1
|
de Bruin CR, de Bruijn WJC, Hemelaar MA, Vincken JP, Hennebelle M. Separation of triacylglycerol (TAG) isomers by cyclic ion mobility mass spectrometry. Talanta 2025; 281:126804. [PMID: 39243443 DOI: 10.1016/j.talanta.2024.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Triacylglycerols (TAGs), a major lipid class in foods and the human body, consist of three fatty acids esterified to a glycerol backbone. They can occur in various isomeric forms, including sn-positional, cis/trans configurational, acyl chain length, double bond positional, and mixed type isomers. Separating isomeric mixtures is of great interest as different isomers can have distinct influence on mechanisms, such as digestibility, oxidative stability, or lipid metabolism. However, TAG isomer separation remains challenging with established analytical methodologies such as liquid-chromatography coupled to mass spectrometry (LC-MS). In this study, we developed a method with cyclic ion mobility mass spectrometry (cIMS-MS) for the separation and identification of all types of TAG isomers. First, the influence of different adducts (Li+, NH4+, Na+, and K+) on the separation was studied. Overall, it was concluded that the sodium adduct is the best choice to efficiently separate all types of TAG isomers. In addition, trends were found in the influence of specific structural features on the drift time order. An order of relative influence (from high to low) was established; (1) degree of unsaturation of the fatty acid(s) on an exterior position (if the total degree of unsaturation(s) is equal in both TAGs), (2) acyl chain length on the exterior positions, (3) cis/trans configuration, and (4) double bond (DB)-position. Finally, various cIMS-MS strategies were developed for the separation of mixtures containing four, five, and six isomers. To conclude, the developed methods can be used for separation of complex mixtures of TAG isomers and have great potential to be expanded to isomers of similar types of lipids such as di- and monoacylglycerols. This study also shows the potential of cIMS-MS to be used for the application on real TAG samples.
Collapse
Affiliation(s)
- Carlo R de Bruin
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Mirjam A Hemelaar
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Asensio-Grau A, Ferriz-Jordán M, Hervás D, Heredia A, García-Hernández J, Garriga M, Masip E, Carmen Collado M, Andrés A, Ribes-Koninckx C, Calvo-Lerma J. Faecal lipid profile as a new marker of fat maldigestion, malabsorption and microbiota. Pediatr Res 2024:10.1038/s41390-024-03209-0. [PMID: 38778229 DOI: 10.1038/s41390-024-03209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Fat malabsorption in children with cystic fibrosis (CF) leads to poor nutritional status and altered colonic microbiota. This study aimed at establishing the faecal lipid profile in children with CF, and exploring associations between the faecal lipidome and microbiota. METHODS Cross-sectional observational study with children with CF and an age-matched control group. Faecal lipidome was analysed by UHLC-HRMS and microbiota profiling by 16S rRNA amplicon sequencing. RESULTS Among 234 identified lipid species, five lipidome clusters (LC) were obtained with significant differences in triacylglycerols (TG), diacylglycerols (DG), monoacylglycerols (MG) and fatty-acids (FA): LC1 subjects with good digestion and absorption: low TG and low MG and FA; LC2 good digestion and poor absorption: low TG and high MG and FA; LC3 Mild digestion and poor absorption: intermediate TG and high MG and FA; LC4 poor digestion and absorption: high TG and high MG and FA; LC5 outliers. Bacteroidota and Verrucomicrobiota decreased over LC1-LC4, while Proteobacteria increased. Nutritional status indicators were significantly higher in LC1 and decreased over LC2-LC4. CONCLUSION Assessing faecal lipidome may be relevant to determine how dietary lipids are digested and absorbed. This new evidence might be a method to support targeted nutritional interventions towards reverting fat maldigestion or malabsorption. IMPACT Lipidomic analysis enabled the identification of the lipid species related to maldigestion (triglycerides) or malabsorption (monoglycerides and fatty acids). Children with cystic fibrosis can be grouped depending on the faecal lipidome profile related to dietary fat maldigestion or malabsorption. The lipidome profile in faeces is related to the composition of microbiota and nutritional status indicators.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- Institute of Food Engineering (FoodUPV). Polytechnic University of València, 46022, València, Spain
- Joint Research Unit NutriCuraPDig, València, Spain
| | - Miguel Ferriz-Jordán
- Institute of Food Engineering (FoodUPV). Polytechnic University of València, 46022, València, Spain
| | - David Hervás
- Department of Statistics (EIO). Polytechnic University of València, 46022, València, Spain
| | - Ana Heredia
- Institute of Food Engineering (FoodUPV). Polytechnic University of València, 46022, València, Spain
- Joint Research Unit NutriCuraPDig, València, Spain
| | - Jorge García-Hernández
- Centre for Advanced Microbiology (CAMA). Polytechnic University of València, 46022, València, Spain
| | - María Garriga
- University Hospital Ramón y Cajal, 28034, Madrid, Spain
| | - Etna Masip
- Health Research Institute La Fe, 46026, València, Spain
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology. Spanish National Research Council (IATA-CSIC), 46980, València, Spain
| | - Ana Andrés
- Institute of Food Engineering (FoodUPV). Polytechnic University of València, 46022, València, Spain
- Joint Research Unit NutriCuraPDig, València, Spain
| | - Carmen Ribes-Koninckx
- Joint Research Unit NutriCuraPDig, València, Spain
- Health Research Institute La Fe, 46026, València, Spain
| | - Joaquim Calvo-Lerma
- Institute of Food Engineering (FoodUPV). Polytechnic University of València, 46022, València, Spain.
- Joint Research Unit NutriCuraPDig, València, Spain.
- Faculty of Pharmacy and Food Science. University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| |
Collapse
|
3
|
Wilms JN, van der Nat V, Ghaffari MH, Steele MA, Sauerwein H, Martín-Tereso J, Leal LN. Fat composition of milk replacer influences growth performance, feeding behavior, and plasma fatty acid profile in ad libitum-fed calves. J Dairy Sci 2024; 107:2797-2817. [PMID: 37944801 DOI: 10.3168/jds.2023-23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/24/2023] [Indexed: 11/12/2023]
Abstract
Fat composition in milk replacers (MR) for calves differs from bovine milk fat in multiple ways. The aim of the study was to investigate the impact of different approaches of formulating fat in MR on growth, ad libitum intakes of MR and solid feeds, as well as blood metabolites in dairy calves. Upon 24 to 96 h after birth, 63 calves were acquired from dairy farms and incorporated into the study. Calves were blocked based on arrival day and randomly assigned within each block to one of 3 treatments differing in MR fat composition (n = 21 per group): VG was based on vegetable fats including 80% rapeseed and 20% coconut fats; AN was formulated with animal fats including 65% lard and 35% dairy cream; and MX with a mixture of 80% lard and 20% coconut fats. All 3 MR contained 30% fat, 24% crude protein, and 36% lactose and were formulated to have a fatty acid profile resembling that of milk fat. From arrival onward (3.1 ± 0.84 d of age; means ± standard deviation), calves were group housed and were offered an ad libitum supply of MR at 135 g/L (13.5% solids). Weaning was gradual and induced between wk 7 and 10, after which calves were fed only solid feeds. Starter feed, chopped straw, and water were offered ad libitum throughout the study. Calves were weighed, and blood was collected weekly until d 84 after arrival. Preweaning average daily gain was greater in calves fed AN (915 g/d) than other treatments (783 g/d), whereas no differences were detected in the weaning and postweaning phases. Preweaning MR intake was greater in calves fed AN than MX from wk 2 to 6 and was also higher in calves fed AN than VG in wk 5 and 6. Consistently, the number of rewarded visits during the ad libitum phase was greater in calves fed AN than MX, whereas VG showed no differences. This led to a higher preweaning total metabolizable energy intake in calves fed AN than in calves fed VG and MX. Serum cholesterol was higher, and serum albumin was lower in calves fed VG than other treatments. The proportion of high-density lipoprotein cholesterol in total plasma cholesterol was lower and that of low-density lipoprotein (LDL) cholesterol was higher in calves fed VG compared with other treatments. Overall, the fatty acid profile of plasma largely mirrored the MR fat composition during the preweaning period. Feeding AN enhanced MR intake and improved preweaning growth compared with other treatments. Feeding VG resulted in a marked increase in plasma cholesterol, particularly in the form of LDL cholesterol, which could be linked to an excessive intake of polyunsaturated fatty acids. These findings underscore the importance of formulating the fat content of MR to be similar to bovine milk fat.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| | - V van der Nat
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Adaptation Physiology Group, Wageningen University, 6700 AH, Wageningen, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
4
|
Wilms JN, Kleinveld N, Ghaffari MH, Sauerwein H, Steele MA, Martín-Tereso J, Leal LN. Fat composition of milk replacer influences postprandial and oxidative metabolisms in dairy calves fed twice daily. J Dairy Sci 2024; 107:2818-2831. [PMID: 37923211 DOI: 10.3168/jds.2023-23972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Milk replacers (MR) for calves contain alternative fat sources as substitute for milk fat. This substitution leads to differences in fat properties, such as the fatty acid profile and the triglyceride structure. This study evaluated how fat composition in MR affects gastrointestinal health, blood redox parameters, and postprandial metabolism in calves fed twice daily. Forty-five individually housed male Holstein-Friesian calves (2.3 ± 0.85 d of age) were assigned to 1 of 15 blocks based on the age and the day of arrival. Within each block, calves were randomly assigned to 1 of 3 experimental diets and received their respective diet from arrival until 35 d after arrival. The 3 experimental diets (n = 15 per treatment group) consisted of an MR with a blend of vegetable fats containing rapeseed and coconut (VG), an MR with only animal fats from lard and dairy cream (AN), and an MR containing a mixture of animal and vegetable fats including lard and coconut (MX). The fatty acid profile of each MR was formulated to resemble that of bovine milk fat while using only 2 fat sources. All MR were isoenergetic, with 30% fat (% DM), 24% crude protein, and 36% lactose. Chopped straw and water were available ad libitum from arrival onward but no starter feed was provided. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 135 g/L (13.5% solids). Fecal appearance was scored daily; calves were weighed and blood was drawn on arrival and weekly thereafter. Urine and feces were collected over a 24-h period at wk 3 and 5 to determine apparent total-tract digestibility and assess gastrointestinal permeability using indigestible markers. Postprandial metabolism was evaluated at wk 4 by sequential blood sampling over 7.5 h, and the abomasal emptying rate was determined by acetaminophen appearance in blood. Fat composition in MR did not affect growth, MR intake, gastrointestinal permeability, nor nutrient digestibility. The percentage of calves with abnormal fecal scores was lower at wk 2 after arrival in calves fed VG than MX, whereas AN did not differ from the other treatments. Calves fed AN and MX had higher thiobarbituric acid reactive substances measured in serum than VG, whereas plasma ferric-reducing ability was greater in calves fed MX than VG. Postprandial acetaminophen concentrations did not differ across treatment groups, but the area under the curve was smaller in calves fed VG than in the other 2 treatments, which is indicative of a slower abomasal emptying. Postprandial serum triglyceride concentration was greater in calves fed AN than VG, whereas MX did not differ from the other treatments. Based on these outcomes, all 3 fat blends can be considered suitable for inclusion in MR for calves.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| | - N Kleinveld
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Animal Nutrition Group, Wageningen University, 6700 AH, Wageningen, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
5
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Kantureyeva A, Ustenova G, Zvonar Pobirk A, Mombekov S, Koilybayeva M, Amirkhanova A, Gemejiyeva N, Mamurova A, Kočevar Glavač N. Ceratocarpus arenarius: Botanical Characteristics, Proximate, Mineral Composition, and Cytotoxic Activity. Molecules 2024; 29:384. [PMID: 38257297 PMCID: PMC10819601 DOI: 10.3390/molecules29020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ceratocarpus arenarius (Chenopodiaceae) is an under-investigated annual plant that occurs in dry areas stretching from eastern and south-eastern Europe to East Asia. This article presents the botanical characterization and examination of proximate parameters, minerals and cytotoxic activity of C. arenarius that grows wild in Kazakhstan. The results of morphological analysis using a light microscope, based on cross-sections of stems, roots and leaves, provide the necessary data to develop a regulatory document for this herbal substance as a raw material for use in the pharmaceutical, cosmetic and food industries. The investigated proximate characteristics included moisture content (6.8 ± 0.28%), ash (5.9 ± 0.40%), fat (12.5 ± 21.28%) and protein (392.85 ± 25.50). The plant is also rich in minerals (mg/100 g dry weight); Na (20.48 ± 0.29), K (302.73 ± 1.15), Zn (4.45 ± 0.35), Fe (1.18 ± 0.03), Cu (0.11 ± 0.02), Mn (0.76 ± 0.01), Ca (131.23 ± 0.09) and Mg (60.69 ± 0.72). The ethanolic extract of C. arenarius showed no acute toxicity against the brine shrimp nauplii.
Collapse
Affiliation(s)
- Aigerim Kantureyeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (S.M.); (M.K.); (A.A.)
| | - Gulbaram Ustenova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (S.M.); (M.K.); (A.A.)
| | - Alenka Zvonar Pobirk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljuljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| | - Serzhan Mombekov
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (S.M.); (M.K.); (A.A.)
| | - Moldir Koilybayeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (S.M.); (M.K.); (A.A.)
| | - Akerke Amirkhanova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (S.M.); (M.K.); (A.A.)
| | - Nadezhda Gemejiyeva
- Laboratory of Plant Resources, Institute of Botany and Phyto-Introductions, Almaty 050000, Kazakhstan;
| | - Assem Mamurova
- Department of Biodiversity of Bioresources, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Zhang Y, Kalpio M, Tao L, Haraldsson GG, Guðmundsson HG, Fang X, Linderborg KM, Zhang Y, Yang B. Metabolic fate of DHA from regio- and stereospecific positions of triacylglycerols in a long-term feeding trial in rats. Food Res Int 2023; 174:113626. [PMID: 37986478 DOI: 10.1016/j.foodres.2023.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the impact of regio- and stereospecific position of docosahexaenoic acid (DHA) in dietary triacylglycerols (TAGs) on the fatty acid composition of tissues and organs in rats. Four-week feeding with TAGs containing DHA in sn-1, 2, or 3 position and palmitic acid in the remaining positions at a daily dosage of 500 mg TAG/kg body weight significantly increased the DHA content in all organs and tissues in rats, except in the brain, where the change in DHA level was not statistically significant. The group fed sn-1 DHA showed a significantly higher content of DHA in the plasma TAG than the group fed sn-3 DHA. The sn-3 DHA group had higher levels of DHA in the visceral fat compared to the sn-1, sn-2, as well as all other groups. This is the first study showing that DHA from sn-1 and sn-3 positions of dietary TAGs have differential accumulation in tissues. The new findings improved the current knowledge on the significance of TAG isomeric structure for the bioavailability and metabolic fate of DHA.
Collapse
Affiliation(s)
- Yuqing Zhang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marika Kalpio
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Lingwei Tao
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | | | | | - Xiangrong Fang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
8
|
Salt LJ, Mandalari G, Parker ML, Hussein M, Mills CE, Gray R, Berry SE, Hall W, Wilde PJ. Mechanisms of interesterified fat digestibility in a muffin matrix using a dynamic gastric model. Food Funct 2023; 14:10232-10239. [PMID: 37916919 DOI: 10.1039/d3fo02963h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Industrially generated trans-fats have been linked with cardiovascular disease (CVD) and have thus been replaced by interesterified (IE) fats, in foods. Interesterification rearranges fatty acids on the glycerol backbone of a triacylglycerol molecule. However, the impact of IE fat on health is unknown. We recently reported differences in lipid absorption kinetics between IE and rapeseed oil (RO). Here, we investigated the mechanisms underpinning IE fat digestion kinetics in the same muffins baked using an IE fat, non-IE fat [with the same fatty acid composition] and rapeseed oil (RO) under simulated conditions. IE and non-IE fats were largely solid in the gastric phase and strongly associated within the muffin matrix, whereas RO formed liquid droplets which separated from the matrix. No significant difference in lipolysis rates was detected between IE and non-IE fats. The lipolysis of the RO fat was slower, due to long-chain PUFAs. Interesterification itself did not affect digestibility, but the strong interaction between the hard fats and the muffin matrix resulted in extensive creaming of the matrix in the stomach, leading to delayed gastric emptying compared to the RO sample. The rate and extent of lipolysis were determined by the amount of fat available and the structure of the fat. This demonstrates the importance of the physical behaviour of the fats during digestion and provides a mechanistic understanding of the overall lipid digestion of IE fats, which relates to their physiological response.
Collapse
Affiliation(s)
- Louise J Salt
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UA, UK.
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Mary L Parker
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UA, UK.
| | - Mahamoud Hussein
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UA, UK.
| | - Charlotte E Mills
- Department of Nutritional Sciences, King's College London, UK
- Department of Food and Nutritional Sciences, University of Reading, UK
| | - Robert Gray
- Department of Nutritional Sciences, King's College London, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, UK
| | - Wendy Hall
- Department of Nutritional Sciences, King's College London, UK
| | - Peter J Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UA, UK.
| |
Collapse
|
9
|
Lopez C, Rabesona H, Novales B, Weber M, Anton M. Walnut (Juglans regia L.) kernel oil bodies recovered by aqueous extraction for utilization as ingredient in food emulsions: Exploration of their microstructure, composition and the effects of homogenization, pH, and salt ions on their physical stability. Food Res Int 2023; 173:113197. [PMID: 37803532 DOI: 10.1016/j.foodres.2023.113197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
Natural oil-in-water emulsions containing plant oil bodies (OBs), also called oleosomes, rich in health-promoting omega-3 polyunsaturated fatty acids (ω3 PUFA) are of increasing interest for food applications. In this study, we focused on walnut kernel OBs (WK-OBs) and explored their microstructure, composition and physical stability in ionic environments as well as the impact of homogenization. A green process involving aqueous extraction by grinding of WK allowed the co-extraction of OBs and proteins, and centrifugation was used to recover the WK-OBs. Confocal laser scanning microscopy images showed the spherical shape of WK-OBs with an oil core envelopped by a layer of phospholipids (0.16 % of lipids) and embedded proteins. Their mean diameter was 5.1 ± 0.3 µm. The WK-OBs contained 70.1 % PUFA with 57.8 % ω6 linoleic acid and 12.3 % ω3 α-linolenic acid representing 68 % and 11.6 % of the total fatty acids in the sn-2 position of the triacylglycerols (TAG), respectively. Trilinolein was the main TAG (23.1 %). The WK-OBs also contained sterols (1223 ± 33 mg/kg lipids; 86 % β-sitosterol), carotenoids (0.62 ± 0.01 mg/kg lipids; 49.2 % β-carotene), and tocopherols (322.7 ± 7.7 mg/kg lipids; 89 % γ-tocopherol), confirming their interest as health-promoting ingredients. The decrease in the size of WK-OBs under high-pressure homogenization avoided phase separation upon storage. The anionic WK-OB surface at neutral pH was affected by stressful ionic environments (pH, NaCl, CaCl2), that induced aggregation of WK-OBs and decreased the physical stability of the emulsions. Emulsions containing WK-OBs are promising to diversify the market of the ω3-rich plant-based food products and beverages.
Collapse
Affiliation(s)
| | | | - Bruno Novales
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316, Nantes, France
| | | | | |
Collapse
|
10
|
Martínez-Sánchez V, Visitación Calvo M, Viera I, Girón-Calle J, Fontecha J, Pérez-Gálvez A. Mechanisms for the interaction of the milk fat globule membrane with the plasma membrane of gut epithelial cells. Food Res Int 2023; 173:113330. [PMID: 37803640 DOI: 10.1016/j.foodres.2023.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
The milk fat globule membrane (MFGM) provides infants and adults with several health benefits. These are not derived solely from its unique composition, but also from arrangement of lipids in the MFGM that, in the case of newborns, could reach the intestine partially intact. Fluorochromes associated with lipid derivatives were used to prove a fusion process between the MFGM and the cellular membrane of differentiated Caco-2 cells. To explore the mechanism of this interaction, incubations of MFGM with Caco-2 cells were carried out in the presence of fusogenic agents or compounds that block other MFGM interaction pathways with cells. Confocal fluorescence microscopy provided visual evidence of the fusion process. Lastly, determination on the lipid profile of cells after their interaction with MFGM indicated a metabolic rearrangement of lipids leading to accumulation of triacylglycerols.
Collapse
Affiliation(s)
- Victoria Martínez-Sánchez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - M Visitación Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - I Viera
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - J Girón-Calle
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - J Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
11
|
Lopes PA, Alfaia CM, Pestana JM, Prates JAM. Structured Lipids Engineering for Health: Novel Formulations Enriched in n-3 Long-Chain Polyunsaturated Fatty Acids with Potential Nutritional Benefits. Metabolites 2023; 13:1060. [PMID: 37887385 PMCID: PMC10608893 DOI: 10.3390/metabo13101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Structured lipids (SLs) offer a promising avenue for designing novel formulations enriched in n-3 long-chain polyunsaturated fatty acids (LCPUFAs) with potential health benefits. Triacylglycerols (TAGs), the most common fats in the human diet, are both non-toxic and chemically stable. The metabolic efficiency and digestibility of TAGs are significantly influenced by the position of fatty acids (FAs) within the glycerol backbone, with FAs at the sn-2 position being readily absorbed. Over the past two decades, advancements in SL research have led to the development of modified TAGs, achieved either through chemical or enzymatic processes, resulting in SLs. The ideal structure of SLs involves medium-chain FAs at the sn-1,3 positions and long-chain n-3 LCPUFAs at the sn-2 position of the glycerol backbone, conferring specific physicochemical and nutritional attributes. These tailored SL formulations find wide-ranging applications in the food and nutraceutical industries, showing promise for dietary support in promoting health and mitigating various diseases. In particular, SLs can be harnessed as functional oils to augment TAG metabolism, thereby impeding the development of fatty liver, countering the onset of obesity, and preventing atherosclerosis and age-related chronic diseases. In scrutinising prevailing research trajectories, this review endeavours to provide an in-depth analysis of the multifaceted advantages and repercussions associated with the synthesis of SLs. It elucidates their burgeoning potential in enhancing health and well-being across a range of demographic cohorts. Specifically, the implications of SL utilisation are discussed in the context of healthcare environments and early childhood developmental support.
Collapse
Affiliation(s)
- Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
12
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023:1-32. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
13
|
Ziarno M, Bryś J, Kowalska E, Cichońska P. Effect of metabolic activity of lactic acid bacteria and propionibacteria on cheese protein digestibility and fatty acid profile. Sci Rep 2023; 13:15363. [PMID: 37717086 PMCID: PMC10505164 DOI: 10.1038/s41598-023-42633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
This study aimed at investigating the influence of different variants of bacterial starter cultures on the metabolism of the bacteria used, cheese protein digestibility, and fatty acid profile. The results revealed that lactic acid bacteria had a significant effect on the proportions of fatty acids in cheeses, with saturated fatty acids being predominant in in all cheese variants. Fatty acid proportions are complex and depend on the type of cheese culture and monoculture used. Additionally, the analysis of fatty acid composition showed variations in the proportion of saturated and unsaturated fatty acids, impacting the values of atherogenic and thrombogenic indices. Notably, the atherogenic index was highest in samples of mature cheeses obtained from a typical mesophilic cheese culture, whereas it was lowest in samples of fresh milk and mature cheeses obtained from a mesophilic cheese culture and monocultures of Lacticaseibacillus casei and Propionibacterium. The study also highlighted the influence of lactobacilli on the content of available free lysine, glycine, and methionine in cheese proteins. Mature cheeses obtained with Propionibacterium and L. casei starter cultures exhibited higher free lysine and glycine content compared with fresh cheeses and those obtained solely with the cheese culture. Additionally, mature cheeses obtained with starter cultures of mesophilic cheese culture, Propionibacterium, and L. casei had the highest free methionine content. Based on these findings, it is evident that the choice of cheese making cultures and monocultures can significantly affect the fatty acid composition and amino acid content of cheese and fresh milk, potentially bearing important health implications.
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Institute of Food Sciences, Department of Food Technology and Assessment, Division of Milk Technology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Joanna Bryś
- Institute of Food Sciences, Department of Chemistry, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Kowalska
- Institute of Food Sciences, Department of Food Technology and Assessment, Division of Milk Technology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Patrycja Cichońska
- Institute of Food Sciences, Department of Food Technology and Assessment, Division of Milk Technology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Li J, Zhou Y, Zhang J, Cui L, Lu H, Zhu Y, Zhao Y, Fan S, Xiao X. Barley β-glucan inhibits digestion of soybean oil in vitro and lipid-lowering effects of digested products in cell co-culture model. Food Res Int 2023; 164:112378. [PMID: 36737963 DOI: 10.1016/j.foodres.2022.112378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The effect of barley β-glucan on soybean oil digestion characteristics before and after fermentation was studied in an in vitro-simulated gastrointestinal digestion model. The addition of barley β-glucan made the system more unstable, the particle size increased significantly, and confocal laser imaging showed that it was easier to form agglomerates. The addition of barley β-glucan increased the proportion of unsaturated fatty acids in digestion products, and reduced digestibility of soybean oil. In a co-culture model of Caco-2/HT29 and HepG2 cells, the effects of digestive products of soybean oil and barley β-glucan before and after fermentation on lipid metabolism in HepG2 cells were investigated. The results showed that adding only soybean oil digestion products significantly increased triglycerides (TG) content and lipid accumulation in basolateral HepG2 cells. When fermented barley β-glucan was added, lipid deposition was significantly decreased, and the lipid-lowering activity was better than that of unfermented barley β-glucan.
Collapse
Affiliation(s)
- Jiaying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haina Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Lopez C, Sotin H, Rabesona H, Novales B, Le Quéré JM, Froissard M, Faure JD, Guyot S, Anton M. Oil Bodies from Chia ( Salvia hispanica L.) and Camelina ( Camelina sativa L.) Seeds for Innovative Food Applications: Microstructure, Composition and Physical Stability. Foods 2023; 12:foods12010211. [PMID: 36613428 PMCID: PMC9818916 DOI: 10.3390/foods12010211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Exploring and deciphering the biodiversity of oil bodies (OBs) recovered from oilseeds are of growing interest in the preparation of sustainable, natural and healthy plant-based food products. This study focused on chia (Salvia hispanica L.) and camelina (Camelina sativa L.) seed OBs. A green refinery process including ultrasound to remove mucilage, aqueous extraction by grinding and centrifugation to recover OBs from the seeds was used. The microstructure, composition and physical stability of the OBs were examined. Confocal laser scanning microscopy images showed that chia and camelina seed OBs are spherical assemblies coated by a layer of phospholipids and proteins, which have been identified by gel electrophoresis. The mean diameters determined by laser light scattering measurements were 2.3 and 1.6 µm for chia and camelina seed OBs, respectively. The chia and camelina seed OBs were rich in lipids and other bioactive components with, respectively, 64% and 30% α-linolenic acid representing 70% and 53% of the total fatty acids in the sn-2 position of the triacylglycerols, 0.23% and 0.26% phospholipids, 3069 and 2674 mg/kg oil of β-sitosterol, and lipophilic antioxidants: 400 and 670 mg/kg oil of γ-tocopherol. Phenolic compounds were recovered from the aqueous extracts, such as rutin from camelina and caffeic acid from chia. Zeta-potential measurements showed changes from about -40 mV (pH 9) to values that were positive below the isoelectric points of pH 5.1 and 3.6 for chia and camelina seed OBs, respectively. Below pH 6.5, physical instability of the natural oil-in-water emulsions with aggregation and phase separation was found. This study will contribute to the development of innovative and sustainable food products based on natural oil-in-water emulsions containing chia and camelina seed OBs for their nutritional and health benefits.
Collapse
Affiliation(s)
| | | | | | - Bruno Novales
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | | | - Marine Froissard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | | | | |
Collapse
|
16
|
Li Y, Zhang Y, Zhou Y, Zhang Y, Zheng M. A novel and controllable method for simultaneous preparation of human milk fat substitutes (OPL, OPO and LPL): two-step enzymatic ethanolysis-esterification strategy. Food Res Int 2023; 163:112168. [PMID: 36596114 DOI: 10.1016/j.foodres.2022.112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
A novel and effective approach based on the two-step ethanolysis-esterification strategy was proposed for the controllable and simultaneous preparation of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL), 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,3-dilinoleoyl-2-palmitoyl-glycerol (LPL) with adjustable proportions. Enzymatic ethanolysis of fractionated palm stearin was carried out to yield 2-monopalmitoylglycerol (79.4 ± 0.6 %) with over 91.0 % purity at the optimal conditions. The immobilized Candida sp. lipase (CSL) on octyl-functionalized ordered mesoporous silica (OMS-C8) was applied to re-esterify 2-monopalmitoylglycerol with oleic acid and linoleic acid for the simultaneous production of OPL, OPO, and LPL. The total content in the final products was 81.5 %, with 91.3 % of palmitic acid (PA) content at the sn-2 position. Besides, OPL/OPO/LPL was conveniently prepared with suitable proportions for worldwide infants by adjusting the ratio of acyl donors. This paper provides a novel and effective two-step ethanolysis-esterification strategy for the development of human milk fat substitutes (HMFS).
Collapse
Affiliation(s)
- Yali Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yibin Zhou
- Food Processing Research Institute, Anhui Engineering Laboratory of Agro-products Processing, School of Tea and Food Science, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
17
|
Cui J, Cao J, Ge J, Qu X, Li P, Li C. Comprehensive lipid profiles of sea cage aquaculture cobia (Rachycentron canadum) based on lipidomics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Haddad L, Francis J, Rizk T, Akoka S, Remaud GS, Bejjani J. Cheese characterization and authentication through lipid biomarkers obtained by high-resolution 1H NMR profiling. Food Chem 2022; 383:132434. [PMID: 35183958 DOI: 10.1016/j.foodchem.2022.132434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Food quality and safety are at the heart of consumers' concerns across the world. Dairy products, because of their large consumption, are fertile ground for fraudulent acts. This fact justifies the development of effective, accessible, and rapid analytical methods for their authentication. A high-resolution spectral treatment method previously developed by our team was applied to 1H NMR spectra of cheese triacylglycerols. 178 Peaks were thus quantitated and successfully used in the construction of multivariate models for the quantitation of individual fatty acids and for the classification of cheese samples according to the producing species, to their origin and variety. Besides, several peaks related to the amount and position of anteisopentadecanoic, butyric, α-linolenic, myristoleic, rumenic, and vaccenic acids were, among others, specific biomarkers of cheese groups. For the first time in 1H NMR, we were able to identify and to quantitate signals related to minor fatty acids within cheese triacylglycerols.
Collapse
Affiliation(s)
- Lenny Haddad
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon; Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Joseph Francis
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon
| | - Toufic Rizk
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon
| | - Serge Akoka
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Gérald S Remaud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Joseph Bejjani
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon.
| |
Collapse
|
19
|
Silva TJ, Barrera‐Arellano D, Badan Ribeiro AP. The impact of fatty acid profile on the physicochemical properties of commercial margarines in Brazil. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thaís Jordânia Silva
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) Cidade Universitária Zeferino Vaz Campinas Brazil
| | - Daniel Barrera‐Arellano
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) Cidade Universitária Zeferino Vaz Campinas Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) Cidade Universitária Zeferino Vaz Campinas Brazil
| |
Collapse
|
20
|
Murru E, Manca C, Carta G, Banni S. Impact of Dietary Palmitic Acid on Lipid Metabolism. Front Nutr 2022; 9:861664. [PMID: 35399673 PMCID: PMC8983927 DOI: 10.3389/fnut.2022.861664] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Palmitic acid (PA) is ubiquitously present in dietary fat guaranteeing an average intake of about 20 g/d. The relative high requirement and relative content in the human body, which accounts for 20–30% of total fatty acids (FAs), is justified by its relevant nutritional role. In particular physiological conditions, such as in the fetal stage or in the developing brain, the respectively inefficient placental and brain blood–barrier transfer of PA strongly induces its endogenous biosynthesis from glucose via de novo lipogenesis (DNL) to secure a tight homeostatic control of PA tissue concentration required to exert its multiple physiological activities. However, pathophysiological conditions (insulin resistance) are characterized by a sustained DNL in the liver and aimed at preventing the excess accumulation of glucose, which result in increased tissue content of PA and disrupted homeostatic control of its tissue concentration. This leads to an overaccumulation of tissue PA, which results in dyslipidemia, increased ectopic fat accumulation, and inflammatory tone via toll-like receptor 4. Any change in dietary saturated FAs (SFAs) usually reflects a complementary change in polyunsaturated FA (PUFA) intake. Since PUFA particularly n-3 highly PUFA, suppress lipogenic gene expression, their reduction in intake rather than excess of dietary SFA may promote endogenous PA production via DNL. Thereby, the increase in tissue PA and its deleterious consequences from dysregulated DNL can be mistakenly attributed to dietary intake of PA.
Collapse
|
21
|
Gazlay W, Evans JJ. The impact of the complexing agent on the sensitivity of collision-induced dissociation spectra to fatty acid position for a set of XYZ-type triglycerides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9226. [PMID: 34820920 DOI: 10.1002/rcm.9226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE The development of an automated platform for the positional analysis of triglycerides (TAGs) based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) continues to be pursued. This work evaluates the positional sensitivities of the collision-induced dissociation (CID) spectra of a representative set of XYZ triglycerides using sodium, lithium, and ammonium salts as complexing agents. METHODS A set of triglycerides were synthesized and analyzed via ESI-MS/MS using an ion trap mass spectrometer. Using three different complexing agents, the product ion spectra of the corresponding precursor ions for twelve XYZ TAGs were collected, where X, Y, and Z represent C16:0 , C18:1(c-9) , C18:2(cc-9,12) , and C20:4(cccc-5,8,11,14) fatty acid chains. These data were then used to prepare ternary plots for four positional isomer systems to evaluate the positional sensitivity differences among the three different complexing agents. RESULTS The positional sensitivities for each of the four positional isomer systems were robust for the sodium and lithium adducts. The CID data for the sodium and lithium TAGs demonstrated an unfavorable loss of the fatty acid in the center position and showed a higher sensitivity to fatty acid position, when compared with the CID data for ammonium adducts, especially for the arachidonic acid containing triglycerides. CONCLUSIONS The data shows that that the relative abundances of the DAG product ions for the XYZ-type TAGs when using sodium and lithium complexing agent adducts are sensitive to fatty acid position and are consistent for the diverse array of TAGs studied in this work. This suggests that using sodium or lithium as the complexing agent may be advantageous for the development of an automated platform for the positional analysis of complex TAG mixtures based on ESI-MS/MS.
Collapse
Affiliation(s)
- William Gazlay
- Chemistry Department, University of Massachusetts Boston, Boston, MA, USA
| | - Jason J Evans
- Chemistry Department, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
22
|
Calvo-Lerma J, Asensio-Grau A, García-Hernández J, Heredia A, Andrés A. Exploring the Impact of Solid-State Fermentation on Macronutrient Profile and Digestibility in Chia ( Salvia hispanica) and Sesame ( Sesamum Indicum) Seeds. Foods 2022; 11:410. [PMID: 35159560 PMCID: PMC8834584 DOI: 10.3390/foods11030410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Fermentation of plant-based substrates with edible fungi enhances the nutrient profile and digestibility, but it has been scarcely applied to edible seeds, which are rich in healthy lipids. In this study, chia and sesame seeds were solid-state fermented with Pleurotus ostreatus, followed by drying and milling. Fermentation led to increased content of lipid and protein in both seeds' products, and a change in fatty acid profile in favor of increased polyunsaturated fatty acids. Then, the samples were subjected to in vitro digestion. Lipolysis, determined by nuclear magnetic resonance, was higher in sesame than in chia products, and the fermented counterparts had increased values compared to the controls. In terms of physical properties, fermentation showed reduced particle size and increased matrix degradation and decreased viscosity of the digestion medium, which were related to increased lipolysis. In conclusion, applying solid-state fermentation on chia and sesame seeds could be a recommendable approach.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish Scientific Research Council, 28006 Madrid, Spain
| | - Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 València, Spain;
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| |
Collapse
|
23
|
|
24
|
Segura J, Rey AI, Olivares Á, Cambero MI, Escudero R, de Ávila MDR, Palomo A, López-Bote C. Free-Range Feeding Alters Fatty Acid Composition at the sn-2 Position of Triglycerides and Subcutaneous Fat Physicochemical Properties in Heavy Pigs. Animals (Basel) 2021; 11:ani11102802. [PMID: 34679824 PMCID: PMC8532750 DOI: 10.3390/ani11102802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Fat content and the degree of fatty acid unsaturation in meat are two major concerns for consumers. Fat concentration and its molecular structure (fatty acid positional distribution) are related to the nutritional fat value and tissue rheological properties. Changes in fat concentration and/or fatty acid profile related to modifications of dietary treatments are well described in the literature. Nevertheless, studies aimed to control fatty acid positional distribution by dietary intervention in pigs are scarce, and studies have shown that the internal sn-2 position is highly regulated and resistant to dietary manipulation. However, this study demonstrated that heavy pigs fed on free-range with high levels of oleic acid can alter the fatty acid composition of the internal position of the triglyceride, thus affecting the nutritional value of their fat as well as their physicochemical properties. Abstract The nutritional value of fat consumption depends on both the fatty acid composition and the positional distribution of fatty acids within the triglyceride molecule. This research studies the effect of feeding with three different diets (4% lard-enriched; 11.5% high-oleic sunflower-enriched; and extensive feeding mainly with acorns) on the composition of fatty acids in the sn-2 position (and sn-1,3) of triglycerides and the textural properties of subcutaneous fat in heavy Iberian pigs (n = 210 castrated males). A moderate dietary enrichment with oleic acid in mixed diets did not alter the regulation of the sn-2 position of triglyceride (69.9% and 13.9% of palmitic and oleic acids, respectively), but the extremely high intake of oleic acid in pigs fed mainly on acorns changed the proportions of palmitic and oleic acids at the sn-2 position in the subcutaneous fat of pigs (55.0% and 27.2%, respectively). Hardness, adhesiveness, cohesiveness, gumminess, and chewiness showed the least values in EXT pigs, and the greatest values in LARD-fed barrows. SUN cohesiveness and gumminess did not differ from those fed LARD. In addition, Iberian pigs raised in free-range conditions had a more favorable nutritional lipid profile for human health compared to pigs fed conventional diets.
Collapse
Affiliation(s)
- José Segura
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (J.S.); (A.I.R.); (C.L.-B.)
| | - Ana Isabel Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (J.S.); (A.I.R.); (C.L.-B.)
| | - Álvaro Olivares
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (J.S.); (A.I.R.); (C.L.-B.)
- Correspondence:
| | - María Isabel Cambero
- Sección Departamental de Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.I.C.); (R.E.); (M.D.R.d.Á.)
| | - Rosa Escudero
- Sección Departamental de Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.I.C.); (R.E.); (M.D.R.d.Á.)
| | - María Dolores Romero de Ávila
- Sección Departamental de Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.I.C.); (R.E.); (M.D.R.d.Á.)
| | - Antonio Palomo
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain;
| | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (J.S.); (A.I.R.); (C.L.-B.)
| |
Collapse
|
25
|
Elkin RG, El-Zenary ASA, Bomberger R, Harvatine KJ. Supplemental dietary oils rich in oleic acid or linoleic acid attenuate egg yolk and tissue n-3 polyunsaturated fatty acid contents in laying hens co-fed oils enriched in either stearidonic acid or α-linolenic acid. Prostaglandins Leukot Essent Fatty Acids 2021; 172:102322. [PMID: 34399187 DOI: 10.1016/j.plefa.2021.102322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
We previously reported that when laying hens were fed diets supplemented with oils enriched in α-linolenic acid (ALA) and oleic acid (OA), the deposition of n-3 PUFA in egg yolk was attenuated as compared to feeding hens a diet supplemented with the ALA-rich oil alone. The present work extends those findings to another n-3 PUFA-rich oil (stearidonic acid [SDA]-enriched soybean oil) and two other high-OA oils, suggesting that the effect is not plant oil-specific. Feeding hens a supplemental linoleic acid (LA)-rich oil plus an oil rich in either SDA or ALA also attenuated egg yolk ALA and SDA contents (Experiment 1), or egg yolk and liver ALA contents (Experiment 2), respectively, as compared to feeding the SDA- or ALA-rich oils alone. Future work should focus on the lack of neutrality of OA and LA in relation to n-3 PUFA nutrition.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Ahmed S A El-Zenary
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA; Permanent address: Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Rebecca Bomberger
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
26
|
Wu Y, Zhang N, Deng ZY, Zhang H, Li J. Effects of the Major Structured Triacylglycerols in Human Milk on Lipid Metabolism of Hepatocyte Cells in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9147-9156. [PMID: 33369388 DOI: 10.1021/acs.jafc.0c06976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of structured triacylglycerols [1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL), 3-dilinoleoyl-2-palmitoylglycerol (LPL), and 1,3-dioleoyl-2-palmitoylglycerol (OPO)] in human milk on the lipid metabolism was unclear. Hence, this study investigated the effects of different structured triacylglycerols and their mixtures (M) (OPL/LPL/OPO in M1, M2, and M3 were 1.5:0.5:1, 1.2:1.2:1, and 0.5:0.2:1, respectively) on lipid and expression levels of some critical proteins involved in lipid metabolism in LO2 cells. Results showed that there was more lipid accumulation in the LO2 cells exposed to 2,3-dioleoyl-1-palmitoylglycerol (POO) than OPL, LPL, and OPO (p < 0.05), and more lipid accumulation was observed in the OPL group compared to LPL and OPO groups (p < 0.05). Moreover, there was more lipid accumulation in the M3 group compared to M1 and M2 groups. The expression level of diacylglycerol acyltransferase was highest in the POO group compared to LPL, OPO, and OPL groups and was higher in the M3 group than M1 and M2 groups. The expression levels of acetyl-CoA carboxylase 1 and long-chain acyl-CoA synthetase 1 were highest in the OPL group compared to OPO and LPL groups. In comparison to OPO and LPL, OPL seemed to be more likely to increase the content of triacylglycerols and cholesterol in LO2 cells; therefore, whether this was beneficial to the growth and development of infants needs further verification.
Collapse
Affiliation(s)
- Yanping Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Niu Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Company, Limited, Shanghai 200137, People's Republic of China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
27
|
Song L, Wen S, Ye Q, Lou H, Gao Y, Bajpai VK, Carpena M, Prieto MA, Simal-Gandara J, Xiao J, Meng X, Wu J. Advances on delta 5-unsaturated-polymethylene-interrupted fatty acids: Resources, biosynthesis, and benefits. Crit Rev Food Sci Nutr 2021; 63:767-789. [PMID: 34397288 DOI: 10.1080/10408398.2021.1953960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Though the knowledge on delta 5-unsaturated-polymethylene-interrupted fatty acids (Δ5-UPIFAs) is being updated, the issue of their integration still exists within the field. Thus, this review systematically summarizes the sources, biosynthesis and metabolism, analytical methods, preparation, and health-promoting roles of Δ5-UPIFAs. In plants, the content of Δ5-UPIFAs is higher, which is an ideal source. In animals, although the content of Δ5-UPIFAs is not high, there are many species, which is the possible source of some special Δ5-UPIFAs. At present, although the extraction of Δ5-UPIFAs is mainly from plants, the fermentation by organisms, especially for genetically modified microorganisms engineering maybe be a substitue of pepration of Δ5-UPIFAs. Δ5-UPIFAs have been proved to possess multi-beneficial effects, such as lipid lowering, anti-inflammation and so on, so it has a certain potential application value. However, related knowledge of the underlying molecular mechanisms regarding Δ5-UPIFAs limited, and how Δ5-UPIFAs work is not clear. Further clinical and human studies about Δ5-UPIFAs are also needed. Studies on tapping new resources, developing structured lipide rich in Δ5-UPIFA and enhancing delivery were quite deficient. This review emphasizes the further directions on Δ5-UPIFAs with scientific suggestions to pay more attention to the applications of Δ5-UPIFAs in food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Lili Song
- State key laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Sisi Wen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qin Ye
- Institute of Food, Zhejiang Agricultural Academy, Hangzhou, Zhejiang, China
| | - Heqiang Lou
- State key laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yadi Gao
- State key laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| | - María Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Miguel-Angel Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiasheng Wu
- State key laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Fatty acid composition, antibacterial and antioxidant potential of Atropa belladonna and Thymus linearis seeds grown in Kashmir. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn this study fatty acid composition of petroleum ether (AP and TP) and biological potential (Antioxidant and antibacterial) of chloroform (AC and TC), methanol (AM and TM) extracts of Atropa belladonna L. and Thymus linearis Benth. respectively was obtained by Soxhlet extraction technique from seeds were investigated. Fatty acid profile was obtained by gas chromatography mass spectrometry, antioxidant potential (DPPH-2,2-di-phenyl-1-picrylhydrazyl; ABTS-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and antibacterial activity against (Pseudomonas aeruginosa, Serratia marcescens, Escherichia coli and Klebesiella pneumonia) was also performed. Linoleic acid was dominantly found with 74.42% in AP and 84.39% in TP. In antioxidant assays, the dominant inhibition was shown by AM (84.98% and 83.90%) and TM (85.27% and 83.29%) as compared to BHT (93.72% and 90.87%) for DPPH and ABTS radical scavenging respectively at 200 µg/mL. Moreover, AM and TM extracts showed good antibacterial activity. In conclusion, these plants could be selected as an adequate species in agricultural system, in food and pharmaceutical industries.
Graphic abstract
Collapse
|
29
|
Tomé-Carneiro J, Crespo MC, López de Las Hazas MC, Visioli F, Dávalos A. Olive oil consumption and its repercussions on lipid metabolism. Nutr Rev 2021; 78:952-968. [PMID: 32299100 DOI: 10.1093/nutrit/nuaa014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Consumption of highly processed foods, such as those high in trans fats and free sugars, coupled with sedentarism and chronic stress increases the risk of obesity and cardiometabolic disorders, while adherence to a Mediterranean diet is inversely associated with the prevalence of such diseases. Olive oil is the main source of fat in the Mediterranean diet. Data accumulated thus far show consumption of extra virgin, (poly)phenol-rich olive oil to be associated with specific health benefits. Of note, recommendations for consumption based on health claims refer to the phenolic content of extra virgin olive oil as beneficial. However, even though foods rich in monounsaturated fatty acids, such as olive oil, are healthier than foods rich in saturated and trans fats, their inordinate use can lead to adverse effects on health. The aim of this review was to summarize the data on olive oil consumption worldwide and to critically examine the literature on the potential adverse effects of olive oil and its main components, particularly any effects on lipid metabolism. As demonstrated by substantial evidence, extra virgin olive oil is healthful and should be preferentially used within the context of a balanced diet, but excessive consumption may lead to adverse consequences.
Collapse
Affiliation(s)
- João Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| | - María Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain.,Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| |
Collapse
|
30
|
Stonehouse W, Sergi D, Benassi-Evans B, James-Martin G, Johnson N, Thompson CH, Abeywardena M. Eucaloric diets enriched in palm olein, cocoa butter, and soybean oil did not differentially affect liver fat concentration in healthy participants: a 16-week randomized controlled trial. Am J Clin Nutr 2021; 113:324-337. [PMID: 33381795 DOI: 10.1093/ajcn/nqaa347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Effects of dietary fat quality on liver fat remain to be elucidated. Inconsistent evidence may be influenced by fatty acid saturation, chain-length, and regio-specificity within triacylglycerol (TAG) molecules. OBJECTIVES We aimed to compare eucaloric diets enriched in palm olein (POo), cocoa butter (COB), and soybean oil (SBO) on liver fat concentration in healthy participants. Secondary outcomes included visceral (VAT) and abdominal subcutaneous (aSCAT) adipose tissue, plus other obesity and cardiometabolic health outcomes. METHODS Eighty-three healthy participants (20-45 y, BMI 18.5-27.5 kg/m2) commenced and 64 completed a 16-wk randomized parallel intervention, preceded by a 2-wk run-in. Participants consumed identical eucaloric background diets differing in test fats [contributing 20% total energy intake (%E)], providing 33%E total fat with the following ratios for PUFAs/SFAs/MUFAs: POo, 4.2/13.5/15%E; SBO, 14.4/8.8/9.4%E; COB, 2.3/19.5/11%E. Liver fat and abdominal adiposity were measured at weeks 0 and 16 using 1H-magnetic resonance spectroscopy/imaging; all other outcomes were measured at 0, 4, 8, 12, and 16 wk. RESULTS Fat quality did not affect liver fat concentration, VAT, aSCAT, obesity indexes, blood pressure, liver enzymes, leptin, or fasting glucose. Body fat mass decreased with SBO and COB compared with POo. SBO decreased serum total cholesterol (TC), LDL cholesterol, and TC:HDL cholesterol relative to POo [estimated marginal mean (95% CI) differences: -0.57 (-0.94, -0.20) mmol/L; -0.37 (-0.68, -0.07) mmol/L; and -0.42 (-0.73, -0.11) mmol/L, respectively]. No diet differences were observed on HDL cholesterol, TAG, apoA1, apoB, apoB:apoA1, or fecal free fatty acids (FFAs), except for lower FFA pentadecanoic acid (15:0) with COB than with SBO and POo. CONCLUSIONS In healthy adults, when consumed as part of eucaloric typical Australian diets, 3 different dietary fat sources did not differentially affect liver fat concentration and amounts of adipose tissue. Effects on serum lipids were inconsistent across lipid profiles. The findings must be confirmed in metabolically impaired individuals before recommendations can be made.
Collapse
Affiliation(s)
- Welma Stonehouse
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Domenico Sergi
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Bianca Benassi-Evans
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Genevieve James-Martin
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Nathan Johnson
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.,Boden Collaboration of Obesity, Nutrition, Exercise, and Eating Disorders, University of Sydney, Camperdown, New South Wales, Australia
| | - Campbell H Thompson
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Mahinda Abeywardena
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Calvo-Lerma J, Roca M, Boon M, Colombo C, de Koning B, Fornés-Ferrer V, Masip E, Garriga M, Bulfamante A, Asensio-Grau A, Andrés A, de Boeck K, Hulst J, Ribes-Koninckx C. Association between faecal pH and fat absorption in children with cystic fibrosis on a controlled diet and enzyme supplements dose. Pediatr Res 2021; 89:205-210. [PMID: 32247283 DOI: 10.1038/s41390-020-0860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Despite treatment with pancreatic enzyme replacement therapy (PERT), patients with cystic fibrosis (CF) can still suffer from fat malabsorption. A cause could be low intestinal pH disabling PERT. The aim of this study was to assess the association between faecal pH (as intestinal pH surrogate) and coefficient of fat absorption (CFA). Additionally, faecal free fatty acids (FFAs) were quantified to determine the amount of digested, but unabsorbed fat. METHODS In a 24-h pilot study, CF patients followed a standardised diet with fixed PERT doses, corresponding to theoretical optimal doses determined by an in vitro digestion model. Study variables were faecal pH, fat and FFA excretion, CFA and transit time. Linear mixed regression models were applied to explore associations. RESULTS In 43 patients, median (1st, 3rd quartile) faecal pH and CFA were 6.1% (5.8, 6.4) and 90% (84, 94), and they were positively associated (p < 0.001). An inverse relationship was found between faecal pH and total fat excretion (p < 0.01), as well as total FFA (p = 0.048). Higher faecal pH was associated with longer intestinal transit time (p = 0.049) and the use of proton pump inhibitors (p = 0.009). CONCLUSIONS Although the clinical significance of faecal pH is not fully defined, its usefulness as a surrogate biomarker for intestinal pH should be further explored. IMPACT Faecal pH is a physiological parameter that may be related to intestinal pH and may provide important physiopathological information on CF-related pancreatic insufficiency. Faecal pH is correlated with fat absorption, and this may explain why pancreatic enzyme replacement therapy is not effective in all patients with malabsorption related to CF. Use of proton pump inhibitors is associated to higher values of faecal pH. Faecal pH could be used as a surrogate biomarker to routinely monitor the efficacy of pancreatic enzyme replacement therapy in clinical practice. Strategies to increase intestinal pH in children with cystic fibrosis should be targeted.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Cystic Fibrosis Unit, Instituto de Investigación Sanitaria La Fe de Valencia, 46026, Valencia, Spain. .,Research Institute of Food Engineering for Development, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Maria Roca
- Cystic Fibrosis Unit, Instituto de Investigación Sanitaria La Fe de Valencia, 46026, Valencia, Spain
| | - Mieke Boon
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals, 3000, Leuven, Belgium
| | - Carla Colombo
- CF Center, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Barbara de Koning
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Etna Masip
- Cystic Fibrosis Unit, Instituto de Investigación Sanitaria La Fe de Valencia, 46026, Valencia, Spain
| | - Maria Garriga
- Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Anna Bulfamante
- CF Center, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Andrea Asensio-Grau
- Research Institute of Food Engineering for Development, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Ana Andrés
- Research Institute of Food Engineering for Development, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Kris de Boeck
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals, 3000, Leuven, Belgium
| | - Jessie Hulst
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carmen Ribes-Koninckx
- Cystic Fibrosis Unit, Instituto de Investigación Sanitaria La Fe de Valencia, 46026, Valencia, Spain
| |
Collapse
|
32
|
Yoshinaga K. Development of Analytical Methods and Nutritional Studies Using Synthetic Fatty Acids and Triacylglycerols. J Oleo Sci 2021; 70:1-9. [PMID: 33431763 DOI: 10.5650/jos.ess20196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolism of fatty acids or triacylglycerol (TAG) is affected by their molecular structures. Several methods to separate and quantify TAG isomers in natural fats and oils were developed. For instance, an analytical method of TAG molecular species using a gas chromatograph-flame ionization detector and the analytical method to separate and quantify TAG positional isomers and enantiomers using a high performance liquid chromatograph-mass spectrometer were established. Furthermore, using these analytical methods, the relationship between molecular structure and metabolism of fatty acid and TAG were investigated. Using the CO2 breath test in ddY mice revealed that saturated fatty acids such as palmitic acid bound to the sn-2 (β) position of TAG were highly catabolized in the presence of calcium, whereas saturated fatty acids bound to the sn-1, 3 (α) position of TAG were not well catabolized. Recently, the distribution of dietary fatty acids in the body were visualized by combining a stable isotope labeling technique with imaging mass spectrometry, which revealed that the administered arachidonic and docosahexaenoic acid accumulated as phospholipid in the mouse brain. The methods developed can assess food quality and create new functional foods.
Collapse
|
33
|
Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility. Food Chem 2020; 342:128387. [PMID: 33097324 DOI: 10.1016/j.foodchem.2020.128387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 10/10/2020] [Indexed: 01/02/2023]
Abstract
Salmon is the main dietary source of omega-3 lipids and contains high-biological value protein. However, processing techniques could affect macronutrient digestibility. Also, altered intestinal conditions, particularly given in pancreatic insufficiency, could threaten digestibility. This study tested both hypotheses by subjecting raw, marinated and microwave-cooked salmon to static in vitro digestion under healthy (pH 7, bile concentration 10 mM) and altered (pH 6, bile 1 or 10 mM) intestinal conditions with different pancreatin concentrations. In the standard conditions, proteolysis was not affected by processing, but lipolysis decreased in marinated (46%) and raw salmon (57%) compared to the cooked matrix (67%). In altered conditions, proteolysis and lipolysis decreased to different extents depending on the treatment. Overall, processing affected proteolysis the most (f-ratio = 5.86), while intestinal conditions were the major determinants of lipolysis (f-ratio = 58.01). This study could set the ground to establish dietary recommendations of salmon for specific population groups.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - Joaquim Calvo-Lerma
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| |
Collapse
|
34
|
Kildahl-Andersen G, Gjerlaug-Enger E, Rise F, Haug A, Egelandsdal B. Quantification of Fatty Acids and their Regioisomeric Distribution in Triacylglycerols from Porcine and Bovine Sources Using 13 C NMR Spectroscopy. Lipids 2020; 56:111-122. [PMID: 32875567 DOI: 10.1002/lipd.12277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/02/2020] [Accepted: 07/31/2020] [Indexed: 11/10/2022]
Abstract
The uptake of specific fatty acids in humans is dependent on their position on the glycerol backbone. There is a great interest in methods that can access this information fast and accurately. By way of high-resolution NMR, we have analyzed TAG extracted from pig and beef tissues and obtained quantitative data for the composition and regioisomeric distribution of all major unsaturated fatty acids usually found in these source materials, using a combination of manual integration and deconvolution of 13 C NMR spectra. In addition, we have developed a method for determining composition and regioisomeric distribution of the two main saturated fatty acids found in pork (16:0, 18:0). The results are discussed in relation to species-specific genetic characteristics of fatty acid and TAG biosynthesis. The developed method could support decisions related to breeding for desired fatty acid profiles, and stimulate further methodology developments using high field NMR.
Collapse
Affiliation(s)
- Geir Kildahl-Andersen
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway.,Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway
| | - Anna Haug
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Bjørg Egelandsdal
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| |
Collapse
|
35
|
Xu Y, Mietkiewska E, Shah S, Weselake RJ, Chen G. Punicic acid production in Brassica napus. Metab Eng 2020; 62:20-29. [PMID: 32841680 DOI: 10.1016/j.ymben.2020.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022]
Abstract
Punicic acid (PuA; 18:3Δ9cis,11trans,13cis), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% (w/w) of its fatty acids as PuA. Pomegranate seed oil, however, is low yielding with unstable production and thus limits the supply of PuA. Metabolic engineering of established temperate oil crops for PuA production, therefore, has the potential to be a feasible strategy to overcome the limitations associated with sourcing PuA from pomegranate. In this study, the cDNAs encoding a pomegranate fatty acid conjugase and a pomegranate oleate desaturase were co-expressed in canola-type Brassica napus. Transgenic B. napus lines accumulated up to 11% (w/w) of the total fatty acids as PuA in the seed oil, which is the highest level of PuA reported in metabolically engineered oilseed crops so far. Levels of seed oil PuA were stable over two generations and had no negative effects on seed germination. The transgenic B. napus lines with the highest PuA levels contained multiple transgene insertions and the PuA content of B. napus seed oil was correlated with efficiency of oleic acid desaturation and linoleic acid conjugation. In addition, PuA accumulated at lower levels in polar lipids (5.0-6.9%) than triacylglycerol (7.5-10.6%), and more than 60% of triacylglycerol-associated PuA was present at the sn-2 position. This study provides the basis for the commercial production of PuA in transgenic oilseed crops and thus would open new prospects for the application of this unusual fatty acid in health and industry.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Saleh Shah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
36
|
Mohan MS, O'Callaghan TF, Kelly P, Hogan SA. Milk fat: opportunities, challenges and innovation. Crit Rev Food Sci Nutr 2020; 61:2411-2443. [PMID: 32649226 DOI: 10.1080/10408398.2020.1778631] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk fat is a high-value milk component that is processed mainly as butter, cheese, cream and whole milk powder. It is projected that approximately 35 million tonnes of milk fat will be produced globally by 2025. This surplus, enhances the need for diversification of milk fat products and the milk pool in general. Infant milk formula producers, for instance, have incorporated enzyme modified ("humanised") milk fat and fat globule phospholipids to better mimic human milk fat structures. Minor components like mono- and di-glycerides from milk fat are increasingly utilized as emulsifiers, replacing palm esters in premium-priced food products. This review examines the chemistry of milk fat and the technologies employed for its modification, fractionation and enrichment. Emerging processing technologies such as ultrasound, high pressure processing, supercritical fluid extraction and fractionation, can be employed to improve the nutritional and functional attributes of milk fat. The potential of recent developments in biological intervention, through dietary manipulation of milk fatty acid profiles in cattle also offers significant promise. Finally, this review provides evidence to help redress the imbalance in reported associations between milk fat consumption and human health, and elucidates the health benefits associated with consumption of milk fat and dairy products.
Collapse
Affiliation(s)
- Maneesha S Mohan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Tom F O'Callaghan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Phil Kelly
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Sean A Hogan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
37
|
Calvo-Lerma J, Asensio-Grau A, Heredia A, Andrés A. Lessons learnt from MyCyFAPP Project: Effect of cystic fibrosis factors and inherent-to-food properties on lipid digestion in foods. Food Res Int 2020; 133:109198. [DOI: 10.1016/j.foodres.2020.109198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
|
38
|
Alberdi-Cedeño J, Ibargoitia ML, Guillén MD. Study of the In Vitro Digestion of Olive Oil Enriched or Not with Antioxidant Phenolic Compounds. Relationships between Bioaccessibility of Main Components of Different Oils and Their Composition. Antioxidants (Basel) 2020; 9:antiox9060543. [PMID: 32575754 PMCID: PMC7346224 DOI: 10.3390/antiox9060543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The changes provoked by in vitro digestion in the lipids of olive oil enriched or not with different phenolic compounds were studied by proton nuclear magnetic resonance (1H NMR) and solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). These changes were compared with those provoked in the lipids of corn oil and of virgin flaxseed oil submitted to the same digestive conditions. Lipolysis and oxidation were the two reactions under consideration. The bioaccessibility of main and minor components of olive oil, of phenolic compounds added, and of compounds formed as consequence of the oxidation, if any, were matters of attention. Enrichment of olive oil with antioxidant phenolic compounds does not affect the extent of lipolysis, but reduces the oxidation degree to minimum values or avoids it almost entirely. The in vitro bioaccessibility of nutritional and bioactive compounds was greater in the olive oil digestate than in those of other oils, whereas that of compounds formed in oxidation was minimal, if any. Very close quantitative relationships were found between the composition of the oils in main components and their in vitro bioaccessibility. These relationships, some of which have predictive value, can help to design lipid diets for different nutritional purposes.
Collapse
|
39
|
Nengroo ZR, Rauf A. Fatty Acid Composition, Functional Group Analysis and Antioxidant Activity of Nymphia alba and Lupinus polyphyllus Seed Extracts. J Oleo Sci 2020; 69:317-326. [PMID: 32249260 DOI: 10.5650/jos.ess19112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seed extracts of Nymphia alba Linn. and Lupinus polyphyllus Lindl. were analyzed for fatty acid composition, functional group analysis and antioxidant activity. The petroleum ether extract of seeds were found dominant in unsaturated fatty acids with oleic acid (39.9%) and linoleic acid (29.6%) in L. polyphyllus and linoleic (37.5%) and oleic acid (10.9%) in N. alba. All the defatted seed extracts of N. alba and L. polyphyllus found to have powerful DPPH, ABTS, H2O2 and NBT antioxidant radical scavenging activity with reference to butylated hydroxy toluene (BHT). The defatted seed extracts were further analyzed with functional group analysis through FTIR found to contain numerous functional groups which may be responsible for their antioxidant activity.
Collapse
Affiliation(s)
| | - Abdul Rauf
- Department of Chemistry, Aligarh Muslim University
| |
Collapse
|
40
|
Stonehouse W, Benassi-Evans B, James-Martin G, Abeywardena M. Fatty acid regio-specificity of triacylglycerol molecules may affect plasma lipid responses to dietary fats-a randomised controlled cross-over trial. Eur J Clin Nutr 2020; 74:268-277. [PMID: 31227804 PMCID: PMC7007409 DOI: 10.1038/s41430-019-0452-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/28/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVES Hypercholesterolaemic effects of saturated fatty acids (SFA) may be influenced not only by the chain length, but also by their specific location within the triacylglycerol (TAG) molecule. We examined the hypothesis that dietary fats rich in SFA, but containing mostly unsaturated fatty acids in the sn-2 position with most SFA in sn-1 and -3 (palm olein [PO] and cocoa butter [CB]) will have similar serum lipid outcomes to unsaturated olive oil (OO). SUBJECTS/METHODS Thirty-eight participants (20-40 yr, 18.5- ≤ 27.5 kg/m2) completed a 4-week randomised 3 × 3 crossover feeding intervention, preceded by 2-week run-in and separated by 2-week washout periods. Background diet contained 35 percentage of total energy (%E) fat, 18%E protein, 48%E carbohydrates, differing in test fats only (palm olein (PO), CB, OO; 20%E). Total cholesterol (TC)/high density lipoprotein cholesterol (HDL-C) ratio and related variables; TC, HDL-C, low density lipoprotein cholesterol (LDL-C), TAG, apoA1, ApoB, ApoA1 (apolipoprotein A1)/ApoB (apolipoprotein B), lipoprotein (a) (Lp(a)), NEFA, LDL sub-fractions, were assessed pre- and post-intervention. Data were analysed using mixed effects longitudinal models with a P-value < 0.05 considered significant. RESULTS Changes in plasma fatty acids (P < 0.05) confirmed compliance; C18:1 increased with OO compared to PO and CB; C16:0 decreased with OO and C18:0 increased following CB. No differences were seen for TC/HDL-C (mean [95%CI] change for PO, 0.08[0.00, 0.15] mmol/L; CB, 0.06 [-0.05, 0.16] mmol/L; and OO, -0.01 [-0.15, 0.13] mmol/L; P = 0.53] or any other parameter including LDL sub-fractions. OO decreased IDL-A compared to PO (-2.2 [-4.31, -0.21] mg/dL, P = 0.03). CONCLUSION In healthy young participants, plasma lipid responses to PO and CB, enriched in SFA but having primarily unsaturated fatty acid in the sn-2 position of TAG, did not differ from OO.
Collapse
Affiliation(s)
- Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia.
| | - Bianca Benassi-Evans
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| | - Genevieve James-Martin
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| | - Mahinda Abeywardena
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Yoshinaga K, Beppu F, Yamatani Y, Kubo A, Yoshinaga-Kiriake A, Nagai T, Yoshida A, Kanda J, Gotoh N. Effect of Calcium Treatment on Catabolic Rates of 13C-Labeled Fatty Acids Bound to the α and β Positions of Triacylglycerol. J Oleo Sci 2019; 68:1149-1155. [PMID: 31611519 DOI: 10.5650/jos.ess19197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The absorption efficacies and catabolic rates of fatty acids are affected by their binding position on triacylglycerol (TAG). However, the kind of effect calcium treatment has on the catabolism of fatty acids is unclear. In this study, the catabolic rates of 13C-labeled palmitic acid, oleic acid, and linoleic acid bound to sn-1, 3 (α) and sn-2 (β) position of TAG in the presence of calcium were compared using isotope ratio mass spectrometry. The catabolic rates of 13C-labeled fatty acids were evaluated using the ratio of 13C to 12C in the carbon dioxide expired by mice. The catabolic rate of palmitic acid bound to the α position was significantly lower than that of palmitic acid bound to the β position of TAG. The rates of 13CO2 formation from palmitic acid at the β position remained higher for a long time. In contrast, oleic and linoleic acids at the α position were as well catabolized as those at the β position. These results indicate that in the presence of calcium, the saturated fatty acid bound to the β position is highly catabolized, whereas that bound to the α position is not well catabolized. Saturated fatty acid at the α position is hydrolyzed by pancreatic lipase to promptly form insoluble complexes with calcium, which are excreted from the body, and thereby reducing the catabolic rate of these fatty acids.
Collapse
Affiliation(s)
- Kazuaki Yoshinaga
- Faculty of Food and Agricultural Sciences, Fukushima University.,Tsukishima Foods Industry Co. Ltd
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Yoshio Yamatani
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | - Aya Yoshinaga-Kiriake
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | - Jota Kanda
- Department of Ocean Science, Tokyo University of Marine Science and Technology
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
43
|
Li P, Deng J, Xiao N, Cai X, Wu Q, Lu Z, Yang Y, Du B. Identification of polyunsaturated triacylglycerols and CC location isomers in sacha inchi oil by photochemical reaction mass spectrometry combined with nuclear magnetic resonance spectroscopy. Food Chem 2019; 307:125568. [PMID: 31630021 DOI: 10.1016/j.foodchem.2019.125568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Sacha inchi oil is derived from the seeds of Plukenetia volubilis L. and has great nutritional value due to its high contents of active polyunsaturated triacylglycerols (PUTAGs). In this study, we developed a methodology combined Paternò-Büchi reaction nanoelectrospray ionization mass spectrometry (PB-nanoESI-MS) and nuclear magnetic resonance (NMR) to identify CC locations and isomers of PUTAGs in sacha inchi oil. Benzophenone was used as the PB reagent, and the optimized solvent composition (methanol:chloroform = 9:1) allowed for PUTAGs and their PB products to be detected with higher intensities. In addition, we made efforts to interpret the MS2 spectra for identification lipid species. A series of C57-PUTAGs and C59-PUTAGs were detected and identified via high-resolution PB-nanoESI-MS, and the predominant PUTAGs were TAG 18:1(Δ9)_18:3(Δ9,12,15)_18:3(Δ9,12,15) and TAG 18:2(Δ9,12)_18:2(Δ9,12)_18:3 (Δ9,12,15), which demonstrated that the PB-nanoESI-MS approach in this study provides help in promoting the development of structural determination of triacylglycerols in food chemistry.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Jiewei Deng
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xin Cai
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Qiaojin Wu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Zhi Lu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yunyun Yang
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China.
| | - Bing Du
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
44
|
In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108278] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Ji J, Liu Y, Ge Z, Zhang Y, Wang X. Oleochemical Properties for Different Fractions of Foxtail Millet Bran. J Oleo Sci 2019; 68:709-718. [PMID: 31292341 DOI: 10.5650/jos.ess19063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Foxtail millet (FM) is one of the oldest cultivated grain crops with a variety of nutritions, and foxtail millet bran (FMB), a by-product of FM milling process, is also rich in variety of nutrient substance. There are four classifications of FMB, namely coarse bran (FMCB), skin bran (FMSB), polished bran (FMPB) and mixed bran (FMMB). Because these nutrients are distributed within the different fractions of FMB, we compared some chemical composition and its oleochemical properties of four FMB samples. Results showed that the oil extracted from FMB is high value-added plant oil. It contains abundant unsaturated fatty acid (UFA), with the main UFAs were linoleic acid (65%~69%) and oleic acid (12~17%), which accounted for more than 80% of the lipids. The main triacylglycerols were trilinolein (LLL) and oleodilinolein (OLL). There were no evident difference on fatty acid, triacylglycerol and sterols profiles for FMSB, FMPB and FMMB, but the contents of amino acids, tocols, squalene and oryzanol were different.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Technology, Henan University of Technology
| | - Yulan Liu
- College of Food Science and Technology, Henan University of Technology
| | - Zhengfa Ge
- College of Food Science and Technology, Henan University of Technology
| | - Yan Zhang
- College of Food Science and Technology, Henan University of Technology
| | - Xuede Wang
- College of Food Science and Technology, Henan University of Technology
| |
Collapse
|
46
|
Calvo-Lerma J, Fornés-Ferrer V, Heredia A, Andrés A. In vitro digestion models to assess lipolysis: The impact of the simulated conditions of gastric and intestinal pH, bile salts and digestive fluids. Food Res Int 2019; 125:108511. [PMID: 31554063 DOI: 10.1016/j.foodres.2019.108511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
In vitro digestion models are a valid methodology to study nutrient hydrolysis by simulating standard physiological gastrointestinal conditions. However, there are pathologies in which some conditions are affected, which should be considered in the design of an in vitro digestion study. Our work aims at elucidating the role of different gastrointestinal conditions on lipolysis. In the context of exocrine pancreatic insufficiency, gastric pH, intestinal pH, bile salts composition, bile salts concentration, fat concentration in the digestion medium and volumetric ratio digestion fluid/food were the selected study parameters. The pH-stat method was applied to assess lipolysis extent and kinetics. Descriptive results were summarised in digestibility curves and beta regression models were used to explain the effect (odds ratio, OR) of the studied conditions on lipolysis. Additionally, distribution of emulsion droplets was measured and optical microscopy images of fat globules were taken in a selection of experimental conditions. Results showed that intestinal pH was the variable with the highest effect on lipolysis (OR 22.86, p < 0.001), followed by fat concentration in the digestion medium (OR 6.76, p < 0.001) and bile salts concentration (OR 1.56, p < 0.001). Overall, lipolysis was significantly associated with particle size (OR - 6.98, p < 0.001). We conclude that the assessment of lipolysis by means of in vitro digestion models is sensitive to the simulated gastrointestinal conditions, which should be adapted to the real physiological conditions occurring in altered health conditions.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Universitat Politècnica de València, Instituto de Ingeniería de Alimentos para el Desarrollo, Spain; Instituto de Investigación Sanitaria La Fe, Spain.
| | | | - Ana Heredia
- Universitat Politècnica de València, Instituto de Ingeniería de Alimentos para el Desarrollo, Spain
| | - Ana Andrés
- Universitat Politècnica de València, Instituto de Ingeniería de Alimentos para el Desarrollo, Spain
| |
Collapse
|
47
|
Fat structure and composition in human milk and infant formulas: Implications in infant health. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2019. [DOI: 10.1016/j.cegh.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Calvo-Lerma J, Hulst J, Boon M, Colombo C, Masip E, Ruperto M, Fornés-Ferrer V, van der Wiel E, Claes I, Garriga M, Roca M, Crespo-Escobar P, Bulfamante A, Woodcock S, Martínez-Barona S, Andrés A, de Boeck K, Ribes-Koninckx C. Clinical validation of an evidence-based method to adjust Pancreatic Enzyme Replacement Therapy through a prospective interventional study in paediatric patients with Cystic Fibrosis. PLoS One 2019; 14:e0213216. [PMID: 30861039 PMCID: PMC6413926 DOI: 10.1371/journal.pone.0213216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A method to adjust Pancreatic Enzyme Replacement Therapy in Cystic Fibrosis is not currently available. OBJECTIVES To assess the in vivo efficacy of a method to adjust the dose of enzymatic supplement in CF extrapolated from previous in vitro digestion studies (theoretical optimal dose, TOD). Secondly, to assess how individual patient characteristics influence the expected coefficient of fat absorption (CFA) and thus to identify an individual correction factor to improve TOD. METHODS A prospective interventional study in 43 paediatric patients with CF from 5 European centres. They followed a 24h fixed diet with the theoretical optimal dose for each meal. Faecal collection was carried out between colorimetric markers in order to include all the faeces corresponding to the fixed diet. Beta regression models were applied to assess the associations of individual patient characteristics with the CFA. RESULTS Median CFA was 90% (84, 94% 1st, 3rd Q.) with no significant differences among centres. Intestinal transit time was positively associated with CFA (p = 0.007), but no statistical associations were found with and age, gender, phenotype or BMI. Regression model showed no improvement of the in vitro predicted theoretical optimal dose when taking individual patient characteristics into account. CONCLUSION Strict adherence to the theoretical optimal dose of enzymatic supplement for a prescribed meal, led to median CFA levels at the clinical target of 90% with a low variability between patients. The proposed method can be considered as a first approach for an evidence-based method in PERT dosing based on food characteristics. Results have to be confirmed in free dietary settings.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Instituto de Investigación Sanitaria La Fe de Valencia, Valencia, Spain
- Universitat Politècnica de València, Research Institute of Food Engineering for Development, Valencia, Spain
| | - Jessie Hulst
- Erasmus Medical Center, Sophia Children’s Hospital, GD Rotterdam, the Netherlands
| | - Mieke Boon
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Carla Colombo
- CF Center, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Via Commenda 9, Milan, Italy
| | - Etna Masip
- Instituto de Investigación Sanitaria La Fe de Valencia, Valencia, Spain
| | - Mar Ruperto
- Hospital Universitario Ramón y Cajal, Carretera Colmenar Viejo km 9, Madrid, Spain
| | | | - Els van der Wiel
- Erasmus Medical Center, Sophia Children’s Hospital, GD Rotterdam, the Netherlands
| | - Ine Claes
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Maria Garriga
- Hospital Universitario Ramón y Cajal, Carretera Colmenar Viejo km 9, Madrid, Spain
| | - Maria Roca
- Instituto de Investigación Sanitaria La Fe de Valencia, Valencia, Spain
| | | | - Anna Bulfamante
- CF Center, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Via Commenda 9, Milan, Italy
| | - Sandra Woodcock
- Erasmus Medical Center, Sophia Children’s Hospital, GD Rotterdam, the Netherlands
| | | | - Ana Andrés
- Universitat Politècnica de València, Research Institute of Food Engineering for Development, Valencia, Spain
| | - Kris de Boeck
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | | | | |
Collapse
|
49
|
Calvo-Lerma J, Fornés-Ferrer V, Peinado I, Heredia A, Ribes-Koninckx C, Andrés A. A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis. PLoS One 2019; 14:e0212459. [PMID: 30794618 PMCID: PMC6386532 DOI: 10.1371/journal.pone.0212459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with cystic fibrosis have to take enzymatic supplements to allow for food digestion. However, an evidence-based method to adjust Pancreatic Enzyme Replacement Therapy (PERT) is inexistent, and lipid content of meals is used as a rough criterion. OBJECTIVE In this study, an in vitro digestion model was set up to determine the theoretical optimal dose (TOD) of enzymatic supplement for a selection of foods, which is the dose that allows for maximum lipolysis extent. METHODS A static in vitro digestion model was applied to simulate digestion of eight foods covering a wide range of lipid contents. First, the dose of the enzymatic supplement was fixed at 2000 lipase units per gram of fat (LU/g fat) using intestinal pH and bile salt concentration as variables. Second, intestinal pH and bile salt concentrations were fixed and the variable was the dose of the enzymatic supplement. Lipolysis extent was determined by measuring the free fatty acids released from initial triglycerides content of foods after digestion. Results in terms of percentage of lipolysis extent were fitted into a linear-mixed segmented model and the deducted equations were used to predict the TOD to reach 90% of lipolysis in every food. In addition, the effect of intestinal pH and bile salt concentration were investigated. RESULTS The predictive equations obtained for the assessed foods showed that lipolysis was not only dependent on the dose of the enzyme supplement or the lipid content. Moreover, intestinal pH and bile salt concentration had significant effects on lipolysis. Therefore an evidence-based model can be developed taking into account these variables. CONCLUSIONS Depending on food characteristics, a specific TOD should be assigned to achieve an optimal digestion extent. This work represents a first step towards an evidence-based method for PERT dosing, which will be applied in an in vivo setting to validate its efficacy.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Universitat Politècnica de València, Research Institute of Food Engineering for Development, Valencia, Spain
- Instituto de Investigación Sanitaria La Fe de Valencia, Valencia, Spain
| | | | - Irene Peinado
- Universitat Politècnica de València, Research Institute of Food Engineering for Development, Valencia, Spain
| | - Ana Heredia
- Universitat Politècnica de València, Research Institute of Food Engineering for Development, Valencia, Spain
| | | | - Ana Andrés
- Universitat Politècnica de València, Research Institute of Food Engineering for Development, Valencia, Spain
| |
Collapse
|
50
|
Rapid and direct determination of fatty acids and glycerides profiles in Schisandra chinensis oil by using UPLC-Q/TOF-MS E. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:157-167. [PMID: 30476796 DOI: 10.1016/j.jchromb.2018.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Fatty acids and glycerides are globally accepted quality and nutrition indicators of oils. Schisandra chinensis (S. chinensis) is a good functional oil source, with an oil content of 10-50% (dry weight). In this study, the UPLC-Q/TOF-MSE technique was developed to profile FFA and glycerides in the S. chinensis oils directly. The results showed that all of the 36 FFA calibration equations of the mixture standard had good linear relationships (R2 > 0.99). The limit of detection for the tested compounds ranged from 0.0001 to 0.0200 μg/mL, while the limit of quantification ranged from 0.0005 to 0.1300 μg/mL. In total, seventeen FFAs, six diglycerides and 20 triglycerides were identified. Linoleic, oleic, stearic and palmitic acids were the most abundant FFAs in the S. chinensis oils. It was also found that S. chinensis oil is rich in the L-L, L-L-L, O-L-L and O-L-O glycerides. These results will be helpful for the use of this technique in physicochemical evaluation and for further application development.
Collapse
|