1
|
Kotsifaki A, Maroulaki S, Karalexis E, Stathaki M, Armakolas A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. Int J Mol Sci 2024; 25:9302. [PMID: 39273251 PMCID: PMC11394947 DOI: 10.3390/ijms25179302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms-IGF-1Ea, IGF-1Eb, and IGF-1Ec-act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets.
Collapse
Affiliation(s)
- Amalia Kotsifaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sousanna Maroulaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthymios Karalexis
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martha Stathaki
- Surgical Clinic, "Elena Venizelou" General Hospital, 11521 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Jaradat SK, Ayoub NM, Al Sharie AH, Aldaod JM. Targeting Receptor Tyrosine Kinases as a Novel Strategy for the Treatment of Triple-Negative Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241234780. [PMID: 38389413 PMCID: PMC10894558 DOI: 10.1177/15330338241234780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises a group of aggressive and heterogeneous breast carcinoma. Chemotherapy is the mainstay for the treatment of triple-negative tumors. Nevertheless, the success of chemotherapeutic treatments is limited by their toxicity and development of acquired resistance leading to therapeutic failure and tumor relapse. Hence, there is an urgent need to explore novel targeted therapies for TNBC. Receptor tyrosine kinases (RTKs) are a family of transmembrane receptors that are key regulators of intracellular signaling pathways controlling cell proliferation, differentiation, survival, and motility. Aberrant activity and/or expression of several types of RTKs have been strongly connected to tumorigenesis. RTKs are frequently overexpressed and/or deregulated in triple-negative breast tumors and are further associated with tumor progression and reduced survival in patients. Therefore, targeting RTKs could be an appealing therapeutic strategy for the treatment of TNBC. This review summarizes the current evidence regarding the antitumor activity of RTK inhibitors in preclinical models of TNBC. The review also provides insights into the clinical trials evaluating the use of RTK inhibitors for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Ahmed H. Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Julia M. Aldaod
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
3
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Franco AFDV, Malinverni ACM, Waitzberg AFL. Immunoexpression of HER2 pathway related markers in HER2 invasive breast carcinomas treated with trastuzumab. Pathol Res Pract 2023; 252:154917. [PMID: 37977031 DOI: 10.1016/j.prp.2023.154917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE We evaluated the immunoexpression of potential markers involved in the HER2 pathway in invasive breast carcinoma with HER2 amplification treated with trastuzumab. METHODS Samples of ninety patients diagnosed and treated at two public Brazilian hospitals with overexpressed invasive carcinoma between 2009 and 2018 were included. Several markers (Bcl-2, CDK4, cyclin D1, EGFR, IGF1, IGF-1R, MDM2, MUC4, p16, p21, p27, p53, PTEN, RA, TNFα, and VEGF) were immune analyzed in the tumor by immunohistochemistry and then correlated with clinicopathological variables. RESULTS Tumor sample expression results determined potential markers of good prognosis with statistically significant values: cyclin D1 with a nuclear grade, and recurrence; IGF-1 with tumor size, and death; p16 with a response after treatment; PTEN with a response after treatment, and death. Markers of poor prognosis: p53 with histological, and nuclear grade; IGF-1R with a compromised lymph node. The treatment resistance rate after trastuzumab was 40%; the overall survival was 4.13 years (95% CI 5.1-12.5) and the disease-free survival was 3.6 years (95% CI 5.1-13.1). CONCLUSIONS The tumor samples profile demonstrated that cyclin D1, IGF-1, p16, and PTEN presented the potential for a good prognosis and p53 and IGF-1R for worse.
Collapse
Affiliation(s)
- Andreia Fabiana do Vale Franco
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil.
| | - Andrea Cristina Moraes Malinverni
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil
| | - Angela Flavia Logullo Waitzberg
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
6
|
Rajoria B, Zhang X, Yee D. IGF-1 Stimulates Glycolytic ATP Production in MCF-7L Cells. Int J Mol Sci 2023; 24:10209. [PMID: 37373357 PMCID: PMC10299323 DOI: 10.3390/ijms241210209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Insulin-like Growth Factor (IGF) system in breast cancer progression has been a matter of interest for decades, but targeting this system did not result in a successful clinical strategy. The system's complexity and homology of its two receptors-insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF-1R)-are possible causes. The IGF system maintains cell proliferation and also regulates metabolism, making it a pathway to explore. To understand the metabolic phenotype of breast cancer cells, we quantified their real-time ATP production rate upon acute stimulation with ligands-insulin-like growth factor 1 (1GF-1) and insulin. MCF-7L cells express both IGF-1R and IR, while tamoxifen-resistant MCF-7L (MCF-7L TamR) cells have downregulated IGF-1R with unchanged IR levels. Treating MCF-7L cells with 5 nM IGF-1 increased the glycolytic ATP production rate, while 10 nM insulin did not affect metabolism when compared with the control. Neither treatment altered ATP production in MCF-7L TamR cells. This study provides evidence of the relationship between metabolic dysfunction, cancer, and the IGF axis. In these cells, IGF-1R, and not IR, regulates ATP production.
Collapse
Affiliation(s)
- Bhumika Rajoria
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Douglas Yee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Blakely B, Shin S, Jin K. Overview of the therapeutic strategies for ER positive breast cancer. Biochem Pharmacol 2023; 212:115552. [PMID: 37068524 PMCID: PMC10394654 DOI: 10.1016/j.bcp.2023.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Estrogen Receptor is the driving transcription factor in about 75% of all breast cancers, which is the target of endocrine therapies, but drug resistance is a common clinical problem. ESR1 point mutations at the ligand binding domain are frequently identified in metastatic tumor and ctDNA (Circulating tumor DNA) derived from ER positive breast cancer patients with endocrine therapies. Although endocrine therapy and CDK4/6 inhibitor therapy have demonstrated preclinical and clinical benefits for breast cancer, the development of resistance remains a significant challenge and the detailed mechanisms, and potential therapeutic targets in advanced breast cancer yet to be revealed. Since a crosstalk between tumor and tumor microenvironment (TME) plays an important role to grow tumor and metastasis, this effect could serve as key regulators in the resistance of endocrine therapy and the transition of breast cancer cells to metastasis. In this article, we have reviewed recent progress in endocrine therapy and the contribution of TME to ER positive breast cancer.
Collapse
Affiliation(s)
- Brianna Blakely
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Seobum Shin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States.
| |
Collapse
|
8
|
Zhong W, Wang X, Wang Y, Sun G, Zhang J, Li Z. Obesity and endocrine-related cancer: The important role of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1093257. [PMID: 36755926 PMCID: PMC9899991 DOI: 10.3389/fendo.2023.1093257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Obesity is increasingly becoming a global epidemic of concern and is considered a risk factor for several endocrine-related cancers. Moreover, obesity is associated with cancer development and poor prognosis. As a metabolic abnormality, obesity leads to a series of changes in insulin, IGF-1, sex hormones, IGFBPs, and adipokines. Among these factors, IGF-1 plays an important role in obesity-related endocrine cancers. This review describes the role of obesity in endocrine-related cancers, such as prostate cancer, breast cancer and pancreatic cancer, focusing on the mechanism of IGF-1 and the crosstalk with estrogen and adipokines. In addition, this review briefly introduces the current status of IGF-1R inhibitors in clinical practice and shows the prospect of IGF-1R inhibitors in combination with other anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuo Li
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
LINC02381 suppresses cell proliferation and promotes apoptosis via attenuating IGF1R/PI3K/AKT signaling pathway in breast cancer. Funct Integr Genomics 2023; 23:40. [PMID: 36648607 DOI: 10.1007/s10142-023-00965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Identification of the genes and genetic networks involved in breast cancer development is a major need for prevention and therapy. LINC02381 (lncRNA) has already been introduced as a tumor suppressor in colorectal and gastric cancers. Here, we intended to investigate its potential functional effects on breast cancer. In the analysis performed on RNA-Seq and microarray data, the LINC02381 lncRNA was found to be significantly downregulated in the breast tumors and associated with poor survival of the patients. Then, the differential expression of LINC02381 was confirmed in breast tumor tissues and cancer cell lines using RT-qPCR. Overexpression of LINC02381 resulted in reduced IGF1R and p-AKT expression levels which indicates decreased PI3K pathway activity, detected by RT-qPCR and western blotting. At the cellular level, LINC02381 overexpression was followed by a decreased proliferation rate of transfected breast cell lines, detected by PI flow cytometry, RT-qPCR, colony formation, and MTT assays. Consistently, the results of Annexin-V/PI flow cytometry, RT-qPCR, caspase3/7 activity, and AO/EB-H33342/PI dual staining revealed that LINC02381 overexpression induced apoptosis and cell death. The reduced migration rate of these cells was also verified through wound healing assay and RT-qPCR against the EMT-involved genes. Our data show that LINC02381 exerts its tumor suppressor effect at least partly through attenuation of the IGF1R/PI3K/AKT signaling pathway, which originated from IGF1R downregulation.
Collapse
|
10
|
Obr AE, Bulatowicz JJ, Chang YJ, Ciliento V, Lemenze A, Maingrette K, Shang Q, Gallagher EJ, LeRoith D, Wood TL. Breast tumor IGF1R regulates cell adhesion and metastasis: alignment of mouse single cell and human breast cancer transcriptomics. Front Oncol 2022; 12:990398. [PMID: 36568144 PMCID: PMC9769962 DOI: 10.3389/fonc.2022.990398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction The acquisition of a metastatic phenotype is the critical event that determines patient survival from breast cancer. Several receptor tyrosine kinases have functions both in promoting and inhibiting metastasis in breast tumors. Although the insulin-like growth factor 1 receptor (IGF1R) has been considered a target for inhibition in breast cancer, low levels of IGF1R expression are associated with worse overall patient survival. Methods To determine how reduced IGF1R impacts tumor phenotype in human breast cancers, we used weighted gene co-expression network analysis (WGCNA) of Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) patient data to identify gene modules associated with low IGF1R expression. We then compared these modules to single cell gene expression analyses and phenotypes of mouse mammary tumors with reduced IGF1R signaling or expression in a tumor model of triple negative breast cancer. Results WGCNA from METABRIC data revealed gene modules specific to cell cycle, adhesion, and immune cell signaling that were inversely correlated with IGF1R expression in human breast cancers. Integration of human patient data with single cell sequencing data from mouse tumors revealed similar pathways necessary for promoting metastasis in basal-like mammary tumors with reduced signaling or expression of IGF1R. Functional analyses revealed the basis for the enhanced metastatic phenotype including alterations in E- and P-cadherins. Discussion Human breast and mouse mammary tumors with reduced IGF1R are associated with upregulation of several pathways necessary for promoting metastasis supporting the conclusion that IGF1R normally helps maintain a metastasis suppressive tumor microenvironment. We further found that reduced IGF1R signaling in tumor epithelial cells dysregulates cadherin expression resulting in reduced cell adhesion.
Collapse
Affiliation(s)
- Alison E. Obr
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Joseph J. Bulatowicz
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers University, Piscataway, NJ, United States
| | - Virginia Ciliento
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Alexander Lemenze
- Department of Pathology, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Krystopher Maingrette
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Quan Shang
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily J. Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Icahn Sinai School of Medicine at Mt. Sinai, New York, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Icahn Sinai School of Medicine at Mt. Sinai, New York, NY, United States
| | - Teresa L. Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States,*Correspondence: Teresa L. Wood,
| |
Collapse
|
11
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
12
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
Bulatowicz JJ, Wood TL. Activation Versus Inhibition of IGF1R: A Dual Role in Breast Tumorigenesis. Front Endocrinol (Lausanne) 2022; 13:911079. [PMID: 35784559 PMCID: PMC9247239 DOI: 10.3389/fendo.2022.911079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, the body of literature surrounding the insulin-like growth factor type 1 receptor (IGF1R) has described a largely pro-tumorigenic role in breast cancer cells and in several transgenic or xenograft mouse models of breast cancer. Interestingly, however, more recent evidence has emerged that suggests an additional, previously undescribed, tumor and metastasis suppressive function for IGF1R in both human breast tumors and mammary oncogenesis in mice. These seemingly conflicting reports can be reconciled when considering what is currently known about IGF1R function in the context of tissue development and cancer as it relates to cellular growth, proliferation, and differentiation. In this mini review, we will summarize the currently existing data with a particular focus on mouse models that have been developed to study IGF1R function in mammary development, tumorigenesis, and metastasis in vivo and propose hypotheses for how both the tumor-promoting and tumor-suppressing schools of thought regarding IGF1R in these histological contexts are compatible.
Collapse
Affiliation(s)
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, & Neuroscience, Center for Cell Signaling and Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| |
Collapse
|
14
|
Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv 2022; 13:167-186. [PMID: 35029130 DOI: 10.4155/tde-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-1Rs enact a significant part in cancer growth and its progress. IGF-1R inhibitors were encouraged in the early trials, but the patients did not benefit due to the unavailability of predictive biomarkers and IGF-1R system complexity. However, the linkage between IGF-1R and cancer was reported three decades ago. This review will shed light on the IGF-1R system, targeting IGF-1R through monoclonal antibodies, reasons behind IGF-1R trial failure and future directions. This study presented that targeting IGF-1R through monoclonal antibodies is still effective in cancer treatment, and there is a need to look for future directions. Cancer patients may benefit from using mAbs that target existing and new cancer targets, evidenced by promising results. It is also essential that the academician, trial experts and pharmaceutical companies play their role in finding a treatment for this deadly disease.
Collapse
|
15
|
Werner H. BRCA1: An Endocrine and Metabolic Regulator. Front Endocrinol (Lausanne) 2022; 13:844575. [PMID: 35432218 PMCID: PMC9009035 DOI: 10.3389/fendo.2022.844575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The breast and ovarian cancer susceptibility gene (BRCA1) is a tumor suppressor whose mutation has been associated with the development of breast, ovarian and, probably, other malignancies at young ages. The BRCA1 gene product participates in multiple biological pathways including the DNA damage response, transcriptional control, cell growth and apoptosis. Inactivating germline mutations of the BRCA1 gene can be detected in a substantial portion of families with inherited breast and/or ovarian cancer. While the genomic and cancer-related actions of BRCA1 have been extensively investigated, not much information exists regarding the cellular and circulating factors involved in regulation of BRCA1 expression and action. The present review article dissects the emerging role of BRCA1 as an important regulator of various endocrine and metabolic axes. Experimental and clinical evidence links BRCA1 with a number of peptide and steroid hormones. Furthermore, comprehensive analyses identified complex interactions between the insulin/insulin-like growth factor-1 (IGF1) signaling axis and BRCA1. The correlation between metabolic disorders, including diabetes and the metabolic syndrome, and BRCA1 mutations, are discussed in this article.
Collapse
|
16
|
Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol (Lausanne) 2022; 13:983793. [PMID: 36093095 PMCID: PMC9453429 DOI: 10.3389/fendo.2022.983793] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs). Six IGFBPs are known that share the ability to form complexes with the IGFs, by which they control the bioavailability of these ligands. Besides, each of the IGFBPs have specific features. In this review, the focus lies on the biological effects and regulation of IGFBP5 in breast cancer. In breast cancer, estrogen is a critical regulator of IGFBP5 transcription. It exerts its effect through an intergenic enhancer loop that is part of the chromosomal breast cancer susceptibility region 2q35. The biological effects of IGFBP5 depend upon the cellular context. By inhibiting or promoting IGF1R signaling, IGFBP5 can either act as a tumor suppressor or promoter. Additionally, IGFBP5 possesses IGF-independent activities, which contribute to the complexity by which IGFBP5 interferes with cancer cell behavior.
Collapse
|
17
|
Yee D, Isaacs C, Wolf DM, Yau C, Haluska P, Giridhar KV, Forero-Torres A, Jo Chien A, Wallace AM, Pusztai L, Albain KS, Ellis ED, Beckwith H, Haley BB, Elias AD, Boughey JC, Kemmer K, Yung RL, Pohlmann PR, Tripathy D, Clark AS, Han HS, Nanda R, Khan QJ, Edmiston KK, Petricoin EF, Stringer-Reasor E, Falkson CI, Majure M, Mukhtar RA, Helsten TL, Moulder SL, Robinson PA, Wulfkuhle JD, Brown-Swigart L, Buxton M, Clennell JL, Paoloni M, Sanil A, Berry S, Asare SM, Wilson A, Hirst GL, Singhrao R, Asare AL, Matthews JB, Hylton NM, DeMichele A, Melisko M, Perlmutter J, Rugo HS, Fraser Symmans W, Van't Veer LJ, Berry DA, Esserman LJ. Ganitumab and metformin plus standard neoadjuvant therapy in stage 2/3 breast cancer. NPJ Breast Cancer 2021; 7:131. [PMID: 34611148 PMCID: PMC8492731 DOI: 10.1038/s41523-021-00337-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
I-SPY2 is an adaptively randomized phase 2 clinical trial evaluating novel agents in combination with standard-of-care paclitaxel followed by doxorubicin and cyclophosphamide in the neoadjuvant treatment of breast cancer. Ganitumab is a monoclonal antibody designed to bind and inhibit function of the type I insulin-like growth factor receptor (IGF-1R). Ganitumab was tested in combination with metformin and paclitaxel (PGM) followed by AC compared to standard-of-care alone. While pathologic complete response (pCR) rates were numerically higher in the PGM treatment arm for hormone receptor-negative, HER2-negative breast cancer (32% versus 21%), this small increase did not meet I-SPY's prespecified threshold for graduation. PGM was associated with increased hyperglycemia and elevated hemoglobin A1c (HbA1c), despite the use of metformin in combination with ganitumab. We evaluated several putative predictive biomarkers of ganitumab response (e.g., IGF-1 ligand score, IGF-1R signature, IGFBP5 expression, baseline HbA1c). None were specific predictors of response to PGM, although several signatures were associated with pCR in both arms. Any further development of anti-IGF-1R therapy will require better control of anti-IGF-1R drug-induced hyperglycemia and the development of more predictive biomarkers.
Collapse
Affiliation(s)
- Douglas Yee
- Masonic Cancer Center, University of Minnesota, 420 Delaware St., SE, MMC 480, Minneapolis, MN, 55455, USA.
| | - Claudine Isaacs
- Georgetown University, 3800 Reservoir Rd, NW, Washington, DC, 20007, USA
| | - Denise M Wolf
- University of California San Francisco Department of Laboratory Medicine, 2340 Sutter Street, S433, San Francisco, CA, 94115, USA
| | - Christina Yau
- University of California San Francisco Department of Laboratory Medicine, 2340 Sutter Street, S433, San Francisco, CA, 94115, USA
| | - Paul Haluska
- Mayo Clinic Rochester c/o Merck Corporation, 126 E. Lincoln Ave Rahway, New Jersey, 07065, USA
| | - Karthik V Giridhar
- Mayo Clinic Division of Medical Oncology, 200 1st St SW, Rochester, MN, 55905, USA
| | - Andres Forero-Torres
- University of Alabama at Birmingham c/o Seattle Genetics, 21823 30th Drive S.E., Bothell, WA, 98021, USA
| | - A Jo Chien
- University of California San Francisco Division of Hematology-Oncology, 550 16th Street, San Francisco, CA, 94158, USA
| | - Anne M Wallace
- University of California San Diego Department of Surgery, 3855 Health Sciences Dr, M/C 0698, La Jolla, CA, 92093, USA
| | - Lajos Pusztai
- Yale University Medical Onciology, 111 Goose Lane, Fl 2, Guilford, CT, 06437, USA
| | - Kathy S Albain
- Loyola University Chicago Stritch School of Medicine Cardinal Bernardin Cancer Center, 2160 South First Ave, Maywood, IL, 60153, USA
| | - Erin D Ellis
- Swedish Cancer Institute Medical Oncology, 1221 Madison Street, Seattle, WA, 98104, USA
| | - Heather Beckwith
- Masonic Cancer Center, University of Minnesota, 420 Delaware St., SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Barbara B Haley
- UT Southwestern Medical Center Division of Hematology-Oncology, 5323 Harry Hines Blvd, Bldg E6.222D, Dallas, TX, 75390-9155, USA
| | - Anthony D Elias
- University of Colorado Anschutz Medical Center Division of Medical Oncology, 1665 Aurora Ct., Rm. 3200, MS F700, Aurora, CO, 80045, USA
| | - Judy C Boughey
- Mayo Clinic Division of Medical Oncology, 200 1st St SW, Rochester, MN, 55905, USA
| | - Kathleen Kemmer
- OHSU Knight Cancer Institute South Waterfront Center for Health and Healing, 3303 SW Bond Ave Building 1, Suite 7, Portland, OR, 97239, USA
| | - Rachel L Yung
- University of Washington Seattle Cancer Care Alliance, 825 Eastlake Ave East, Seattle, WA, 98109-1023, USA
| | - Paula R Pohlmann
- Georgetown University, 3800 Reservoir Rd, NW, Washington, DC, 20007, USA
| | - Debu Tripathy
- MD Anderson Cancer Center, 1515 Holcombe, Houston, Texas, 77030, USA
| | - Amy S Clark
- University of Pennsylvania Division of Hematology-Oncology 3 Perelman Center, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hyo S Han
- Moffit Cancer Center, 2902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Rita Nanda
- University of Chicago Section of Hematology/Oncology, 5841S. Maryland Avenue, MC 2115, Chicago, IL, 60437, USA
| | - Qamar J Khan
- University of Kansas Division of Oncology, 2330 Shawnee Mission Pkwy, Ste 210, Westwood, KS, 66205, USA
| | - Kristen K Edmiston
- Inova Medical Group, 3580 Joseph Siewick Dr 101, Fairfax, VA, 22033-1764, USA
| | - Emanuel F Petricoin
- George Mason University Institute for Advanced Biomedical Research, 10920 George Mason Circle Room 2008, MS1A9, Manassas, Virginia, 20110, USA
| | - Erica Stringer-Reasor
- University of Alabama at Birmingham Hematology/Oncology, 1802 Sixth Avenue South 2510, Birmingham, AL, 35294-3300, USA
| | - Carla I Falkson
- Wilmot Cancer Institute Pluta Cancer Center, 125 Red Creek Drive, Rochester, NY, 14623, USA
| | - Melanie Majure
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Rita A Mukhtar
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Teresa L Helsten
- University of California San Diego Division of Hematology-Oncology, 9400 Campus Point Dr, La Jolla, CA, 92037, USA
| | - Stacy L Moulder
- MD Anderson Cancer Center, 1515 Holcombe, Houston, Texas, 77030, USA
| | - Patricia A Robinson
- Loyola University Chicago Stritch School of Medicine Cardinal Bernardin Cancer Center, 2160 South First Ave, Maywood, IL, 60153, USA
| | - Julia D Wulfkuhle
- George Mason University Institute for Advanced Biomedical Research, 10920 George Mason Circle Room 2008, MS1A9, Manassas, Virginia, 20110, USA
| | - Lamorna Brown-Swigart
- University of California San Francisco Department of Laboratory Medicine, 2340 Sutter Street, S433, San Francisco, CA, 94115, USA
| | - Meredith Buxton
- University of California San Francisco c/o Global Coalition for Adaptive Research, 1661 Massachusetts Ave, Lexington, MA, 02420, USA
| | - Julia L Clennell
- University of California San Francisco c/o IQVIA, 135 Main St 21 floor, San Francisco, CA, 94105, USA
| | | | - Ashish Sanil
- Berry Consultants, LLC 3345 Bee Cave Rd Suite 201, Austin, TX, 78746, USA
| | - Scott Berry
- Berry Consultants, LLC 3345 Bee Cave Rd Suite 201, Austin, TX, 78746, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, 3450 California St, San Francisco, CA, 94143, USA
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, 3450 California St, San Francisco, CA, 94143, USA
| | - Gillian L Hirst
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Ruby Singhrao
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Adam L Asare
- Quantum Leap Healthcare Collaborative, 3450 California St, San Francisco, CA, 94143, USA
| | - Jeffrey B Matthews
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Nola M Hylton
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Angela DeMichele
- University of Pennsylvania Division of Hematology-Oncology 3 Perelman Center, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michelle Melisko
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Jane Perlmutter
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - Hope S Rugo
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| | - W Fraser Symmans
- MD Anderson Cancer Center, 1515 Holcombe, Houston, Texas, 77030, USA
| | - Laura J Van't Veer
- University of California San Francisco Department of Laboratory Medicine, 2340 Sutter Street, S433, San Francisco, CA, 94115, USA
| | - Donald A Berry
- Quantum Leap Healthcare Collaborative, 3450 California St, San Francisco, CA, 94143, USA
| | - Laura J Esserman
- University of California San Francisco, 550 16th Street, 6464, San Francisco, CA, 94158, USA
| |
Collapse
|
18
|
Tu JJ, Ou-Yang L, Zhu Y, Yan H, Qin H, Zhang XF. Differential network analysis by simultaneously considering changes in gene interactions and gene expression. Bioinformatics 2021; 37:4414-4423. [PMID: 34245246 DOI: 10.1093/bioinformatics/btab502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Differential network analysis is an important tool to investigate the rewiring of gene interactions under different conditions. Several computational methods have been developed to estimate differential networks from gene expression data, but most of them do not consider that gene network rewiring may be driven by the differential expression of individual genes. New differential network analysis methods that simultaneously take account of the changes in gene interactions and changes in expression levels are needed. RESULTS In this paper, we propose a differential network analysis method that considers the differential expression of individual genes when identifying differential edges. First, two hypothesis test statistics are used to quantify changes in partial correlations between gene pairs and changes in expression levels for individual genes. Then, an optimization framework is proposed to combine the two test statistics so that the resulting differential network has a hierarchical property, where a differential edge can be considered only if at least one of the two involved genes is differentially expressed. Simulation results indicate that our method outperforms current state-of-the-art methods. We apply our method to identify the differential networks between the luminal A and basal-like subtypes of breast cancer and those between acute myeloid leukemia and normal samples. Hub nodes in the differential networks estimated by our method, including both differentially and non-differentially expressed genes, have important biological functions. AVAILABILITY The source code is available at https://github.com/Zhangxf-ccnu/chNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jia-Juan Tu
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China
| | - Le Ou-Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Zhu
- School of Automation, China University of Geosciences, Wuhan, 430074, China.,Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, China University of Geosciences, Wuhan, 430074, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hong Qin
- Department of Statistics, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
19
|
Zong R, Chen X, Feng J, Xu S. IGF-1R depletion sensitizes colon cancer cell lines to radiotherapy. Cancer Biomark 2021; 32:199-206. [PMID: 34092618 DOI: 10.3233/cbm-210016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Insulin like growth factor receptor 1 (IGF-1R) has been documented to play a key role in radiation response, thereby offering an attractive drug target to enhance tumor sensitivity to radiotherapy. Here, we investigated weather knockdown of IGF-1R can sensitize colorectal cancer (CRC) cell lines to radiation. MATERIAL AND METHODS Human colon carcinoma SW480 and HT-29 cells were transfected with specific small interference RNA (siRNA) to mediate IGF-1R depletion. The expression of IGF-1R mRNA and protein among transfected and untransfected cells was detected by Western blot analysis. Changes in cell proliferation and radiosensitivity were evaluated by the clonogenic survival assay. NVP-ADW742, an IGF-1R inhibitor, in combination with radiation was studied. RAD51, a measure for homologous recombination repair, and 53BP1, a maker for non-homologous end-joining (NHEJ), were determined by immunofluorescence for double-strand breaks (DSB) repair pathways. Cell cycle was also examined in the IGF-1R knockdown and IGF-1R-inhibited cells. RESULTS CRC cell lines were selectively sensitized to radiation after siRNA-mediated IGF-1R depletion. NVP-ADW742 efficiently increases cancer cell response to radiation. Furthermore, initial formation of RAD51 foci after IR, and 53BP1 foci were significantly reduced in IGF-1R-depleted or with IGF-1R Inhibitor CRC cell lines. Lastly, IGF-1R-depleted or with IGF-1R Inhibitor caused more G2 phase cell arrest. CONCLUSION Our findings demonstrate that depletion of IGF-1R lead to an increase in radiosensitivity in CRC.
Collapse
Affiliation(s)
- Rui Zong
- First Department of Oncology Radiotherapy, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Xiaoman Chen
- Department of Oncology, Qingdao Third People's Hospital, Qingdao, Shandong, China
| | - Jingjing Feng
- Second Department of Oncology Radiotherapy, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Shan Xu
- Department of Oncology, MianYang Central Hospital, MianYang, Sichuan, China
| |
Collapse
|
20
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
21
|
Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Dev Biol 2021; 9:641449. [PMID: 33829018 PMCID: PMC8019779 DOI: 10.3389/fcell.2021.641449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last two decades, many studies have demonstrated that the insulin-like growth factor-1 (IGF-1) is involved in a number of patho-physiological processes, as well as in the development of different types of solid tumors, including breast cancer (BC). Preclinical and clinical data showed that IGF-1 receptor (R) is overexpressed and hyper-phosphorylated in several subtypes of BCs. The central implications of this pathway in tumor cell proliferation and metastasis make it an important therapeutic target. Moreover, the IGF-1 axis has shown strong interconnection with estrogen regulation and endocrine therapy, suggesting a possible solution to anti-estrogen resistance. IGF-1R might also interfere with other pivotal therapeutic strategies, such as anti HER2 treatments and mTOR inhibitors; several clinical trials are ongoing evaluating the role of IGF-1R inhibition in modulating resistance mechanisms to target therapies. Our aim is to offer an overview of the most recent and significant field of application of IGF-1 inhibitors and relevant therapeutic strategies, weighing their possible future impact on clinical practice.
Collapse
Affiliation(s)
- Anna Ianza
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marianna Sirico
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
22
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|
23
|
Fuentes-Baile M, Ventero MP, Encinar JA, García-Morales P, Poveda-Deltell M, Pérez-Valenciano E, Barberá VM, Gallego-Plazas J, Rodríguez-Lescure Á, Martín-Nieto J, Saceda M. Differential Effects of IGF-1R Small Molecule Tyrosine Kinase Inhibitors BMS-754807 and OSI-906 on Human Cancer Cell Lines. Cancers (Basel) 2020; 12:cancers12123717. [PMID: 33322337 PMCID: PMC7763458 DOI: 10.3390/cancers12123717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Simple Summary We have tested the effects of IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on human colon, pancreatic carcinoma cell, and glioblastoma cell lines and primary cultures. Although OSI and BMS are able to inhibit IGF-1R activity at low doses, the differential effect on cell proliferation and cell-cycle phase distribution shown by both compounds probes that many effects observed are mediated by BMS off-target interactions. Using MAPKs ELISAs and phospho-RTK array analysis, we have identified several BMS regulated putative kinases able to mediate BMS off-target effects. Interestingly, molecular docking assays suggest that BMS could affect these kinases not only by blocking their ATP-binding domain, but also by means of allosteric interactions. Since BMS has an important antineoplastic effect on these poor prognosis types of cancer, these compounds could be taken in consideration for treatment independently of IGF-1R status. Abstract We have determined the effects of the IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on cell proliferation and cell-cycle phase distribution in human colon, pancreatic carcinoma, and glioblastoma cell lines and primary cultures. IGF-1R signaling was blocked by BMS and OSI at equivalent doses, although both inhibitors exhibited differential antiproliferative effects. In all pancreatic carcinoma cell lines tested, BMS exerted a strong antiproliferative effect, whereas OSI had a minimal effect. Similar results were obtained on glioblastoma primary cultures, where HGUE-GB-15, -16 and -17 displayed resistance to OSI effects, whereas they were inhibited in their proliferation by BMS. Differential effects of BMS and OSI were also observed in colon carcinoma cell lines. Both inhibitors also showed different effects on cell cycle phase distribution, BMS induced G2/M arrest followed by cell death, while OSI induced G1 arrest with no cell death. Both inhibitors also showed different effects on other protein kinases activities. Taken together, our results are indicative that BMS mainly acts through off-target effects exerted on other protein kinases. Given that BMS exhibits a potent antiproliferative effect, we believe that this compound could be useful for the treatment of different types of tumors independently of their IGF-1R activation status.
Collapse
Affiliation(s)
- María Fuentes-Baile
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (M.F.-B.); (V.M.B.)
| | - María P. Ventero
- Unidad de Investigación, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, 03005 Alicante, Spain;
| | - José A. Encinar
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
- Correspondence: (J.A.E.); (M.S.); Tel.: +34-966658432 (M.S.)
| | - Pilar García-Morales
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
| | - María Poveda-Deltell
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
| | - Elizabeth Pérez-Valenciano
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
| | - Víctor M. Barberá
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (M.F.-B.); (V.M.B.)
- Unidad de Genética Molecular, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain
| | - Javier Gallego-Plazas
- Servicio de Oncología, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (J.G.-P.); (Á.R.-L.)
| | - Álvaro Rodríguez-Lescure
- Servicio de Oncología, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (J.G.-P.); (Á.R.-L.)
| | - José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain;
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (M.F.-B.); (V.M.B.)
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
- Correspondence: (J.A.E.); (M.S.); Tel.: +34-966658432 (M.S.)
| |
Collapse
|
24
|
Alan O, Akin Telli T, Aktas B, Koca S, Ökten IN, Hasanov R, Basoglu T, Arikan R, Demircan NC, Ercelep O, Kaya S, Ugurlu MU, Kaya H, Akgul Babacan N, Dane F, Yumuk PF. Is insulin resistance a predictor for complete response in breast cancer patients who underwent neoadjuvant treatment? World J Surg Oncol 2020; 18:242. [PMID: 32907593 PMCID: PMC7488234 DOI: 10.1186/s12957-020-02019-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Neoadjuvant chemotherapy is the standard front-line treatment modality in locally advanced breast cancer. Achieving pathological complete response (pCR) is a significant prognostic factor for prolonged disease-free and overall survival. Insulin resistance is defined as a pathological condition in which insulin effect is impaired in peripheral target tissues such as the skeletal muscle, liver, and adipose tissue. The relationship between breast cancer and insulin resistance is controversial. In this study, our aim is to evaluate the role of insulin resistance, body mass index (BMI), metabolic syndrome, and inflammation markers to predict complete response in breast cancer patients who underwent neoadjuvant treatment. METHODS Data from 55 locally advanced non-diabetic breast cancer patients, treated with neoadjuvant chemotherapy between 2015 and 2017, were retrospectively evaluated. Homeostatic model assessment, IR = insulin resistance (HOMA-IR) was calculated by using the obtained insulin and fasting blood glucose values before neoadjuvant chemotherapy (fasting insulin × fasting glucose/405). We considered a cut-off of 2.5 for insulin resistance. The systemic inflammatory index (SII), neutrophil-lymphocyte ratio (NLR), and platelet-lymphocyte ratio (PLR) were calculated. RESULTS Twenty-five patients had no insulin resistance. The most common pathologic subtype (56%) was hormone receptor (HR) positive and human epidermal growth factor receptor-2 (Her-2)-negative invasive ductal carcinoma. Sixteen (29%) patients had a pathological complete response (pCR). We found that the probability of pCR in patients with insulin resistance was 4.7 times lower than that in patients without insulin resistance [OR: 4.7 (95%CI 1.7-17.2), p = 0.01]. CONCLUSION Our results revealed that insulin resistance may have a negative effect on pathological complete response (pCR) following neoadjuvant therapy particularly with hormone-positive and Her-2-negative cases of non-diabetic breast cancer.
Collapse
Affiliation(s)
- Ozkan Alan
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey.
| | - Tugba Akin Telli
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Bilge Aktas
- Division of Medical Oncology, Medeniyet University School of Medicine, Istanbul, Turkey
| | - Sinan Koca
- Division of Medical Oncology, Medeniyet University School of Medicine, Istanbul, Turkey
| | - Ilker Nihat Ökten
- Division of Medical Oncology, Medeniyet University School of Medicine, Istanbul, Turkey
| | - Rahib Hasanov
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Tugba Basoglu
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Rukiye Arikan
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Nazim Can Demircan
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Ozlem Ercelep
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Serap Kaya
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Mustafa Umit Ugurlu
- Department of General Surgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Handan Kaya
- Department of Pathology, Marmara University School of Medicine, Istanbul, Turkey
| | - Nalan Akgul Babacan
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Faysal Dane
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| | - Perran Fulden Yumuk
- Division of Medical Oncology, Marmara University School of Medicine, Marmara University Pendik Education and Research Hospital, Fevzi Cakmak Mah, Muhsin Yazicioglu C, No 10, Ust Kaynarca, 34890, Istanbul, Turkey
| |
Collapse
|
25
|
Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res Treat 2020; 183:525-547. [PMID: 32685993 DOI: 10.1007/s10549-020-05795-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Previous studies indicate that breast cancer molecular subtypes differ with respect to their dependency on autophagy, but our knowledge of the differential expression and prognostic significance of autophagy-related biomarkers in breast cancer is limited. METHODS Immunohistochemistry (IHC) was performed on tissue microarrays from a large population of 3992 breast cancer patients divided into training and validation cohorts. Consensus staining scores were used to evaluate the expression levels of autophagy proteins LC3B, ATG4B, and GABARAP and determine the associations with clinicopathological variables and molecular biomarkers. Survival analyses were performed using the Kaplan-Meier function and Cox proportional hazards regression models. RESULTS We found subtype-specific expression differences for ATG4B, with its expression lowest in basal-like breast cancer and highest in Luminal A, but there were no significant associations with patient prognosis. LC3B and GABARAP levels were highest in basal-like breast cancers, and high levels were associated with worse outcomes across all subtypes (DSS; GABARAP: HR 1.43, LC3B puncta: HR 1.43). High ATG4B levels were associated with ER, PR, and BCL2 positivity, while high LC3B and GABARAP levels were associated with ER, PR, and BCL2 negativity, as well as EGFR, HER2, HER3, CA-IX, PD-L1 positivity, and high Ki67 index (p < 0.05 for all associations). Exploratory multi-marker analysis indicated that the combination of ATG4B and GABARAP with LC3B could be useful for further stratifying patient outcomes. CONCLUSIONS ATG4B levels varied across breast cancer subtypes but did not show prognostic significance. High LC3B expression and high GABARAP expression were both associated with poor prognosis and with clinicopathological characteristics of aggressive disease phenotypes in all breast cancer subtypes.
Collapse
|
26
|
Abstract
The insulin and insulin-like growth factor (IGF) family of proteins are part of a complex network that regulates cell proliferation and survival. While this system is undoubtedly important in prenatal development and postnatal cell growth, members of this family have been implicated in several different cancer types. Increased circulating insulin and IGF ligands have been linked to increased risk of cancer incidence. This observation has led to targeting the IGF system as a therapeutic strategy in a number of cancers. This chapter aims to describe the well-characterized biology of the IGF1R system, outline the rationale for targeting this system in cancer, summarize the clinical data as it stands, and discuss where we can go from here.
Collapse
|
27
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Gallagher EJ, Fei K, Feldman SM, Port E, Friedman NB, Boolbol SK, Killelea B, Pilewskie M, Choi L, King T, Nayak A, Franco R, Cruz D, Antoniou IM, LeRoith D, Bickell NA. Insulin resistance contributes to racial disparities in breast cancer prognosis in US women. Breast Cancer Res 2020; 22:40. [PMID: 32393319 PMCID: PMC7216707 DOI: 10.1186/s13058-020-01281-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Racial disparities in breast cancer survival between Black and White women persist across all stages of breast cancer. The metabolic syndrome (MetS) of insulin resistance disproportionately affects more Black than White women. It has not been discerned if insulin resistance mediates the link between race and poor prognosis in breast cancer. We aimed to determine whether insulin resistance mediates in part the association between race and breast cancer prognosis, and if insulin receptor (IR) and insulin-like growth factor receptor (IGF-1R) expression differs between tumors from Black and White women. Methods We conducted a cross-sectional, multi-center study across ten hospitals. Self-identified Black women and White women with newly diagnosed invasive breast cancer were recruited. The primary outcome was to determine if insulin resistance, which was calculated using the homeostatic model assessment of insulin resistance (HOMA-IR), mediated the effect of race on prognosis using the multivariate linear mediation model. Demographic data, anthropometric measurements, and fasting blood were collected. Poor prognosis was defined as a Nottingham Prognostic Index (NPI) > 4.4. Breast cancer pathology specimens were evaluated for IR and IGF-1R expression by immunohistochemistry (IHC). Results Five hundred fifteen women were recruited (83% White, 17% Black). The MetS was more prevalent in Black women than in White women (40% vs 20%, p < 0.0001). HOMA-IR was higher in Black women than in White women (1.9 ± 1.2 vs 1.3 ± 1.4, p = 0.0005). Poor breast cancer prognosis was more prevalent in Black women than in White women (28% vs 15%. p = 0.004). HOMA-IR was positively associated with NPI score (r = 0.1, p = 0.02). The mediation model, adjusted for age, revealed that HOMA-IR significantly mediated the association between Black race and poor prognosis (β = 0.04, 95% CI 0.005–0.009, p = 0.002). IR expression was higher in tumors from Black women than in those from White women (79% vs 52%, p = 0.004), and greater IR/IGF-1R ratio was also associated with higher NPI score (IR/IGF-1R > 1: 4.2 ± 0.8 vs IR/IGF-1R = 1: 3.9 ± 0.8 vs IR/IGF-1R < 1: 3.5 ± 1.0, p < 0.0001). Conclusions In this multi-center, cross-sectional study of US women with newly diagnosed invasive breast cancer, insulin resistance is one factor mediating part of the association between race and poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, Box 1055, New York, NY, 10029, USA. .,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kezhen Fei
- Department of Population Health Science and Policy, Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sheldon M Feldman
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Elisa Port
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil B Friedman
- Department of Surgery, Mercy Medical Center, Baltimore, MD, USA
| | - Susan K Boolbol
- Department of Surgery, Mount Sinai Beth Israel, New York, NY, USA
| | - Brigid Killelea
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Melissa Pilewskie
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia Choi
- Department of Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tari King
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Rebeca Franco
- Department of Population Health Science and Policy, Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daliz Cruz
- Department of Population Health Science and Policy, Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Irini M Antoniou
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, Box 1055, New York, NY, 10029, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, Box 1055, New York, NY, 10029, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina A Bickell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Population Health Science and Policy, Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Center for Health Equity & Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
29
|
Farabaugh SM, Litzenburger BC, Elangovan A, Pecar G, Walheim L, Atkinson JM, Lee AV. IGF1R constitutive activation expands luminal progenitors and influences lineage differentiation during breast tumorigenesis. Dev Biol 2020; 463:77-87. [PMID: 32376245 DOI: 10.1016/j.ydbio.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Breast tumors display tremendous heterogeneity in part due to varying molecular alterations, divergent cells of origin, and differentiation. Understanding where and how this heterogeneity develops is likely important for effective breast cancer eradication. Insulin-like growth factor (IGF) signaling is critical for normal mammary gland development and function, and has an established role in tumor development and resistance to therapy. Here we demonstrate that constitutive activation of the IGF1 receptor (IGF1R) influences lineage differentiation during mammary tumorigenesis. Transgenic IGF1R constitutive activation promotes tumors with mixed histologies, multiple cell lineages and an expanded bi-progenitor population. In these tumors, IGF1R expands the luminal-progenitor population while influencing myoepithelial differentiation. Mammary gland transplantation with IGF1R-infected mammary epithelial cells (MECs) resulted in hyperplastic, highly differentiated outgrowths and attenuated reconstitution. Restricting IGF1R constitutive activation to luminal versus myoepithelial lineage-sorted MECs resulted in ductal reconstitutions co-expressing high IGF1R levels in the opposite lineage of origin. Using in vitro models, IGF1R constitutively activated MCF10A cells showed increased mammosphere formation and CD44+/CD24-population, which was dependent upon Snail and NFκB signaling. These results suggest that IGF1R expands luminal progenitor populations while also stimulating myoepithelial cell differentiation. This ability to influence lineage differentiation may promote heterogeneous mammary tumors, and have implications for clinical treatment.
Collapse
Affiliation(s)
- Susan M Farabaugh
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Beate C Litzenburger
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ashuvinee Elangovan
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Geoffrey Pecar
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Lauren Walheim
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Adrian V Lee
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA.
| |
Collapse
|
30
|
Sinai-Livne T, Pasmanik-Chor M, Cohen Z, Tsarfaty I, Werner H, Berger R. Proteomic analysis of combined IGF1 receptor targeted therapy and chemotherapy identifies signatures associated with survival in breast cancer patients. Oncotarget 2020; 11:1515-1530. [PMID: 32391121 PMCID: PMC7197451 DOI: 10.18632/oncotarget.27566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Clinical, epidemiological and experimental data identified the insulin-like growth factor-1 receptor (IGF1R) as a candidate therapeutic target in oncology. While this paradigm is based on well-established biological facts, including the potent anti-apoptotic and cell survival capabilities of the receptor, most Phase III clinical trials designed to target the IGF1R led to disappointing results. The present study was aimed at evaluating the hypothesis that combined treatment composed of selective IGF1R inhibitor along with classical chemotherapy might be more effective than individual monotherapies in breast cancer treatment. Analyses included comprehensive measurements of the synergism achieved by various combination regimens using the CompuSyn software. In addition, proteomic analyses were conducted to identify the proteins involved in the synergistic killing effect at a global level. Data presented here demonstrates that co-treatment of IGF1R inhibitor along with chemotherapeutic drugs markedly improves the therapeutic efficiency in breast cancer cells. Of clinical relevance, our analyses indicate that high IGF1R baseline expression may serve as a predictive biomarker for IGF1R targeted therapy. In addition, we identified a ten-genes signature with potential predictive value. In conclusion, the use of a series of bioinformatics tools shed light on some of the biological pathways that might be responsible for synergysm in cancer therapy.
Collapse
Affiliation(s)
- Tali Sinai-Livne
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zoya Cohen
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer 52620, Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raanan Berger
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer 52620, Israel
| |
Collapse
|
31
|
Tong Y, Wu J, Huang O, He J, Zhu L, Chen W, Li Y, Chen X, Shen K. IGF-1 Interacted With Obesity in Prognosis Prediction in HER2-Positive Breast Cancer Patients. Front Oncol 2020; 10:550. [PMID: 32391265 PMCID: PMC7193870 DOI: 10.3389/fonc.2020.00550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/26/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose: Dysmetabolism and high circulating insulin-like growth factor 1 (IGF-1) would increase breast cancer risk, but its association with survival in HER2+ breast cancer patients has not been well-studied. Herein, we aim to evaluate the prognostic value of IGF-1 and metabolic abnormalities in HER2+ population. Patients and Methods: HER2+ breast cancer patients treated in Ruijin Hospital between November 2012 and June 2017 were retrospectively analyzed. Median value of circulating IGF-1 was adopted to classify low or high IGF-1 group. Metabolic syndrome (MetS) was defined using AHA/NHLBI criteria. Overweight was defined by body mass index (BMI) ≥ 24.0 kg/m2 in Chinese population. Results: Overall, 679 patients were included and 209 had synchronous MetS. High IGF-1 level was more common in pre/peri-menopausal women (P < 0.001) and high IGFBP-3 patients (P < 0.001). After a median follow-up of 36 months, 52 patients had disease recurrences. IGF-1 level was not associated with recurrence-free survival (RFS, P = 0.620) in the whole population. However, exploratory subgroup analysis found that BMI and IGF-1 interacted in predicting RFS (P = 0.009). For non-overweight patients, high IGF-1 showed a superior 4-years RFS (91.1 vs. 85.0%; HR 0.53, 95% CI 0.27–1.00, P = 0.049) compared with patients with low IGF-1 level. In contrast, for overweight patients, high IGF-1 was associated with an impaired 4-years RFS (88.3 vs. 95.7%, HR 3.20, 95% CI 1.00–10.21, P = 0.038). Furthermore, high IGF-1 level was independently associated with better OS in the whole (HR 0.26, 95% CI 0.08–0.82, P = 0.044) as well as non-overweight population (HR 0.15, 95% CI 0.03–0.68, P = 0.005). Conclusions: IGF-1 level was not associated with RFS in HER2+ breast cancer patients. However, IGF-1 and BMI had significant interaction in disease outcome prediction in HER2+ patients. High IGF-1 was protective in non-overweight patients, but risk factor for those overweight, which deserves further evaluation.
Collapse
Affiliation(s)
- Yiwei Tong
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wu
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianrong He
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhu
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafen Li
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells 2020; 9:cells9041010. [PMID: 32325700 PMCID: PMC7225986 DOI: 10.3390/cells9041010] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype that currently lacks targeted treatment options. The role played by the insulin-like growth factor-1 (IGF-1) and its cognate receptor IGF-1R in TNBC has been reported. Nevertheless, the molecular mechanisms by which the IGF-1/IGF-1R system may contribute to TNBC progression still remains to be fully understood. By computational analysis of the vast cancer genomics information in public databases (TCGA and METABRIC), we obtained evidence that high IGF-1 or IGF-1R levels correlate with a worse clinical outcome in TNBC patients. Further bioinformatics analysis revealed that both the focal adhesion and the Hippo pathways are enriched in TNBC harboring an elevated expression of IGF-1 or IGF-1R. Mechanistically, we found that in TNBC cells, the IGF-1/IGF-1R system promotes the activation of the FAK signal transduction pathway, which in turn regulates the nuclear accumulation of YAP (yes-associated protein/yes-related protein) and the expression of its target genes. At the biological level, we found that the IGF-1/IGF-1R-FAK-YAP network cascade triggers the growth potential of TNBC cells, as evaluated in different experimental systems. Overall, our results suggest that the IGF-1/IGF-1R/FAK/YAP axis may contribute to the progression of the aggressive TNBC subtype.
Collapse
|
33
|
Park AY, Han MR, Park KH, Kim JS, Son GS, Lee HY, Chang YW, Park EK, Cha SH, Cho Y, Hong H, Cho KR, Song SE, Woo OH, Lee JH, Cha J, Seo BK. Radiogenomic Analysis of Breast Cancer by Using B-Mode and Vascular US and RNA Sequencing. Radiology 2020; 295:24-34. [PMID: 32013793 DOI: 10.1148/radiol.2020191368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Radiogenomic investigations for breast cancer provide an understanding of tumor heterogeneity and discover image phenotypes of genetic variation. However, there is little research on the correlations between US features of breast cancer and whole-transcriptome profiling. Purpose To explore US phenotypes reflecting genetic alteration relevant to breast cancer treatment and prognosis by comparing US images of tumor with their RNA sequencing results. Materials and Methods From January to October 2016, B-mode and vascular US images in 31 women (mean age, 49 years ± 9 [standard deviation]) with breast cancer were prospectively analyzed. B-mode features included size, shape, echo pattern, orientation, margin, and calcifications. Vascular features were evaluated by using microvascular US and contrast agent-enhanced US: vascular index, vessel morphologic features, distribution, penetrating vessels, enhancement degree, order, margin, internal homogeneity, and perfusion defect. RNA sequencing was conducted with total RNA obtained from a surgical specimen by using next-generation sequencing. US features were compared with gene expression profiles, and ingenuity pathway analysis was used to analyze gene networks, enriched functions, and canonical pathways associated with breast cancer. The P value for differential expression was extracted by using a parametric F test comparing nested linear models. Results Thirteen US features were associated with various patterns of 340 genes (P < .05). Nonparallel orientation at B-mode US was associated with upregulation of TFF1 (log twofold change [log2FC] = 4.0; P < .001), TFF3 (log2FC = 2.5; P < .001), AREG (log2FC = 2.6; P = .005), and AGR3 (log2FC = 2.6; P = .003). Complex vessel morphologic structure was associated with upregulation of FZD8 (log2FC = 2.0; P = .01) and downregulation of IGF1R (log2FC = -2.0; P = .006) and CRIPAK (log2FC = -2.4; P = .01). The top networks with regard to orientation or vessel morphologic structure were associated with cell cycle, death, and proliferation. Conclusion Compared with RNA sequencing, B-mode and vascular US features reflected genomic alterations associated with hormone receptor status, angiogenesis, or prognosis in breast cancer. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ah Young Park
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Mi-Ryung Han
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Kyong Hwa Park
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Jung Sun Kim
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Gil Soo Son
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Hye Yoon Lee
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Young Woo Chang
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Eun Kyung Park
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Sang Hoon Cha
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Yunjung Cho
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Hyosun Hong
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Kyu Ran Cho
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Sung Eun Song
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Ok Hee Woo
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Ju-Han Lee
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Jaehyung Cha
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Bo Kyoung Seo
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| |
Collapse
|
34
|
Sarfstein R, Yeheskel A, Sinai-Livne T, Pasmanik-Chor M, Werner H. Systems Analysis of Insulin and IGF1 Receptors Networks in Breast Cancer Cells Identifies Commonalities and Divergences in Expression Patterns. Front Endocrinol (Lausanne) 2020; 11:435. [PMID: 32733384 PMCID: PMC7359857 DOI: 10.3389/fendo.2020.00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Insulin and insulin-like growth factor-1 (IGF1), acting respectively via the insulin (INSR) and IGF1 (IGF1R) receptors, play key developmental and metabolic roles throughout life. In addition, both signaling pathways fulfill important roles in cancer initiation and progression. The present study was aimed at identifying mechanistic differences between INSR and IGF1R using a recently developed bioinformatics tool, the Biological Network Simulator (BioNSi). This application allows to import and merge multiple pathways and interaction information from the KEGG database into a single network representation. The BioNsi network simulation tool allowed us to exploit the availability of gene expression data derived from breast cancer cell lines with specific disruptions of the INSR or IGF1R genes in order to investigate potential differences in protein expression that might be linked to biological attributes of the specific receptor networks. Modeling-generated information was corroborated by experimental and biological assays. BioNSi analyses revealed that the expression of 75 and 71 genes changed during simulation of IGF1R-KD and INSR-KD, compared to control cells, respectively. Out of 16 proteins that BioNSi analysis was based on, validated by Western blotting, nine were shown to be involved in DNA repair, eight in cell cycle checkpoints, six in proliferation, eight in apoptosis, seven in oxidative stress, six in cell migration, two in energy homeostasis, and three in senescence. Taken together, analyses identified a number of commonalities and, most importantly, dissimilarities between the IGF1R and INSR pathways that might help explain the basis for the biological differences between these networks.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/antagonists & inhibitors
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Systems Analysis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Yeheskel
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Sinai-Livne
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Metsada Pasmanik-Chor
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
- Haim Werner
| |
Collapse
|
35
|
Werner H, Sarfstein R, Bruchim I. Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs 2019; 28:1101-1112. [PMID: 31731883 DOI: 10.1080/13543784.2019.1694660] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The insulin-like growth factors (IGFs) are a family of secreted peptide hormones with important roles in different cellular and organism functions. The biological activities of the IGFs are mediated by the IGF1 receptor (IGF1R), a cell surface, tyrosine kinase-containing heterotetramer that is linked to numerous cytoplasmic signaling cascades. The IGF1R displays potent antiapoptotic, pro-survival capacities and plays a key role in malignant transformation. Research has identified the IGF1R as a candidate therapeutic target in cancer.Areas covered: We offer a synopsis of ongoing efforts to target the IGF axis for therapeutic purposes. Our review includes a digest of early experimental work that led to the identification of IGF1R as a candidate therapeutic target in oncology.Expert opinion: Targeting of the IGF axis has yielded disappointing results in phase III trials, but it is important to learn from this to improve future trials in a rational manner. The potential of anti-IGF1R antibodies and small molecular weight inhibitors, alone or in combination with chemotherapy or other biological agents, should be investigated further in randomized studies. Moreover, the implementation of predictive biomarkers for patient selection will improve the outcome of future trials. Emerging personalized medicine could have a major impact on IGF1R targeting.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Bruchim
- Gynecologic Oncology Division, Hillel Yaffe Medical Center, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Kruger DT, Alexi X, Opdam M, Schuurman K, Voorwerk L, Sanders J, van der Noort V, Boven E, Zwart W, Linn SC. IGF-1R pathway activation as putative biomarker for linsitinib therapy to revert tamoxifen resistance in ER-positive breast cancer. Int J Cancer 2019; 146:2348-2359. [PMID: 31490549 PMCID: PMC7065127 DOI: 10.1002/ijc.32668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
Preclinical studies indicate that activated IGF-1R can drive endocrine resistance in ER-positive (ER+) breast cancer, but its clinical relevance is unknown. We studied the effect of IGF-1R signaling on tamoxifen benefit in patients and we searched for approaches to overcome IGF-1R-mediated tamoxifen failure in cell lines. Primary tumor blocks from postmenopausal ER+ breast cancer patients randomized between adjuvant tamoxifen versus nil were recollected. Immunohistochemistry for IGF-1R, p-IGF-1R/InsR, p-ERα(Ser118), p-ERα(Ser167) and PI3K/MAPK pathway proteins was performed. Multivariate Cox models were employed to assess tamoxifen efficacy. The association between p-IGF-1R/InsR and PI3K/MAPK pathway activation in MCF-7 and T47D cells was analyzed with Western blots. Cell proliferation experiments were performed under various growth-stimulating and -inhibiting conditions. Patients with ER+, IGF-1R-positive breast cancer without p-IGF-1R/InsR staining (n = 242) had tamoxifen benefit (HR 0.41, p = 0.0038), while the results for p-IGF-1R/InsR-positive patients (n = 125) were not significant (HR 0.95, p = 0.3). High p-ERα(Ser118) or p-ERα(Ser167) expression was associated with less tamoxifen benefit. In MCF-7 cells, IGF-1R stimulation increased phosphorylation of PI3K/MAPK proteins and ERα(Ser167) regardless of IGF-1R overexpression. This could be abrogated by the dual IGF-1R/InsR inhibitor linsitinib, but not by the IGF-IR-selective antibody 1H7. In MCF-7 and T47D cells, stimulation of the IGF-1R/InsR pathway resulted in cell proliferation regardless of tamoxifen. Abrogation of cell growth was regained by addition of linsitinib. In conclusion, p-IGF-1R/InsR positivity in ER+ breast cancer is associated with reduced benefit from adjuvant tamoxifen in postmenopausal patients. In cell lines, stimulation rather than overexpression of IGF-1R is driving tamoxifen resistance to be abrogated by linsitinib.
Collapse
Affiliation(s)
- Dinja T Kruger
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xanthippi Alexi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leonie Voorwerk
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vincent van der Noort
- Division of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Epie Boven
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, The National Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Bai R, Cui Z, Ma Y, Wu Y, Wang N, Huang L, Yao Q, Sun J. The NF-κB-modulated miR-19a-3p enhances malignancy of human ovarian cancer cells through inhibition of IGFBP-3 expression. Mol Carcinog 2019; 58:2254-2265. [PMID: 31513316 DOI: 10.1002/mc.23113] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy due to the lack of symptoms until advanced stages, and new diagnosis and treatment strategy is in urgent need. In this study, we found higher expression of miR-19a-3p in ovarian cancer tissues compared with that in the adjacent normal tissues. By chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) analysis, we showed that nuclear factor-kappaB (NF-κB) binds to the promoter of miR-19a-3p, leading to reduced expression in ovarian cancer cells. Further study indicated that miR-19a-3p inhibits the expression of insulin-like growth factor binding protein-3 (IGFBP-3), resulting in enhanced growth and migration of ovarian cancer cells in vitro and tumor growth in vivo. These results showed that miR-19a-3p enhances the oncogenesis of ovarian cancer through inhibition of IGFBP-3 expression, and which can be inhibited by NF-κB, suggesting an NF-κB/miR-19a-3p/IGFBP-3 pathway in the oncogenesis of ovarian cancer, which expands our understanding of ovarian cancer and they may contribute to the development of new diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ru Bai
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhenhua Cui
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yongjing Ma
- Department of Gynecological Tumors Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yang Wu
- Department of Pathogen Biology and Immunoly, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ningping Wang
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Huang
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qing Yao
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Division of Translational Cancer Research, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Deo A, Chaudhury S, Kannan S, Rekhi B, Maheshwari A, Gupta S, Ray P. IGF1R predicts better survival in high-grade serous epithelial ovarian cancer patients and correlates with hCtr1 levels. Biomark Med 2019; 13:511-521. [PMID: 31140856 DOI: 10.2217/bmm-2018-0311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To evaluate the potential of IGF1R as a prognostic marker for high-grade serous ovarian cancer (HGSOC) patients. Patients & methods: The expression levels of IGF1R and drug transporters (ABCB1, hCtr1) were measured longitudinally in chemo-naive and chemo-treated tumor samples from 19 HGSOC patients, and their correlation with the clinical outcome was examined. Results: IGF1R expression was significantly upregulated in treated tumor samples, which positively correlated with hCtr1 levels. Patients with metastatic tumors with IGF1R expression higher than median showed better overall survival (median not reached) and disease-free survival (26.7 months) than those with less than median expression (overall survival: 27.5 months [p = 0.029]; disease-free survival: 11.9 months [p = 0.014]). Conclusion: IGF1R prognosticates prolonged survival in HGSOC patients, possibly due to its positive correlation with hCtr1.
Collapse
Affiliation(s)
- Abhilash Deo
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Smrita Chaudhury
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sadhana Kannan
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India.,Tata Memorial Hospital, Dr E Borges Road, Parel, Mumbai 400012, Maharashtra, India
| | - Amita Maheshwari
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India.,Tata Memorial Hospital, Dr E Borges Road, Parel, Mumbai 400012, Maharashtra, India
| | - Sudeep Gupta
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India.,Tata Memorial Hospital, Dr E Borges Road, Parel, Mumbai 400012, Maharashtra, India
| | - Pritha Ray
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| |
Collapse
|
39
|
Tong YW, Wang G, Wu JY, Huang O, He JR, Zhu L, Chen WG, Li YF, Chen XS, Shen KW. Insulin-like growth factor-1, metabolic abnormalities, and pathological complete remission rate in HER2-positive breast cancer patients receiving neoadjuvant therapy. Onco Targets Ther 2019; 12:3977-3989. [PMID: 31190894 PMCID: PMC6535081 DOI: 10.2147/ott.s194981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/14/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: HER2-positive breast cancer (BC) achieving pathological complete remission (pCR) after neoadjuvant therapy (NAT) had a superior disease outcome. Dysmetabolism and stimulation of insulin-like growth factor 1 (IGF-1)-axis would increase BC risk, but we are lacking data for their association with pCR in HER2-positive+ BC. We aim to evaluate the pCR predictive value of above factors in HER2-positive BC patients receiving NAT. Patients and methods: HER2-positive BC patients receiving NAT ± trastuzumab were retrospectively included between January 2013 and December 2016. Data were compared between baseline at biopsy and surgery. Median value of IGF-1 expression was used as cutoff value to classify patients into low or high group. pCR was defined as no residual invasive carcinoma in breast and axilla. Results: Overall, 101 patients were included. Metabolic syndrome was diagnosed in 29 (28.71%) with an average of 1.71±1.51 metabolic disorders at baseline, significantly increased after NAT (2.12±1.54, P<0.001). Lipid metabolism factors, including triglycerides, TC, HDL-C and LDL-C significantly worsened after NAT (all P<0.05). Average post-NAT IGF-1 was 196.14±86.03 ng/mL (vs preNAT 186.41±75.03 ng/mL, P=0.182). pCR was achieved in 29 (28.71%) patients. pCR rate was 40.00% and 17.65% for those with low or high preIGF-1 level (P=0.013). Multivariate analysis found that low IGF-1 expression, but not any other metabolic variable, was significantly associated with higher pCR rate in whole population (OR: 3.83, 95%CI: 1.32–11.11, P=0.014) or in patients receiving NAT + trastuzumab (OR: 3.93, 95%CI: 1.13–13.63, P=0.031). With a median follow-up of 29.03 (range: 10.42–56.98) months, IGF-1 level was not associated with overall survival (P=0.328) or disease-free survival (P=0.288). Conclusion: Low IGF-1 level was related with higher pCR rate in HER2-positive BC patients receiving NAT, which deserves further clinical evaluation.
Collapse
Affiliation(s)
- Yi-Wei Tong
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Gen Wang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jia-Yi Wu
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian-Rong He
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Zhu
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Guo Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ya-Fen Li
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Song Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kun-Wei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
40
|
Christodoulou C, Oikonomopoulos G, Koliou GA, Kostopoulos I, Kotoula V, Bobos M, Pentheroudakis G, Lazaridis G, Skondra M, Chrisafi S, Koutras A, Bafaloukos D, Razis E, Papadopoulou K, Papakostas P, Kalofonos HP, Pectasides D, Skarlos P, Kalogeras KT, Fountzilas G. Evaluation of the Insulin-like Growth Factor Receptor Pathway in Patients with Advanced Breast Cancer Treated with Trastuzumab. Cancer Genomics Proteomics 2018; 15:461-471. [PMID: 30343280 DOI: 10.21873/cgp.20105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Trastuzumab is a monoclonal antibody against HER2-positive breast cancer. Despite improving the natural history of the disease, there is a number of patients who are resistant to it, whereas all patients will eventually develop resistance and disease will progress. Inconsistent preclinical data show that the IGF-R pathway may contribute to either de novo or acquired resistance to trastuzumab. MATERIALS AND METHODS In total, 227 trastuzumab-treated metastatic breast cancer patients were evaluated for IGF-1, IGF-1R, GLP-1R, Akt1, Akt2 Akt3 mRNA expression, and IGF-1Rα, IGF-1Rβ, IGF-2R protein expression. RESULTS Only 139 patients were truly HER2-positive by central assessment. Among HER2-positive patients, high Akt2 and GLP-1R mRNA expression showed a trend towards higher and lower risk of progression, respectively (HR=1.83, 95%CI=0.90-3.72, p=0.094 and HR=0.62, 95%CI=0.36-1.06, p=0.079), while high Akt1 and GLP-1R mRNA expression presented a trend towards unfavorable survival (HR=1.67, 95%CI=0.93-2.99, p=0.086 and HR=1.67, 95%CI=0.94-2.96, p=0.080). Among HER2-negative patients, high GLP-1R mRNA expression and negative stromal IGF-1Rβ protein expression showed a trend towards worse survival (HR=2.31, 95%CI=0.87-6.13, p=0.094 and HR=2.03, 95%CI=0.94-4.35, p=0.071, respectively). In the multivariate analyses, HER2-positive patients with high Akt1 and GLP-1R mRNA expression had a worse survival (HR=1.86, 95%CI=1.01-3.43, p=0.045 and HR=1.83, 95%CI=0.99-3.41, p=0.055, respectively). CONCLUSION This study revealed a crosstalk between the IGF-R pathway and HER2. There was evidence that high Akt1 and GLP-1R mRNA expression might affect survival among HER2-positive metastatic breast cancer patients treated with trastuzumab.
Collapse
Affiliation(s)
| | | | | | - Ioannis Kostopoulos
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Maria Skondra
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Haralambos P Kalofonos
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Pantelis Skarlos
- Department of Radiotherapy, Metropolitan Hospital, Piraeus, Greece
| | - Konstantine T Kalogeras
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Translational Research Section, Hellenic Cooperative Oncology Group, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Obr AE, Kumar S, Chang YJ, Bulatowicz JJ, Barnes BJ, Birge RB, Lazzarino DA, Gallagher E, LeRoith D, Wood TL. Insulin-like growth factor receptor signaling in breast tumor epithelium protects cells from endoplasmic reticulum stress and regulates the tumor microenvironment. Breast Cancer Res 2018; 20:138. [PMID: 30458886 PMCID: PMC6245538 DOI: 10.1186/s13058-018-1063-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early analyses of human breast cancer identified high expression of the insulin-like growth factor type 1 receptor (IGF-1R) correlated with hormone receptor positive breast cancer and associated with a favorable prognosis, whereas low expression of IGF-1R correlated with triple negative breast cancer (TNBC). We previously demonstrated that the IGF-1R acts as a tumor and metastasis suppressor in the Wnt1 mouse model of TNBC. The mechanisms for how reduced IGF-1R contributes to TNBC phenotypes is unknown. METHODS We analyzed the METABRIC dataset to further stratify IGF-1R expression with patient survival and specific parameters of TNBC. To investigate molecular events associated with the loss of IGF-1R function in breast tumor cells, we inhibited IGF-1R in human cell lines using an IGF-1R blocking antibody and analyzed MMTV-Wnt1-mediated mouse tumors with reduced IGF-1R function through expression of a dominant-negative transgene. RESULTS Our analysis of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset revealed association between low IGF-1R and reduced overall patient survival. IGF-1R expression was inversely correlated with patient survival even within hormone receptor-positive breast cancers, indicating reduced overall patient survival with low IGF-1R was not due simply to low IGF-1R expression within TNBCs. Inhibiting IGF-1R in either mouse or human tumor epithelial cells increased reactive oxygen species (ROS) production and activation of the endoplasmic reticulum stress response. IGF-1R inhibition in tumor epithelial cells elevated interleukin (IL)-6 and C-C motif chemokine ligand 2 (CCL2) expression, which was reversed by ROS scavenging. Moreover, the Wnt1/dnIGF-1R primary tumors displayed a tumor-promoting immune phenotype. The increased CCL2 promoted an influx of CD11b+ monocytes into the primary tumor that also had increased matrix metalloproteinase (MMP)-2, MMP-3, and MMP-9 expression. Increased MMP activity in the tumor stroma was associated with enhanced matrix remodeling and collagen deposition. Further analysis of the METABRIC dataset revealed an increase in IL-6, CCL2, and MMP-9 expression in patients with low IGF-1R, consistent with our mouse tumor model and data in human breast cancer cell lines. CONCLUSIONS Our data support the hypothesis that reduction of IGF-1R function increases cellular stress and cytokine production to promote an aggressive tumor microenvironment through infiltration of immune cells and matrix remodeling.
Collapse
Affiliation(s)
- Alison E Obr
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Cancer Institute of New Jersey, Newark, NJ, 07101, USA
| | - Sushil Kumar
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers-New Jersey Medical School, Cancer Institute of New Jersey, Newark, NJ, 07101, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers-New Jersey Medical School, Newark, NJ, 07102, USA
| | - Joseph J Bulatowicz
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Cancer Institute of New Jersey, Newark, NJ, 07101, USA
| | - Betsy J Barnes
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers-New Jersey Medical School, Cancer Institute of New Jersey, Newark, NJ, 07101, USA
| | - Deborah A Lazzarino
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers-New Jersey Medical School, Cancer Institute of New Jersey, Newark, NJ, 07101, USA
| | - Emily Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Icahn Sinai School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Icahn Sinai School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Cancer Institute of New Jersey, Newark, NJ, 07101, USA.
| |
Collapse
|
42
|
Liu J, Guo Y, Huang Y, Xue H, Bai S, Zhu J, Xia X, Shen B, Fang W. Effects of insulin-like growth factor binding protein 3 on apoptosis of cutaneous squamous cell carcinoma cells. Onco Targets Ther 2018; 11:6569-6577. [PMID: 30323629 PMCID: PMC6178943 DOI: 10.2147/ott.s167187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Cutaneous squamous cell carcinoma (CSCC) is the second most common carcinoma worldwide. Clinical treatment for patients with CSCC remains non-ideal. Insulin-like growth factor binding protein 3 (IGFBP3), a member of the insulin-like growth (IGF) system, participates in several biological processes, including cellular proliferation and apoptosis. Here, we explored the functional role of IGFBP3 in apoptosis and proliferation of A431 cells, a human CSCC cell line. Materials and methods Differential expression analysis, immunohistochemistry, immunoblotting, TUNEL assay, and CCK8 assay techniques were used to investigate the IGFBP3 expression levels in both A431 cells and CSCC tissue surgically obtained from humans as well as to explore the functional role of IGFBP3 in the apoptosis and proliferation of A431 cells. Results By using normal epidermal keratinocytes for comparison, we identified the top 10 ranked differentially upregulated genes expressed in human cutaneous squamous cell carcinoma cell lines. Among these 10 genes, IGFBP3 was ranked number 1. By using immunohistochemistry, we found that the expression level of IGFBP3 was significantly elevated in CSCC tissue compared with that in normal human skin tissue. Knockdown of IGFBP3 in A431 cells by transfection with IGFBP3-specific siRNA markedly altered the expression of proteins that contribute to apoptosis via mitochondrial pathways, significantly suppressing the expression of Bax and active caspase-3, while significantly increasing B-cell lymphoma-2 expression. TUNEL assay confirmed the effect of knockdown of IGFBP3 on the apoptosis as well. In addition, knockdown of IGFBP3 inhibited the proliferation of A431 cells. Conclusion IGFBP3 is overexpressed in both CSCC cell lines and tissue. Knockdown of IGFBP3 enhanced the apoptosis via a mitochondrial pathway and inhibited the proliferation of A431 cells. These findings indicate that IGFBP3 may be a biomarker and a potential therapeutic target for CSCC.
Collapse
Affiliation(s)
- Jinli Liu
- Department of Dermatology, Anhui Provincial Hospital, Hefei 230001, Anhui, China
| | - Yuanyuan Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanyuna Huang
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Haowei Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinhang Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xianming Xia
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wei Fang
- Department of ICU, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, China,
| |
Collapse
|
43
|
Li L, Liu S, Liu L, Ma Z, Feng M, Ye C, Zhou W, Wang Y, Liu L, Wang F, Yu L, Zhou F, Xiang Y, Huang S, Fu Q, Zhang Q, Gao D, Yu Z. Impact of phosphorylated insulin-like growth factor-1 receptor on the outcome of breast cancer patients and the prognostic value of its alteration during neoadjuvant chemotherapy. Exp Ther Med 2018; 16:2949-2959. [PMID: 30233667 PMCID: PMC6143873 DOI: 10.3892/etm.2018.6584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
The expression of insulin-like growth factor-1 receptor (IGF-1R), which is involved in the genesis and progression of breast cancer, is thought to be associated with the overall survival (OS) of patients. However, the predictive and prognostic significance of the IGF-1R expression in breast cancer remains controversial. The present study aimed to identify the factors associated with the levels of phosphorylated (p)-IGF-1R in breast cancer, their impact on the outcomes of breast cancer patients, and the prognostic value of alterations of p-IGF-1R during neoadjuvant chemotherapy (NAC). The present study included 348 female breast cancer patients whose paraffin-embedded tumor tissue sections had been collected by biopsy and/or resection, among which the pre-NAC and post-NAC sections were available from 40 patients. Human epidermal growth factor receptor 2 (HER2) positivity and molecular subtype were significantly associated with the presence of p-IGF-1R in the tumor tissue (P<0.05). Patients with p-IGF-1R present in the tumor tissue had a shorter OS (P=0.003). The p-IGF-1R levels in the tumor after NAC differed significantly from those prior to NAC (P=0.005); however, this alteration in p-IGF-1R levels was not associated with a shorter OS. In parallel with HER2, p-IGF-1R appears to be a promising indicator for predicting clinical outcomes and may be an attractive target for improving the efficacy of antitumor therapy, particularly for patients with HER2-negative, estrogen receptor-positive and luminal B tumors.
Collapse
Affiliation(s)
- Liang Li
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuchen Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Man Feng
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongjiu Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lu Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qinye Fu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Zhang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dezong Gao
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
44
|
Du J, Yu Y, Zhan J, Zhang H. Targeted Therapies Against Growth Factor Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1026:125-146. [PMID: 29282682 DOI: 10.1007/978-981-10-6020-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most prevalent female malignancy throughout the world. Conventional treatment strategies for breast cancer consist of chemotherapy, radiation, surgery, chemoradiation, hormone therapy, and targeted therapies. Among them, targeted therapies show advantages to reduce cost and toxicity for being possible for individualized treatments based on the intrinsic subtypes of breast cancer. With deeper understanding of key signaling pathways concerning tumor growth and survival, growth factor-controlled signaling pathways are frequently dysregulated in the development and progression of breast cancer. Thus, targeted therapies against growth factor-mediated signaling pathways have been shown to have promising efficacy in both preclinical animal models and human clinical trials. In this chapter, we will briefly introduce inhibitors and monoclonal antibodies that target the main growth factor-modulated scenarios including epidermal growth factor receptor (EGFR), transforming growth factor beta (TGF-β), insulin-like growth factor 1 receptor (IGF1R), and fibroblast growth factor receptor (FGFR) signaling pathways in breast cancer therapy.
Collapse
Affiliation(s)
- Juan Du
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
45
|
Khalid S, Hanif R, Jabeen I, Mansoor Q, Ismail M. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor. PLoS One 2018; 13:e0196312. [PMID: 29787591 PMCID: PMC5963753 DOI: 10.1371/journal.pone.0196312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/10/2018] [Indexed: 01/10/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.
Collapse
Affiliation(s)
- Samra Khalid
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Rumeza Hanif
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- * E-mail:
| | - Ishrat Jabeen
- Research Center for Modeling & Simulation (RCMS), National University of Sciences and Technology, Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan
| |
Collapse
|
46
|
Wang Z, Sau S, Alsaab HO, Iyer AK. CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1441-1454. [PMID: 29678787 DOI: 10.1016/j.nano.2018.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/17/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive tumor subtype, lacking estrogen, progesterone and human epidermal growth factor-2 (HER-2) receptors. Thus, early detection and targeted therapy of TNBC is an urgent need. Herein, we have developed a CD44 targeting Hyaluronic Acid (HA) decorated biocompatible oligomer, containing FDA approved vitamin E TPGS and Styrene Maleic Anhydride (SMA) (HA-SMA-TPGS) for targeting TNBC. The self-assembling HA-SMA-TPGS was encapsulated with poorly water soluble, potent curcumin analogue (CDF) to form nanomicelles (NM), HA-SMA-TPGS-CDF has demonstrated excellent nanoparticle characteristics for parenteral delivery. The targeted NM can selectively kill TNBC cells through CD44 mediated apoptosis pathway. Tumor imaging using phase-2 clinical trial near infrared (NIR)-fluorescent dye (S0456) conjugate, HA-SMA-TPGS-S0456 showed excellent TNBC tumor accumulation with minimum liver and spleen uptake. To our best of knowledge, for the first time, we are reporting a promising platform for CD44 mediated multimodal NIR imaging and cytotoxin delivery to TNBC.
Collapse
Affiliation(s)
- Zhaoxian Wang
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
47
|
Rodriguez-Monterrosas C, Diaz-Aragon R, Cortes-Reynosa P, Salazar EP. Linoleic acid induces an increased response to insulin in MDA-MB-231 breast cancer cells. J Cell Biochem 2018; 119:5413-5425. [PMID: 29363790 DOI: 10.1002/jcb.26694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
Epidemiological studies and animal models suggest a link between high levels of dietary fat intake and an increased risk of developing breast cancer. Hyperinsulinemia is a feature of obesity, diabetes, and metabolic syndrome that is associated with an increased breast cancer risk. Insulin is a hormone involved in metabolic regulation of carbohydrate. However, it is also a growth factor that mediates proliferation and migration. Linoleic acid (LA) is a fatty acid that induces migration and invasion in breast cancer cells. In the present study, we demonstrate, for the first time, that treatment with LA increases IR and IGF1R expression through a Free Fatty Acid Receptor 4 (FFAR4)-, lipooxygenases (LOXs)-, and SRC-dependent pathway in MDA-MB-231 breast cancer cells, and similarly induces an increase of IR expression in MCF-7 breast cancer cells. In addition, insulin induces tyrosine phosphorylation of IR/IGF1R and migration in MDA-MB-231 cells pretreated with LA, whereas it augments the increase in migration in MCF-7 cells pretreated with LA. Pretreatment of MDA-MB-231 cells with LA induces invasion, proliferation, and increase the MMP-9 secretion induced by insulin. In summary, our findings demonstrate that treatment with LA induces a higher response to insulin in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | - Eduardo P Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
48
|
Björner S, Rosendahl AH, Simonsson M, Markkula A, Jirström K, Borgquist S, Rose C, Ingvar C, Jernström H. Combined and individual tumor-specific expression of insulin-like growth factor-I receptor, insulin receptor and phospho-insulin-like growth factor-I receptor/insulin receptor in primary breast cancer: Implications for prognosis in different treatment groups. Oncotarget 2018; 8:9093-9107. [PMID: 28030849 PMCID: PMC5354717 DOI: 10.18632/oncotarget.14082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022] Open
Abstract
Clinical trials examining insulin-like growth factor-I receptor (IGF1R)-targeting strategies have emphasized that better predictive biomarkers are required to improve patient selection. Immunohistochemical tumor-specific protein expression of IGF1R, insulin receptor (InsR), and phosphorylated IGF1R/InsR (pIGF1R/InsR) individually and combined in relation to breast cancer prognosis was evaluated in a population-based cohort of 1,026 primary invasive breast cancer patients without preoperative treatment diagnosed in Sweden. IGF1R (n = 923), InsR (n = 900), and pIGF1R/InsR (n = 904) combined cytoplasmic and membrane staining was dichotomized. IGF1Rstrong/InsRmod/strong/pIGF1R/InsRpos tumors were borderline associated with 2-fold risk for events, HRadj (2.00; 95%CI 0.96-4.18). Combined IGF1R and pIGF1R/InsR status only impacted prognosis in patients with InsRmod/strong expressing tumors (Pinteraction = 0.041). IGF1Rstrong expression impacted endocrine treatment response differently depending on patients’ age and type of endocrine therapy. Phospho-IGF1R/InsRpos was associated with lower risk for events among non-endocrine-treated patients irrespective of ER status, HRadj (0.32; 95%CI 0.16-0.63), but not among endocrine-treated patients (Pinteraction = 0.024). In non-endocrine-treated patients, pIGF1R/InsRpos was associated with lower risk for events after radiotherapy, HRadj (0.31; 95%CI 0.12-0.80), and chemotherapy, HRadj (0.29; 95%CI 0.09-0.99). This study highlights the complexity of IGF hetero-and homodimer signaling network and its interplay with endocrine treatment, suggesting that combinations of involved factors may improve patient selection for IGF1R-targeted therapy.
Collapse
Affiliation(s)
- Sofie Björner
- Department of Clinical Sciences Lund, Lund University Faculty of Medicine, Oncology and Pathology, Lund, Sweden
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Lund University Faculty of Medicine, Oncology and Pathology, Lund, Sweden
| | - Maria Simonsson
- Department of Clinical Sciences Lund, Lund University Faculty of Medicine, Oncology and Pathology, Lund, Sweden
| | - Andrea Markkula
- Department of Clinical Sciences Lund, Lund University Faculty of Medicine, Oncology and Pathology, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Lund University Faculty of Medicine, Oncology and Pathology, Lund, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Lund University Faculty of Medicine, Oncology and Pathology, Lund, Sweden.,Department of Oncology and Haematology, Skåne University Hospital, Sweden
| | - Carsten Rose
- CREATE Health and Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
| | - Christian Ingvar
- Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Surgery, Lund, Sweden
| | - Helena Jernström
- Department of Clinical Sciences Lund, Lund University Faculty of Medicine, Oncology and Pathology, Lund, Sweden
| |
Collapse
|
49
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Lenz G, Hamilton A, Geng S, Hong T, Kalkum M, Momand J, Kane SE, Huss JM. t-Darpp Activates IGF-1R Signaling to Regulate Glucose Metabolism in Trastuzumab-Resistant Breast Cancer Cells. Clin Cancer Res 2017; 24:1216-1226. [PMID: 29180608 DOI: 10.1158/1078-0432.ccr-17-0824] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/31/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Increased glycolysis and glucose dependence is a hallmark of malignancy that enables tumors to maximize cell proliferation. In HER2+ cancers, an increase in glycolytic capacity is associated with trastuzumab resistance. IGF-1R activation and t-Darpp overexpression both confer trastuzumab resistance in breast cancer. We therefore investigated a role for IGF-1R and t-Darpp in regulating glycolytic capacity in HER2+ breast cancers.Experimental Design: We examined the relationship between t-Darpp and IGF-1R expression in breast tumors and their respective relationships with patient survival. To assess t-Darpp's metabolic effects, we used the Seahorse flux analyzer to measure glucose metabolism in trastuzumab-resistant SK-BR-3 cells (SK.HerR) that have high endogenous t-Darpp levels and SK.tDrp cells that stably overexpress exogenous t-Darpp. To investigate t-Darpp's mechanism of action, we evaluated t-Darpp:IGF-1R complexes by coimmunoprecipitation and proximity ligation assays. We used pathway-specific inhibitors to study the dependence of t-Darpp effects on IGF-1R signaling. We used siRNA knockdown to determine whether glucose reliance in SK.HerR cells was mediated by t-Darpp.Results: In breast tumors, PPP1R1B mRNA levels were inversely correlated with IGF-1R mRNA levels and directly associated with shorter overall survival. t-Darpp overexpression was sufficient to increase glucose metabolism in SK.tDrp cells and essential for the glycolytic phenotype of SK.HerR cells. Recombinant t-Darpp stimulated glucose uptake, glycolysis, and IGF-1R-Akt signaling in SK-BR-3 cells. Finally, t-Darpp stimulated IGF-1R heterodimerization with ErbB receptors and required IGF-1R signaling to confer its metabolic effects.Conclusions: t-Darpp activates IGF-1R signaling through heterodimerization with EGFR and HER2 to stimulate glycolysis and confer trastuzumab resistance. Clin Cancer Res; 24(5); 1216-26. ©2017 AACR.
Collapse
Affiliation(s)
- Gal Lenz
- Department of Cancer Biology, City of Hope, Duarte, California.
| | - Angelica Hamilton
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, California
| | - Shuhui Geng
- Department of Cancer Biology, City of Hope, Duarte, California
| | - Teresa Hong
- Department of Immunology, City of Hope, Duarte, California
| | - Markus Kalkum
- Department of Immunology, City of Hope, Duarte, California
| | - Jamil Momand
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California
| | - Susan E Kane
- Department of Cancer Biology, City of Hope, Duarte, California
| | - Janice M Huss
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, California
| |
Collapse
|