1
|
Fu R, Hai X, Lu Q, Li H, Niu J, Zhang Y, Ren T, Guo X, Di X. Molecularly imprinted polymer gel with superior recognition and adsorption capacity for amphenicol antibiotics in food matrices. Food Chem 2025; 463:141255. [PMID: 39303467 DOI: 10.1016/j.foodchem.2024.141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
A molecular-imprinted polymer (MIP) gel with high effective recognition of amphenicol antibiotics was synthesized for the first time based on layered double hydroxide (LDH) as the support and initiator, and functionalized β-cyclodextrin (β-CD) as the functional monomer. The synergistic effect of molecular imprinting recognition and β-CD host-guest affinity enabled MIP gel to exhibit excellent selectivity (imprinted factors: 3.9-9.4) and high adsorption capacity (28.9-75.4 mg g-1) for amphenicol antibiotics. Different adsorption isotherms and kinetics models were followed, suggesting heterogeneous single-layer recognition and chemical adsorption. After 5 cycles of adsorption and desorption, the adsorption capacity of MIP gel retained above 83.6 %, demonstrating favorable reproducibility and stability. Under optimal conditions, the method validation showed a satisfactory limit of detection (5-10 μg L-1), good correlation (r2 > 0.9967), and respectable recovery (82.6-105.3 %). The MIP gel was applied to extract amphenicol antibiotics from food matrices, achieving recoveries in the range of 78.3-104.5 %. Importantly, the recognition mechanism was studied in detail using density functional theory. Therefore, the established method demonstrates high sensitivity and can be applied as a new tactic for detecting amphenicol antibiotics in food matrices.
Collapse
Affiliation(s)
- Ruiyu Fu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qingxin Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxiao Niu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Tingze Ren
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Yang YQ, Gao Q, Yue SQ, Peng X, Wang N, Xin JL, Yu M, Rao JJ, Xue YL. Investigating the interaction mechanisms between arachin and resveratrol: Utilizing multi-spectroscopy and computational chemistry. Food Chem 2025; 463:141435. [PMID: 39378718 DOI: 10.1016/j.foodchem.2024.141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Arachin (ARA) and resveratrol (RES) are the primary protein and bioactive compound in peanuts and their processed products. However, the mechanism of interaction between these two substances remained unclear. To investigate protein structural changes, conformational variations, and molecular mechanisms in the interaction between them, multispectral analysis and computational chemistry methods were employed. Experimental results confirmed that RES quenched ARA's intrinsic fluorescence through static quenching, indicating their interaction. Thermodynamic analysis revealed the interaction between them was endothermic, spontaneous, and primarily hydrophobic. Molecular dynamics (MD) simulations highlighted strong affinity between RES and ARA, with key amino acids (His425, Val426, Phe405, and Phe464) facilitating their interaction. RES binding increased stability without significant protein conformational changes. The independent gradient model based on Hirshfeld partition (IGMH) validated their interaction, emphasizing van der Waals (VDW) interactions and hydrogen bonds (H-bonds) as crucial for stable binding. This research lays a theoretical foundation for potential applications of ARA-RES complex products in the food industry.
Collapse
Affiliation(s)
- Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Shi-Qi Yue
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jing-Li Xin
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Miao Yu
- Institute of Food and Processing, Liaoning, Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
3
|
Ci Y, Lv D, Yang X, Du H, Tang Y. High-performance cellulose/thermoplastic polyurethane composites enabled by interaction-modulated cellulose regeneration. Carbohydr Polym 2024; 346:122611. [PMID: 39245493 DOI: 10.1016/j.carbpol.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Strong interfacial adhesion between cellulose and other polymers is critical to achieve the properties required for specific applications in composite materials. Here, we developed a method for the simultaneous homogeneous dissolution of cellulose and thermoplastic polyurethane (TPU) in 1,8-diazabicyclo (5.4.0) undec-7-ene levulinate/dimethyl sulfoxide ([DBUH]Lev/DMSO) solvent. This process is essential for preparing cellulose/TPU composite films and fibers through interaction-modulated cellulose regeneration. Both cellulose and TPU can be easily dissolved together in [DBUH]Lev/DMSO solvent under mild conditions. The resulting cellulose/TPU solutions exhibited strong temperature sensitivity, shear-thinning behavior and viscoelasticity, making them suitable for cast films and continuous spinning. More importantly, research findings, including density functional theory calculations and experimental characterization, confirmed the high compatibility and interaction modulability of cellulose and TPU in the composite films. The representative C90T10 sample (cellulose/TPU, 90/10) showed high transparency (90 % at 800 nm) and excellent mechanical properties (tensile strength: 176 MPa; elongation at break: 8.1 %). Additionally, the maximum tensile strength and elongation at the break of the composite fiber from C90T10 were 214 MPa and 48.1 %, respectively. This method may provide a feasible approach to design and produce homogeneous environmentally friendly composites of cellulose and other polymers at the molecular level.
Collapse
Affiliation(s)
- Yuhui Ci
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, PR China
| | - Xiangjian Yang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
4
|
Zhang J, Li Y, Wang X, Zhao S, Du Q, Pi X, Jing Z, Jin Y. Polydopamine coating for enhanced electrostatic adsorption of methylene blue by multiwalled carbon nanotubes in alkaline environments. J Colloid Interface Sci 2024; 675:263-274. [PMID: 38970912 DOI: 10.1016/j.jcis.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The removal of dye molecules in alkaline environments is an issue that should receive increased attention. In this study, the interaction mechanism between polydopamine-modified multiwalled carbon nanotubes (P-MWCNTs) and multiwalled carbon nanotubes (MWCNTs) with the cationic dye methylene blue (MB) in alkaline environments was explained in depth by adsorption, spectroscopy, and density functional theory (DFT). The mechanism of action and dominant forces between the adsorbent and adsorbate were analyzed graphically by introducing energy decomposition analysis (EDA) and an independent gradient model (IGM) into the DFT calculations. In addition, the force distribution was investigated through an isosurface. Moreover, batch adsorption studies were conducted to evaluate the performance of MWCNTs and P-MWCNTs for MB removal in alkaline environments. The maximum MB adsorption capacities of the MWCNTs and P-MWCNTs in solution were 113.3 mg‧g-1 and 230.4 mg‧g-1, respectively, at pH 9. The IGM and EDA showed that the better adsorption capacity of the P-MWCNTs originated from the enhancement of the electrostatic effect by the proton dissociation of polydopamine. Moreover, the adsorption of MB by MWCNTs and P-MWCNTs in alkaline environments was governed by dispersion and electrostatic effects, respectively. Through this study, it is hoped that progress will be made in the use of DFT to explore the mechanism of adsorbent-adsorbate interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinxin Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
5
|
Zhao G, Li W, Xu C, Qin Q, Fan W, Li X, Zhao D. Adsorption mechanism of cefradine on three microplastics: A combined molecular dynamics simulation and density functional theory calculation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175690. [PMID: 39173748 DOI: 10.1016/j.scitotenv.2024.175690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Microplastics and antibiotics are receiving increasing attention as two emerging pollutants in the aquatic ecosystem. The absorption of antibiotics by microplastics can potentially intensify their impact on marine organisms and human health. However, the detailed mechanisms underlying this interaction remain to be elucidated. Through molecular dynamics (MD) simulations and density functional theory (DFT) calculations, this study investigated the adsorption of cefradine (CED) onto three typical microplastics (MPs)-polyethylene (PE), polypropylene (PP), and polyamide (PA). The results of the molecular dynamics simulations showed that the interaction energy between CED and microplastics followed the order of PA-CED > PP-CED > PE-CED, indicating that PA microplastics had the highest adsorption capacity for CED antibiotics. The total energy contribution of the microplastics-cefradine (MPs-CED) systems suggested that the van der Waals and electrostatic interactions were the two primary mechanisms for the adsorption of CED by these three microplastics. In DFT calculations, the adsorption of CED on PA was found to be significantly influenced by both electrostatic and van der Waals effects, while the main driving force in the adsorption of PE and PP is van der Waals effect. In addition, IGMH analysis and AIM topological analysis confirmed that the adsorption of CED on PA relied heavily on the synergistic effect of hydrogen bonding and the van der Waals effect. The findings of this study validate the results obtained from molecular dynamics simulations, laying a foundation for a comprehensive exploration of the interaction mechanisms between microplastics and organic pollutants by integrating MD simulations and DFT calculations.
Collapse
Affiliation(s)
- Gaolu Zhao
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Wanting Li
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Chuanhao Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Qingsong Qin
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Wenjie Fan
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, College of environmental science and engineering, Dalian University of Technology, Dalian 116023, China
| | - Dan Zhao
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
6
|
Jiao M, Shi Y, Li M, Zhang H, Li S, Deng H, Xia D. The surface functional groups-driven fast and catalytic degradation of naproxen on sludge biochar enhanced by citric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124857. [PMID: 39214447 DOI: 10.1016/j.envpol.2024.124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, a sludge biochar (CA-SBC-300) with efficient activation of peroxymonosulfate (PMS) was prepared by citric acid modification. CA-SBC-300 achieved efficient degradation of naproxen (NPX) (95.5%) within 10 min by activating PMS. This system was highly resilient to common disruptive factors such as inorganic anions, humic acid (HA) and solution pH. The results of XPS and Raman showed that the content of oxygenated functional groups (OFGs) and the degree of defects on the sludge biochar increased after citric acid modification, which may be an important reason for the enhanced catalytic performance of SBC. In the CA-SBC-300/PMS system, 1O2 and O2•- made the main contributions to the degradation of NPX. XPS analysis and DFT calculations demonstrated that C=O/C-O and pyridine N on CA-SBC-300 were the crucial active sites for PMS activation. According to the results of UPLC-MS analysis, three possible pathways for NPX degradation were inferred. This study provided a feasible strategy for sludge resource utilization combined with efficient catalytic degradation of toxic organic contaminants in wastewater.
Collapse
Affiliation(s)
- Min Jiao
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Yintao Shi
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| | - Meng Li
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China; Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Hao Zhang
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Shasha Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Huiyuan Deng
- Hubei Provincial Spatial Planning Research Institute, Wuhan, 430064, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| |
Collapse
|
7
|
Liu X, Zhang L, Li H, Yang J, Zhang L. The Inhibition of Interfacial Ice Formation and Stress Accumulation with Zwitterionic Betaine and Trehalose for High-Efficiency Skin Cryopreservation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0520. [PMID: 39545039 PMCID: PMC11561590 DOI: 10.34133/research.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024]
Abstract
Cryopreservation is a promising technique for the long-term storage of skin. However, the formation of ice crystals during cryopreservation unavoidably damages skin structure and functionality. Currently, the lack of thorough and systematic investigation into the internal mechanisms of skin cryoinjury obstructs the advancement of cryopreservation technology. In this study, we identified 3 primary contributors to skin cryoinjury: interfacial ice nucleation, stress accumulation, and thermal stress escalation. We emphasized the paramount role of interfacial ice nucleation in provoking ice growth within the skin during the cooling process. This progress subsequently leads to stress accumulation within the skin. During the rewarming process, the brittleness of skin, previously subjected to freezing, experienced a marked increase in thermal stress due to ice recrystallization. Based on these insights, we developed a novel zwitterionic betaine-based solution formulation designed for cryopreservation skin. This cryoprotective agent formulation exhibited superior capability in lowering ice nucleation temperatures and inhibiting ice formation at interfaces, while also facilitating the growth of smooth and rounded ice crystals compared to sharp-edged and cornered crystals formed in aqueous solutions. As a result, we successfully achieved prolonged cryopreservation of the skin for at least 6 months, while preserving 98.7% of structural integrity and 94.7% of Young's modulus. This work provides valuable insights into the mechanisms of ice crystal damage during organ cryopreservation and profoundly impacts the field of organ transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Xinmeng Liu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Liming Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Haoyue Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Li MX, Xiong YS, Huang QQ, Luo YW, Wei W, Lu HQ, Hang FX, Li W, Liu F, Li K. Sustainable protein/polysaccharide aerogel for the simultaneous and efficient removal of multiple organic contaminants: Insights from DFT calculations and phenomenological mass-transfer modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135575. [PMID: 39208631 DOI: 10.1016/j.jhazmat.2024.135575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Wastewater contains various organic contaminants that pose great hazards to human health and the environment. A protein/polysaccharide-derived aerogel, namely, ICMA, was developed as a high-performance adsorbent for the simultaneous and efficient removal of diverse contaminants from wastewater, including melanoidin (MLE), Congo red (CR), and diclofenac (DIC). Metal organic framework (UiO-66-NH2), as a regulatory factor, significantly improved the porosity and pore volume of the ICMA to enhance the capture performance of contaminants. The ICMA exhibited outstanding adsorption efficiency owing to the incorporation of ample polyamine functional groups and its well-developed pore structure, large porosity and pore volume, and remarkable heat resistance. The equilibrium capture capacities of the ICMA were 1364, 2031, and 539 mg/g for MLE, CR, and DIC, respectively, with corresponding removal efficiencies all exceeding 90%. Furthermore, the ICMA can capture cationic dyes through MLE/CR/DIC-bridging interactions. After five cycles, the used ICMA can still maintain a high contaminant removal rate/amount, demonstrating good reusability. The classic adsorption model showed that the capture of contaminants by the ICMA is a double-layered and heterogeneous adsorption orientation. A brand new LWAMTM model demonstrated that the adsorption mass-transfer process is jointly determined by the external mass conveyance, pore diffusion, and adsorption on the active site. Multiple characterizations indicated that the contaminant adsorption onto the ICMA was mainly facilitated by charge interactions, with H-bonds playing a secondary role. Quantum chemical theory simulations further provide insights into the atomic-level mechanisms involved in the capture of contaminants. Hirshfeld surface analysis revealed that the ICMA functions as both an H-bond acceptor and a donor during contaminant adsorption. Scale-up and upgrade adsorption were performed to treat actual/simulated wastewater, establishing the groundwork for the industrial implementation of the ICMA.
Collapse
Affiliation(s)
- Ming-Xing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan-Shu Xiong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qi-Qi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yi-Wen Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wei Wei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Hai-Qin Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fang-Xue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wen Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China.
| | - Fujie Liu
- School of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Laibin, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.
| |
Collapse
|
9
|
Zhang Y, Zheng X, Liu C, Shen L, Xue L, Cong H. Effects of microwave energy transfer on release and degradation of anthocyanins in berry puree. Food Chem 2024; 464:141833. [PMID: 39504906 DOI: 10.1016/j.foodchem.2024.141833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
To elucidate the distinctive effects of microwave energy on the anthocyanins content in berry puree, comparative experiments and simulation analysis of essentially heating modes are introduced via radiation (microwave), convective and conductive. Microwave energy has the strongest action on anthocyanins state due to uniform generation of in situ heating through entire volume of berry puree. Microwave heating may promote the release or hinder the degradation of anthocyanins as variable polar response and reaction barrier of anthocyanins depending on electric field direction with the unsymmetrical structure in polar molecules. The intermolecular force (hydrogen bond, van der Waals force etc.) may be broken in berry puree to form order arrangements of anthocyanins till tolerance temperature 80 °C under microwave heating. The optimal parameters of microwave heating are developed as microwave intensity of 30 W·g-1 and temperature of 50 °C to achieve the highest anthocyanins retention till target moisture less than 0.5 (d.b.).
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xianzhe Zheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chenghai Liu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Liuyang Shen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Liangliang Xue
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Hongyue Cong
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Li S, Jiang X, Xu W, Li M, Liu Z, Han W, Yu C, Li J, Wang H, Yeung KL. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. WATER RESEARCH 2024; 267:122456. [PMID: 39357158 DOI: 10.1016/j.watres.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m-3·order-1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
Collapse
Affiliation(s)
- Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Chenglong Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
11
|
Jia YH, Sun YX, Gao LL, Sun Y, Deng ZP, Li JG, Zhao B, Ji BT. A highly selective and sensitive rhodamine B-based chemosensor for Sn 4+ in water-bearing and biomaging and biosensing in zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124385. [PMID: 38714005 DOI: 10.1016/j.saa.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
A novel colorimetric-fluorescent dual-mode chemosensor (JT5) based on rhodamine B has been produced for monitoring Sn4+ in the DMSO/H2O (4:1, v/v) medium. It has high sensitivity, a low detection limit, a short response time (1 s) and high stability, and can still be maintained after two weeks with the red dual fluorescence/ colorimetric response. Enhancement of red fluorescence (591 nm) and red colorimetric (567 nm) response of JT5 by Sn4+ addition. The electrostatic potential of the sensor JT5 molecule was simulated to speculate on the sensing mechanism, and the IR, mass spectrometry and 1H NMR titration were utilized to further demonstrate that JT5 was coordinated to Sn4+ with a 1:1 type, the rhodamine spironolactam ring of JT5 opens up to form a penta-membered ring with Sn4+, meanwhile, its system may have chelation enhanced fluorescence (CHEF) effect. In addition, theoretical calculations were carried out to give the energy gaps of JT5 and [JT5 + Sn4+] as well as to simulate the electronic properties of the maximal absorption peaks. Notably, the sensor JT5 was successfully applied to monitoring Sn4+ in zebrafish, and the JT5-loaded filter paper provided a solid-state platform for detecting Sn4+ by both naked eye and fluorescent methods. In summary, this work contributes to monitoring Sn4+ in organisms and solid-state materials and promotes understanding of Sn4+ functions in biological systems, environments, and solid-state materials.
Collapse
Affiliation(s)
- Yue-Hui Jia
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
12
|
Liu L, Ji W, He W, Cheng Y, Hao R, Hao P, Dong H, Ding X, Lei S, Han B, Hu W. Rational Design of Fluorinated 2D Polymer Film Based on Donor-Accepter Architecture toward Multilevel Memory Device for Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405328. [PMID: 39021267 DOI: 10.1002/adma.202405328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Indexed: 07/20/2024]
Abstract
Fluorine-containing 2D polymer (F-2DP) film is a desired system to regulate the charge transport in organic electronics but rather rarely reports due to the limited fluorine-containing building blocks and difficulties in synthesis. Herein, a novel polar molecule with antiparallel columnar stacking is synthesized and further embedded into an F-2DP system to control over the crystallinity of F-2DP film through self-complementary π-electronic forces. The donor-accepter-accepter'-donor' (D-A-A'-D') structure regulates the charge transportation efficiently, inducing multilevel memory behavior through stepwise charge capture and transfer processes. Thus, the device exhibits ternary memory behavior with low threshold voltage (Vth1 of 1.1 V, Vth2 of 2.0 V), clearly distinguishable resistance states (1:102:104) and ternary yield (83%). Furthermore, the stepwise formation of the charge complex endows the device with a wider range to regulate the conductive state, which allows its application in brain-inspired neuromorphic computing. Modified National Institute of Standards and Technology recognition can reach an accuracy of 86%, showing great potential in neuromorphic computing applications in the post-Moore era.
Collapse
Affiliation(s)
- Lei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenyan Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Weixin He
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Yuanzhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruisha Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Pengyuan Hao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Baohang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
13
|
Hong LX, Zhang RL, Zhao JS. A 3,5-dinitropyridin-2yl Substituted Flavonol-based Fluorescent Probe for Rapid Detection of H 2S in Water, Foodstuff Samples and Living Cells. J Fluoresc 2024; 34:1945-1954. [PMID: 37672181 DOI: 10.1007/s10895-023-03427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
A novel flavonol-based fluorescent probe, Fla-DNT, has been synthesized for the rapid and specific detection of H2S. Fla-DNT exhibits excellent selectivity and anti-interference properties, a short response time (4 min), large Stokes shift (138 nm), and low detection limit (1.357 µM). Upon exposure to H2S, Fla-DNT displays a remarkable increase in fluorescence intensity at 542 nm. Meanwhile, the recognizing site of H2S was predicted through Electrostatic potential and ADCH charges calculations, while the sensing mechanism of H2S was determined via HRMS analysis and DFT calculation. More importantly, the probe owes multiple applications, such as a recovery rate ranging from 92.00 to 102.10% for detecting H2S in water samples, and it can be fabricated into fluorescent strips to track H2S production during food spoilage by tracking color changes, thereby enabling real-time monitoring of food freshness. The bioimaging experiments demonstrate the capability of Fla-DNT to detect both endogenous and exogenous H2S in living cells. These results provide a reliable method and idea for H2S detection in complex environments.
Collapse
Affiliation(s)
- Lai-Xin Hong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Rong-Lan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Jian-She Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| |
Collapse
|
14
|
Ma B, Zhang H, Li R, Zhang S, Chen L, Zhou T, Wang J, Zhang R, Ding S, Xiao X, Deng T, Chen L, Fan X. Molecular-docking electrolytes enable high-voltage lithium battery chemistries. Nat Chem 2024; 16:1427-1435. [PMID: 39009795 DOI: 10.1038/s41557-024-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Ideal rechargeable lithium battery electrolytes should promote the Faradaic reaction near the electrode surface while mitigating undesired side reactions. Yet, conventional electrolytes usually show sluggish kinetics and severe degradation due to their high desolvation energy and poor compatibility. Here we propose an electrolyte design strategy that overcomes the limitations associated with Li salt dissociation in non-coordinating solvents to enable fast, stable Li chemistries. The non-coordinating solvents are activated through favourable hydrogen bond interactions, specifically Fδ--Hδ+ or Hδ+-Oδ-, when blended with fluorinated benzenes or halide alkane compounds. These intermolecular interactions enable a dynamic Li+-solvent coordination process, thereby promoting the fast Li+ reaction kinetics and suppressing electrode side reactions. Utilizing this molecular-docking electrolyte design strategy, we have developed 25 electrolytes that demonstrate high Li plating/stripping Coulombic efficiencies and promising capacity retentions in both full cells and pouch cells. This work supports the use of the molecular-docking solvation mechanism for designing electrolytes with fast Li+ kinetics for high-voltage Li batteries.
Collapse
Affiliation(s)
- Baochen Ma
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haikuo Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Ruhong Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shuoqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Long Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
- Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Tao Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jinze Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | | | | | - Xuezhang Xiao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Tao Deng
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Lixin Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Hai X, Niu J, Ren T, Fu R, Li H, Zhang Y, Guo X, Di X. Rhamnolipids-based bio-supramolecular solvents as green and sustainable media for extraction of pyrethroid insecticides in water and food matrices. J Chromatogr A 2024; 1731:465215. [PMID: 39068771 DOI: 10.1016/j.chroma.2024.465215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
A novel bio-supramolecular solvent (bio-SUPRAS) based on rhamnolipids (RLs) was designed for efficient extraction of pyrethroid insecticides in water and food matrices. Benefiting from RLs as amphiphiles equipped with the attractive properties of bio-degradable, low toxicity and high stability, bio-SUPRAS was spontaneously generated through salt induced coagulation. The bio-SUPRAS was characterized by cryo-scanning electron microscope and main factors influencing the extraction performance were investigated in detail. Under the optimized conditions, the method was found to have desirable limits of detection (5∼10 μg l-1), good precision (RSDs<16.9 %) and satisfactory recovery (75.2 %∼94.3 %). More importantly, the extraction mechanism was studied by density functional theory systematically. Following greenness assessment, the technique was successfully used for enrichment of pyrethroid pesticides in real samples before HPLC-UV analysis. Thus, the method showed the outstanding merits of eco-efficient, green, time-saving, and had favorable application prospect to remove trace analytes from intricate sample matrices.
Collapse
Affiliation(s)
- Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxiao Niu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Tingze Ren
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruiyu Fu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
16
|
Lu T. Theoretical Prediction and Comprehensive Characterization of an All-Nitrogenatomic Ring, Cyclo[18]Nitrogen (N 18). Chemphyschem 2024; 25:e202400377. [PMID: 38722092 DOI: 10.1002/cphc.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The cyclic molecule cyclo[18]carbon composed of 18 carbon atoms has been observed in condensed phase experiment in recent years and has attracted great attention. Through state-of-art quantum chemistry calculation, this study found that 18 nitrogen atoms can also form a macrocyclic system, cyclo[18]nitrogen (N18), though its lifetime is very short at room temperature and can only exist for a relatively long time at very low temperatures. We comprehensively theoretically studied properties of N18, including geometric configurations, thermal decomposition mechanism and rate, molecular dynamics behavior, energetic properties, vibrational and electronic spectra. We also discussed in depth the electronic structure of N18, including nature of the N-N bonds, lone-pairs, charge distribution characteristics, electronic delocalization, and aromaticity. This work is not only the first exploration of the macrocyclic N18 molecule, but also the first time to systematically examine a very long-chain substance fully composed of nitrogen atoms in isolated state.
Collapse
Affiliation(s)
- Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, 100024, P. R. China
| |
Collapse
|
17
|
Liu J, Ding Y, Wang F, Ran J, Zhang H, Xie H, Pi Y, Ma L. Enhancing the supercapacitive performance of a carbon-based electrode through a balanced strategy for porous structure, graphitization degree and N,B co-doping. J Colloid Interface Sci 2024; 668:213-222. [PMID: 38677210 DOI: 10.1016/j.jcis.2024.04.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Regarding carbon-based electrodes, simultaneously establishing a well-defined meso-porous architecture, introducing abundant hetero-atoms and improving the graphitization degree can effectively enhance their capacitive performance. However, it remains a significant challenge to achieve a good balance between defects and graphitization degree. In this study, the porous structure and composition of carbon materials are co-optimised through a 'dual-function' strategy. Briefly, K3Fe(C2O4)3 and H3BO3 were hybridised with a gelatin aqueous solution to form a homogeneous composite hydrogel, followed by lyophilisation and carbonisation. Owing to the dual functionality of raw materials, the graphitization, activation and hetero-atom doping processes can occur simultaneously during a one-step high-temperature treatment. The resultant carbon material exhibits a high graphitization degree (ID/IG = 0.9 ± 0.1), high hetero-atom content (N: 9.0 ± 0.3 at.%, B: 6.9 ± 0.5 at.%) and a large specific area (1754 ± 58 m2/g). The as-prepared electrode demonstrates a superior capacitance of 383 ± 1F g-1 at 1 A/g. Interestingly, the cyclic voltammetry (CV) curves exhibit a distinctive pair of broad redox peaks, which is uncommon in KOH electrolyte. Experiment data and density functional theory (DFT) simulation verify that N-5, B co-doping enhances the activity of the faradic reaction of carbon electrodes in KOH electrolyte. Furthermore, the fabricated Zn-ion hybrid supercapacitor (ZHSC) based on this carbon electrode delivers a high-energy density of 140.7 W h kg-1 at a power density of 840 W kg-1.
Collapse
Affiliation(s)
- Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yu Ding
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Feng Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jiabing Ran
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Yuqiang Pi
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Liya Ma
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
Barbosa GD, Tavares FW, Striolo A. Molecular Interactions of Perfluorinated and Branched Fluorine-Free Surfactants at Interfaces: Insights from a New Reliable Force Field. J Chem Theory Comput 2024. [PMID: 39140228 DOI: 10.1021/acs.jctc.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a class of synthetic compounds with exceptional interfacial properties. Their widespread use in many industrial applications and consumer products, combined with their remarkable chemical and thermal stability, has led to their ubiquitous presence in environmental matrices, including surface water and groundwater. To replace PFAS with fluorine-free surfactants, it is necessary first to develop a deep molecular-level understanding of the mechanisms responsible for the exceptional properties of PFAS. For instance, it has been shown that fluorine-free surfactants with highly branched or methylated chains can achieve low surface tensions at air-water interfaces and can provide highly hydrophobic surface coatings. Although molecular simulations combined with experiments are promising for uncovering these mechanisms, the reliability of simulation results depends strongly on the accuracy of the force fields implemented. At the moment, atomistic force fields are not available to describe PFAS in a variety of environments. Ab initio methods could help fill this knowledge gap, but they are computationally demanding. As an alternative, ab initio calculations could be used to develop accurate force fields for atomistic simulations. In this work, a new algorithm is proposed, which, built from accurate ab initio calculations, yields force fields for perfluorinated sulfonic and perfluoroalkyl acids. The accuracy of the new force field was benchmarked against solvation free energy and interfacial tension data. The new force fields were then used to probe the interfacial behavior of the PFAS surfactants. The interfacial properties observed in our simulations were compared with those manifested by two branched fluorine-free surfactants. The good agreement achieved with experiments and ab initio calculations suggests that the proposed protocol could be implemented to study other perfluorinated substances and help in the design of fluorine-free surfactants for targeted applications.
Collapse
Affiliation(s)
- Gabriel D Barbosa
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Frederico W Tavares
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Alberto Striolo
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
19
|
Yang L, Wang Z, Hu Z, Wang X, Cheng X, Chen Y, Wang S, Wang C, Zhou W, Zhao H. Optimization Strategy for Formaldehyde Removal by Carbon Cathode Electro-Fenton: Enhancement of Formaldehyde and Oxygen Co-adsorption by Rational Nitrogen Doping Types. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39088834 DOI: 10.1021/acs.langmuir.4c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
This study investigates the effect of N-doped coal-based activated carbon cathode on formaldehyde-oxygen coadsorption. Further investigation investigates the effect of formaldehyde-oxygen coadsorption on H2O2 generation and formaldehyde removal in an electro-Fenton system. Nitrogen doping enhances formaldehyde and oxygen coadsorption by modulating competitive adsorption. Density Functional Theory (DFT) calculations confirm pyrrole nitrogen favors formaldehyde, and graphite nitrogen favors oxygen adsorption. N-doped activated carbon adsorbs 0.36 mg of formaldehyde and 0.1 mg of oxygen in 120 min and removes 82.43% of formaldehyde after electro-Fenton treatment. N-doped activated carbon enhances the synergistic adsorption of formaldehyde and oxygen. In the synergistic adsorption process, the amount of formaldehyde adsorbed is greater than the amount of oxygen adsorbed. This improves the removal efficiency of formaldehyde by electro-Fenton technology. It provides a new method for electro-Fenton removal of organic pollutants.
Collapse
Affiliation(s)
- Lei Yang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zhipei Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaochun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiangming Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yongqi Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Song Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chenghao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Zhou
- School of Energy, Harbin Institute of Technology, Harbin 150001, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
20
|
Yang T, Liu D, Yang K, Lu J, Zhang B, Xiao Y, Zhang K, Wu J, Chen L. High energy barrier hydroxyl radical dissociation mechanism of a low shock sensitivity dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) explosive. Phys Chem Chem Phys 2024; 26:19302-19315. [PMID: 38963693 DOI: 10.1039/d4cp00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As a representative of the new generation of high-energy explosives, TKX-50 has attracted widespread attention due to its remarkably low sensitivity toward shock. However, the reported decomposition barriers of TKX-50 (∼37 kcal mol-1) are comparable to those of commonly used explosives. The mechanism of its low shock sensitivity remains unclear. In this study, using an ab initio molecular dynamics method combined with a multiscale shock simulation technique and transition state calculations (at the B2PLYP-D3/Def2TZVP level), we discovered an unconventional reaction pathway of TKX-50 under shock, and its rate-controlling step is the dissociation of the hydroxyl radical (OH) from the anion ring after proton transfer, followed by ring rupture and the production of H2O and N2. The barrier for this OH dissociation reaction is as high as 51.9 kcal mol-1. In contrast, under thermal stimuli, TKX-50 prefers to open rings directly after proton transfer without losing the OH. The corresponding barrier is 35.4 kcal mol-1, which is in good agreement with previous studies. The reason for the unconventional reaction pathway of TKX-50 under shock may be the suppression of anion ring opening in thermal decomposition by steric hindrance upon shock compression. In addition, the dominant N2 generation pathway under shock releases less energy than pyrolysis which further explains the low shock sensitivity of TKX-50. This study comprehensively elucidates the different reaction mechanisms of TKX-50 under thermal and shock conditions and proposes a crucial reaction pathway leading to its low shock sensitivity. These findings will contribute to the understanding and application of tetrazole anionic energetic salts.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Danyang Liu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Kun Yang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Jianying Lu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Bin Zhang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Yiwen Xiao
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Kaining Zhang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Junying Wu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| | - Lang Chen
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
21
|
Chen DP, Ma W, Yang CH, Li M, Zhou ZZ, Zhang Y, Quan ZJ. Interaction between hydroxymethanesulfonic acid and several organic compounds and its atmospheric significance. J Mol Graph Model 2024; 130:108782. [PMID: 38685182 DOI: 10.1016/j.jmgm.2024.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The interactions of the micro-mechanism of hydroxymethanesulfonic acid (HMSA) with the typical small organic molecule in atmospheric (X = methanol, formaldehyde, formic acid, methyl formate, dimethyl ether, acetone) has been investigated by density functional theory (DFT), quantum theory of atoms in molecules (QTAIM), Generalized Kohn-Sham Enery Decomposition Analysis (GKS-EDA) and the atmospheric clusters dynamic code (ACDC). The results of DFT show that the stable six- to eight-membered ring structures are easily formed in HMSA-X clusters. According to the topological analysis results of the AIM theory and the IRI method, a strong hydrogen bonding interaction is present in the complex. GKS-EDA results show that electrostatic energy is the main contributor to the interaction energy as it accounts for 51 %-55 % of the total attraction energy. The evaporation rates of HMSA-HMSA and HMSA-HCOOH clusters were much lower than those of the other HMSA complexes. In addition, the Gibbs energy of formation (ΔG) of HMSA-X dimers is investigated under atmosphere temperature T = 217-298 K and p = 0.19-1.0 atm, the ΔG decreased with decreasing of the atmosphere temperature and increased with the decrease of atmospheric pressure, indicating that the low temperature and high pressure may significantly facilitate to the formation of dimers.
Collapse
Affiliation(s)
- Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China.
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Chun-Hong Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Zhao-Zhen Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
22
|
Hong LX, Sun L, Li C, Zhang RL, Zhao JS. Multiple Applications of a Novel Fluorescence Probe with Large Stokes Shift and Sensitivity for Rapid H 2S Detection. J Fluoresc 2024; 34:1575-1588. [PMID: 37552376 DOI: 10.1007/s10895-023-03377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Herein, a novel fluorescence probe Fla-DNP based on flavonol has been designed and synthesized for rapid, specific detection of H2S. With the addition of H2S, Fla-DNP triggered thiolysis and released Fla displaying the "turn-on" fluorescence response at 566 nm, which is consistent with the reaction site predicted by calculating Electrostatic potential and ADCH charges. As an easily available H2S probe, Fla-DNP has the advantages of high selectivity, anti-interference, low detection limit (0.834 μM), short response time (6 min), and large Stokes shift (124 nm). The sensing mechanism of H2S was determined by HRMS analysis and DFT calculation. Moreover, Fla-DNP processes a wide range of multiple applications, including the detection of H2S in environmental water samples with good recovery rates ranging from 89.6% to 102.0%, as well as tracking the production of H2S during food spoilage. Meanwhile, the probe exhibits superior biocompatibility and can not only be available used for H2S detection in living cells but be further designed as an H2S-activated CO photoreleaser, based on which it can be developed as a targeted anti-cancer drug.
Collapse
Affiliation(s)
- Lai-Xin Hong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an, Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Le Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an, Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an, Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Rong-Lan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an, Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| | - Jian-She Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an, Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| |
Collapse
|
23
|
Goon S, Shiu Chen Liu C, Ghosh Dastidar U, Paul B, Mukherjee S, Sarkar HS, Desai M, Jana R, Pal S, Sreedevi NV, Ganguly D, Talukdar A. Exploring the Structural Attributes of Yoda1 for the Development of New-Generation Piezo1 Agonist Yaddle1 as a Vaccine Adjuvant Targeting Optimal T Cell Activation. J Med Chem 2024; 67:8225-8246. [PMID: 38716967 DOI: 10.1021/acs.jmedchem.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Piezo1, a mechano-activated ion channel, has wide-ranging physiological and therapeutic implications, with the ongoing development of specific agonists unveiling cellular responses to mechanical stimuli. In our study, we systematically analyzed the chemical subunits in Piezo1 protein agonist Yoda1 to comprehend the structure-activity relationship and push forward next-generation agonist development. Preliminary screening assays for Piezo1 agonism were performed using the Piezo1-mCherry-transfected HEK293A cell line, keeping Yoda1 as a positive control. We introduce a novel Piezo1 agonist Yaddle1 (34, 0.40 μM), featuring a trifluoromethyl group, with further exploration through in vitro studies and density functional theory calculations, emphasizing its tetrel interactions, to act as an ambidextrous wedge between the domains of Piezo1. In contrast to the poor solubility of the established agonist Yoda1, our results showed that the kinetic solubility of Yaddle1 (26.72 ± 1.8 μM at pH 7.4) is 10-fold better than that of Yoda1 (1.22 ± 0.11 μM at pH 7.4). Yaddle1 (34) induces Ca2+ influx in human CD4+ T cell, suggesting its potential as a vaccine adjuvant for enhanced T cell activation.
Collapse
Affiliation(s)
- Sunny Goon
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Chinky Shiu Chen Liu
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Suravi Mukherjee
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Himadri Sekhar Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Milie Desai
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Rituparna Jana
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Namala Venkata Sreedevi
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Fang J, Ji B, Wang X, Yuan S, Yu H. New insight into the role of the self-assembly of heteroatom compounds in heavy oil viscosity enhancement. Phys Chem Chem Phys 2024; 26:14857-14865. [PMID: 38738300 DOI: 10.1039/d3cp05416k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Unveiling the role of heteroatom compounds in heavy oil viscosity is pivotal for finding targeted viscosity reduction methods to improve oil recovery. This research investigates the impact of heteroatoms in asphaltene molecules by utilizing quantum chemical calculations and molecular dynamics simulations to analyze their electrostatic potential characteristics, pairwise interactions, and dynamic behavior within realistic reservoirs. Heteroatom compounds can influence the molecular-level properties of asphaltenes and thus impact the macroscopic behavior of heavy oils. Research results suggest that the presence of ketone and aromatic rings in asphaltene molecules leads to the unrestricted movement of pi electrons due to their collective electronegativity. Two distinct configurations of asphaltene dimers, face-to-face, and edge-to-face, were observed. Intermolecular interactions were predominantly governed by van der Waals forces, highlighting their significant role in stabilizing asphaltene aggregates. The distribution of asphaltene molecules in the oil phase can be summarized as the "rebar-cement" theory. In the heteroatom-free system, the face-to-face peaks in the radial distribution function exhibit significantly reduced magnitudes compared to those in the heteroatom-containing system. This emphasizes the pivotal function of heteroatoms in connecting molecular components to form a more compact asphaltene structure, which may result in a higher viscosity of heavy oil. These findings give insight into the significance of heteroatoms in bridging molecular components and shaping the intricate structure of asphaltene and advance our understanding of heavy oil viscosity properties.
Collapse
Affiliation(s)
- Jichao Fang
- Petroleum Exploration and Production Research Instiute, SINOPEC, Beijing, 102206, China
| | - Bingyu Ji
- Petroleum Exploration and Production Research Instiute, SINOPEC, Beijing, 102206, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Shideng Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
25
|
Hou T, Yuan X, Jiang S, Xu Z, Zhang X, Lu M, Xu Y. Experimental detection of the diamino-pentazolium cation and theoretical exploration of derived high energy materials. Sci Rep 2024; 14:10120. [PMID: 38698073 PMCID: PMC11065884 DOI: 10.1038/s41598-024-60741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
In this work, we realized the detection of diamino-pentazolium cation (DAPZ+) in the reaction solution experimentally and proved it to be meta-diamino-pentazole based on the transition state theory. Quantum chemical methods were used to predict its spectral properties, charge distribution, stability and aromaticity. Considering that DAPZ+ has excellent detonation properties, it was further explored by assembling it with N5-, N3- and C(NO2)3- anions, respectively. The results show a strong interaction between DAPZ+ and the three anions, which will have a positive effect on its stability. Thanks to the high enthalpy of formation and density, the calculated detonation properties of the three systems are exciting, especially [DAPZ+][N5-] (D: 10,016 m·s-1; P: 37.94 GPa), whose actual detonation velocity may very likely exceed CL-20 (D: 9773 m·s-1). There is no doubt that this work will become the precursor for the theoretical exploration of new polynitrogen ionic compounds.
Collapse
Affiliation(s)
- Tianyang Hou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaofeng Yuan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuaijie Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ze Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaopeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yuangang Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
26
|
Yang S, Zhang L, Mao J, Guo J, Chai Y, Hao J, Chen W, Tao X. Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications. Nat Commun 2024; 15:3329. [PMID: 38637511 PMCID: PMC11026426 DOI: 10.1038/s41467-024-47652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Moisture-electric generators (MEGs) has emerged as promising green technology to achieve carbon neutrality in next-generation energy suppliers, especially combined with ecofriendly materials. Hitherto, challenges remain for MEGs as direct power source in practical applications due to low and intermittent electric output. Here we design a green MEG with high direct-current electricity by introducing polyvinyl alcohol-sodium alginate-based supramolecular hydrogel as active material. A single unit can generate an improved power density of ca. 0.11 mW cm-2, a milliamp-scale short-circuit current density of ca. 1.31 mA cm-2 and an open-circuit voltage of ca. 1.30 V. Such excellent electricity is mainly attributed to enhanced moisture absorption and remained water gradient to initiate ample ions transport within hydrogel by theoretical calculation and experiments. Notably, an enlarged current of ca. 65 mA is achieved by a parallel-integrated MEG bank. The scalable MEGs can directly power many commercial electronics in real-life scenarios, such as charging smart watch, illuminating a household bulb, driving a digital clock for one month. This work provides new insight into constructing green, high-performance and scalable energy source for Internet-of-Things and wearable applications.
Collapse
Affiliation(s)
- Su Yang
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Jianmiao Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Wei Chen
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Xiaoming Tao
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
| |
Collapse
|
27
|
Huang S, Zuo L, Zhang L, Guo X, Cheng C, He Y, Cheng G, Yu J, Liu Y, Chen R, Tang G, Fan Y, Feng L. Design, Synthesis, and Mode of Action of Thioacetamide Derivatives as the Algicide Candidate Based on Active Substructure Splicing Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7021-7032. [PMID: 38501582 DOI: 10.1021/acs.jafc.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lakes and reservoirs worldwide are experiencing a growing problem with harmful cyanobacterial blooms (HCBs), which have significant implications for ecosystem health and water quality. Algaecide is an effective way to control HCBs effectively. In this study, we applied an active substructure splicing strategy for rapid discovery of algicides. Through this strategy, we first optimized the structure of the lead compound S5, designed and synthesized three series of thioacetamide derivatives (series A, B, C), and then evaluated their algicidal activities. Finally, compound A3 with excellent performance was found, which accelerated the process of discovering and developing new algicides. The biological activity assay data showed that A3 had a significant inhibitory effect on M. aeruginosa. FACHB905 (EC50 = 0.46 μM) and Synechocystis sp. PCC6803 (EC50 = 0.95 μM), which was better than the commercial algicide prometryn (M. aeruginosa. FACHB905, EC50 = 6.52 μM; Synechocystis sp. PCC6803, EC50 = 4.64 μM) as well as better than lead compound S5 (M. aeruginosa. FACHB905, EC50 = 8.80 μM; Synechocystis sp. PCC6803, EC50 = 7.70 μM). The relationship between the surface electrostatic potential, chemical reactivity, and global electrophilicity of the compounds and their activities was discussed by density functional theory (DFT). Physiological and biochemical studies have shown that A3 might affect the photosynthesis pathway and antioxidant system in cyanobacteria, resulting in the morphological changes of cyanobacterial cells. Our work demonstrated that A3 might be a promising candidate for the development of novel algicides and provided a new active skeleton for the development of subsequent chemical algicides.
Collapse
Affiliation(s)
- Shi Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Liexiong Zhang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guonian Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Yu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanyang Liu
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Ruiqing Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangmei Tang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Fan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
28
|
Jiang S, Wang X, Chong Y, Huang Y, Hu W, Smith PES, Jiang J, Feng S. Spectra-Based Machine Learning for Predicting the Statistical Interaction Properties of CO Adsorbates on Surface. J Phys Chem Lett 2024; 15:2400-2404. [PMID: 38393989 DOI: 10.1021/acs.jpclett.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Theoretical analyses of small-molecule adsorption on heterogeneous catalyst surfaces often rely on simplified models of molecular adsorption with the most favorable configuration. Given that real-world experimental tests frequently entail multiple molecules interacting with the surface, there is a pressing need for a comprehensive multimolecule adsorption model to bridge the gap between theory and experiment. Using machine learning, we predict the average values of important adsorption properties from conformationally averaged, calculated infrared and Raman spectra and compare these values to those theoretically derived from the conformationally averaged ensemble. Remarkably, our approach yields excellent predictions even when faced with large and indeterminate numbers of surface molecules. These quantitative spectra-averaged property relationships provide a theoretical framework for extracting key interaction properties from the spectra of real chemical environments.
Collapse
Affiliation(s)
- Shuang Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xijun Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yuanyuan Chong
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | | | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Wu Y, Tian Z, Li B, Gu J, Yuan H, Liu W, Ge H. Quantum chemical study on the catalytic debromination mechanism of brominated epoxy resins. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132943. [PMID: 38141316 DOI: 10.1016/j.jhazmat.2023.132943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 12/25/2023]
Abstract
The study employed Density Functional Theory (DFT) to investigate the catalytic debromination mechanism of brominated epoxy resins (BERs) by iron (Fe) and copper (Cu) catalysts. By introducing electric field (EF), intramolecular electron transfer and polarization effects on BERs debromination were explored and experimentally validated. Results indicated that the bond dissociation energy (BDE) of the C-Br bond was 312.27 kJ/mol without catalysis, while with Fe, Cu, and EF, it was 114.47 kJ/mol, 94.85 kJ/mol, and 292.59 kJ/mol, respectively, enhancing reactivity. EF parallel to the C-Br bond and oriented toward the C atom, altered electrostatic potential and dipole moment around C-Br bond, leading to 68.60% and 50.19% increment in electronic contribution difference and molecule polarity, respectively, thereby reducing the C-Br BDE. Fe and Cu facilitated electron transfers with BERs, inducing reactions between their negative electrostatic potentials and Br's positive potential, changing electron sharing, resulting in 19.87% and 12.11% increase in polarity, respectively, and further BDE reduction. Structural modifications by the EF and catalysts also intensified van der Waals forces with bromine atoms and decreased spatial hindrance, collectively making C-Br bond breakage easier. Experiments revealed the EF enhanced BERs' debromination efficiency but hindered Fe/Cu's catalysis at lower temperatures.
Collapse
Affiliation(s)
- Yufeng Wu
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, PR China; Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhongxun Tian
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, PR China; Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| | - Bin Li
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, PR China; Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China.
| | - Jing Gu
- Guangzhou Institute of Energy Conversion, The Chinese Academy of Sciences, Guangzhou 510070, PR China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, The Chinese Academy of Sciences, Guangzhou 510070, PR China
| | - Weijun Liu
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Huijie Ge
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
30
|
Chafiq M, Al-Moubaraki AH, Chaouiki A, Ko YG. A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1176. [PMID: 38473647 DOI: 10.3390/ma17051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Growing research activity on layered double hydroxide (LDH)-based materials for novel applications has been increasing; however, promoting LDH layer growth and examining its morphologies without resorting to extreme pressure conditions remains a challenge. In the present study, we enhance LDH growth and morphology examination without extreme pressure conditions. By synthesizing Mg-Al LDH directly on plasma electrolytic oxidation (PEO)-treated Mg alloy surfaces and pores at ambient pressure, the direct synthesis was achieved feasibly without autoclave requirements, employing a suitable chelating agent. Additionally, enhancing corrosion resistance involved incorporating electron donor-acceptor compounds into a protective layer, with 8-Hydroxyquinoline-5-sulfonic acid (HQS) that helps in augmenting Mg alloy corrosion resistance through the combination of LDH ion-exchange ability and the organic layer. DFT simulations were used to explain the mutual interactions in the LDH system and provide a theoretical knowledge of the interfacial process at the molecular level.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Aisha H Al-Moubaraki
- Department of Chemistry, Faculty of Sciences-Alfaisaliah Campus, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Gun Ko
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
31
|
Li Q, Li H, Zong X, Sun H, Liu Y, Zhan Z, Mei S, Qi Y, Huang Y, Ye Y, Pan F. Highly efficient adsorption of ciprofloxacin from aqueous solutions by waste cation exchange resin-based activated carbons: Performance, mechanism, and theoretical calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169534. [PMID: 38141999 DOI: 10.1016/j.scitotenv.2023.169534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
This study focused on the preparation of a highly efficient activated carbon adsorbent from waste cation exchange resins through one-step carbonization to remove ciprofloxacin (CIP) from aqueous solutions. Scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectrometry, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of the carbonized materials. The CIP removal efficiency, influencing factors, and adsorption mechanisms of CIP on the carbonized resins were investigated. Density functional theory (DFT) computations were performed to elucidate the adsorption mechanisms. The CIP removal reached 93 % when the adsorbent dosage was 300 mg/L at 25 °C. The adsorption capacity of the carbonized resins to CIP gradually decreased with an increasing pH from 3.0 to 7.0 and sharply declined with a pH from 7.0 to 11.0. The adsorption process better fitted by the pseudo second-order kinetic and Langmuir models, indicating that the interaction between CIP and the carbonized resins was monolayer adsorption. The maximum adsorption capacity fitted by the Langmuir model was 384.4 mg/g at 25 °C. Microstructural analysis showed that the adsorption of CIP on the carbonized resins was a joint effect of H-bonding, ion exchange, and graphite-N adsorption. Computational results signified the strong H-bonding and ion exchange interactions existed between CIP and carbonized resins. The high adsorption and reusability suggest that waste cation exchange resin-based activated carbons can be used as an effective and reusable adsorbent for removing CIP from aqueous solutions.
Collapse
Affiliation(s)
- Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Haochen Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Xiaofei Zong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Haochao Sun
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yunhao Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Ziyi Zhan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Shou Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yanjie Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yangbo Huang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yuxuan Ye
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
32
|
Peng X, Cao W, Hu Z, Yang Y, Sun Z, Wang XB, Sun H. Observation of a super-tetrahedral cluster of acetonitrile-solvated dodecaborate dianion via dihydrogen bonding. J Chem Phys 2024; 160:054308. [PMID: 38341708 DOI: 10.1063/5.0186614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122-·nCH3CN (n = 1-4). The electron binding energies of B12H122-·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122- via a threefold dihydrogen bond (DHB) B3-H3 ⁝⁝⁝ H3C-CN unit, in which three adjacent nucleophilic H atoms in B12H122- interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122- solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree-Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122- and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122-·CH3CN cluster. The binding motif in B12H122-·CH3CN is largely retained for the whole halogenated series B12X122-·CH3CN (X = F-I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.
Collapse
Affiliation(s)
- Xiaogai Peng
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
33
|
Cao S, Zhu R, Wu D, Su H, Liu Z, Chen Z. How hydrogen bonding and π-π interactions synergistically facilitate mephedrone adsorption by bio-sorbent: An in-depth microscopic scale interpretation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123044. [PMID: 38042474 DOI: 10.1016/j.envpol.2023.123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
Mephedrone (4-methylmethcathinone, MEPH) exhibited severe ecologic hazards and health detriments. A novel deep eutectic solvent functionalized magnetic ZIF-8/hierarchical porous carbon (DMZH) with excellent selectivity, interference resistance and recyclability, was developed for the rapid adsorption of MEPH. Initially, potential adsorption sites of MEPH were predicted. Then, π-π and hydrogen bonding interactions were proposed and verified from characterizations, comparative experiments and theoretical calculations. The synergistic effects of the hydrogen bonding and π-π interactions increased the adsorption energies from -15.26 kcal⋅mol-1 to -21.83 kcal⋅mol-1, enhanced the degree of π-dissociation, enlarged the π-π isosurface area, extended the van der Waals surface mutual penetration distance, achieving stronger affinity and remarkable adsorption. Furthermore, offset (parallel-displaced) π-π stacking form existed between DMZH and MEPH. DMZH acted as the hydrogen bond donor and MEPH served as the hydrogen bond acceptor to form O-H⋯O and N-H⋯O hydrogen bonding interaction. Profiting from the synergistic effects, DMZH showed satisfactory adsorption for MEPH within 20 min with a maximum adsorption capacity of 3270.11 μg∙g-1, displayed excellent performance in wide pH range of 5∼11 and in the coexistence of multi-chemicals.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Rong Zhu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Duanhao Wu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
34
|
Wang Z, Sun Z, Zhao H, Li J, Zhang X, Jia J, An K, Tang Z, He M, Qu Z. Effect of different defects on the competitive adsorption of formaldehyde and water on the surface of carbon materials: Density functional theory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168745. [PMID: 37996039 DOI: 10.1016/j.scitotenv.2023.168745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
The adsorption of formaldehyde by carbon materials is extremely limited and is also greatly influenced by the competitive adsorption of water. Therefore, it is of great significance to investigate the effect of different defects on the competitive adsorption of formaldehyde and water on the surface of carbon materials, and consequently the targeted modification of carbon materials to promote the adsorption of formaldehyde in air. In this study, multi-scale simulations were conducted to explore the problem of competitive adsorption of water and formaldehyde on the surface of carbon materials by quantum chemistry and molecular dynamics. IGMH, QTAIM, energy decomposition, electron transfer, and so on were used to conduct a comprehensive analysis of the problem of competitive adsorption of water and formaldehyde on the surface of carbon materials. The reasons for the formation of competitive adsorption between water and formaldehyde were firstly clarified, and then the adsorption interactions of different oxygen-containing functional groups on formaldehyde and water were investigated separately, which were found that the competitive adsorption of water and formaldehyde molecules by different types of oxygen-containing functional groups caused different results. And the introduction of intrinsic defects can promote the adsorption of formaldehyde in the presence of water competition for adsorption, which can well compensate the inhibitory effect of water on the adsorption of formaldehyde with strong polar functional groups. Finally, the results obtained from simulations were used to guide the modification experiments, and the experimental results were in accord with the simulation results. This study provides a new idea for the preparation of materials for efficient formaldehyde adsorption under certain humidity.
Collapse
Affiliation(s)
- Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zekun Sun
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiuyang Jia
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Kaibo An
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Ziyu Tang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Mingqi He
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
35
|
Hong H, Zhu J, Wang Y, Wei Z, Guo X, Yang S, Zhang R, Cui H, Li Q, Zhang D, Zhi C. Metal-Free Eutectic Electrolyte with Weak Hydrogen Bonds for High-Rate and Ultra-Stable Ammonium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308210. [PMID: 37916840 DOI: 10.1002/adma.202308210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Indexed: 11/03/2023]
Abstract
As the need for sustainable battery chemistry grows, non-metallic ammonium ion (NH4 + ) batteries are receiving considerable attention because of their unique properties, such as low cost, nontoxicity, and environmental sustainability. In this study, the solvation interactions between NH4 + and solvents are elucidated and design principles for NH4 + weakly solvated electrolytes are proposed. Given that hydrogen bond interactions dominate the solvation of NH4 + and solvents, the strength of the solvent's electrostatic potential directly determines the strength of its solvating power. As a proof of concept, succinonitrile with relatively weak electronegativity is selected to construct a metal-free eutectic electrolyte (MEE). As expected, this MEE is able to significantly broaden the electrochemical stability window and reduce the solvent binding energy in the solvation shell, which leads to a lower desolvation energy barrier and a fast charge transfer process. As a result, the as-constructed NH4 -ion batteries exhibit superior reversible rate capability (energy density of 65 Wh kg-1 total active mass at 600 W kg-1 ) and unprecedent long-term cycling performance (retention of 90.2% after 1000 cycles at 1.0 A g-1 ). The proposed methodology for constructing weakly hydrogen bonded electrolytes will provide guidelines for implementing high-rate and ultra-stable NH4 + -based energy storage systems.
Collapse
Affiliation(s)
- Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shuo Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dechao Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), NT, Shatin, Hong Kong SAR, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), NT, Shatin, Hong Kong SAR, 999077, China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
36
|
Zhang FX, Zhang YH, Wang M, Ma JB. Nitrogen adsorption on Nb 2C 6H 4+ cations: the important role of benzyne ( ortho-C 6H 4). Phys Chem Chem Phys 2024; 26:3912-3919. [PMID: 38230689 DOI: 10.1039/d3cp05524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
N2 adsorption is a prerequisite for activation and transformation. Time-of-flight mass spectrometry experiments show that the Nb2C6H4+ cation, resulting from the gas-phase reaction of Nb2+ with C6H6, is more favorable for N2 adsorption than Nb+ and Nb2+ cations. Density functional theory calculations reveal the effect of the ortho-C6H4 ligand on N2 adsorption. In Nb2C6H4+, interactions between the Nb-4d and C-2p orbitals enable the Nb2+ cation to form coordination bonds with the ortho-C6H4 ligand. Although the ortho-C6H4 ligand in Nb2C6H4+ is not directly involved in the reaction, its presence increases the polarity of the cluster and brings the highest occupied molecular orbital (HOMO) closer to the lowest occupied molecular orbital (LUMO) of N2, thereby increasing the N2 adsorption energy, which effectively facilitates N2 adsorption and activation. This study provides fundamental insights into the mechanisms of N2 adsorption in "transition metal-organic ligand" systems.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yi-Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
37
|
Lin Z, Su H, Huang W, Zhang X, Zhang G. 2D-Graph of intermolecular interactions predicts radical character of anion-π* type charge-transfer complexes. RSC Adv 2024; 14:3771-3775. [PMID: 38274166 PMCID: PMC10809263 DOI: 10.1039/d3ra07729b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
The molecular orbital (MO) theory is one of the most useful methods to describe the formation of a new chemical bond between two molecules. However, it is less often employed for modelling non-bonded intermolecular interactions because of the small charge-transfer contribution. Here we introduce two simple descriptors, the energy difference (EDA) of the HOMO of an electron donor and the LUMO of an acceptor against such HOMO-LUMO overlap integral (SDA), to show that the MO theory could give a unified charge-transfer picture of both bonding and non-bonding interactions for two molecules. It is found that similar types of interactions tend to be closer to each other in this 2D graph. Notably, in a transition region from strong bonding to single-electron transfer, the interacting molecular pairs appear to present a "hybrid" between chemical bonding and a radical pair, such as anion-π* interactions. It is concluded that the number of nodes in the HOMO and LUMO play a crucial role in determining the bonding character of the molecular pair.
Collapse
Affiliation(s)
- Zhenda Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Hao Su
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Wenhuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
38
|
Liu Y, Lv M, Zhang G, Dong Z, Ye Z. High-Density Energetic Materials with Low Mechanical Sensitivity and Twinning Derived from Nitroimidazole Fused Ring. Molecules 2024; 29:353. [PMID: 38257266 PMCID: PMC10819058 DOI: 10.3390/molecules29020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The innovative synthesis of 3,8-dibromo-2,9-dinitro-5,6-dihydrodiimidazo [1,2-a:2',1'-c]pyrazine and 3,9-dibromo-2,10-dinitro-6,7-dihydro-5H-diimidazo [1,2-a:2',1'-c][1,4]diazepine is described in this study. The tricyclic fused molecular structures are formed by the respective amalgamation of piperazine and homopiperazine with the imidazole ring containing nitro. Compound 1 and 2 possess excellent high-density physical properties (ρ1 = 2.49 g/cm3, ρ2 = 2.35 g/cm3) due to the presence of a fused ring structure and Br atom. In addition to their high density, they have high decomposition temperatures (Td > 290 °C) which means that they have excellent thermal stability and can be used as potential heat-resistant explosives. Low mechanical sensitivities (IS > 40 J, FS > 360 N) are observed. The twinning structure of 2 was resolved by X-ray diffraction. Non-covalent interaction analysis, Hirshfeld surfaces, 2D fingerprint plot, and Electrostatic potential analysis were used to understand the intramolecular interactions in relation to physicochemical properties. The unique structures of this type of compound provide new potential for the evolution of energetic materials.
Collapse
Affiliation(s)
| | | | | | | | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Y.L.); (M.L.); (G.Z.); (Z.D.)
| |
Collapse
|
39
|
Ma L, Liu W, Liu B, Tang Y. Removal of methylene blue by acrylic polymer adsorbents loaded with magnetic iron manganese oxides: Synthesis, characterization, and adsorption mechanisms. CHEMOSPHERE 2024; 346:140588. [PMID: 37914049 DOI: 10.1016/j.chemosphere.2023.140588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Dyes pose significant risks for aquatic environments and biological health in general owing to their non-biodegradable nature, carcinogenicity, and toxicity. The effective treatment of dye wastewater has become an important research topic. In this study, acrylic polymers (AP) loaded with magnetic iron manganese oxides (MIMO) (AP/MIMO) were prepared and used for the first time for the adsorption of methylene blue (MB). Carbon in AP/MIMO exists predominantly in the C-H and C-C forms, with its content reaching 50.7%. Oxygen and nitrogen in AP/MIMO exist mainly in the -CO- and -N-C forms, with contents of up to 41.5% and 73.3%, respectively. MB removal by AP/MIMO was consistent with the pseudo-second-order kinetic model (R2 = 0.99), equilibrium was achieved within 20 min, and the highest MB capacity of 2611.23 mg g-1 was predicted by the Langmuir isotherm model (R2 = 0.91-0.94). AP/MIMO exhibited excellent MB adsorption performance in the pH range of 4-10, with a removal efficiency higher than 99.0% (MB = 100 mL 1000 mg L-1; AP/MIMO = 50 mg). Thermodynamic indicators, such as positive entropy (ΔS0; 98.30 J⋅mol-1⋅K-1), negative Gibbs free energy (ΔG0; -29.40, -28.50, and -27.50 KJ⋅mol-1), and positive enthalpy (ΔH0; 2.30 KJ⋅mol-1), demonstrated that MB removal by AP/MIMO was autonomous, favorable, and endothermic. In addition, the integration of experimental results and theoretical calculations verified that electrostatic interactions were the primary mechanism for MB adsorption at carboxyl sites on AP/MIMO. The total interaction energy between AP and MB was -310.43 kJ⋅mol-1, and the electrostatic effect had a decisive contribution to the MB adsorption, with a value of up to -341.06 kJ⋅mol-1. AP and MB were most likely bound by -COO and S atoms. Overall, AP/MIMO exhibits high adsorption capacity and shows potential as a high-performance magnetic polymer for MB removal.
Collapse
Affiliation(s)
- Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weirong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Baozhen Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - YingCai Tang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing, 100084, China.
| |
Collapse
|
40
|
Lv L, Zhang H, Wang J, Lu D, Zhang S, Li R, Deng T, Chen L, Fan X. Tuning the Cathode-Electrolyte Interphase Chemistry with Multifunctional Additive for High-Voltage Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305464. [PMID: 37658520 DOI: 10.1002/smll.202305464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Indexed: 09/03/2023]
Abstract
The utilization of layered oxides as cathode materials has significantly contributed to the advancement of the lithium-ion batteries (LIBs) with high energy density and reliability. However, the structural and interfacial instability triggered by side reactions when charged to high voltage has plagued their practical applications. Here, this work reports a novel multifunctional additive, id est, 7-Anilino-3-diethylamino-6-methyl fluoran (ADMF), which exhibits unique characteristics such as preferential adsorption, oxygen scavenging, and electropolymerization protection for high-voltage cathodes. The ADMF demonstrates the capability to ameliorate the growth of cathode-electrolyte interphase (CEI), effectively diminishing the dissolution of transition metal (TM) ions, reducing the interface impedance, and facilitating the Li+ transport. As a result, ADMF additive with side reaction-blocking ability significantly enhances the cycling stability of MCMB||NCM811 full-cells at 4.4 V and MCMB||LCO full-cells at 4.55 V, as evidenced by the 80% retention over 600 cycles and 87% retention after 750 cycles, respectively. These findings highlight the potential of the additive design strategy to modulate the CEI chemistry, representing a new paradigm with profound implications for the development of next-generation high-voltage LIBs.
Collapse
Affiliation(s)
- Ling Lv
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haikuo Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinze Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuoqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruhong Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Tao Deng
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Lixin Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou, 310013, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
41
|
Wu Q, Yuan Y, Wang X, Bu X, Jiao M, Liu W, Han C, Hu L, Wang X, Li X. Highly Selective Ionic Gel-Based Gas Sensor for Halogenated Volatile Organic Compound Detection: Effect of Dipole-Dipole Interaction. ACS Sens 2023; 8:4566-4576. [PMID: 37989128 DOI: 10.1021/acssensors.3c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Halogenated volatile organic compounds (abbreviated as X-VOCs) are a class of hazardous gas pollutants that are difficult to detect due to their thermal stability, chemical inertness, and poisoning effect on gas sensors at high temperatures. In this work, room-temperature detection of X-VOCs is achieved using a surface acoustic wave (SAW) gas sensor coated with a 1-ethyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide (EMIM-TFSI)-based ionic gel film. We experimentally verify that the high selectivity of the ionic gel-based SAW gas sensor for X-VOCs is due to the presence of halogen atoms in these gas molecules. Meanwhile, the sensor has very little response to common organic gases such as ethanol, isopropanol, and acetone, reflecting a low cross-sensitivity to nonhalogenated VOCs. This unique advantage shows potential applications in selective detection of X-VOCs and is validated by comparison with a commercial metal oxide semiconductor (MOS) sensor. Furthermore, the internal sensing mechanism is explored by the density functional theory (DFT) method. The simulation results demonstrate that the X-VOC molecules are highly polarized by the inductive effect of halogen atom substitution, which is beneficial for being adsorbed by the EMIM-TFSI ionic liquid via dipole-dipole interaction.
Collapse
Affiliation(s)
- Qiang Wu
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Yubin Yuan
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Xuming Wang
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Xiangrui Bu
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Menglong Jiao
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Weihua Liu
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Chuanyu Han
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Long Hu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoli Wang
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
- School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Li
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| |
Collapse
|
42
|
Wang X, Wang S, Zhao Y, Mu R, Shao Y. Occurrence Modes of AAEMs (Na + and Ca 2+) and the Effect on the Molecular Structures of Zhundong Coal via Quantum Chemistry. ACS OMEGA 2023; 8:46528-46539. [PMID: 38107923 PMCID: PMC10720284 DOI: 10.1021/acsomega.3c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Zhundong coal is known for its high content of alkali and alkaline earth metals (AAEMs), which greatly influences coal processing and utilization. To reveal the occurrence modes and the effect of AAEM ions on the molecular structures of Zhundong coal, the previously constructed molecular structure models of vitrinite-rich and inertinite-rich Zhundong coal (ZD-V and ZD-I) were selected to simulate using quantum chemical methods. By focusing on Na+ and Ca2+, the adsorption capacity at different adsorption sites was investigated based on the density functional theory (DFT), and the effects of adsorption of Na+ and Ca2+ on nearby atomic charges, chemical bonds, and molecular orbitals were investigated. Results show that compared with ZD-I, ZD-V contains a more negative electrostatic potential (ESP) distribution and lower bond order, indicating that vitrinite contains more adsorption sites for AAEM ions and exhibits stronger chemical reactivity. Na+ and Ca2+ are easily adsorbed to the most negative ESP with the optimal adsorption site near the carbonyl group (C=O). Compared with adsorbed Na+, Ca2+ has a smaller adsorption distance from the molecule and a higher adsorption energy. Ca2+ can transfer more charge than Na+ and has more affinity with the coal molecule. Ca2+ at all adsorption sites is bound to organic molecules by chemisorption, which also reveals the reason for the low water-soluble Ca content in coal at the molecular level. Adsorption of AAEM ions has a more significant effect on the chemical bond of oxygen-containing functional groups near AAEM ions compared to the overall molecular fragments, which makes the nearby chemical bonds (C-O/C=O) decrease in bond order and increase in bond length. Ca2+ makes the nearby chemical bonds more prone to break than Na+. Additionally, Ca2+ has a more significant impact on the energy gaps (ΔEgap) compared to Na+. Adsorption of Ca2+ near the carbonyl and carboxyl groups leads to a significant decrease in ΔEgap, indicating an enhanced chemical reactivity of coal molecular fragments.
Collapse
Affiliation(s)
- Xiaoling Wang
- College of Geoscience and
Surveying Engineering, China University
of Mining and Technology (Beijing), Beijing 100083, China
| | - Shaoqing Wang
- College of Geoscience and
Surveying Engineering, China University
of Mining and Technology (Beijing), Beijing 100083, China
| | - Yungang Zhao
- College of Geoscience and
Surveying Engineering, China University
of Mining and Technology (Beijing), Beijing 100083, China
| | - Ruifeng Mu
- College of Geoscience and
Surveying Engineering, China University
of Mining and Technology (Beijing), Beijing 100083, China
| | - Yan Shao
- College of Geoscience and
Surveying Engineering, China University
of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
43
|
Ullah Mughal E, Roufieda Guerroudj A, Bozkurt E, Naeem N, Sadiq A, Al-Fahemi JH, Jassas RS, Hussein EM, Boukabcha N, Chouaih A, Ahmed SA. Investigation of photophysical and electronic properties of aurone derivatives: Insights from spectroscopic techniques and density functional theory calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123130. [PMID: 37517274 DOI: 10.1016/j.saa.2023.123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
This paper reports on a study of the photophysical properties, density functional theory (DFT) calculations, infrared (IR), ultraviolet (UV) and nuclear magnetic resonance (NMR) spectroscopic techniques of a series of aurone compounds. The photophysical properties were investigated using UV absorption and fluorescence spectroscopy in a dimethyl sulfoxide (DMSO) solution. Furthermore, the fluorescence quantum yields of the target compounds (1-24) were also investigated. Remarkably, these compounds revealed high quantum yields (Φ = 0.001-0.729) as compared to the already existing aurones in literature. The DFT calculations were performed to elucidate the electronic structure, energy levels and draw a comparison between experimental and theoretical findings. The simulated properties such as molecular frontier orbitals, the density of states, reactivity descriptors (GCRD), electrostatic potential distribution, transition density matrix, electron localization function (ELF) and localized orbital locator (LOL) have been calculated using DFT. The DFT calculations provided insight into the electronic structure and energy levels of the aurone compounds, while the IR and UV spectroscopy results shed light on their functional groups and electronic transitions, respectively. The results of this study contribute to a better understanding of the photophysical properties of aurone compounds and suggest their potential use in technological applications.
Collapse
Affiliation(s)
| | - Ahlam Roufieda Guerroudj
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria.
| | - Ebru Bozkurt
- Program of Occupational Health and Safety, Vocational College of Technical Sciences, Atatürk University, 25240 Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujarat 50700, Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | - Jabir H Al-Fahemi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Essam M Hussein
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Nourdine Boukabcha
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria; Chemistry Department, Faculty of Exact Sciences and Informatic, Hassiba Benbouali University, Chlef 02000, Algeria
| | - Abdelkader Chouaih
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| |
Collapse
|
44
|
Hu Z, Wang X, Du W, Zhang Z, Tang Y, Ye M, Zhang Y, Liu X, Wen Z, Li CC. Crowding Effect-Induced Zinc-Enriched/Water-Lean Polymer Interfacial Layer Toward Practical Zn-Iodine Batteries. ACS NANO 2023; 17:23207-23219. [PMID: 37963092 DOI: 10.1021/acsnano.3c10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I3- attack. Moreover, the as-constructed Zn2+-enriched layer substantially facilitate rapid Zn2+ migration through the NH2-Zn2+-NH2 binding/dissociation mode of CCS molecule chain. Consequently, the large-format Zn symmetry cell (9 cm2) with a Zn-CCS electrode demonstrates excellent cycling stability over 1100 h without bulging. When coupled with an I2 cathode, the assembled Zn-I2 multilayer pouch cell displays an exceptionally high capacity of 140 mAh and superior long-term cycle performance of 400 cycles. This work provides a universal strategy to prepare large-scale production and high-performance polymer crowding layer for metal anode-based battery, analogous outcomes were veritably observed on other metals (Al, Cu, Sn).
Collapse
Affiliation(s)
- Zuyang Hu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiangwen Wang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Wencheng Du
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zicheng Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yongchao Tang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Minghui Ye
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yufei Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaoqing Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhipeng Wen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Cheng Chao Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
45
|
Cai ZY, Ma ZW, Wu WK, Lin JD, Pei LQ, Wang JZ, Wu TR, Jin S, Wu DY, Tian ZQ. Stereoelectronic Switches of Single-Molecule Junctions through Conformation-Modulated Intramolecular Coupling Approaches. J Phys Chem Lett 2023; 14:9539-9547. [PMID: 37856238 DOI: 10.1021/acs.jpclett.3c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Stereoelectronic effects in single-molecule junctions have been widely utilized to achieve a molecular switch, but high-efficiency and reproducible switching remain challenging. Here, we demonstrate that there are three stable intramolecular conformations in the 9,10-diphenyl-9,10-methanoanthracen-11-one (DPMAO) systems due to steric effect. Interestingly, different electronic coupling approaches including weak coupling (through-space), decoupling, and strong coupling (through-bond) between two terminal benzene rings are accomplished in the three stable conformations, respectively. Theoretical calculations show that the molecular conductance of three stable conformations differs by more than 1 order of magnitude. Furthermore, the populations of the three stable conformations are highly dependent on the solvent effect and the external electric field. Therefore, an excellent molecular switch can be achieved using the DPMAO molecule junctions and external stimuli. Our findings reveal that modulating intramolecular electronic coupling approaches may be a useful manner to enable molecular switches with high switching ratios. This opens up a new route for building high-efficiency molecular switches in single-molecular junctions.
Collapse
Affiliation(s)
- Zhuan-Yun Cai
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zi-Wei Ma
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wen-Kai Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jian-De Lin
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lin-Qi Pei
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jia-Zheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tai-Rui Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shan Jin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
46
|
Zheng Q, Li Q, Tao Y, Gong J, Shi J, Yan Y, Guo X, Yang H. Efficient removal of copper and silver ions in electroplating wastewater by magnetic-MOF-based hydrogel and a reuse case for photocatalytic application. CHEMOSPHERE 2023; 340:139885. [PMID: 37604344 DOI: 10.1016/j.chemosphere.2023.139885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Direct discharge of electroplating wastewater containing hazardous metal ions such as Cu2+ and Ag + results in environmental pollution. In this study, we rationally prepare a magnetic composite hydrogel consisted of Fe3O4, UiO-66-NH2, chitosan (CTS) and polyethyleneimine (PEI), namely Fe3O4@UiO-66-NH2/CTS-PEI. Thanks to the strong attraction between the amino group and metal cations, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel shows the maximum adsorption capacities of 321.67 mg g-1 for Cu2+ ions and 226.88 mg g-1 for Ag + ions within 120 min. As real scenario, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel exhibits excellent removal efficiencies for metallic ions even in the complicated media of actual electroplating wastewater. In addition, we explore the competitive adsorption order of metal cations by using experimental characterization and theoretical calculations. The optimal configuration of CTS-PEI is also discovered with the density functional theory, and the water retention within hydrogel is simulated through molecular dynamics modeling. We find that the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel could be reused and after 5 cycles of adsorption-desorption, removal efficiency could maintain 80%. Finally, the Ag+ accumulated by hydrogel are reduced to generate a photocatalyst for efficient degradation of Rhodamine B. The novel magnetic hydrogel paves a promising path for efficient removal of heavy metal ions in wastewater and further resource utilization as photocatalysts.
Collapse
Affiliation(s)
- Qiangting Zheng
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qinyi Li
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Tao
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiamin Gong
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jiangli Shi
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Yan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
47
|
Wang X, Li X, Wu Q, Yuan Y, Liu W, Han C, Wang X. Detection of Dimethyl Methyl Phosphonate by Silica Molecularly Imprinted Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2871. [PMID: 37947716 PMCID: PMC10648664 DOI: 10.3390/nano13212871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the increasing severity of chemical warfare agent threats to public safety has led to a growing demand for gas sensors capable of detecting these compounds. However, gas sensors used for the detection of chemical warfare agents must overcome limitations in sensitivity, selectivity, and reaction speed. This paper presents a sensitive material and a surface acoustic gas sensor for detecting dimethyl methyl phosphonate. The results demonstrate that the sensor exhibits good selectivity and could detect 80 ppb of dimethyl methyl phosphonate within 1 min. As an integral component of the sensor, the microstructure and adsorption mechanism of silica molecular imprinting material were studied in detail. The results show that the template molecule could significantly affect the pore volume, specific surface area, and hydroxyl density of mesoporous materials. These properties further affect the performance of the sensor. This study provides a valuable case study for the design of sensitive materials.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (C.H.)
| | - Xin Li
- Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (C.H.)
| | - Qiang Wu
- Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (C.H.)
| | - Yubin Yuan
- Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (C.H.)
| | - Weihua Liu
- Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (C.H.)
| | - Chuanyu Han
- Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (C.H.)
| | - Xiaoli Wang
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
48
|
Qiu Y, Wang Y, Lu J, Zhu Q, Jia L, Lei F, Shen L, Jiang L, Wu A. Synthesis, spectroscopic analysis, DFT, docking, MD and antioxidant activity of tetrahydrocurcumin. J Biomol Struct Dyn 2023:1-13. [PMID: 37902569 DOI: 10.1080/07391102.2023.2275189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
In recent years, numerous researchers have made local chemical modifications to the structure of curcumin while its basic structure remains unchanged, thus, producing curcumin derivatives. In this article, tetrahydrocurcumin was obtained by hydrogenation of curcumin, DFT calculation and characterization at the theoretical level of B3LYP/6 -311++G(d,p) were carried out. The observed IR and Raman spectra are in good agreement with the theoretical spectra. The FMO and ESP of tetrahydrocurcumin are predicted. The interaction in the system is shown graphically and analyzed by IGMH. Compared with curcumin, tetrahydrocurcumin lacks the unsaturated C = C bond, which makes it more stable and more bioavailable. Molecular docking with antioxidant targets elucidated the ligand-protein interaction and molecular dynamics simulation showed the antioxidant activity of tetrahydrocurcumin. The antioxidant activity of tetrahydrocurcumin was proved by DPPH• and •OH radical scavenging experiments. In essence, these derivatives exhibit enhanced physiological activity in certain aspects compared to the original curcumin. Moreover, the computational pharmacology techniques lay a theoretical groundwork for the development and modification of high-efficiency, low-toxicity drugs that interface with various targets of curcumin in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yingqi Qiu
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| | - Yuanmeng Wang
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| | - Jiahao Lu
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| | - Qinghua Zhu
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| | - Li Jia
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| | - Fuhou Lei
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| | - Liqun Shen
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Medical College, Guangxi University, Nanning, China
| | - Aiqun Wu
- College of Chemistry and Chemical Engineering, GUANGXI MINZU UNIVERSITY, Key Laboratory of universities in Guangxi for Excavation and Development of ancient ethnomedicinal recipes, Nanning, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, China
| |
Collapse
|
49
|
Cao L, Wang W, Cheng J, Wang T, Zhang Y, Wang L, Li W, Chen S. Synergetic Inhibition and Corrosion-Diagnosing Nanofiber Networks for Self-Healing Protective Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48645-48659. [PMID: 37791906 DOI: 10.1021/acsami.3c10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic coatings lack durability in marine corrosive environments. Herein, we designed a self-healing coating with a novel nanofiber network filler for enhanced protection. Using electrospinning, we created a core-shell structure nanofiber network consisting of polyvinyl butyral (PVB) as the shell material and gallic acid (GA) and phenanthroline (Phen) as the core material. The PVB@GA-Phen nanofiber network, which includes synergistic corrosion inhibitors (GA-Phen), was embedded in an epoxy coating (PVB@GA-Phen/epoxy) and applied to carbon steel. Density functional theory (DFT) calculations and molecular dynamics (MD) simulations demonstrated that the GA-Phen combination, through hydrogen bond interaction, facilitated inhibitor adsorption on the steel surface. The GA-Phen combination diagnosed corrosion and formed a protective film on the scratched areas. The sustained release of Phen-GA combination inhibitors for up to 240 h resulted in an 88.63% healing efficiency of the PVB@GA-Phen/epoxy (PGP/EP) coating. The long-term corrosion resistance tests confirmed the effective barrier performance of the PGP/EP coating in 3.5 wt % NaCl solution. Moreover, the incorporation of the nanofiber network in the epoxy coating provided passive barrier, corrosion-diagnosing, and anticorrosion properties for carbon steel protection. The designed coating has the potential to continuously monitor the coating/metal system and could serve as a foundation for developing new anticorrosion coatings.
Collapse
Affiliation(s)
- Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Cheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tong Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yue Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
50
|
Jia J, Zhao H, He M, Wang Z, Sun Z, Yang X, Yu Q, Qu Z, Pi X, Yao F. Investigation of the Mechanisms of CO 2/O 2 Adsorption Selectivity on Carbon Materials Enhanced by Oxygen Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14699-14710. [PMID: 37801725 DOI: 10.1021/acs.langmuir.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Power plant flue gas and industrial waste gas are produced in large quantities. Using these as feedstocks for CO2 electroreduction has important practical significance for the treatment of excessive CO2 emissions. However, O2 in such sources strongly inhibits the electrochemical conversion of CO2. The inhibitory effect of O2 can be mitigated by constructing CO2-enriched regions on the surface of the cathode. In this study, the reaction zone was controlled by the selective adsorption of CO2 on oxygen-functionalized carbon materials. The results of quantum chemical simulations showed that CO2 adsorption was mainly influenced by electrostatic interactions, whereas O2 adsorption was completely regulated by dispersion interactions. This distinction indicated that introducing polar oxygen functional groups at the edge of the carbon plane can significantly enhance the selectivity for CO2/O2 adsorption. The difference in the adsorption energy between CO2 and O2 increased most noticeably after the carboxyl groups were introduced. The results of the adsorption experiments showed that oxygen-functionalization increased the CO2/O2 selectivity of the carbon material under an atmosphere of multicomponent gases by more than 4.9 times. The carboxyl groups played a dominant role. Our findings might act as a reference for the selective adsorption of polar molecules over nonpolar molecules.
Collapse
Affiliation(s)
- Jiuyang Jia
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingqi He
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zekun Sun
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xue Yang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Qi Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Yao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|