1
|
Zhu G, Cai J, Fu W, Sun Y, Wang T, Zhong H. Elucidating the immune landscape and potential prognostic model in acute myeloid leukemia with TP53 mutation. Hematology 2024; 29:2400620. [PMID: 39327848 DOI: 10.1080/16078454.2024.2400620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES The TP53 mutation, a prevalent tumor suppressor gene alteration, is linked to chemotherapy resistance, increased relapse rates and diminished overall survival (OS) in acute myeloid leukemia (AML) patients. METHODS In this study, we characterize the TP53 mutation phenotypes across various AML cohorts utilizing The Cancer Genome Atlas (TCGA) data. We devised a TP53-related prognostic signature derived from differentially expressed genes between mutated and wild-type TP53 AML specimens. In-depth analyses were conducted, encompassing genetic variation, immune cell infiltration and prognostic stratification. RESULTS A six-gene TP53-related signature was established using least absolute shrinkage and selection operator (LASSO)-Cox regression, demonstrating robust prognostic predictability. This signature exhibited strong performance in both the OHSU validation cohorts, an independent Gene Expression Omnibus (GEO) validation cohort (GSE71014) and proved by results of the in vivo experiment. Finally, we used single cell database (GSE198681) to observe the characteristics of these six genes. DISCUSSION Our study may facilitate the development of efficacious therapeutic approaches and provide a novel idea for future research. Conclusion: The TP53-related signature and pattern hold the potential to refine prognostic stratification and underscore emerging targeted therapies.
Collapse
Affiliation(s)
- Gelan Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wanbin Fu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yue Sun
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting Wang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Gavrilova T, Schulz E, Mina A. Breaking Boundaries: Immunotherapy for Myeloid Malignancies. Cancers (Basel) 2024; 16:2780. [PMID: 39199554 PMCID: PMC11352449 DOI: 10.3390/cancers16162780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Immunotherapy has revolutionized the treatment of myeloid oncologic diseases, particularly for patients resistant to chemotherapy or ineligible for allogeneic stem cell transplantation due to age or fitness constraints. As our understanding of the immunopathogenesis of myeloid malignancies expands, so too do the treatment options available to patients. Immunotherapy in myeloid malignancies, however, faces numerous challenges due to the dynamic nature of the disease, immune dysregulation, and the development of immune evasion mechanisms. This review outlines the progress made in the field of immunotherapy for myeloid malignancies, addresses its challenges, and provides insights into future directions in the field.
Collapse
Affiliation(s)
- Tatyana Gavrilova
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eduard Schulz
- Immune Deficiency—Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (E.S.); (A.M.)
- NIH Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alain Mina
- Immune Deficiency—Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (E.S.); (A.M.)
- NIH Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
4
|
Zha C, Song J, Wan M, Lin X, He X, Wu M, Huang R. Recent advances in CAR-T therapy for the treatment of acute myeloid leukemia. Ther Adv Hematol 2024; 15:20406207241263489. [PMID: 39050113 PMCID: PMC11268017 DOI: 10.1177/20406207241263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy, which has demonstrated notable efficacy against B-cell malignancies and is approved by the US Food and Drug Administration for clinical use in this context, represents a significant milestone in cancer immunotherapy. However, the efficacy of CAR-T therapy for the treatment of acute myeloid leukemia (AML) is poor. The challenges associated with the application of CAR-T therapy for the clinical treatment of AML include, but are not limited to, nonspecific distribution of AML therapeutic targets, difficulties in the production of CAR-T cells, AML blast cell heterogeneity, the immunosuppressive microenvironment in AML, and treatment-related adverse events. In this review, we summarize the recent findings regarding various therapeutic targets for AML (CD33, CD123, CLL1, CD7, etc.) and the results of the latest clinical studies on these targets. Thereafter, we also discuss the challenges related to CAR-T therapy for AML and some promising strategies for overcoming these challenges, including novel approaches such as gene editing and advances in CAR design.
Collapse
Affiliation(s)
- Chenyu Zha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jialu Song
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Wan
- Department of Hematology, Zhujiang Hospital of Southern Medical University, No. 253 Gongyedadaozhong Road, Guangzhou, Guangdong 510282, China
| | - Xiao Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, No. 253 Gongyedadaozhong Road, Guangzhou, Guangdong 510282, China
| |
Collapse
|
5
|
Pan S, Cai Q, Wei Y, Tang H, Zhang Y, Zhou W, Deng T, Mo W, Wang S, Wang C, Chen C. Increased co-expression of ICOS and PD-1 predicts poor overall survival in patients with acute myeloid leukemia. Immunobiology 2024; 229:152804. [PMID: 38615511 DOI: 10.1016/j.imbio.2024.152804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Inducible co-stimulatory factor (ICOS) has a dual role: activating cytotoxic T cells against tumors or exacerbating immunosuppression of regulatory T cells (Tregs) to participate in immune evasion. However, the correlation between ICOS and its co-expression with inhibitory immune checkpoints (IICs) and prognosis in acute myeloid leukemia (AML) is little known. METHODS The prognostic importance of ICOS and IICs in 62 bone marrow (BM) samples of de novo AML patients from our clinical center (GZFPH) was explored and then the RNA sequencing data of 155 AML patients from the Cancer Genome Atlas (TCGA) database was used for validation. RESULTS In both GZFPH and TCGA cohorts, high expression of ICOS was significantly associated with poor overall survival (OS) in patients with AML (P < 0.05). Importantly, co-expression of ICOS and PD-1, PD-L1, PD-L2, CTLA-4, and LAG-3 predicted poor OS in AML; among them, ICOS/PD-1 was the optimal combination of immune checkpoints (ICs). The co-expression of ICOS and PD-1 was correlated with poor OS in non-acute promyelocytic leukemia (non-APL) patients following chemotherapy. Additionally, ICOS/PD-1 was an independent OS-predicting factor (P < 0.05). Notably, a nomogram model was constructed by combining ICOS/PD-1, age, European Leukemia Net (ELN) risk stratification, and therapy to visually and personalized predict the 1-, 3-, and 5-year OS of patients with non-APL. CONCLUSION Increased expression of ICOS predicted poor outcomes, and ICOS/PD-1 was the optimal combination of ICs to predict outcomes in patients with AML, which might be a potential immune biomarker for designing novel AML therapy.
Collapse
Affiliation(s)
- Shiyi Pan
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Qinghua Cai
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yiqiong Wei
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Haifeng Tang
- Department of Surgery, The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
6
|
Parveen M, Karaosmanoglu B, Sucularli C, Uner A, Taskiran EZ, Esendagli G. Acquired immune resistance is associated with interferon signature and modulation of KLF6/c-MYB transcription factors in myeloid leukemia. Eur J Immunol 2024; 54:e2350717. [PMID: 38462943 DOI: 10.1002/eji.202350717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 03/12/2024]
Abstract
Resistance to immunity is associated with the selection of cancer cells with superior capacities to survive inflammatory reactions. Here, we tailored an ex vivo immune selection model for acute myeloid leukemia (AML) and isolated the residual subpopulations as "immune-experienced" AML (ieAML) cells. We confirmed that upon surviving the immune reactions, the malignant blasts frequently decelerated proliferation, displayed features of myeloid differentiation and activation, and lost immunogenicity. Transcriptomic analyses revealed a limited number of commonly altered pathways and differentially expressed genes in all ieAML cells derived from distinct parental cell lines. Molecular signatures predominantly associated with interferon and inflammatory cytokine signaling were enriched in the AML cells resisting the T-cell-mediated immune reactions. Moreover, the expression and nuclear localization of the transcription factors c-MYB and KLF6 were noted as the putative markers for immune resistance and identified in subpopulations of AML blasts in the patients' bone marrow aspirates. The immune modulatory capacities of ieAML cells lasted for a restricted period when the immune selection pressure was omitted. In conclusion, myeloid leukemia cells harbor subpopulations that can adapt to the harsh conditions established by immune reactions, and a previous "immune experience" is marked with IFN signature and may pave the way for susceptibility to immune intervention therapies.
Collapse
Affiliation(s)
- Mubaida Parveen
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Türkiye
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Türkiye
| |
Collapse
|
7
|
Wang J, Wang H, Ding Y, Jiao X, Zhu J, Zhai Z. NET-related gene signature for predicting AML prognosis. Sci Rep 2024; 14:9115. [PMID: 38643300 PMCID: PMC11032381 DOI: 10.1038/s41598-024-59464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a malignant blood cancer with a high mortality rate. Neutrophil extracellular traps (NETs) influence various tumor outcomes. However, NET-related genes (NRGs) in AML had not yet received much attention. This study focuses on the role of NRGs in AML and their interaction with the immunological microenvironment. The gene expression and clinical data of patients with AML were downloaded from the TCGA-LAML and GEO cohorts. We identified 148 NRGs through the published article. Univariate Cox regression was used to analyze the association of NRGs with overall survival (OS). The least absolute shrinkage and selection operator were utilized to assess the predictive efficacy of NRGs. Kaplan-Meier plots visualized survival estimates. ROC curves assessed the prognostic value of NRG-based features. A nomogram, integrating clinical information and prognostic scores of patients, was constructed using multivariate logistic regression and Cox proportional hazards regression models. Twenty-seven NRGs were found to significantly impact patient OS. Six NRGs-CFTR, ENO1, PARVB, DDIT4, MPO, LDLR-were notable for their strong predictive ability regarding patient survival. The ROC values for 1-, 3-, and 5-year survival rates were 0.794, 0.781, and 0.911, respectively. In the training set (TCGA-LAML), patients in the high NRG risk group showed a poorer prognosis (p < 0.001), which was validated in two external datasets (GSE71014 and GSE106291). The 6-NRG signature and corresponding nomograms exhibit superior predictive accuracy, offering insights for pre-immune response evaluation and guiding future immuno-oncology treatments and drug selection for AML patients.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Hematology, Tongling People's Hospital, Tongling, 244000, Anhui, China
| | - Huiping Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yangyang Ding
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xunyi Jiao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jinli Zhu
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
8
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Bołkun Ł, Starosz A, Krętowska-Grunwald A, Wasiluk T, Walewska A, Wierzbowska A, Moniuszko M, Grubczak K. Effects of Combinatory In Vitro Treatment with Immune Checkpoint Inhibitors and Cytarabine on the Anti-Cancer Immune Microenvironment in De Novo AML Patients. Cancers (Basel) 2024; 16:462. [PMID: 38275902 PMCID: PMC10814928 DOI: 10.3390/cancers16020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Despite substantial progress in the diagnostic and therapeutic procedures, acute myeloid leukaemia (AML) still constitutes a significant problem for patients suffering from its relapses. A comprehensive knowledge of the disease's molecular background has led to the development of targeted therapies, including immune checkpoint inhibitors, and demonstrated beneficial effects on several types of cancer. Here, we aimed to assess in vitro the potential of the immune checkpoint blockage for supporting anti-cancer responses to the AML backbone therapy with cytarabine. PBMCs of AML patients were collected at admission and, following the therapy, eight complete remission (CR) and eight non-responders (NR) subjects were selected. We assessed the effects of the in vitro treatment of the cells with cytarabine and the immune checkpoint inhibitors: anti-CTLA-4, anti-PD-1, anti-PD-L1. The study protocol allowed us to evaluate the viability of the cancer and the immune cells, proliferation status, phenotype, and cytokine release. Anti-PD-L1 antibodies were found to exert the most beneficial effect on the activation of T cells, with a concomitant regulation of the immune balance through Treg induction. There was no direct influence on the blast cells; however, the modulation of the PD-1/PD-L1 axis supported the expansion of lymphocytes. Changes in the response between CR and NR patients might result from the differential expression of PD-1 and PD-L1, with lower levels in the latter group. The tested blockers appear to support the anti-cancer immune responses rather than directly improve the effects of cytarabine. In conclusion, checkpoint proteins' modulators might improve the anti-cancer responses in the tumour environment.
Collapse
Affiliation(s)
- Łukasz Bołkun
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| | - Anna Krętowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland
| | - Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950 Bialystok, Poland;
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland;
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
- Department of Allergology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| |
Collapse
|
10
|
Wen Q, Wang S, Hong L, Shen S, He Y, Sheng X, Zhuang X, Chen S, Wang Y, Zhuang H. m 5 C regulator-mediated methylation modification patterns and tumor microenvironment infiltration characteristics in acute myeloid leukemia. Immun Inflamm Dis 2024; 12:e1150. [PMID: 38270308 PMCID: PMC10802208 DOI: 10.1002/iid3.1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Recently, many studies have been conducted to examine immune response modification at epigenetic level, but the candidate effect of RNA 5-methylcytosine (m5 C) modification on tumor microenvironment (TME) of acute myeloid leukemia (AML) is still unknown at present. METHODS We assessed the patterns of m5 C modification among 417 AML cases by using nine m5 C regulators. Thereafter, we associated those identified modification patterns with TME cell infiltration features. Additionally, stepwise regression and LASSO Cox regression analyses were conducted for quantifying patterns of m5 C modification among AML cases to establish the m5 C-score. Meanwhile, we validated the expression of genes in the m5C-score model by qRT-PCR. Finally, the present work analyzed the association between m5 C-score and AML clinical characteristics and prognostic outcomes. RESULTS In total, three different patterns of m5 C modification (m5 C-clusters) were identified, and highly differentiated TME cell infiltration features were also identified. On this basis, evaluating patterns of m5 C modification in single cancer samples was important for evaluating the immune/stromal activities in TME and for predicting prognosis. In addition, the m5 C-score was established, which showed a close relation with the overall survival (OS) of test and training set samples. Moreover, multivariate Cox analysis suggested that our constructed m5 C-score served as the independent predicting factor for the prognosis of AML (hazard ratio = 1.57, 95% confidence interval = 1.38-1.79, p < 1e-5 ). CONCLUSIONS This study shows that m5 C modification may be one of the key roles in the formation of diversity and complexity of TME. Meanwhile, assessing the patterns of m5 C modification among individual cancer samples is of great importance, which provides insights into cell infiltration features within TME, thereby helping to develop relevant immunotherapy and predict patient prognostic outcomes.
Collapse
Affiliation(s)
- Qiang Wen
- Department of Gynecologic OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouZhejiangChina
| | - ShouJun Wang
- Department of MedicineHangZhou FuYang Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Lili Hong
- Department of Hematology and TransfusionThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hang ZhouZhejiangChina
| | - Siyu Shen
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yibo He
- Department of Clinical LabThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouZhejiangChina
| | - Xianfu Sheng
- Department of Hematology and TransfusionThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hang ZhouZhejiangChina
| | - Xiaofen Zhuang
- Department of MedicineHangZhou FuYang Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Shiliang Chen
- Department of Clinical LabThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouZhejiangChina
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Haifeng Zhuang
- Department of Hematology and TransfusionThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hang ZhouZhejiangChina
| |
Collapse
|
11
|
Wang P, Zhang Y, Cai Q, Long Q, Pan S, Zhou W, Deng T, Mo W, Wang S, Zhang Y, Wang C, Chen C. Optimal combination of immune checkpoint and senescence molecule predicts adverse outcomes in patients with acute myeloid leukemia. Ann Med 2023; 55:2201507. [PMID: 37070487 PMCID: PMC10120552 DOI: 10.1080/07853890.2023.2201507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND High expression of immune checkpoints (ICs) and senescence molecules (SMs) contributes to T cell dysfunction, tumor escape, and progression, but systematic evaluation of them in co-expression patterns and prognosis in acute myeloid leukemia (AML) was lacking. METHODS Three publicly available datasets (TCGA, Beat-AML, and GSE71014) were first used to explore the effect of IC and SM combinations on prognosis and the immune microenvironment in AML, and bone marrow samples from 68 AML patients from our clinical center (GZFPH) was further used to validate the findings. RESULTS High expression of CD276, Bcl2-associated athanogene 3 (BAG3), and SRC was associated with poor overall survival (OS) of AML patients. CD276/BAG3/SRC combination, standard European Leukemia Net (ELN) risk stratification, age, and French-American-British (FAB) subtype were used to construct a nomogram model. Interestingly, the new risk stratification derived from the nomogram was better than the standard ELN risk stratification in predicting the prognosis for AML. A weighted combination of CD276 and BAG3/SRC positively corrected with TP53 mutation, p53 pathway, CD8+ T cells, activated memory CD4+ T cells, T-cell senescence score, and Tumor Immune Dysfunction and Exclusion (TIDE) score estimated by T-cell dysfunction. CONCLUSION High expression of ICs and SMs was associated with poor OS of AML patients. The co-expression patterns of CD276 and BAG3/SRC might be potential biomarkers for risk stratification and designing combinational immuno-targeted therapy in AML.Key MessagesHigh expression of CD276, BAG3, and SRC was associated with poor overall survival of AML patients.The co-expression patterns of CD276 and BAG3/SRC might be potential biomarkers for risk stratification and designing combinational immuno-targeted therapy in AML.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R. China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China
| | - Yuling Zhang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Qinghua Cai
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Qingqin Long
- Department of Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R. China
| | - Shiyi Pan
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
- Yuping Zhang Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou510180, P.R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
- Caixia Wang
| | - Cunte Chen
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
- CONTACT Cunte Chen
| |
Collapse
|
12
|
Taghiloo S, Ajami A, Alizadeh-Navaei R, Asgarian-Omran H. Combination therapy of acute myeloid leukemia by dual PI3K/mTOR inhibitor BEZ235 and TLR-7/8 agonist R848 in murine model. Int Immunopharmacol 2023; 125:111211. [PMID: 37956488 DOI: 10.1016/j.intimp.2023.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Due to the high relapse rate and toxicity of the common therapies in patients with acute myeloid leukemia (AML), modifications in the treatment strategies are required. The present study was conducted to determine the effects of combinational therapy with a dual PI3K/mTOR inhibitor, BEZ235, and TLR7/8 agonist, R848, on murine AML model. METHODS BEZ235 and R848 were administered to AML leukemic mice in either a single or combination treatment. Frequency of T-CD4+, T-CD8+, MDSCs, NK, exhausted T cells and the degranulation levels was measured via flow cytometry. The cytotoxicity and proliferation levels were evaluated by MTT assay. Then, the expression of iNOS, arginase-1, PD-L1, Gal-9, PVR, IFN-γ, TNF-α, IL-4, IL-10, IL-12 and IL-17 was investigated by Real-Time PCR. Organomegaly, body weight and survival rate were also monitored. RESULTS Following combinational therapy with BEZ235 and R848, increasing in the frequency of anti-tumor immune cells including T-CD4+ cells and M1 macroghages, and decreasing in pro-tumor immune cells including MDSCs, exhausted T-CD4+ and T-CD8+ cells and also M2 macrophages were observed. The functional defects of immune cells in term of proliferation, cytotoxicity, degranulation, and cytokines expression were improved in leukemic mice after treatment with BEZ235 and R848. Finally, organomegaly, body weight and survival analysis showed significant improvements after treatment with BEZ235 and R848. CONCLUSION Taken together, we indicated that the combinational therapy with BEZ235 and R848 could be considered as a potential and powerful therapeutic option for AML patients. Further clinical studies are required to expand our current findings.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Zhao X, Zhang J, Liu J, Luo S, Ding R, Miao X, Wu T, Jia J, Cheng X. Molecular characterization of cancer-intrinsic immune evasion genes indicates prognosis and tumour microenvironment infiltration in osteosarcoma. Aging (Albany NY) 2023; 15:10272-10290. [PMID: 37796192 PMCID: PMC10599718 DOI: 10.18632/aging.205074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Cancer-intrinsic immune evasion (IE) to cells is a critical factor in tumour growth and progression, yet the molecular characterization of IE genes (IEGs) in osteosarcoma remains underexplored. In this study, 85 osteosarcoma patients were comprehensively analyzed based on 182 IEGs, leading to the identification of two IE clusters linked to distinct biological processes and clinical outcomes. In addition, two IE clusters demonstrated diverse immune cell infiltration patterns, with IEGcluster A displaying increased levels compared to IEGcluster B. Moreover, an IE score was identified as an independent prognostic factor and nomogram may serve as a practical tool for the individual prognostic evaluation of patients with osteosarcoma. Finally, GBP1, a potential biomarker with high expression in osteosarcoma was identified. The findings of this study highlight the presence of two IE clusters, each associated with differing patient outcomes and immune infiltration properties. The IE score may serve to assess individual patient IE characteristics, enhance comprehension of immune features, and guide more efficacious treatment approaches.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Orthopedics of Jiangxi, Nanchang, Jiangxi 330006, China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shengzhong Luo
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Orthopedics of Jiangxi, Nanchang, Jiangxi 330006, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
14
|
Gallimore F, Fandy TE. Therapeutic Applications of Azanucleoside Analogs as DNA Demethylating Agents. EPIGENOMES 2023; 7:12. [PMID: 37489400 PMCID: PMC10366911 DOI: 10.3390/epigenomes7030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/26/2023] Open
Abstract
Azanucleosides, such as 5-azacytidine and decitabine, are DNA demethylating agents used in the treatment of acute myeloid leukemia and myelodysplastic syndromes. Researchers continue to explore their utility in the treatment of other hematologic and solid tumors. Based on the capacity of the compounds to inhibit DNA methyltransferase enzymes and the important role of DNA methylation in health and disease, it is essential to understand the molecular changes that azanucleosides induce and how these changes may improve treatment outcomes in subsets of patients. This review summarizes the molecular and therapeutic actions of azanucleosides and discusses recent clinical trials of these compounds as single agents or in combination therapy for the treatment of cancer and related conditions.
Collapse
Affiliation(s)
- Fallon Gallimore
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV 25304, USA
| | - Tamer E Fandy
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV 25304, USA
| |
Collapse
|
15
|
Gama SM, Varela VA, Ribeiro NM, Bizzarro B, Hernandes C, Aloia TPA, Amano MT, Pereira WO. AKT inhibition interferes with the expression of immune checkpoint proteins and increases NK-induced killing of HL60-AML cells. EINSTEIN-SAO PAULO 2023; 21:eAO0171. [PMID: 37341216 DOI: 10.31744/einstein_journal/2023ao0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/03/2022] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE To determine the role of the AKT pathway in the regulating of natural Killer-induced apoptosis of acute myeloid leukemia cells and to characterize the associated molecular mechanisms. METHODS BALB/c nude mice were injected with HL60 cells to induce a xenogenic model of subcutaneous leukemic tumors. Mice were treated with perifosine, and their spleens were analyzed using biometry, histopathology, and immunohistochemistry. Gene expression analysis in leukemia cells was performed by real-time PCR. Protein analysis of leukemia and natural Killer cells was performed by flow cytometry. AKT inhibition in HL60 cells, followed by co-culture with natural Killer cells was performed to assess cytotoxicity. Apoptosis rate was quantified using flow cytometry. RESULTS Perifosine treatment caused a reduction in leukemic infiltration in the spleens of BALB/c nude mice. In vitro , AKT inhibition reduced HL60 resistance to natural Killer-induced apoptosis. AKT inhibition suppressed the immune checkpoint proteins PD-L1, galectin-9, and CD122 in HL60 cells, but did not change the expression of their co-receptors PD1, Tim3, and CD96 on the natural Killer cell surface. In addition, the death receptors DR4, TNFR1, and FAS were overexpressed by AKT inhibition, thus increasing the susceptibility of HL60 cells to the extrinsic pathway of apoptosis. CONCLUSION The AKT pathway is involved in resistance to natural Killer-induced apoptosis in HL60 cells by regulating the expression of immune suppressor receptors. These findings highlight the importance of AKT in contributing to immune evasion mechanisms in acute myeloid leukemia and suggests the potential of AKT inhibition as an adjunct to immunotherapy.
Collapse
Affiliation(s)
- Sofia Mônaco Gama
- Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | - Vanessa Araújo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | - Natalia Mazini Ribeiro
- Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | - Bruna Bizzarro
- Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | - Camila Hernandes
- Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | - Thiago Pinheiro Arrais Aloia
- Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | - Mariane Tami Amano
- Department of Clinical and Experimental Oncology , Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , SP , Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| |
Collapse
|
16
|
Mo J, Deng L, Peng K, Ouyang S, Ding W, Lou L, Lin Z, Zhu J, Li J, Zhang Q, Wang P, Wen Y, Chen X, Yue P, Lu JJ, Zhu K, Zheng Y, Wang Y, Zhang X. Targeting STAT3-VISTA axis to suppress tumor aggression and burden in acute myeloid leukemia. J Hematol Oncol 2023; 16:15. [PMID: 36849939 PMCID: PMC9969711 DOI: 10.1186/s13045-023-01410-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
The acute myeloid leukemia (AML) patients obtain limited benefits from current immune checkpoint blockades (ICBs), although immunotherapy have achieved encouraging success in numerous cancers. Here, we found that V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint, is highly expressed in primary AML cells and associated with poor prognosis of AML patients. Targeting VISTA by anti-VISTA mAb boosts T cell-mediated cytotoxicity to AML cells. Interestingly, high expression of VISTA is positively associated with hyperactive STAT3 in AML. Further evidence showed that STAT3 functions as a transcriptional regulator to modulate VISTA expression by directly binding to DNA response element of VISTA gene. We further develop a potent and selective STAT3 inhibitor W1046, which significantly suppresses AML proliferation and survival. W1046 remarkably enhances the efficacy of VISTA mAb by activating T cells via inhibition of STAT3 signaling and down-regulation of VISTA. Moreover, combination of W1046 and VISTA mAb achieves a significant anti-AML effect in vitro and in vivo. Overall, our findings confirm that VISTA is a potential target for AML therapy which transcriptionally regulated by STAT3 and provide a promising therapeutic strategy for immunotherapy of AML.
Collapse
Affiliation(s)
- Jianshan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lin Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Keren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wen Ding
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Linlin Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ziyou Lin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jianzheng Zhu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jingwei Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiyi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Pengyan Wang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yuanzhen Wen
- Increasepharm (Hengqin) Innovative Medicine Institute Limited, Zhuhai, 519000, China
| | - Xiaobing Chen
- Increasepharm (Hengqin) Innovative Medicine Institute Limited, Zhuhai, 519000, China
| | - Peibin Yue
- Department of Medicine, Division of Hematology-Oncology, and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yongjiang Zheng
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Yuanxiang Wang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Luo D, Liu S, Luo J, Chen H, He Z, Gao Z, Wen Z, Liu X, Xu N. Characterization of cuproptosis identified immune microenvironment and prognosis in acute myeloid leukemia. Clin Transl Oncol 2023:10.1007/s12094-023-03118-4. [PMID: 36826709 DOI: 10.1007/s12094-023-03118-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Recent studies have reported that cuproptosis, a novel cell death pathway, strongly correlates with mitochondrial metabolism. In addition, the studies reported that cuproptosis plays a role in the development of several cancers and is regulated by protein lipoylation. During cuproptosis, copper binds to the lipoylated proteins and mediates cancer progression. However, the role of cuproptosis in acute myeloid leukemia (AML) patients is yet to be explored. METHODS This study curated seven cuproptosis-related-genes (CRGs): FDX1, DLAT, PDHB, PDHA1, DLD, LIAS, and LIPT1 to determine cuproptosis modification patterns and the CRGs signature in AML. The CIBERSORT and ssGSEA algorithms were utilized to evaluate the infiltration levels of different immune cell subtypes. A cuproptosis score system based on differentially expressed genes (DEGs) was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The developed cuproptosis score system was validated using two immunotherapy datasets, IMvigor210 and GSE78220. RESULTS Three distinct cuproptosis regulation patterns were identified using the Beat AML cohort. The results demonstrated that the three cuproptosis regulation patterns were correlated with various biological pathways and clinical outcomes. Tumor microenvironment (TME) characterization revealed that the identified cuproptosis regulation patterns were consistent with three immune profiles: immune-desert, immune-inflamed, and immune-excluded. The AML patients were grouped into low- and high-score groups based on the cuproptosis score system abstracted from 486 cuproptosis-related DEGs. Patients with lower cuproptosis scores were characterized by longer survival time and attenuated immune infiltration. It was found that lower cuproptosis scores were strongly correlated with lower somatic mutation frequency. Moreover, patients with lower cuproptosis scores presented more favorable immune responses and dual clinical benefits among external validation cohorts. CONCLUSIONS Cuproptosis phenotypes are significantly correlated with immune microenvironment complexity and variety. Cuprotopsis regulates the response of cancer cells to the immune system. Quantitatively assessing cuproptosis phenotypes in AML improves the understanding and knowledge regarding immune microenvironment characteristics and promotes the development of therapeutic interventions.
Collapse
Affiliation(s)
- Dongmei Luo
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songyang Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jie Luo
- Department of Hematology, First Affiliated Hospital of Hainan Medical College, Haikou, 570100, Hainan, China
| | - Hong Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zherou He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zicheng Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ziyu Wen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
18
|
Zhou X, Li C, Chen T, Li W, Wang X, Yang Q. Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Mol Cancer 2023; 22:36. [PMID: 36810108 PMCID: PMC9942356 DOI: 10.1186/s12943-023-01746-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer immunotherapy, especially immune checkpoint therapy, has revolutionized therapeutic options by reactivating the host immune system. However, the efficacy varies, and only a small portion of patients develop sustained antitumor responses. Hence, illustrating novel strategies that improve the clinical outcome of immune checkpoint therapy is urgently needed. N6-methyladenosine (m6A) has been proved to be an efficient and dynamic posttranscriptional modification process. It is involved in numerous RNA processing, such as splicing, trafficking, translation and degradation. Compelling evidence emphasizes the paramount role of m6A modification in the regulation of immune response. These findings may provide a foundation for the rational combination of targeting m6A modification and immune checkpoints in cancer treatment. In the present review, we summarize the current landscape of m6A modification in RNA biology, and highlight the latest findings on the complex mechanisms by which m6A modification governs immune checkpoint molecules. Furthermore, given the critical role of m6A modification in antitumor immunity, we discuss the clinical significance of targeting m6A modification to improve the efficacy of immune checkpoint therapy for cancer control.
Collapse
Affiliation(s)
- Xianyong Zhou
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China ,grid.476866.dDepartment of Breast Surgery, Binzhou People’s Hospital, Binzhou, Shandong China
| | - Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, China. .,Department of Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Xi Road No. 107, Shandong, Jinan, China. .,Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
19
|
High Co-Expression of PDCD1/ TIGIT/ CD47/ KIR3DL2 in Bone Marrow Is Associated with Poor Prognosis for Patients with Myelodysplastic Syndrome. JOURNAL OF ONCOLOGY 2023; 2023:1972127. [PMID: 36816361 PMCID: PMC9931467 DOI: 10.1155/2023/1972127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
Cellular immune disorder is a common characteristic of myelodysplastic syndrome (MDS). Abnormal natural killer (NK) cell function has been reported in MDS patients, and this is closely related to disease progression and poor prognosis. However, little is known about the association between the abnormal immune checkpoint (IC) that results in abnormal immune NK cell function and the prognosis of MDS. In this study, RNA-sequencing data from 80 patients in the GSE114922 dataset and bone marrow (BM) samples from 46 patients with MDS in our clinical center were used for overall survival (OS) analysis and validation. We found that the NK cell-related IC genes PDCD1, TIGIT, CD47, and KIR3DL2 had higher expression and correlated with poor OS for MDS patients. High expression of PDCD1 or TIGIT was significantly associated with poor OS for MDS patients younger than 60 years of age. Moreover, co-expression of PDCD1 and TIGIT had the greatest contribution to OS prediction. Interestingly, PDCD1, TIGIT, CD47, and KIR3DL2 and risk stratification based on the Revised International Prognostic Scoring System were used to construct a nomogram model, which could visually predict the 1-, 2-, and 3-year survival rates of MDS patients. In summary, high expression of IC receptors in the BM of MDS patients was associated with poor OS. The co-expression patterns of PDCD1, TIGIT, CD47, and KIR3DL2 might provide novel insights into designing combined targeted therapies for MDS.
Collapse
|
20
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
21
|
The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1545-1553. [PMID: 36587109 DOI: 10.1007/s12094-022-03065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic cancer in adults. Some patients exhibit restricted T cell infiltration and do not respond to routine treatments. This may be prevented by enhancing adaptive immunity by stimulating innate immune cells inside the tumor microenvironment (TME). To activate the adaptive immunological reaction against tumors, type I interferons (IFNs) can promote the presentation of tumor-specific cytotoxic T lymphocyte (CTL) cell recruitment. During the activation of innate immunity, cyclic di-nucleotides (CDNs) bind to and stimulate the stimulator of interferon genes (STING), a protein localized inside the endoplasmic reticulum (ER) membrane, resulting in the expression of type I IFNs. The efficacy of STING agonists as effective stimulators of the anti-tumor response in AML is being investigated in numerous clinical studies. Therefore, the purpose of this investigation was to thoroughly review existing knowledge in this field and provide perspective into the clinical potential of STING agonists in AML.
Collapse
|
22
|
TP53 Mutant Acute Myeloid Leukemia: The Immune and Metabolic Perspective. HEMATO 2022. [DOI: 10.3390/hemato3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TP53 mutated/deleted acute myeloid leukemia (AML) stands out as one of the poorest prognosis forms of acute leukemia with a median overall survival not reaching one year in most cases, even in selected cases when allogenic stem-cell transplantation is performed. This aggressive behavior relies on intrinsic chemoresistance of blast cells and on high rates of relapse. New insights into the biology of the disease have shown strong linkage between TP53 mutant AML, altered metabolic features and immunoregulation uncovering new scenarios and leading to possibilities beyond current treatment approaches. Furthermore, new targeted therapies acting on misfolded/dysfunctional p53 protein are under current investigation with the aim to improve outcomes. In this review, we sought to offer an insight into TP53 mutant AML current biology and treatment approaches, with a special focus on leukemia-associated immune and metabolic changes.
Collapse
|
23
|
Regional and national burden of leukemia and its attributable burden to risk factors in 21 countries and territories of North Africa and Middle East, 1990-2019: results from the GBD study 2019. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04293-7. [PMID: 36048271 DOI: 10.1007/s00432-022-04293-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Regional and national data on leukemia's burden provide a better comprehension of leukemia's trends and are vital for policy-makers for better allocation of the resources. This study reports the burden of leukemia, and the attributed burden to its risk factors in 21 countries and territories of the North Africa and Middle East. METHODS Data from cancer registration, scientific literature, survey, and reports were the input to estimate the burden of leukemia. In addition, the burden of attributable risk factors with evidence of causation with leukemia was calculated using the comparative risk assessment framework. All measures are reported as counts and rates divided by sex and specific age groups. RESULTS In 2019, there were 39,297 (95% uncertainty interval: 32,617-45,056) incident cases of leukemia with an age-standardized rate (ASR) of 7.8 (6.5-8.8) per 100,000 in the region. There were also 25,143 (21,109-28,826) deaths and 1,011,555 (822,537-1,173,621) DALYs attributed to Leukemia with an ASR of 5.4 (4.6-6.1) per 100,000 and 183.4 (150.7-211.2) per 100,000, respectively. Years of life lost (YLLs) (179.4 [147.2-206.7]) were accountable for the major part of DALYs. All count measures increased, while all the ASRs decreased during 1990-2019. The Syrian Arab Republic, Qatar, and Afghanistan had the highest ASR incidence, mortality, and DALYs rate in 2019. Incidence, DALYs, and prevalence rates were higher in males of all age groups except under five, and the highest rates were observed in +75 age group. Four major risk factors for leukemia were smoking, high body mass index, occupational exposure to benzene, and formaldehyde. CONCLUSION Despite the reduction in age-standardized rates of incidence and mortality, the burden of leukemia has increased steadily, due to population growth and aging. Notable variations exist between age-standardized rates in region's countries.
Collapse
|
24
|
Prebet T, Goldberg AD, Jurcic JG, Khaled S, Dail M, Feng Y, Green C, Li C, Ma C, Medeiros BC, Yan M, Grunwald MR. A phase 1b study of atezolizumab in combination with guadecitabine for the treatment of acute myeloid leukemia. Leuk Lymphoma 2022; 63:2180-2188. [DOI: 10.1080/10428194.2022.2057484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thomas Prebet
- Hematology, Yale University, New Haven, Connecticut, United States
| | - Aaron D. Goldberg
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Joseph G. Jurcic
- Columbia University Irving Medical Center, New York, New York, United States
| | | | - Monique Dail
- Genentech, Inc, South San Francisco, California, United States
| | - Yuning Feng
- Genentech, Inc, South San Francisco, California, United States
| | - Cherie Green
- Genentech, Inc, South San Francisco, California, United States
| | - Chunze Li
- Genentech, Inc, South San Francisco, California, United States
| | - Connie Ma
- Genentech, Inc, South San Francisco, California, United States
| | | | - Mark Yan
- Hoffmann-La Roche Ltd, Mississauga, Ontario, Canada
| | - Michael R. Grunwald
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, United States
| |
Collapse
|
25
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
26
|
Haddad F, Daver N. An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:273-295. [PMID: 34972969 DOI: 10.1007/978-3-030-79308-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite advances in the treatment of acute myeloid leukemia (AML), relapse is still widely observed and represents the major cause of death among patients with AML. Treatment options in the relapse setting are limited, still relying predominantly on allogeneic hematopoietic stem cell transplantation (allo-HSCT) and cytotoxic chemotherapy, with poor outcomes. Novel targeted and venetoclax-based combinations are being investigated and have shown encouraging results. Immune checkpoint inhibitors in combination with low-intensity chemotherapy demonstrated encouraging response rates and survival among patients with relapsed and/or refractory (R/R) AML, especially in the pre- and post-allo-HSCT setting. Blocking the CD47/SIRPα pathway is another strategy that showed robust anti-leukemic activity, with a response rate of around 70% and an encouraging median overall survival in patients with newly diagnosed, higher-risk myelodysplastic syndrome and patients with AML with a TP53 mutation. One approach that was proven to be very effective in the relapsed setting of lymphoid malignancies is chimeric antigen receptor (CAR) T cells. It relies on the infusion of genetically engineered T cells capable of recognizing specific epitopes on the surface of leukemia cells. In AML, different CAR constructs with different target antigens have been evaluated and demonstrated safety and feasibility in the R/R setting. However, the difficulty of potently targeting leukemic blasts in AML while sparing normal cells represents a major limitation to their use, and strategies are being tested to overcome this obstacle. A different approach is based on endogenously redirecting the patient's system cells to target and destroy leukemic cells via bispecific T-cell engagers (BiTEs) or dual antigen receptor targeting (DARTs). Early results have demonstrated the safety and feasibility of these agents, and research is ongoing to develop BiTEs with longer half-life, allowing for less frequent administration schedules and developing them in earlier and lower disease burden settings.
Collapse
Affiliation(s)
- Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246157. [PMID: 34944782 PMCID: PMC8699597 DOI: 10.3390/cancers13246157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Allogeneic hematopoietic cell transplantation (allo-HCT) has been the only potentially curative treatment for the majority of patients. The ability of chimeric antigen receptor (CAR)-modified T-cell therapy directed against the CD19 antigen to induce durable remissions in patients with acute lymphoblastic leukemia (ALL) has provided optimism that this novel treatment paradigm can be extrapolated to AML. In this review, we provide an overview of candidate target antigens for CAR-T-cells in AML, an update on recent progress in preclinical and clinical development of investigational CAR-T-cell products, and discuss challenges for the clinical implementation of CAR-T-cell therapy in AML. Abstract Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them.
Collapse
|
28
|
Immunosuppression and outcomes in adult patients with de novo acute myeloid leukemia with normal karyotypes. Proc Natl Acad Sci U S A 2021; 118:2116427118. [PMID: 34845035 PMCID: PMC8673586 DOI: 10.1073/pnas.2116427118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.
Collapse
|
29
|
Wen XM, Xu ZJ, Jin Y, Xia PH, Ma JC, Qian W, Lin J, Qian J. Association Analyses of TP53 Mutation With Prognosis, Tumor Mutational Burden, and Immunological Features in Acute Myeloid Leukemia. Front Immunol 2021; 12:717527. [PMID: 34745095 PMCID: PMC8566372 DOI: 10.3389/fimmu.2021.717527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease related to a broad spectrum of molecular alterations. The successes of immunotherapies treating solid tumors and a deeper understanding of the immune systems of patients with hematologic malignancies have promoted the development of immunotherapies for the treatment of AML. And high tumor mutational burden (TMB) is an emerging predictive biomarker for response to immunotherapy. However, the association of gene mutation in AML with TMB and immunological features still has not been clearly elucidated. In our study, based on The Cancer Genome Atlas (TCGA) and BeatAML cohorts, 20 frequently mutated genes were found to be covered by both datasets in AML. And TP53 mutation was associated with a poor prognosis, and its mutation displayed exclusiveness with other common mutated genes in both datasets. Moreover, TP53 mutation correlated with TMB and the immune microenvironment. Gene Set Enrichment Analysis (GSEA) showed that TP53 mutation upregulated signaling pathways involved in the immune system. In summary, TP53 mutation is frequently mutated in AML, and its mutation is associated with dismal outcome, TMB, and immunological features, which may serve as a biomarker to predict immune response in AML.
Collapse
Affiliation(s)
- Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pei-Hui Xia
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Qian
- Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
30
|
Chen C, Chen Z, Chio CL, Zhao Y, Li Y, Liu Z, Jin Z, Wu X, Wei W, Zhao Q, Li Y. Higher Expression of WT1 With Lower CD58 Expression may be Biomarkers for Risk Stratification of Patients With Cytogenetically Normal Acute Myeloid Leukemia. Technol Cancer Res Treat 2021; 20:15330338211052152. [PMID: 34738847 PMCID: PMC8573474 DOI: 10.1177/15330338211052152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Cytogenetics at diagnosis is the most important prognostic factor for adult acute myeloid leukemia (AML), but nearly 50% of AML patients who exhibit cytogenetically normal AML (CN-AML) do not undergo effective risk stratification. Therefore, the development of potential biomarkers to further define risk stratification for CN-AML patients is worth exploring. Methods: Transcriptome data from 163 cases in the GSE12417-GPL96 dataset and 104 CN-AML patient cases in the GSE71014-GPL10558 dataset were downloaded from the Gene Expression Omnibus database for overall survival (OS) analysis and validation. Results: The combination of Wilms tumor 1 (WT1) and cluster of diffraction 58 (CD58) can predict the prognosis of CN-AML patients. High expression of WT1 and low expression of CD58 were associated with poor OS in CN-AML. Notably, when WT1 and CD58 were used to concurrently predict OS, CN-AML patients were divided into three groups: low risk, WT1lowCD58high; intermediate risk, WT1highCD58high or WT1lowCD58low; and high risk, WT1highCD58low. Compared with low-risk patients, intermediate- and high-risk patients had shorter survival time and worse OS. Furthermore, a nomogram model constructed with WT1 and CD58 may personalize and reveal the 1-, 2-, 3-, 4-, and 5-year OS rate of CN-AML patients. Both time-dependent receiver operating characteristics and calibration curves suggested that the nomogram model demonstrated good performance. Conclusion: Higher expression of WT1 with lower CD58 expression may be a potential biomarker for risk stratification of CN-AML patients. Moreover, a nomogram model constructed with WT1 and CD58 may personalize and reveal the 1-, 2-, 3-, 4-, and 5-year OS rates of CN-AML patients.
Collapse
Affiliation(s)
- Cunte Chen
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Zhuowen Chen
- 66278The First People's Hospital of Foshan City, Foshan, China
| | - Chi Leong Chio
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Ying Zhao
- 66278The First People's Hospital of Foshan City, Foshan, China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou, Guangdong, China.,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, Guangdong, China
| | - Zhipeng Liu
- Guangdong Cord Blood Bank, Guangzhou, Guangdong, China.,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, Guangdong, China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, Guangdong, China.,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, Guangdong, China
| | - Qi Zhao
- Institute of Translational Medicine, Cancer Centre, 59193University of Macau, Taipa, Macau SPR, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, 47885Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Kaleka G, Schiller G. Immunotherapy for Acute Myeloid Leukemia: Allogeneic hematopoietic cell transplantation is here to stay. Leuk Res 2021; 112:106732. [PMID: 34864447 DOI: 10.1016/j.leukres.2021.106732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 01/20/2023]
Abstract
Acute Myeloid Leukemia (AML) represents 1 % of all new cancer diagnosis made annually in the US and has a five-year survival of 30 %. Traditional treatment includes aggressive induction therapy followed by consolidation therapy that may include a hematopoietic stem cell transplant (HSCT). Thus far, HSCT remains the only potentially curative therapy for many patients with AML owing to the graft-versus-leukemia effect elicited by this treatment. The use of novel therapies, specifically immunotherapy, in the treatment of AML has been limited by the lack of appropriate target antigens, therapy associated toxicities and variable success with treatment. Antigenic variability on leukemia cells and the sharing of antigens by malignant and non-malignant cells makes the identification of appropriate antigens problematic. While studies with immunotherapeutic agents are underway, prior investigations have demonstrated a mixed response with some studies prematurely discontinued due to associated toxicities. This review presents a discussion of the envisioned role of immunotherapy in the treatment of AML in the setting of mixed therapeutic success and potentially lethal toxicities.
Collapse
Affiliation(s)
- Guneet Kaleka
- UCLA-Olive View Medical Center, Department of Medicine, Room 2B-182, 14445 Olive View Drive, Sylmar, CA, 91342, United States.
| | - Gary Schiller
- Department of Medicine, Hematology & Oncology at UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
32
|
Wang P, Chen Y, Long Q, Li Q, Tian J, Liu T, Wu Y, Ding Z. Increased coexpression of PD-L1 and TIM3/TIGIT is associated with poor overall survival of patients with esophageal squamous cell carcinoma. J Immunother Cancer 2021; 9:jitc-2021-002836. [PMID: 34625514 PMCID: PMC8504357 DOI: 10.1136/jitc-2021-002836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background Immune checkpoint (IC) blockades (ICBs) significantly improve patients’ clinical outcomes with solid tumors. Because the objective response rate of single-agent ICB is limited, it is meaningful to explore the combination of ICs for immunotherapy. Methods RNA sequencing data of 95 newly diagnosed patients with esophageal squamous cell carcinoma (ESCC) from The Cancer Genome Atlas (TCGA) database were used to explore the prognostic significance of ICs. The results were validated by immunohistochemistry of 58 ESCC tissue samples from our clinical center. Results The results of both TCGA and validation data suggested that high expression of programmed cell death 1 ligand 1 (PD-L1), T-cell immunoglobulin and mucin-domain-containing-3 (TIM3), and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) was associated with poor overall survival (OS) of patients with ESCC. Importantly, PD-L1/TIM3 or PD-L1/TIGIT was the optimal combination for predicting poor OS and short restricted mean survival time of patients with ESCC and was an independent prognostic factor. Moreover, a nomogram model constructed by PD-L1, TIM3, and TIGIT together with the primary tumor, regional lymph node, distant metastasis stage could provide a concise and precise prediction of 1-year and 2-year OS rates and median survival time. PD-L1/TIM3 or PD-L1/TIGIT had a positive correlation with CD8+ T cells. Notably, PD-1 and TIM3/TIGIT were primarily coexpressed on CD8+ tumor-infiltrating lymphocyte in patients with ESCC by multiplexed immunofluorescence. Conclusion High expression of ICs was associated with poor OS of patients with ESCC. PD-L1/TIM3 and PD-L1/TIGIT were the optimal combinations for predicting OS, which might be potential targets for future ICBs therapy of ESCC.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Qingqin Long
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qing Li
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jiangfang Tian
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13184519. [PMID: 34572745 PMCID: PMC8469736 DOI: 10.3390/cancers13184519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood cancer with an extremely grim prognosis. This is due to the fact that the majority of patients will relapse after frontline treatment. Overall survival of relapsed AML is very low, and treatment options are few. T lymphocytes harnessed with antitumor T-cell receptors (TCRs) can produce objective clinical responses in certain cancers, such as melanoma, but have not entered the main road for AML. In this review, we describe the current status of the field of TCR-T-cell therapies for AML. Abstract Despite the advent of novel therapies, acute myeloid leukemia (AML) remains associated with a grim prognosis. This is exemplified by 5-year overall survival rates not exceeding 30%. Even with frontline high-intensity chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the majority of patients with AML will relapse. For these patients, treatment options are few, and novel therapies are urgently needed. Adoptive T-cell therapies represent an attractive therapeutic avenue due to the intrinsic ability of T lymphocytes to recognize tumor cells with high specificity and efficiency. In particular, T-cell therapies focused on introducing T-cell receptors (TCRs) against tumor antigens have achieved objective clinical responses in solid tumors such as synovial sarcoma and melanoma. However, contrary to chimeric antigen receptor (CAR)-T cells with groundbreaking results in B-cell malignancies, the use of TCR-T cells for hematological malignancies is still in its infancy. In this review, we provide an overview of the status and clinical advances in adoptive TCR-T-cell therapy for the treatment of AML.
Collapse
|
34
|
Paving the Way for Immunotherapy in Pediatric Acute Myeloid Leukemia: Current Knowledge and the Way Forward. Cancers (Basel) 2021; 13:cancers13174364. [PMID: 34503174 PMCID: PMC8431730 DOI: 10.3390/cancers13174364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Immunotherapy may be an attractive treatment option to increase survival, and to reduce treatment-related side effects, for children with acute myeloid leukemia (AML). While immunotherapies have shown successes in many cancer types, the development and subsequent clinical implementation have proven difficult in pediatric AML. To expedite the development of immunotherapy, it will be crucial to understand which pediatric AML patients are likely to respond to immunotherapies. Emerging research in solid malignancies has shown that the number and phenotype of immune cells in the tumor microenvironment is predictive of response to several types of immunotherapies. Such a predictive model may also be applicable for AML and, thus, knowledge on the immune cells infiltrating the bone marrow environment is needed. Here, we discuss the current state of knowledge on these infiltrating immune cells in pediatric AML, as well as ongoing immunotherapy trials, and provide suggestions concerning the way forward. Abstract Immunotherapeutic agents may be an attractive option to further improve outcomes and to reduce treatment-related toxicity for pediatric AML. While improvements in outcome have been observed with immunotherapy in many cancer types, immunotherapy development and implementation into patient care for both adult and pediatric AML has been hampered by an incomplete understanding of the bone marrow environment and a paucity of tumor-specific antigens. Since only a minority of patients respond in most immunotherapy trials across different cancer types, it will be crucial to understand which children with AML are likely to respond to or may benefit from immunotherapies. Immune cell profiling efforts hold promise to answer this question, as illustrated by the development of predictive scores in solid cancers. Such information on the number and phenotype of immune cells during current treatment regimens will be pivotal to generate hypotheses on how and when to intervene with immunotherapy in pediatric AML. In this review, we discuss the current understanding of the number and phenotype of immune cells in the bone marrow in pediatric AML, ongoing immunotherapy trials and how comprehensive immune profiling efforts may pave the way for successful clinical trials (and, ultimately, implementation into patient care).
Collapse
|
35
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Xu L, Liu L, Yao D, Zeng X, Zhang Y, Lai J, Zhong J, Zha X, Zheng R, Lu Y, Li M, Jin Z, Hebbar Subramanyam S, Chen S, Huang X, Li Y. PD-1 and TIGIT Are Highly Co-Expressed on CD8 + T Cells in AML Patient Bone Marrow. Front Oncol 2021; 11:686156. [PMID: 34490086 PMCID: PMC8416522 DOI: 10.3389/fonc.2021.686156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 02/03/2023] Open
Abstract
Despite the great success of immune-checkpoint inhibitor (ICI) treatment for multiple cancers, evidence for the clinical use of ICIs in acute myeloid leukemia (AML) remains inadequate. Further exploration of the causes of immune evasion in the bone marrow (BM) environment, the primary leukemia site, and peripheral blood (PB) and understanding how T cells are affected by AML induction chemotherapy or the influence of age may help to select patients who may benefit from ICI treatment. In this study, we comprehensively compared the distribution of PD-1 and TIGIT, two of the most well-studied IC proteins, in PB and BM T cells from AML patients at the stages of initial diagnosis, complete remission (CR), and relapse-refractory (R/R) disease after chemotherapy. Our results show that PD-1 was generally expressed higher in PB and BM T cells from de novo (DN) and R/R patients, while it was partially recovered in CR patients. The expression of TIGIT was increased in the BM of CD8+ T cells from DN and R/R patients, but it did not recover with CR. In addition, according to age correlation analysis, we found that elderly AML patients possess an even higher percentage of PD-1 and TIGIT single-positive CD8+ T cells in PB and BM, which indicate greater impairment of T cell function in elderly patients. In addition, we found that both DN and R/R patients accumulate a higher frequency of PD-1+ and TIGIT+ CD8+ T cells in BM than in corresponding PB, indicating that a more immunosuppressive microenvironment in leukemia BM may promote disease progression. Collectively, our study may help guide the combined use of anti-PD-1 and anti-TIGIT antibodies for treating elderly AML patients and pave the way for the exploration of strategies for reviving the immunosuppressive BM microenvironment to improve the survival of AML patients.
Collapse
Affiliation(s)
- Ling Xu
- The Clinical Medicine Postdoctoral Research Station, Department of Hematology, First Affiliated Hospital; Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
- Laboratory Center, Tianhe Nuoya Bio-Engineering Co. Ltd, Guangzhou, China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Jun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China Guangzhou, China
| | - Runhui Zheng
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China, China
| | - Yuhong Lu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Sudheendra Hebbar Subramanyam
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- The Clinical Medicine Postdoctoral Research Station, Department of Hematology, First Affiliated Hospital; Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 2021; 23:2431-2447. [PMID: 34160771 DOI: 10.1007/s12094-021-02662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient's immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Collapse
|
38
|
Penter L, Zhang Y, Savell A, Huang T, Cieri N, Thrash EM, Kim-Schulze S, Jhaveri A, Fu J, Ranasinghe S, Li S, Zhang W, Hathaway ES, Nazzaro M, Kim HT, Chen H, Thurin M, Rodig SJ, Severgnini M, Cibulskis C, Gabriel S, Livak KJ, Cutler C, Antin JH, Nikiforow S, Koreth J, Ho VT, Armand P, Ritz J, Streicher H, Neuberg D, Hodi FS, Gnjatic S, Soiffer RJ, Liu XS, Davids MS, Bachireddy P, Wu CJ. Molecular and cellular features of CTLA-4 blockade for relapsed myeloid malignancies after transplantation. Blood 2021; 137:3212-3217. [PMID: 33720354 PMCID: PMC8351891 DOI: 10.1182/blood.2021010867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed myeloid disease after allogeneic stem cell transplantation (HSCT) remains largely incurable. We previously demonstrated the potent activity of immune checkpoint blockade in this clinical setting with ipilimumab or nivolumab. To define the molecular and cellular pathways by which CTLA-4 blockade with ipilimumab can reinvigorate an effective graft-versus-leukemia (GVL) response, we integrated transcriptomic analysis of leukemic biopsies with immunophenotypic profiling of matched peripheral blood samples collected from patients treated with ipilimumab following HSCT on the Experimental Therapeutics Clinical Trials Network 9204 trial. Response to ipilimumab was associated with transcriptomic evidence of increased local CD8+ T-cell infiltration and activation. Systemically, ipilimumab decreased naïve and increased memory T-cell populations and increased expression of markers of T-cell activation and costimulation such as PD-1, HLA-DR, and ICOS, irrespective of response. However, responding patients were characterized by higher turnover of T-cell receptor sequences in peripheral blood and showed increased expression of proinflammatory chemokines in plasma that was further amplified by ipilimumab. Altogether, these data highlight the compositional T-cell shifts and inflammatory pathways induced by ipilimumab both locally and systemically that associate with successful GVL outcomes. This trial was registered at www.clinicaltrials.gov as #NCT01822509.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yi Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Alexandra Savell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Teddy Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Translational Immunogenomics Laboratory and
| | - Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Emily M Thrash
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aashna Jhaveri
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Jingxin Fu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Translational Immunogenomics Laboratory and
| | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Emma S Hathaway
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew Nazzaro
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Haesook T Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Helen Chen
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD; and
| | - Magdalena Thurin
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD; and
| | | | | | - Carrie Cibulskis
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Stacey Gabriel
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Translational Immunogenomics Laboratory and
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Joseph H Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - John Koreth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD; and
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sacha Gnjatic
- Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Pavan Bachireddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
39
|
Tabana Y, Moon TC, Siraki A, Elahi S, Barakat K. Reversing T-cell exhaustion in immunotherapy: a review on current approaches and limitations. Expert Opin Ther Targets 2021; 25:347-363. [PMID: 34056985 DOI: 10.1080/14728222.2021.1937123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction:T cell functions are altered during chronic viral infections and tumor development. This is mainly manifested by significant changes in T cells' epigenetic and metabolic landscapes, pushing them into an 'exhausted' state. Reversing this T cell exhaustion has been emerging as a 'game-changing' therapeutic approach against cancer and chronic viral infection.Areas covered:This review discusses the cellular pathways related to T cell exhaustion, and the clinical development and possible cellular targets that can be exploited therapeutically to reverse this exhaustion. We searched various databases (e.g. Google Scholar, PubMed, Elsevier, and other scientific database sites) using the keywords T cell exhaustion, T cell activation, co-inhibitory receptors, and reversing T cell exhaustion.Expert opinion:The discovery of the immune checkpoints pathways represents a significant milestone toward understanding and reversing T cell exhaustion. Antibodies that target these pathways have already demonstrated promising activities in reversing T cell exhaustion. Nevertheless, there are still many associated limitations. In this context, next-generation alternatives are on the horizon. This includes the use of small molecules to block the immune checkpoints' receptors, combining them with other treatments, and identifying novel, safer and more effective immunotherapeutic targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Cell interactions in the bone marrow microenvironment affecting myeloid malignancies. Blood Adv 2021; 4:3795-3803. [PMID: 32780848 DOI: 10.1182/bloodadvances.2020002127] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
The bone marrow is a complex tissue in which heterogeneous populations of stromal cells interact with hematopoietic cells to dynamically respond to organismal needs in defense, hemostasis, and oxygen delivery. Physiologic challenges modify stromal/hematopoietic cell interactions to generate changes in blood cell production. When either stroma or hematopoietic cells are impaired, the system distorts. The distortions associated with myeloid malignancy are reviewed here and may provide opportunities for therapeutic intervention.
Collapse
|
41
|
Isidori A, Cerchione C, Daver N, DiNardo C, Garcia-Manero G, Konopleva M, Jabbour E, Ravandi F, Kadia T, Burguera ADLF, Romano A, Loscocco F, Visani G, Martinelli G, Kantarjian H, Curti A. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front Oncol 2021; 11:656218. [PMID: 34041025 PMCID: PMC8143531 DOI: 10.3389/fonc.2021.656218] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the past few years, our improved knowledge of acute myeloid leukemia (AML) pathogenesis has led to the accelerated discovery of new drugs and the development of innovative therapeutic approaches. The role of the immune system in AML development, growth and recurrence has gained increasing interest. A better understanding of immunological escape and systemic tolerance induced by AML blasts has been achieved. The extraordinary successes of immune therapies that harness the power of T cells in solid tumors and certain hematological malignancies have provided new stimuli in this area of research. Accordingly, major efforts have been made to develop immune therapies for the treatment of AML patients. The persistence of leukemia stem cells, representing the most relevant cause of relapse, even after allogeneic stem cell transplant (allo-SCT), remains a major hurdle in the path to cure for AML patients. Several clinical trials with immune-based therapies are currently ongoing in the frontline, relapsed/refractory, post-allo-SCT and minimal residual disease/maintenance setting, with the aim to improve survival of AML patients. This review summarizes the available data with immune-based therapeutic modalities such as monoclonal antibodies (naked and conjugated), T cell engagers, adoptive T-cell therapy, adoptive-NK therapy, checkpoint blockade via PD-1/PD-L1, CTLA4, TIM3 and macrophage checkpoint blockade via the CD47/SIRPa axis, and leukemia vaccines. Combining clinical results with biological immunological findings, possibly coupled with the discovery of biomarkers predictive for response, will hopefully allow us to determine the best approaches to immunotherapy in AML.
Collapse
Affiliation(s)
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Courtney DiNardo
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Tapan Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Alessandra Romano
- Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania, Catania, Italy
| | | | - Giuseppe Visani
- Haematology and Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Hagop Kantarjian
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
42
|
Radpour R, Stucki M, Riether C, Ochsenbein AF. Epigenetic Silencing of Immune-Checkpoint Receptors in Bone Marrow- Infiltrating T Cells in Acute Myeloid Leukemia. Front Oncol 2021; 11:663406. [PMID: 34017684 PMCID: PMC8130556 DOI: 10.3389/fonc.2021.663406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Immune-checkpoint (IC) inhibitors have revolutionized the treatment of multiple solid tumors and defined lymphomas, but they are largely ineffective in acute myeloid leukemia (AML). The reason why especially PD1/PD-L1 blocking agents are not efficacious is not well-understood but it may be due to the contribution of different IC ligand/receptor interactions that determine the function of T cells in AML. Methods To analyze the interactions of IC ligands and receptors in AML, we performed a comprehensive transcriptomic analysis of FACS-purified leukemia stem/progenitor cells and paired bone marrow (BM)-infiltrating CD4+ and CD8+ T cells from 30 patients with AML. The gene expression profiles of activating and inhibiting IC ligands and receptors were correlated with the clinical data. Epigenetic mechanisms were studied by inhibiting the histone deacetylase with valproic acid or by gene silencing of PAC1. Results We observed that IC ligands and receptors were mainly upregulated in leukemia stem cells. The gene expression of activating IC ligands and receptors correlated with improved prognosis and vice versa. In contrast, the majority of IC receptor genes were downregulated in BM-infiltrating CD8+ T cells and partially in CD4+ T cells, due to pathological chromatin remodeling via histone deacetylation. Therefore, treatment with histone deacetylase inhibitor (HDACi) or silencing of PAC1, as a T cell-specific epigenetic modulator, significantly increased the expression of IC receptors and defined effector molecules in CD8+ T cells. Conclusions Our results suggest that CD8+ T cells in AML are dysfunctional mainly due to pathological epigenetic silencing of activating IC receptors rather than due to signaling by immune inhibitory IC receptors, which may explain the limited efficacy of antibodies that block immune-inhibitory ICs in AML.
Collapse
Affiliation(s)
- Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Miriam Stucki
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carsten Riether
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Stroopinsky D, Liegel J, Bhasin M, Cheloni G, Thomas B, Bhasin S, Panchal R, Ghiasuddin H, Rahimian M, Nahas M, Orr S, Capelletti M, Torres D, Tacettin C, Weinstock M, Bisharat L, Morin A, Mahoney KM, Ebert B, Stone R, Kufe D, Freeman GJ, Rosenblatt J, Avigan D. Leukemia vaccine overcomes limitations of checkpoint blockade by evoking clonal T cell responses in a murine acute myeloid leukemia model. Haematologica 2021; 106:1330-1342. [PMID: 33538148 PMCID: PMC8094093 DOI: 10.3324/haematol.2020.259457] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
We have developed a personalized vaccine whereby patient derived leukemia cells are fused to autologous dendritic cells, evoking a polyclonal T cell response against shared and neo-antigens. We postulated that the dendritic cell (DC)/AML fusion vaccine would demonstrate synergy with checkpoint blockade by expanding tumor antigen specific lymphocytes that would provide a critical substrate for checkpoint blockade mediated activation. Using an immunocompetent murine leukemia model, we examined the immunologic response and therapeutic efficacy of vaccination in conjunction with checkpoint blockade with respect to leukemia engraftment, disease burden, survival and the induction of tumor specific immunity. Mice treated with checkpoint blockade alone had rapid leukemia progression and demonstrated only a modest extension of survival. Vaccination with DC/AML fusions resulted in the expansion of tumor specific lymphocytes and disease eradication in a subset of animals, while the combination of vaccination and checkpoint blockade induced a fully protective tumor specific immune response in all treated animals. Vaccination followed by checkpoint blockade resulted in upregulation of genes regulating activation and proliferation in memory and effector T cells. Long term survivors exhibited increased T cell clonal diversity and were resistant to subsequent tumor challenge. The combined DC/AML fusion vaccine and checkpoint blockade treatment offers unique synergy inducing the durable activation of leukemia specific immunity, protection from lethal tumor challenge and the selective expansion of tumor reactive clones.
Collapse
Affiliation(s)
| | - Jessica Liegel
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Manoj Bhasin
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Giulia Cheloni
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Beena Thomas
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Swati Bhasin
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Ruchit Panchal
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Maryam Rahimian
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Myrna Nahas
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Shira Orr
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Daniela Torres
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Cansu Tacettin
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Lina Bisharat
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Adam Morin
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Kathleen M Mahoney
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
| | - Benjamin Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
| | - Richard Stone
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
| | - Donald Kufe
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
| | - Gordon J Freeman
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
| | | | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
44
|
Rakova J, Truxova I, Holicek P, Salek C, Hensler M, Kasikova L, Pasulka J, Holubova M, Kovar M, Lysak D, Kline JP, Racil Z, Galluzzi L, Spisek R, Fucikova J. TIM-3 levels correlate with enhanced NK cell cytotoxicity and improved clinical outcome in AML patients. Oncoimmunology 2021; 10:1889822. [PMID: 33758676 PMCID: PMC7946028 DOI: 10.1080/2162402x.2021.1889822] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence indicates that immune checkpoint inhibitors (ICIs) can restore CD8+ cytotoxic T lymphocyte (CTL) functions in preclinical models of acute myeloid leukemia (AML). However, ICIs targeting programmed cell death 1 (PDCD1, best known as PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) have limited clinical efficacy in patients with AML. Natural killer (NK) cells are central players in AML-targeting immune responses. However, little is known on the relationship between co-inhibitory receptors expressed by NK cells and the ability of the latter to control AML. Here, we show that hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM-3) is highly expressed by NK cells from AML patients, correlating with improved functional licensing and superior effector functions. Altogether, our data indicate that NK cell frequency as well as TIM-3 expression levels constitute prognostically relevant biomarkers of active immunity against AML.
Collapse
Affiliation(s)
| | | | - Peter Holicek
- Sotio, Prague, Czech Republic
- Department of Immunology, Charles University, 2 Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | - Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Lysak
- Department of Hematology and Oncology, University Hospital in Pilsen, Czech Republic
| | - Justin P. Kline
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Université de Paris, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Department of Immunology, Charles University, 2 Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Department of Immunology, Charles University, 2 Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
45
|
Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol 2021; 100:1169-1179. [PMID: 33704530 PMCID: PMC8043896 DOI: 10.1007/s00277-021-04467-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
This translational study aimed at gaining insight into the effects of lenalidomide in acute myeloid leukemia (AML). Forty-one AML patients aged 66 or older of the Swiss cohort of the HOVON-103 AML/SAKK30/10 study were included. After randomization, they received standard induction chemotherapy with or without lenalidomide. Bone marrow biopsies at diagnosis and before the 2nd induction cycle were obtained to assess the therapeutic impact on leukemic blasts and microenvironment. Increased bone marrow angiogenesis, as assessed by microvessel density (MVD), was found at AML diagnosis and differed significantly between the WHO categories. Morphological analysis revealed a higher initial MVD in AML with myelodysplasia-related changes (AML-MRC) and a more substantial decrease of microvascularization after lenalidomide exposure. A slight increase of T-bet-positive TH1-equivalents was identifiable under lenalidomide. In the subgroup of patients with AML-MRC, the progression-free survival differed between the two treatment regimens, showing a potential but not significant benefit of lenalidomide. We found no correlation between the cereblon genotype (the target of lenalidomide) and treatment response or prognosis. In conclusion, addition of lenalidomide may be beneficial to elderly patients suffering from AML-MRC, where it leads to a reduction of microvascularization and, probably, to an intensified specific T cell-driven anti-leukemic response.
Collapse
|
46
|
Prasad R, Yen TJ, Bellacosa A. Active DNA demethylation-The epigenetic gatekeeper of development, immunity, and cancer. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10033. [PMID: 36618446 PMCID: PMC9744510 DOI: 10.1002/ggn2.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/11/2023]
Abstract
DNA methylation is a critical process in the regulation of gene expression with dramatic effects in development and continually expanding roles in oncogenesis. 5-Methylcytosine was once considered to be an inherited and stably repressive epigenetic mark, which can be only removed by passive dilution during multiple rounds of DNA replication. However, in the past two decades, physiologically controlled DNA demethylation and deamination processes have been identified, thereby revealing the function of cytosine methylation as a highly regulated and complex state-not simply a static, inherited signature or binary on-off switch. Alongside these fundamental discoveries, clinical studies over the past decade have revealed the dramatic consequences of aberrant DNA demethylation. In this review we discuss DNA demethylation and deamination in the context of 5-methylcytosine as critical processes for physiological and physiopathological transitions within three states-development, immune maturation, and oncogenic transformation; and we describe the expanding role of DNA demethylating drugs as therapeutic agents in cancer.
Collapse
Affiliation(s)
- Rahul Prasad
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Timothy J. Yen
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
47
|
Wong KK, Hassan R, Yaacob NS. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front Oncol 2021; 11:624742. [PMID: 33718188 PMCID: PMC7947882 DOI: 10.3389/fonc.2021.624742] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory effects against cancer cells. This includes stimulation of anti-tumor immunity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens (CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity. Moreover, decitabine and guadecitabine induce the expression of immune checkpoint molecules in AML cells. In this review, the accumulating knowledge on the immunopotentiating properties of decitabine and guadecitabine in AML and MDS patients are presented and discussed. In summary, combination of decitabine or guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover, decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen receptor-engineered T cells antileukemic activities against AML. Furthermore, combination of either HMAs with immune checkpoint blockade (ICB) therapy may circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS patients are currently underway, highlighting the promising efficacy of HMAs and immunotherapy synergy against these malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
48
|
Immune Checkpoint Blockade for Aspergillosis and Mucormycosis Coinfection. Hemasphere 2021; 5:e530. [PMID: 33604513 PMCID: PMC7886469 DOI: 10.1097/hs9.0000000000000530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022] Open
|
49
|
Shallis RM, Bewersdorf JP, Swoboda DM, Wei W, Gowda L, Prebet T, Halene S, Pillai MM, Parker T, Neparidze N, Podoltsev NA, Seropian S, Sallman DA, Gore SD, Zeidan AM. Challenges in the Evaluation and Management of Toxicities Arising From Immune Checkpoint Inhibitor Therapy for Patients With Myeloid Malignancies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e483-e487. [PMID: 33551344 DOI: 10.1016/j.clml.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - David M Swoboda
- Department of Hematology and Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Manoj M Pillai
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Terri Parker
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Natalia Neparidze
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Stuart Seropian
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - David A Sallman
- Department of Hematology and Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT.
| |
Collapse
|
50
|
Pemmaraju N, Chen NC, Verstovsek S. Immunotherapy and Immunomodulation in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:409-429. [PMID: 33641877 DOI: 10.1016/j.hoc.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloproliferative neoplasms are characterized by chronic inflammation. The discovery of constitutively active JAK-STAT signaling associated with driver mutations has led to clinical and translational breakthroughs. Insights into the other pathways and novel factors of potential importance are being actively investigated. Various classes of agents with immunomodulating or immunosuppressive properties have been used with varying degrees of success in treating myeloproliferative neoplasms. Early clinical trials are investigating the feasibility, effectiveness, and safety of immune checkpoint inhibitors, cell-based immunotherapies, and SMAC mimetics. The dynamic landscape of immunotherapy and immunomodulation in myeloproliferative neoplasms is the topic of the present review.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #3000, Houston, TX 77030, USA.
| | - Natalie C Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #428, Houston, TX 77030, USA
| |
Collapse
|