Serum metabolome profiling showed that in both LTM and SM of Bama Xiang mini-pigs, N-Methyl-l-glutamate was positively correlated with SFA and nummularine A was negatively correlated with C18:3n3 PUFA (p < 0.05). Therefore, N-Methyl-l-glutamate and nummularine A might be potential biomarkers of the HMB-supplemented group. These results suggested that dietary HMB supplementation could decrease the IMF content and increase n3 PUFAs as well as regulate the related metabolites (N-Methyl-l-glutamate and nummularine A) in the serum of pigs.
Collapse
Affiliation(s)
- Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- Correspondence: (Y.D.); (C.P.); Tel.: +86-731-84619750 (Y.D. & C.P.)
| | - Can Peng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.Z.); (B.S.); (Q.G.); (J.Z.); (F.L.)
- Correspondence: (Y.D.); (C.P.); Tel.: +86-731-84619750 (Y.D. & C.P.)
| |
Collapse
|
18
|
Duan Y, Song B, Zheng C, Zhong Y, Guo Q, Zheng J, Yin Y, Li J, Li F. Dietary Beta-Hydroxy Beta-Methyl Butyrate Supplementation Alleviates Liver Injury in Lipopolysaccharide-Challenged Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5546843. [PMID: 33868570 PMCID: PMC8035022 DOI: 10.1155/2021/5546843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
The current study was performed to investigate whether dietary β-hydroxy-β-methylbutyrate (HMB) could regulate liver injury in a lipopolysaccharide- (LPS-) challenged piglet model and to determine the mechanisms involved. Thirty piglets (21 ± 2 days old, 5.86 ± 0.18 kg body weight) were randomly divided into the control (a basal diet, saline injection), LPS (a basal diet), or LPS+HMB (a basal diet + 0.60% HMB-Ca) group. After 15 d of treatment with LPS and/or HMB, blood and liver samples were obtained. The results showed that in LPS-injected piglets, HMB supplementation ameliorated liver histomorphological abnormalities induced by LPS challenge. Compared to the control group, the activities of serum aspartate aminotransferase and alkaline phosphatase were increased in the LPS-injected piglets (P < 0.05). The LPS challenge also downregulated the mRNA expression of L-PFK, ACO, L-CPT-1, ICDH β, and AMPKα1/2 and upregulated the mRNA expression of PCNA, caspase 3, TNF-α, TLR4, MyD88, NOD1, and NF-κB p65 (P < 0.05). However, these adverse effects of the LPS challenge were reversed by HMB supplementation (P < 0.05). These results indicate that HMB may exert protective effects against LPS-induced liver injury, and the underlying mechanisms might involve the improvement of hepatic energy metabolism via regulating AMPK signaling pathway and the reduction of liver inflammation via modulating TLR4 and NOD signaling pathways.
Collapse
Affiliation(s)
- Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bo Song
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Changbing Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Fengna Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
19
|
Zhong Y, Yan Z, Song B, Zheng C, Duan Y, Kong X, Deng J, Li F. Dietary supplementation with betaine or glycine improves the carcass trait, meat quality and lipid metabolism of finishing mini-pigs. ACTA ACUST UNITED AC 2021; 7:376-383. [PMID: 34258425 PMCID: PMC8245815 DOI: 10.1016/j.aninu.2020.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 08/14/2020] [Indexed: 10/25/2022]
Abstract
The objective of the study is to evaluate and compare the effects of betaine or glycine on carcass trait, meat quality and lipid metabolism of finishing Huan Jiang mini-pigs. Betaine called trimethylglycine is a methyl derivative of glycine, but few researches were conducted to compare the impact of dietary betaine and glycine on pigs. One hundred and forty-four Huan Jiang mini-pigs (body weight = 10.55 ± 0.15 kg; 70 d) were randomly divided to 3 treatment groups (basal diet, glycine or betaine). Results indicated that dietary betaine increased the average daily gain (ADG) and final weight (P < 0.05). Dietary glycine or betaine markedly reduced average backfat thickness (P < 0.05) and heightened lean percentage (P < 0.01) compared to the control group. Moreover, in comparison with the control group, betaine significantly improved the redness (a∗) and tenderness (shear force) of the longissimus dorsi (LD) muscle (P < 0.05), whereas glycine only raised the value of a∗ of the LD muscle (P < 0.05). These results showed that diet supplemented with 0.25% betaine and equimolar amounts of glycine could regulate cascass trait and meat quality of finishing Huan Jiang mini-pigs, and the effect of betaine was superior to that of glycine.
Collapse
Affiliation(s)
- Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - JinPing Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
20
|
Zhang T, Hu BW, Duan YH, Deng JP, Yin YL, Kong XF. Dietary chicory powder supplementation affects growth performance, carcass traits, and muscular profiles of amino acids and fatty acids in growing-finishing Xiangcun Black pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1876702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ting Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Bai Wen Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, People’s Republic of China
| | - Ye Hui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Jin Ping Deng
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, People’s Republic of China
| | - Yu Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, People’s Republic of China
| | - Xiang Feng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, People’s Republic of China
| |
Collapse
|
21
|
Zhang YN, Wang S, Deng YZ, Huang XB, Li KC, Chen W, Ruan D, Xia WG, Wang SL, Zheng CT. The application of reduced dietary crude protein levels supplemented with additional amino acids in laying ducks. Poult Sci 2021; 100:100983. [PMID: 33610902 PMCID: PMC7905471 DOI: 10.1016/j.psj.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/27/2022] Open
Abstract
This study was aimed at studying use of reduced dietary crude protein (CP) level supplemented with additional amino acids in laying ducks. A total of 720 Jingjiang ducks (50 wk) were randomly assigned to 5 treatments and fed 5 basal diets with CP levels at 17.5, 16.5, 15.5, 14.5, or 13.5%, with additional amino acids added to each diet for 12 wk. Each treatment had 6 replicates of 24 ducks each. Dietary CP levels affected (P < 0.05) egg production and mass of laying ducks, and there was a linear and quadratic decrease with decreasing CP levels (P < 0.05). Dietary CP levels did not affect egg weight and feed conversion ratio (FCR), but egg weight decreased linearly (P < 0.05); FCR increased linearly and quadratically (P < 0.05) with decreasing CP levels. There were no significant differences in egg quality among the different CP levels (P > 0.05). Ovarian weight, total and mean weight of preovulatory follicles, and total weight of small yellow follicles (SYF) were decreased by dietary CP levels (linear, P < 0.01 and quadratic, P < 0.05). The oviductal weight decreased linearly (P < 0.05), and the number of SYF decreased linearly and quadratically with decreasing CP levels (P < 0.05). The serum estradiol content decreased linearly with dietary CP levels (P < 0.05). The serum contents of luteinizing hormone, prolactin, and progesterone decreased (P < 0.05), linearly and quadratically (both P < 0.01) with decreasing CP levels. The serum contents of creatinine (CRE), triglycerides (TG), total cholesterol (TC), and alanine aminotransferase (ALT) activity were affected (P < 0.05) by different dietary CP levels. The total protein content increased linearly (P < 0.05), TC content increased quadratically (P < 0.05), and contents of albumin, CRE, TG, and phosphorus, and activities of aspartate aminotransferase and ALT increased linearly and quadratically (both P < 0.05) with decreasing CP levels. Overall, reduced dietary CP levels with addition of amino acids affected the laying performance, the development of reproductive organs and ovarian follicles, serum hormones, and biochemical indices of laying ducks. Dietary CP levels can be reduced to 14.5% with additional amino acid supplementation for 12 wk in laying ducks without negative effect on laying performance and egg quality.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - Y Z Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| |
Collapse
|
22
|
Tian Z, Wang X, Duan Y, Zhao Y, Zhang W, Azad MAK, Wang Z, Blachier F, Kong X. Dietary Supplementation With Bacillus subtilis Promotes Growth and Gut Health of Weaned Piglets. Front Vet Sci 2021; 7:600772. [PMID: 33521080 PMCID: PMC7844206 DOI: 10.3389/fvets.2020.600772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation with different types of Bacillus subtilis (B. subtilis) on the growth and gut health of weaned piglets. A total of 160 piglets were randomly assigned into four groups: control group (a basal diet), BS-A group (a basal diet supplemented with B. subtilis A at 1 × 106 CFU/g feed), BS-B group (a basal diet supplemented with B. subtilis B at 1 × 106 CFU/g feed), and BS-C group (a basal diet supplemented with B. subtilis C at 1 × 106 CFU/g feed). All groups had five replicates with eight piglets per replicate. On days 7, 21, and 42 of the trial, blood plasma and intestinal tissues and digesta samples were collected to determine plasma cytokine concentrations, intestinal morphology, gut microbiota community and metabolic activity, and the expression of genes related to gut physiology and metabolism. The results showed that dietary B. subtilis supplementation improved (P < 0.05) the body weight and average daily gain (in BS-B and BS-C groups) of weaned piglets and decreased (P < 0.05) the diarrhea rates (in BS-A, BS-B, and BS-C groups). In the intestinal morphology analysis, B. subtilis supplementation improved (P < 0.05) the size of villus height and villus height to crypt depth ratio in the ileum of weaned piglets. Firmicutes, Bacteroidetes, and Tenericutes were the most dominant microflora in piglets' colon whatever the trial group and time of analysis. Dietary BS-C supplementation increased (P < 0.05) the relative abundances of Anaerovibrio and Bulleidia and decreased (P < 0.05) the relative abundances of Clostridium and Coprococcus compared with the control group. In addition, dietary B. subtilis supplementation increased (P < 0.05) the indicators of intestinal health, including plasma levels of interleukin (IL)-2 and IL-10, as well as the colonic levels of short-chain fatty acids. Furthermore, dietary B. subtilis supplementation also up-regulated (P < 0.05) the expression of genes involved in metabolic pathways related to intestinal microbiota maturation. In conclusion, these findings suggest that a diet containing BS-B or BS-C can efficiently promote growth performance, decrease diarrhea incidence, and ameliorate several indicators of intestinal health through the modulation of gut microbiota composition and metabolic activity in weaned piglets.
Collapse
Affiliation(s)
- Zhilong Tian
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaodan Wang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Zhao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | | | - Md Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhanbin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Francois Blachier
- University Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
23
|
Guo Y, Guo X, Deng Y, Cheng L, Hu S, Liu H, Hu J, Hu B, Li L, He H, Wang J. Effects of different rearing systems on intramuscular fat content, fatty acid composition, and lipid metabolism-related genes expression in breast and thigh muscles of Nonghua ducks. Poult Sci 2020; 99:4832-4844. [PMID: 32988520 PMCID: PMC7598316 DOI: 10.1016/j.psj.2020.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rearing system is a critical nongenetic factor influencing meat quality of ducks. In this study, a total of 360 birds were randomly allocated into floor rearing system (FRS) and net rearing system (NRS) to compare their effects on intramuscular fat (IMF) deposition, fatty acid composition, and related gene expression in muscles of Nonghua ducks. Sawdust bedding and stainless mesh bed were equipped in FRS and NRS, respectively. At the eighth week (8w) and 13th week (13w), the breast and thigh muscles of ducks were collected to determine the profiles of lipids composition and the expressions of lipid metabolism-related genes. The IMF content was higher in 13w-FRS than 8w-FRS and 8w-NRS in breast muscle, whereas it was higher in 13w-NRS than other groups in thigh muscle (P < 0.05). C16:1, C20:5(n-3) of muscles were higher in 8w-NRS than 8w-FRS, whereas C18:1(n-9)c, C18:2(n-6)c, Ʃ monounsaturated fatty acid (MUFA), and ƩMUFA/Ʃsaturated fatty acid (SFA) ratio of muscles were higher in 13w-NRS than 8w-FRS and 8w-NRS (P < 0.05). C22:6(n-3), C20:4(n-6) of breast muscle and C20:3(n-6) of thigh muscle were higher in 13w-NRS than 13w-FRS (P < 0.05). Fatty acids variation was studied by principal component analysis, exhibiting extensive positive loadings on principal components. SREBP1, ACADL, and FABP3 were downregulated in breast muscle, whereas PPARα and ELOVL5 were upregulated in thigh muscle of NRS ducks at 13w. Principal components were extensively correlated with lipids composition parameters, and principal components of breast muscle 1 and principal components of thigh muscle 1 were correlated with SREBP1 and PPARα, respectively (P < 0.05). In conclusion, with increasing age, FRS enhanced IMF deposition in breast muscle, and the same promotion in thigh muscle was because of NRS. The variation of fatty acids in muscles was uniform, and the change of single fatty acid was unable to distinguish NRS and FRS. However, as NRS downregulated SREBP1, ACADL and FABP3 in breast muscle and upregulated PPARα and ELOVL5 in thigh muscle, NRS could improve nutrient value and meat quality by increasing ƩMUFA, ƩMUFA/ƩSFA ratio, and important PUFA levels. Therefore, NRS was more recommended than FRS for Nonghua ducks during week 8 to 13 posthatching.
Collapse
Affiliation(s)
- Yifan Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
24
|
Che L, Xu M, Gao K, Zhu C, Wang L, Yang X, Wen X, Xiao H, Jiang Z, Wu D. Valine increases milk fat synthesis in mammary gland of gilts through stimulating AKT/MTOR/SREBP1 pathway†. Biol Reprod 2020; 101:126-137. [PMID: 30985894 DOI: 10.1093/biolre/ioz065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Lactating mammary glands are among the most active lipogenic organs and provide a large percentage of bioactive lipids and calories for infant growth. The branched-chain amino acid (BCAA) valine is known to modulate fatty acids synthesis in adipose tissue; however, its effects on fat metabolism and the underlying mechanisms in mammary glands remain to be determined. Valine supplementation during late pregnancy significantly increased the contents of total milk fat, triglyceride, sphingomyelin, and polyunsaturated fatty acids in the colostrum of gilts. Further study in porcine mammary epithelial cells (PMECs) confirmed that valine upregulated the phosphorylation levels of AKT-activated MTOR and subsequently induced the nuclear accumulation of sterol regulatory element binding protein 1 (SREBP1), thus increasing the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Inhibition of AKT/MTOR signaling or silencing of SREBP1 in PMECs downregulates the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Our findings indicated that valine enhanced milk fat synthesis of colostrum in porcine mammary glands via the AKT/MTOR/SREBP1 signaling pathway.
Collapse
Affiliation(s)
- Long Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Mengmeng Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiaolu Wen
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Yu M, Li Z, Rong T, Wang G, Liu Z, Chen W, Li J, Li J, Ma X. Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs. J Anim Sci Biotechnol 2020; 11:78. [PMID: 32782789 PMCID: PMC7412799 DOI: 10.1186/s40104-020-00484-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND With increasing health awareness among consumers, the demand for healthier, tastier, higher quality and nutritional value pork is increasing. It has been shown that different dietary starch sources can alter the carcass traits and meat quality. However, research on the effects of different starch sources with clear different amylose/amylopectin ratio on the amino acid and fatty acid composition in Longissimus thoracis (L. thoracis) muscle of pigs is limited. This study aimed to investigate the effects of different dietary starch sources on carcass traits, meat quality, muscle amino acid and fatty acid composition, and the mRNA expression levels of genes involved in lipid metabolism and muscle fiber characteristics in finishing pigs. A total of 72 Duroc × Landrace × Large White barrows were randomly allocated to 3 different dietary treatment groups with 8 replicate pens/group and 3 pigs per pen. Tapioca starch (TS), corn starch (CS), and pea starch (PS), with amylose/amylopectin ratio of 0.11, 0.25, and 0.44, respectively, were used as their dietary starch sources for 40 days. RESULTS Results showed that the PS diet significantly increased (P < 0.05) the final body weight, average daily gain, loin-eye area, and fat-free lean index compared with the TS diet, but significantly decreased (P < 0.05) the feed to gain ratio and backfat thickness. Compared with the TS diet, PS diet also increased (P < 0.05) the pH45 min, marbling scores, the content of intramuscular fat and inosine monophosphate in the L. thoracis, and decreased (P < 0.05) the drip loss and shear force. In addition, compared with the TS diet, PS diet increased (P < 0.05) the proportions of flavor amino acids, DHA, EPA, and n-3 polyunsaturated fatty acid (PUFA) in the L. thoracis compared with TS diet, but decreased (P < 0.05) the ratio of n-6/n-3 PUFA. Furthermore, compared with the TS diet, PS diet also upregulated (P < 0.05) the lipogenic genes (FAS, LPL, SCD, ACCα) and myosin heavy-chain (MyHC)-IIa mRNA expression levels compared with the TS diet, but downregulated (P < 0.05) the CPT1B and MyHC-IIb mRNA levels. CONCLUSIONS In conclusion, these results provided compelling evidence that the different dietary starch source altered the carcass traits, meat flavor and quality in finishing pigs, and consumption of a diet with higher amylose/amylopectin ratio results in the production of a healthy, higher quality, and nutritional value pork.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Ting Rong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Gang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Weidong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Jiazhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Jianhao Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
26
|
Banerjee P, Carmelo VAO, Kadarmideen HN. Integrative Analysis of Metabolomic and Transcriptomic Profiles Uncovers Biological Pathways of Feed Efficiency in Pigs. Metabolites 2020; 10:E275. [PMID: 32640603 PMCID: PMC7408121 DOI: 10.3390/metabo10070275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
Feed efficiency (FE) is an economically important trait. Thus, reliable predictors would help to reduce the production cost and provide sustainability to the pig industry. We carried out metabolome-transcriptome integration analysis on 40 purebred Duroc and Landrace uncastrated male pigs to identify potential gene-metabolite interactions and explore the molecular mechanisms underlying FE. To this end, we applied untargeted metabolomics and RNA-seq approaches to the same animals. After data quality control, we used a linear model approach to integrate the data and find significant differently correlated gene-metabolite pairs separately for the breeds (Duroc and Landrace) and FE groups (low and high FE) followed by a pathway over-representation analysis. We identified 21 and 12 significant gene-metabolite pairs for each group. The valine-leucine-isoleucine biosynthesis/degradation and arginine-proline metabolism pathways were associated with unique metabolites. The unique genes obtained from significant metabolite-gene pairs were associated with sphingolipid catabolism, multicellular organismal process, cGMP, and purine metabolic processes. While some of the genes and metabolites identified were known for their association with FE, others are novel and provide new avenues for further research. Further validation of genes, metabolites, and gene-metabolite interactions in larger cohorts will elucidate the regulatory mechanisms and pathways underlying FE.
Collapse
Affiliation(s)
| | | | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (P.B.); (V.A.O.C.)
| |
Collapse
|
27
|
Heng J, Wu Z, Tian M, Chen J, Song H, Chen F, Guan W, Zhang S. Excessive BCAA regulates fat metabolism partially through the modification of m 6A RNA methylation in weanling piglets. Nutr Metab (Lond) 2020; 17:10. [PMID: 31998401 PMCID: PMC6979292 DOI: 10.1186/s12986-019-0424-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Fat percentage and distribution in pigs are associated with their productive efficiency and meat quality. Dietary branched-chain amino acids (BCAA) regulate fat metabolism in weanling piglets with unknown mechanism. It is reported that N6-methyl-adenosine (m6A) is involved in fat metabolism in mice. The current study was designed to investigate the relationship between dietary branched-chain amino acids and fat metabolism through N6-methyl-adenosine (m6A) in weanling piglets. Methods A total of 18 healthy crossbred weaned piglets (Duroc × Landrace × Large White, 10.45 ± 0.41 kg) were divided into 3 treatments and were fed the low BCAA dose diet (L-BCAA), the normal dose BCAA diet (N-BCAA), or the high dose BCAA (H-BCAA) diet for 3 weeks. Results Our results show that compared with the N-BCAA group, the L-BCAA group had higher concentration of serum leptin (P < 0.05), while the H-BCAA group had lower concentration of serum adiponectin (P < 0.05). Fatty acid synthesis in pigs from the H-BCAA group was lower than those from the N-BCAA group with the down-regulation of lipogenic genes (ACACA, FASN, PPAR-r, SREBP-1c in ventral and dorsal fat, SREBP-1c in liver) and up-regulation of lipolysis genes (HSL, ATGL, CPT-1A, FABP4 in ventral fat, HSL in liver) (P < 0.05). Similarly, fatty acid synthesis in pigs from the L-BCAA group was also lower than those from the N-BCAA group with the decrease of lipogenic genes (ACACA in ventral, ACACA and FASN in dorsal fat, ACACA, FASN, SREBP-1c in liver) and the increase of lipolysis genes (ATGL, CPT-1A CD36, FABP4 in ventral fat and HSL, ATGL, CPT-1A in dorsal fat, CPT-1A) (P < 0.05). Feeding H-BCAA diet significantly reduced total m6A levels in ventral and dorsal fat and liver tissues (P < 0.05). The decrease of total m6A is associated with down-regulation of METTL3, METTL14 and FTO in dorsal fat and METTL3 and FTO in liver (P < 0.05). Decreased m6A modification of ACACA and FASN in ventral and dorsal adipose tissues was observed in pig fed with excessive BCAA. Conclusion These results suggest that insufficient or excessive BCAA decreased the fat deposition by increasing lipolysis and deceasing lipogenesis in adipose and liver tissues. Dietary excessive BCAA might regulate the process of lipid metabolism partly through the m6A RNA methylation.
Collapse
Affiliation(s)
- Jinghui Heng
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Zhihui Wu
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Min Tian
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Jiaming Chen
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Hanqing Song
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Fang Chen
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Wutai Guan
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China.,2College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Shihai Zhang
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China.,2College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| |
Collapse
|
28
|
Ma W, Mao P, Fan W, Zhu Y, Guo L. Valine and isoleucine supplementation improve performance and serum biochemical concentrations in growing gilts fed low-protein diets. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the effects of valine and isoleucine supplementation in low-crude-protein (CP) diets on performance, serum parameters, and carcass traits in growing gilts. Two-hundred gilts (29.1 ± 1.7 kg) were allotted randomly to one of five diets that included a control CP (177 g kg−1) or four low-CP (135 g kg−1) diets for 45 d. The low-CP diets were added with lysine + threonine + methionine (LCM), LCM+ tryptophan (LCT), LCT + valine (LCV), or LCV + isoleucine (LCI), respectively. Non significant difference in average daily gain was obtained in gilts receiving the control, LCV, or LCI diets, which was higher than that of pigs fed the LCM or LCT diets (P < 0.05). The supplementation of crystalline tryptophan, valine, and isoleucine improved the average daily feed intake and serum levels of total protein, tryptophan, and isoleucine (linear and quadratic effects, P < 0.05) and serum valine concentration (linear effect, P < 0.05). The results indicated that the valine supplementation, or the both combination of valine and isoleucine, could further improve the performance in 29–62 kg gilts fed the 135 g kg−1 CP diet.
Collapse
Affiliation(s)
- Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan 471003, People’s Republic of China
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Pei Mao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Wenna Fan
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan 471003, People’s Republic of China
| | - Yanzhi Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan 471003, People’s Republic of China
| | - Liang Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22 Jingjing Road, Tianjin 300384, People’s Republic of China
| |
Collapse
|
29
|
Chen J, Zhang H, Gao H, Kang B, Chen F, Li Y, Fu C, Yao K. Effects of Dietary Supplementation of Alpha-Ketoglutarate in a Low-Protein Diet on Fatty Acid Composition and Lipid Metabolism Related Gene Expression in Muscles of Growing Pigs. Animals (Basel) 2019; 9:ani9100838. [PMID: 31640132 PMCID: PMC6826391 DOI: 10.3390/ani9100838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Alpha-ketoglutarate (AKG) is a critical intermediate in the tricarboxylic acid cycle. AKG has been reported to participate in energy production, promote protein synthesis, and improve amino acid metabolism. However, whether AKG functionally participates in the regulation of fat metabolism remains unknown. The objective of this experiment was to evaluate the impact of dietary supplementation with AKG on lipid metabolism in a pig model. The present results suggest that AKG supplementation in a reduced-protein diet could increase the intramuscular fat (IMF) and monounsaturated fatty acid (MUFA) contents in the biceps femoris muscles of pigs. These effects could be linked to the altered lipid metabolism related gene mRNA expression, which promotes the absorption and deposition of fatty acids in the muscle tissues. The results of this study can provide better understanding of the mechanisms by which dietary AKG modulates muscle lipid metabolism in pigs, and this could help to improve pig feeding strategies and supply high-quality pork for humans. Abstract The aim of the current study was to investigate whether dietary supplementation with alpha-ketoglutarate (AKG) in a reduced crude protein (CP) diet would affect fatty acid composition and lipid metabolism related gene expression in the muscles of growing pigs. A total of 27 Large White × Landrace growing pigs at 44 ± 1 d of age (11.96 ± 0.18 kg) were randomly allocated to three treatments (n = 9). Dietary treatments included: (1) normal protein diet with 20% crude protein (CP) (NP); (2) a low crude protein diet formulated to contain approximately 17% CP (LP); and (3) a low crude protein diet with 17% CP supplemented with 1% AKG at the expense of regular corn components (ALP). The experimental trial lasted 35 d. The results showed that compared with the NP and LP diets, supplementation with AKG in a low-protein diet increased the intramuscular fat (IMF), oleic acid (C18:1n-9), and monounsaturated fatty acid (MUFA) contents (p < 0.05), and tended to increase the percentage of palmitoleic acid (C16:1) and stearic acid (C18:0) (p < 0.10) in the biceps femoris and longissimus dorsi muscles of growing pigs. These effects may be associated with increased relative mRNA expression levels of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), adipocyte determination and differentiation factor 1 (ADD1), fatty acid binding protein 4 (FABP4), and stearoyl-CoA desaturase (SCD) in skeletal muscle, indicating that AKG might be involved in the differential regulation of some key lipogenic genes in skeletal muscles of pigs.
Collapse
Affiliation(s)
- Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Baoju Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Fengming Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Kang Yao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
30
|
Duan Y, Zheng C, Zhong Y, Song B, Yan Z, Kong X, Deng J, Li F, Yin Y. Beta-hydroxy beta-methyl butyrate decreases muscle protein degradation via increased Akt/FoxO3a signaling and mitochondrial biogenesis in weanling piglets after lipopolysaccharide challenge. Food Funct 2019; 10:5152-5165. [PMID: 31373594 DOI: 10.1039/c9fo00769e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) on lipopolysaccharide (LPS)-induced muscle atrophy and to investigate the mechanisms involved. Sixty pigs (21 ± 2 days old, 5.86 ± 0.18 kg body weight) were used in a 2 × 3 factorial design and the main factors included diet (0, 0.60%, or 1.20% HMB) and immunological challenge (LPS or saline). After 15 d of treatment with LPS and/or HMB, growth performance, blood parameters, and muscle protein degradation rate were measured. The results showed that in LPS-injected pigs, 0.60% HMB supplementation increased the average daily gain and average daily feed intake and decreased the feed : gain ratio (P < 0.05), with a concurrent increase of lean percentage. Moreover, 0.60% HMB supplementation decreased the serum concentrations of blood urea nitrogen, IL-1β, and TNF-α and the rate of protein degradation as well as cell apoptosis in selected muscles (P < 0.05). In addition, dietary HMB supplementation (0.60%) regulated the expression of genes involved in mitochondrial biogenesis and increased the phosphorylation of Akt and Forkhead Box O3a (FoxO3a) in selected muscles, accompanied by decreased protein expression of muscle RING finger 1 and muscle atrophy F-box. These results indicate that HMB may exert protective effects against LPS-induced muscle atrophy by normalizing the Akt/FoxO3a axis that regulates ubiquitin proteolysis and by improving mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of Feeding Low Protein Diets on Serum and Faeces Parameters in Weaned Piglets. FOLIA VETERINARIA 2019. [DOI: 10.2478/fv-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
This study was conducted to determine the effects of a low-protein diet supplemented with synthetic amino acids on the biochemical parameters in the blood serum, the indicators of fermentation processes, and nitrogen excretion in 12 crossbred piglets. The piglets (weaned at 28 days of age) were divided into two groups with 6 piglets each. The control group had an initial average body weight of 8.8 ± 0.6 kg and the experimental group with an average initial body weight of 8.6 ± 0.7 kg. The control diet contained 210.8 g.kg−1 crude protein and the experimental diet contained 186.4 g.kg−1. The experimental diet was supplemented with lysine, methionine and threonine to achieve a more ideal amino acid pattern. The blood collections from the sinus ophthalmicus for the determination of the biochemical parameters were performed 4 times at weekly intervals in the control and experimental groups 4—5 hours after feeding. The faeces were taken from the rectum at the end of the study period. The decrease in the dietary crude protein content of the experimental group was manifested by a significant decrease of the blood urea level (2.61 mmol.l−1 average concentration) compared to the control groups (4.21 mmol.l−1 average concentration) (P < 0.001). The other serum component concentrations (total protein, albumin, glucose, cholesterol, total lipids and selected enzymes) showed no significant statistical changes between the control and experimental groups. The results of the fermentation process analysis indicated that the butyrate concentration decreased (P = 0.0017) and the pH increased (P = 0.0180) in the experimental group compared to the control group. The levels of crude protein and ammonia in the faeces of experimental animals were significantly lower (P < 0.001) in comparison with those in the control animals.
Collapse
|
32
|
Dietary supplementation with arginine and glutamic acid alters the expression of amino acid transporters in skeletal muscle of growing pigs. Amino Acids 2019; 51:1081-1092. [DOI: 10.1007/s00726-019-02748-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/26/2019] [Indexed: 01/06/2023]
|
33
|
Zhong Y, Song B, Zheng C, Li F, Kong X, Duan Y, Deng J. α-Ketoisocaproate and β-hydroxy-β-methyl butyrate regulate fatty acid composition and lipid metabolism in skeletal muscle of growing pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:846-857. [PMID: 30775808 DOI: 10.1111/jpn.13077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study aims to investigate the effects and roles of excess leucine (Leu) versus its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) on fatty acid composition and lipid metabolism in skeletal muscle of growing pigs. METHODS AND RESULTS Thirty-two pigs with a similar initial weight (9.55 ± 0.19 kg) were fed one of the four diets (basal diet, L-Leu, KIC-Ca and HMB-Ca) for 45 days. Results indicated that dietary treatments did not affect the intramuscular fat (IMF) content (p > 0.05), but differently influenced the fatty acid composition of longissimus dorsi muscle (LM) and soleus muscle (SM). In particular, the proportion of N3 PUFA specifically in LM was significantly decreased in the Leu group and increased in both KIC and HMB group relative to the basal diet group (p < 0.05). Furthermore, pigs fed KIC-supplemented diets exhibited decreased expression of FATP-1, ACC, ATGL, C/EBPα, PPARγ and SREBP-1c in LM and increased expression of FATP-1, FAT/CD36, ATGL and M-CPT-1 in SM relative to the basal diet control (p < 0.05). CONCLUSIONS These findings indicated that doubling dietary Leu content decreased the percentage of N3 PUFA mainly in glycolytic skeletal muscle, whereas KIC and HMB improved muscular fatty acid composition and altered lipid metabolism in skeletal muscle of growing pigs. The mechanism of action of KIC might be related to the TFs, and the mechanism of action of HMB might be associated with the AMPK-mTOR signalling pathway.
Collapse
Affiliation(s)
- Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Duan Y, Li F, Song B, Zheng C, Zhong Y, Xu K, Kong X, Yin Y, Wang W, Shu G. β-hydroxy-β-methyl butyrate, but not α-ketoisocaproate and excess leucine, stimulates skeletal muscle protein metabolism in growing pigs fed low-protein diets. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Luo Y, Zhang X, Zhu Z, Jiao N, Qiu K, Yin J. Surplus dietary isoleucine intake enhanced monounsaturated fatty acid synthesis and fat accumulation in skeletal muscle of finishing pigs. J Anim Sci Biotechnol 2018; 9:88. [PMID: 30598820 PMCID: PMC6302484 DOI: 10.1186/s40104-018-0306-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Background Isoleucine (Ile) has been implicated in the regulation of energy homeostasis and adipogenesis. However, the impact of surplus dietary Ile intake on muscle lipogenesis remains unknown. The present study aimed to investigate the impact of dietary supplementation of extra-Ile on lipogenesis, fatty acid profile and lipid accumulation in skeletal muscle in finishing pigs. Methods Forty-eight barrows with initial body weight of 77.0 ± 0.1 kg were allotted to one of two groups and fed diets containing 0.39%, 0.53% standardized ileal digestible (SID) Ile with six replicates per treatment and four pigs per replicate for 30 d. Results Dietary Ile intake significantly improved the intramuscular fat (IMF) content and monounsaturated fatty acid (MUFA) concentration in the skeletal muscle (P < 0.05), and decreased the drip loss and shear force (P < 0.05) without influencing the growth performance of pigs (P > 0.05). Moreover, the phosphorylation of adenosine monophosphate activated protein kinase α (AMPKα) and acetyl coenzyme A carboxylase (ACC) proteins that monitor lipid metabolism were decreased in skeletal muscle of pigs offered extra-Ile diet (P < 0.05). The mRNA expression of adipose-specific genes adipocyte determination and differentiation factor 1 (ADD1), fatty acid synthase (FAS), and stearoyl-CoA desaturase (SCD) were upregulated and the activity of SCD was increased as well (P < 0.05). Conclusions Surplus dietary Ile intake could increase IMF accumulation and MUFA synthesis in skeletal muscle through depressing the phosphorylation of AMPKα-ACC and stimulating the expression and activity of SCD, and increasing the capability of lipogenesis in skeletal muscle. Electronic supplementary material The online version of this article (10.1186/s40104-018-0306-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhong Luo
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Xin Zhang
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengpeng Zhu
- Technology Research and Development Department, New Hope Liuhe Co. Ltd, Beijing, 100102 China
| | - Ning Jiao
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Kai Qiu
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Jingdong Yin
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
36
|
Optimal branched-chain amino acid ratio improves cell proliferation and protein metabolism of porcine enterocytesin in vivo and in vitro. Nutrition 2018; 54:173-181. [DOI: 10.1016/j.nut.2018.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
|
37
|
Chen J, Su W, Kang B, Jiang Q, Zhao Y, Fu C, Yao K. Supplementation with α-ketoglutarate to a low-protein diet enhances amino acid synthesis in tissues and improves protein metabolism in the skeletal muscle of growing pigs. Amino Acids 2018; 50:1525-1537. [PMID: 30167964 DOI: 10.1007/s00726-018-2618-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
α-Ketoglutarate (AKG) is a crucial intermediate in the tricarboxylic acid (TCA) cycle and can be used for the production of ATP and amino acids in animal tissues. However, the effect of AKG on the expression patterns of genes involved in muscle protein metabolism is largely unknown, and the underlying mechanism remains to be elucidated. Therefore, we used young pigs to investigate the effects of a low crude protein (CP) diet and a low CP diet supplemented with AKG on protein accretion in their skeletal muscle. A total of 27 growing pigs with an initial body weight of 11.96 ± 0.18 kg were assigned randomly to one of the three diets: control (normal recommended 20% CP, NP), low CP (17% CP, LP), or low CP supplemented with 1% AKG (ALP). The pigs were fed their respective diets for 35 days. Free amino acid (AA) profile and hormone levels in the serum, and the expression of genes implicated in protein metabolism in skeletal muscle were examined. Results showed that compared with the control group or LP group, low-protein diets supplemented with AKG enhanced serum and intramuscular free AA concentrations, the mRNA abundances of AA transporters, and serum concentrations of insulin-like growth factor-1 (IGF-1), activated the mammalian target of rapamycin (mTOR) pathway, and decreased serum urea concentration and the mRNA levels for genes related to muscle protein degradation (P < 0.05). In conclusion, these results indicated that addition of AKG to a low-protein diet promotes amino acid synthesis in tissues and improves protein metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Wenxuan Su
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Baoju Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qian Jiang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, China.
| | - Kang Yao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
38
|
Duan YH, Zeng LM, Li FN, Kong XF, Xu K, Guo QP, Wang WL, Zhang LY. β-hydroxy-β-methyl butyrate promotes leucine metabolism and improves muscle fibre composition in growing pigs. J Anim Physiol Anim Nutr (Berl) 2018; 102:1328-1339. [PMID: 30009416 DOI: 10.1111/jpn.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate the effects of excess leucine (Leu) vs. its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) on Leu metabolism, muscle fibre composition and muscle growth in growing pigs. Thirty-two pigs with a similar initial weight (9.55 ± 0.19 kg) were fed 1 of 4 diets for 45 days: basal diet, basal diet + 1.25% L-Leu, basal diet + 1.25% KIC-Ca, basal diet + 0.62% HMB-Ca. Results indicated that relative to the basal diet and HMB groups, Leu and KIC groups exhibited increased Leu concentrations and decreased concentrations of isoleucine, valine and EAAs in selected muscle (p < 0.05) and had lower mRNA levels of MyHC I and higher expression of MyHC IIx/IIb (p < 0.05), and there was no significant difference between the basal and HMB-supplemented groups. Moreover, the mRNA expression levels of AMPKα and UCP3 were higher but the myostatin mRNA levels were lower in the soleus muscle of the HMB group than those from other groups (p < 0.05). These findings demonstrated that doubling dietary Leu content exerted growth-depressing effects in growing pigs; dietary KIC supplementation induced muscular branched-chain amino acid imbalance and promoted muscle toward a more glycolytic phenotype; while dietary HMB supplementation promoted the generation of more oxidative muscle types and increased muscle growth specially in oxidative skeletal muscle, and these effects of HMB might be associated with the AMPKα-Sirt1-PGC-1α axis and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yehui H Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Liming M Zeng
- Science College of Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fengnan N Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Xiangfeng F Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping P Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong L Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha Hunan, China
| | - Lingyu Y Zhang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Hu CJ, Jiang QY, Zhang T, Yin YL, Li FN, Su JY, Wu GY, Kong XF. Dietary supplementation with arginine and glutamic acid enhances key lipogenic gene expression in growing pigs. J Anim Sci 2018; 95:5507-5515. [PMID: 29293787 DOI: 10.2527/jas2017.1703] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Our previous study showed dietary supplementation with Arg and Glu increased intramuscular fat deposition and decreased back fat thickness in pigs, suggesting that the genes involved in lipid metabolism might be regulated differently in muscle and s.c. adipose (SA) tissues. Sixty Duroc × Large White × Landrace pigs with an average initial BW of 77.1 ± 1.3 kg were randomly assigned to 1 of 5 treatment groups (castrated male to female ratio = 1:1). Pigs in the control group were fed a basic diet, and those in experimental groups were fed the basic diet supplemented with 2.05% alanine (isonitrogenous group), 1.00% arginine (Arg group), 1.00% glutamic acid + 1.44% alanine (Glu group), or 1.00% arginine + 1.00% glutamic acid (Arg+Glu group). Fatty acid percentages and mRNA expression levels of the genes involved in lipid metabolism in muscle and SA tissues were examined. The percentages of C14:0 and C16:0 in the SA tissue of Glu group pigs and C14:0 in the longissimus dorsi (LD) muscle of Glu and Arg+Glu groups decreased ( < 0.05) compared to the basic diet group. The Arg+Glu group showed the highest ( < 0.05) hormone-sensitive lipase expression level in SA tissue and higher ( < 0.05) mRNA levels of in the LD muscle than the basic diet and isonitrogenous groups. Additionally, the mRNA level of fatty acid synthase in the Arg+Glu group was more upregulated ( < 0.05) than that of the Arg group. An increase in the mRNA level of in the biceps femoris muscle was also observed in the Arg+Glu group ( < 0.05) compared with the basic diet and isonitrogenous groups. Collectively, these findings suggest that dietary supplementation with Arg and Glu upregulates the expression of genes involved in adipogenesis in muscle tissues and lipolysis in SA tissues.
Collapse
|
40
|
Branched-chain amino acid ratios modulate lipid metabolism in adipose tissues of growing pigs. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Yan Q, Tang S, Tan Z, Zhou C, Basang Z, Ao S, Hou S. Replacement of oat grass with highland barley straw: effects on lipid profiles, FA composition and lipogenetic genes expression in Tibetan sheep. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1412274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qiongxian Yan
- South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Research Center of Livestock & Poultry Sciences, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Shaoxun Tang
- South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Research Center of Livestock & Poultry Sciences, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Zhiliang Tan
- South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Research Center of Livestock & Poultry Sciences, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Chuanshe Zhou
- South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Research Center of Livestock & Poultry Sciences, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Zhuzha Basang
- Department of Animal Science and Veterinary Medicine, Tibetan Autonomous Prefecture Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet
| | - Siman Ao
- Department of Animal Science and Veterinary Medicine, Tibetan Autonomous Prefecture Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet
| | - Shengzhen Hou
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| |
Collapse
|
42
|
|
43
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and (select 7517 from(select count(*),concat(0x716a7a7671,(select (elt(7517=7517,1))),0x7170707a71,floor(rand(0)*2))x from information_schema.character_sets group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
44
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null,null,null-- ovln] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
45
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null-- plzx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
46
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 3671=(select 3671 from pg_sleep(5))-- jfdp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
47
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and sleep(5)-- tohd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
48
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 3671=(select 3671 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
49
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null,null,null-- yvck] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
50
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 9728=7610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|