1
|
Zhang LS, Chen QC, Zong HT, Xia Q. Exosome miRNA-203 promotes M1 macrophage polarization and inhibits prostate cancer tumor progression. Mol Cell Biochem 2024; 479:2459-2470. [PMID: 37812348 DOI: 10.1007/s11010-023-04854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Prostate cancer (PCa) is a prevalent malignant neoplasm affecting the male reproductive system globally. However, the diagnostic and therapeutic approaches fall short of meeting the demands posed by PCa. Poor expression of miRNA-203 (miR-203) within PCa tissues and cells implies its potential utility as a diagnostic indicator for PCa. Exosomes (Exo), membranous vesicles released by various cells, are rich reservoirs of miRNAs. However, the presence of miR-203 presents within Exo derived from PCa cells remains unclarified. In this study, Exo was isolated from urine specimens collected from clinical PCa patients and LNCaP cells to detect miR-203 expression. Meanwhile, the impact of overexpressed miR-203 on M0 macrophages (mø) was analyzed. Subsequently, alterations in the proliferative, migratory, and invasive capacities of LNCaP cells were examined within a co-culture system featuring elevated miR-203 levels in both macrophages and LNCaP cells. Furthermore, the repercussions of miR-203 upregulation or inhibition were explored in a murine PCa tumor model. The results revealed that Exo manifested a circular or elliptical morphology, encapsulating a phospholipid bilayer approximately 100 nm in diameter. Notably, Exo readily infiltrated, with both Exo and miR-203-overexpressing Exo prompting macrophage polarization toward the M1 subtype. In the co-culture system, miR-203 exhibited pronounced suppression of LNCaP cell proliferation, migration, and invasion, while concurrently fostering apoptosis as compared with the LNCaP group (Control). In vivo experiments further disclosed that miR-203 greatly inhibited the growth of PCa tumors in nude mice. Markedly heightened expression of M1 macrophage markers such as IL-1β, IL-6, IL-12, CXCL9, and CXCL10 was observed within the tumor microenvironment following miR-203 intervention, as opposed to the model group. However, the introduction of miR-203 antagomir led to a reversal in tumor growth trends. This investigation indicates the presence of miR-203 within the urine of PCa patients and Exo originating from cells, and that miR-203 exerted antitumor effect by facilitating M1 macrophage polarization. Our study furnishes valuable insights into the potential applicability of miR-203 as a diagnostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Lian-Sheng Zhang
- Department of Urology, Soochow University Affiliated Wuxi Ninth Hospital, No. 999, Liangxi Road, Binhu District, Wuxi, 214000, Jiangsu Province, China.
| | - Qi-Chao Chen
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Hong-Tao Zong
- Department of Urology, Soochow University Affiliated Wuxi Ninth Hospital, No. 999, Liangxi Road, Binhu District, Wuxi, 214000, Jiangsu Province, China
| | - Qiang Xia
- Department of Urology, Soochow University Affiliated Wuxi Ninth Hospital, No. 999, Liangxi Road, Binhu District, Wuxi, 214000, Jiangsu Province, China.
| |
Collapse
|
2
|
Bhadra M, Sachan M. An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection. Heliyon 2024; 10:e30328. [PMID: 38707279 PMCID: PMC11068823 DOI: 10.1016/j.heliyon.2024.e30328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
As one of the deadliest gynaecological cancers, ovarian cancer has been on the list. With lesser-known symptoms and lack of an accurate detection method, it is still difficult to catch it early. In terms of both the diagnosis and outlook for cancer, liquid biopsy has come a long way with significant advancements. Exosomes, extracellular components commonly shed by cancerous cells, are nucleic acid-rich particles floating in almost all body fluids and hold enormous promise, leading to minimallyinvasive molecular diagnostics. They have been shown as potential biomarkers in liquid biopsy, being implicated in tumour growth and metastasis. In order to address the drawbacks of ovarian cancer tumor heterogeneity, a liquid biopsy-based approach is being investigated by detecting cell-free nucleic acids, particularly non-coding RNAs, having the advantage of being less invasive and more prominent in nature. microRNAs are known to actively contribute to cancer development and their existence inside exosomes has also been made quite apparent which can be leveraged to diagnose and treat the disease. Extraction of miRNAs and exosomes is an arduous execution, and while other approaches have been investigated, none have produced results that are as encouraging due to limits in time commitment, yield, and, most significantly, damage to the exosomal structure resulting discrepancies in miRNA-based expression profiling for disease diagnosis. We have briefly outlined and reviewed the difficulties with exosome isolation techniques and the need for their standardization. The several widely used procedures and their drawbacks in terms of the exosomal purity they may produce have also been outlined.
Collapse
Affiliation(s)
- Mridula Bhadra
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| |
Collapse
|
3
|
Yao C, Liu X, Lu X, Wang L, Jia J, Li Z. Smartphone-Based Fluorescent Profiling of Quaternary MicroRNAs in Urine for Rapid Diagnosis of Urological Cancers Using a Multiplexed Isothermal Exponential Amplification Reaction. Anal Chem 2024; 96:419-426. [PMID: 38152877 DOI: 10.1021/acs.analchem.3c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Urological cancers such as bladder or prostate cancer represent one of the most malignant tumors that accounts for an extremely high mortality. However, conventionally standard diagnostics for urological cancers are hardly available in low-resource settings. We developed herein a hand-held fluorescent imaging platform by integrating a multiplexed isothermal exponential amplification reaction (EXPAR) with a microgel-enriched methodology for sensitive profiling of quaternary microRNAs (miRNAs) in urine and quick diagnosis of urological cancers at the early stage. The target miRNA mixtures in the urine underwent four parallel EXPARs without cross-reactivity, followed by surface concentration and hybridization by the encoded polyacrylamide microgels. This mix-and-read strategy allowed for one-pot analysis of several key miRNAs simultaneously and provided 5-fold enhancement in fluorescent detection sensitivities compared to the individual EXPAR-based assays. Four urinary miRNAs (let-7a, miRNA-155, -223, and -143) could be quantitatively determined in a wide linear range from 50 fM to 30 nM, with the limits of detection at femtomolar levels. Using a smartphone-based imaging microreader, healthy and cancerous cohorts with prostate, bladder, and renal cell cancers could be discriminated in 30 min with the accuracy >83% using linear discriminant analysis. The developed detection platform has proven to be a portable, noninvasive, and useful complement to the toolbox for miRNA-based liquid biopsies, which holds immense potential and advantage for regular and large-scale applications in early cancer diagnosis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Xueliang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, P. R. China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Lei Wang
- Department of Urology, Xinxiang Central Hospital, Xinxiang Medical College, 56 Jinsui Road, Xinxiang, Henan 453003, P. R. China
| | - Jia Jia
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
4
|
Dey D, Ghosh S, Mirgh D, Panda SP, Jha NK, Jha SK. Role of exosomes in prostate cancer and male fertility. Drug Discov Today 2023; 28:103791. [PMID: 37777169 DOI: 10.1016/j.drudis.2023.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Prostate cancer (PCa) is the second most common and fifth most aggressive neoplasm among men worldwide. In the last decade, extracellular vesicle (EV) research has decoded multiple unsolved cancer-related mysteries. EVs can be classified as microvesicles, apoptotic bodies, and exosomes, among others. Exosomes play a key role in cellular signaling. Their internal cargos (nucleic acids, proteins, lipids) influence the recipient cell. In PCa, the exosome is the regulator of cancer progression. It is also a promising theranostics tool for PCa. Moreover, exosomes have strong participation in male fertility complications. This review aims to highlight the exosome theranostics signature in PCa and its association with male fertility.
Collapse
Affiliation(s)
- Dwaipayan Dey
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College, Kolkata 700017, West Bengal, India
| | - Divya Mirgh
- Johns Hopkins University, Baltimore, MD 21218, USA
| | - Siva Parsad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal, University, Dehradun, India.
| |
Collapse
|
5
|
Gupta J, Tayyib NA, Jalil AT, Hlail SH, Zabibah RS, Vokhidov UN, Alsaikhan F, Ramaiah P, Chinnasamy L, Kadhim MM. Angiogenesis and prostate cancer: MicroRNAs comes into view. Pathol Res Pract 2023; 248:154591. [PMID: 37343381 DOI: 10.1016/j.prp.2023.154591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Angiogenesis, the formation of new blood vessels, is an important stage in the growth of cancer. Extracellular matrix, endothelial cells, and soluble substances must be carefully coordinated during the multistep procedure of angiogenesis. Inducers and inhibitors have been found to control pretty much every phase. In addition to benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and angiogenesis have a critical role in the initiation and progression of prostate cancer. MicroRNA (miRNA) is endogenous, short, non-coding RNA molecules of almost 22 nucleotides play a role in regulating cellular processes and regulating several genes' expression. Through controlling endothelial migration, differentiation, death, and cell proliferation, miRNAs have a significant function in angiogenesis. A number of pathological and physiological processes, particularly prostate cancer's emergence, depend on the regulation of angiogenesis. Investigating the functions played with miRNAs in angiogenesis is crucial because it might result in the creation of novel prostate cancer therapies that entail regulating angiogenesis. The function of several miRNAs and its targeting genes engaged in cancer of the prostate angiogenesis will be reviewed in this review in light of the most recent developments. The potential clinical utility of miRNAs potentially a novel therapeutic targets will also be explored, as well as their capacity to control prostate cancer angiogenesis and the underlying mechanisms.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India.
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla 51001, Babylon, Iraq.
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ulug'bek N Vokhidov
- Department of ENT Diseases, Head of the Department of Quality Education, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| |
Collapse
|
6
|
Valentino A, Leuci S, Galderisi U, Spagnuolo G, Mignogna MD, Peluso G, Calarco A. Plasma Exosomal microRNA Profile Reveals miRNA 148a-3p Downregulation in the Mucosal-Dominant Variant of Pemphigus Vulgaris. Int J Mol Sci 2023; 24:11493. [PMID: 37511259 PMCID: PMC10380621 DOI: 10.3390/ijms241411493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mucosal-dominant variant of pemphigus vulgaris (MPV) is an autoimmune disease characterized by oral mucosal blistering and circulating pathogenic IgG antibodies against desmoglein 3 (Dsg3), resulting in life-threatening bullae and erosion formation. Recently, microRNAs (miRNAs) have emerged as promising players in the diagnosis and prognosis of several pathological states. For the first time, we have identified a different expression profile of miRNAs isolated from plasma-derived exosomes (P-EVs) of MPV patients positive for antibodies against Dsg3 (Dsg3-positive) compared to healthy controls. Moreover, a dysregulated miRNA profile was confirmed in MPV tissue biopsies. In particular, a strong downregulation of the miR-148a-3p expression level in P-EVs of MPV patients compared to healthy controls was demonstrated. Bioinformatics prediction analysis identifies metalloproteinase-7 (MMP7) as a potential miR-148a-3p target. An in vitro acantholysis model revealed that the miR-148a-3p expression level was dramatically downregulated after treatment with Dsg3 autoantibodies, with a concomitant increase in MMP7 expression. The increased expression of MMP7 leads to the disruption of intercellular and/or extracellular matrix adhesion in an in vitro cellular model of MPV, with subsequent cell dissociation. Overexpression of miR-148a-3p prevented cell dissociation and regressed MMP7 upregulation. Our findings suggest a pivotal role of P-EV cargo in regulating molecular mechanisms involved in MPV pathogenesis and indicate them as potential MPV therapeutic targets.
Collapse
Affiliation(s)
- Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Stefania Leuci
- Oral Medicine Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (G.S.); (M.D.M.)
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli, 80100 Naples, Italy;
| | - Gianrico Spagnuolo
- Oral Medicine Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (G.S.); (M.D.M.)
| | - Michele Davide Mignogna
- Oral Medicine Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (G.S.); (M.D.M.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (A.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (A.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
7
|
Sohal IS, Kasinski AL. Emerging diversity in extracellular vesicles and their roles in cancer. Front Oncol 2023; 13:1167717. [PMID: 37397375 PMCID: PMC10312242 DOI: 10.3389/fonc.2023.1167717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Extracellular vesicles have undergone a paradigm shift from being considered as 'waste bags' to being central mediators of cell-to-cell signaling in homeostasis and several pathologies including cancer. Their ubiquitous nature, ability to cross biological barriers, and dynamic regulation during changes in pathophysiological state of an individual not only makes them excellent biomarkers but also critical mediators of cancer progression. This review highlights the heterogeneity in extracellular vesicles by discussing emerging subtypes, such as migrasomes, mitovesicles, and exophers, as well as evolving components of extracellular vesicles such as the surface protein corona. The review provides a comprehensive overview of our current understanding of the role of extracellular vesicles during different stages of cancer including cancer initiation, metabolic reprogramming, extracellular matrix remodeling, angiogenesis, immune modulation, therapy resistance, and metastasis, and highlights gaps in our current knowledge of extracellular vesicle biology in cancer. We further provide a perspective on extracellular vesicle-based cancer therapeutics and challenges associated with bringing them to the clinic.
Collapse
Affiliation(s)
- Ikjot S. Sohal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
9
|
Amiri N, Mohammadi P, Allahgholi A, Salek F, Amini E. The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sci 2022; 312:121251. [PMID: 36463941 DOI: 10.1016/j.lfs.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
In the male reproductive system, seminiferous tubules in testis are lined by a complex stratified epithelium containing two distinct populations of cells, spermatogenic cells that develop into spermatozoa, and sertoli cells (SCs) that mainly support and nourish spermatogenic cell lineage as well as exerting powerful effect on men reproductive capacity. Different varieties of proteins, hormones, exosomes and growth factors are secreted by SCs. There are different kinds of junctions found between SCs called BTB. It was elucidated that complete absence of BTB or its dysfunction leads to infertility. To promote spermatogenesis, crosstalk of SCs with spermatogenic cells plays an important role. The ability of SCs to support germ cell productivity and development is related to its various products carrying out several functions. Exosomes (EXOs) are one of the main EVs with 30-100 nm size generating from endocytic pathway. They are produced in different parts of male reproductive system including epididymis, prostate and SCs. The most prominent characteristics of SC-based exosomes is considered mutual interaction of sertoli cells with spermatogonial stem cells and Leydig cells mainly through establishment of intercellular communication. Exosomes have gotten a lot of interest because of their role in pathobiological processes and as a cell free therapy which led to developing multiple exosome isolation methods based on different principles. Transmission of nucleic acids, proteins, and growth factors via SC-based exosomes and exosomal miRNAs are proved to have potential to be valuable biomarkers in male reproductive disease. Among testicular abnormalities, non-obstructive azoospermia and testicular cancer have been more contributed with SCs performance. The identification of key proteins and miRNAs involved in the signaling pathways related with spermatogenesis, can serve as diagnostic and regenerative targets in male infertility.
Collapse
Affiliation(s)
- Narjes Amiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Paria Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Atefeh Allahgholi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Farzaneh Salek
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
10
|
Movahedpour A, Khatami SH, Karami N, Vakili O, Naeli P, Jamali Z, Shabaninejad Z, Tazik K, Behrouj H, Ghasemi H. Exosomal noncoding RNAs in prostate cancer. Clin Chim Acta 2022; 537:127-132. [DOI: 10.1016/j.cca.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/03/2022]
|
11
|
de Nóbrega M, Dos Reis MB, Pereira ÉR, de Souza MF, de Syllos Cólus IM. The potential of cell-free and exosomal microRNAs as biomarkers in liquid biopsy in patients with prostate cancer. J Cancer Res Clin Oncol 2022; 148:2893-2910. [PMID: 35922694 DOI: 10.1007/s00432-022-04213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the 4th most diagnosed cancer and the 8th leading cause of cancer-related death worldwide. Currently, clinical risk stratification models including factors like PSA levels, Gleason score, and digital rectal examination are used for this purpose. There is a need for novel biomarkers that can distinguish between indolent and aggressive pathology and reduce the risk of overdiagnosis/overtreatment. Liquid biopsy has a non-invasive character, can lead to less morbidity and provide new biomarkers, such as miRNAs, that regulate diverse important cellular processes. Here, we report an extended revision about the role of cell-free and exosomal miRNAs (exomiRNAs) as biomarkers for screening, diagnosis, prognosis, or treatment of PCa. METHODS A comprehensive review of the published literature was conducted focusing on the usefulness, advantages, and clinical applications of cell-free and exomiRNAs in serum and plasma. Using PubMed database 53 articles published between 2012 and 2021 were selected and discussed from the perspective of their use as diagnostic, prognostic and therapeutic biomarkers for PCa. RESULTS We identify 119 miRNAs associated with PCa development and the cell-free and exosomal miR-21, miR-141, miR-200c, and miR-375 were consistently associated with progression in multiple cohorts/studies. However, standardized experimental procedures, and well-defined and clinically relevant cohort studies are urgently needed to confirm the biomarker potential of cell-free and exomiRNAs in serum or plasma. CONCLUSION Cell-free and exomiRNAs in serum or plasma are promising tools for be used as non-invasive biomarkers for diagnostic, prognosis, therapy improvement and clinical outcome prediction in PCa patients.
Collapse
Affiliation(s)
- Monyse de Nóbrega
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Mariana Bisarro Dos Reis
- Barretos Cancer Hospital (Molecular Oncology Research Center), Barretos, SP, CEP 14784-400, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Marilesia Ferreira de Souza
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil.
| |
Collapse
|
12
|
Feng D, Li D, Shi X, Xiong Q, Zhang F, Wei Q, Yang L. A gene prognostic index from cellular senescence predicting metastasis and radioresistance for prostate cancer. J Transl Med 2022; 20:252. [PMID: 35658892 PMCID: PMC9164540 DOI: 10.1186/s12967-022-03459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 02/08/2023] Open
Abstract
Background Senescent cells have been identified in the aging prostate, and the senescence-associated secretory phenotype might be linked to prostate cancer (PCa). Thus, we established a cellular senescence-related gene prognostic index (CSGPI) to predict metastasis and radioresistance in PCa. Methods We used Lasso and Cox regression analysis to establish the CSGPI. Clinical correlation, external validation, functional enrichment analysis, drug and cell line analysis, and tumor immune environment analysis were conducted. All analyses were conducted with R version 3.6.3 and its suitable packages. Results We used ALCAM and ALDH2 to establish the CSGPI risk score. High-risk patients experienced a higher risk of metastasis than their counterparts (HR: 10.37, 95% CI 4.50–23.93, p < 0.001), consistent with the results in the TCGA database (HR: 1.60, 95% CI 1.03–2.47, p = 0.038). Furthermore, CSGPI had high diagnostic accuracy distinguishing radioresistance from no radioresistance (AUC: 0.938, 95% CI 0.834–1.000). GSEA showed that high-risk patients were highly associated with apoptosis, cell cycle, ribosome, base excision repair, aminoacyl-tRNA biosynthesis, and mismatch repair. For immune checkpoint analysis, we found that PDCD1LG2 and CD226 were expressed at significantly higher levels in patients with metastasis than in those without metastasis. In addition, higher expression of CD226 significantly increased the risk of metastasis (HR: 3.65, 95% CI 1.58–8.42, p = 0.006). We observed that AZD7762, PHA-793887, PI-103, and SNX-2112 might be sensitive to ALDH2 and ALCAM, and PC3 could be the potential cell line used to investigate the interaction among ALDH2, ALCAM, and the above drugs. Conclusions We found that CSGPI might serve as an effective biomarker predicting metastasis probability and radioresistance for PCa and proposed that immune evasion was involved in the process of PCa metastasis.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Kim WH, Lee JU, Jeon MJ, Park KH, Sim SJ. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens Bioelectron 2022; 205:114116. [DOI: 10.1016/j.bios.2022.114116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
|
14
|
Lu X, Jing L, Liu S, Wang H, Chen B. miR-149-3p Is a Potential Prognosis Biomarker and Correlated with Immune Infiltrates in Uterine Corpus Endometrial Carcinoma. Int J Endocrinol 2022; 2022:5006123. [PMID: 35719192 PMCID: PMC9200575 DOI: 10.1155/2022/5006123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Endocrine disruption is an important factor in the development of endometrial cancer. Expression of miR-149-3p is observed in some cancer types, while its role in uterine corpus endometrial carcinoma (UCEC) is unclear. METHODS The clinical and genomic data and prognostic information on UCEC were obtained for patients from the TCGA database. The Kruskal-Wallis test, Wilcoxon signed-rank test, and logistic regression were used to analyze the relationship between clinical characteristics and miR-149-3p expression. Kaplan-Meier survival curve analysis was used to study the influence of miR-149-3p expression and miR-149-3p target genes on the prognosis of UCEC patients. The TargetScan, PicTar, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to determine the involvement of miR-149-3p target genes in function. Immune infiltration analysis was used to analyze the functional involvement of miR-149-3p. QRT-PCR was used to validate the expression of miR-149-3p in UCEC cell lines. RESULTS High expression of miR-149-3p in UCEC was significantly associated with age (P < 0.001), histological type (P < 0.001), histological grade (P < 0.001), tumor invasion (P=0.014), and radiation therapy (P=0.011). High miR-149-3p expression predicted poorer overall survival (OS) (HR: 2.56; 95% CI: 1.64-4.00; P < 0.001), progression-free interval (PFI) (HR: 1.85; 95% CI: 1.29-2.65; P=0.001), and disease-specific survival (DSS) (HR: 2.33; 95% CI: 1.37-3.99; P=0.002). Low expressions of miR-149-3p target genes, including ADCYAP1R1, CGNL1, CHST3, CYGB, DNAH9, ESR1, HHIP, HIC1, HOXD11, IGF1, INMT, LSP1, MTMR10, NFIC, PLCE1, RARA, SNTN, SPRYD3, and ZBTB7A, were associated with poor OS in UCEC. MiR-149-3p may be involved in the occurrence and development of UCEC via pathways including PI3K-Akt signaling pathway, Ras signaling pathway, AGE-RAGE signaling pathway in diabetic complications, focal adhesion, and MAPK signaling pathway. miR-149-3p may inhibit the function of CD8 T cells, cytotoxic cells, eosinophils, iDC, mast cells, neutrophils, NK CD56bright cells, NK CD56dim cells, pDC, T cells, T helper cells, TFH, Th17 cells, and Treg. miR-149-3p was significantly upregulated in UCEC cell lines compared with endometriotic stromal cells. CONCLUSION High expression of miR-149-3p was significantly associated with poor survival in UCEC patients. It may be a promising biomarker of prognosis and response to immunotherapy for UCEC patients.
Collapse
Affiliation(s)
- Xiaoyuan Lu
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Li Jing
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Sicong Liu
- Graduate School, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Haihong Wang
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| |
Collapse
|
15
|
Exosomal miR-214-3p as a potential novel biomarker for rhabdoid tumor of the kidney. Pediatr Surg Int 2021; 37:1783-1790. [PMID: 34491386 DOI: 10.1007/s00383-021-04989-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Rhabdoid tumor of the kidney (RTK) is a rare, highly aggressive pediatric renal tumor. No specific biomarkers are available for detection of RTK, and the initial differential diagnosis from other pediatric abdominal tumors, including neuroblastoma (NB), is difficult. Exosomal miRNAs are novel cancer biomarkers that can be detected in biological fluids. We explored candidate RTK-specific exosomal miRNAs as novel biomarkers of RTK. METHODS Exosomal miRNAs were collected from conditioned media of human RTK-derived cell lines, a human embryonic renal cell line, and human NB-derived cell lines. miRNA sequencing (miRNA-Seq) was performed to detect candidate RTK-specific exosomal miRNAs. The exosomal miRNA expression in conditioned media of tumor cell lines and serum from RTK xenograft-bearing mice was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS The expression of exosomal miR-214-3p detected by miRNA-Seq was highest in RTK-derived cell lines. Exosomal miR-214-3p expression level determined by qRT-PCR was significantly higher in RTK-derived cell lines than in the human embryonic renal cell line or NB-derived cell lines. Furthermore, the serum exosomal miR-214-3p expression level was significantly higher in RTK xenograft mice than controls. CONCLUSION Our data indicated that exosomal miR-214-3p has potential as a novel biomarker of RTK.
Collapse
|
16
|
Wang Y, Wang Z, Gang X, Wang G. Liquid biopsy in prostate cancer: current status and future challenges of clinical application. Aging Male 2021; 24:58-71. [PMID: 34850655 DOI: 10.1080/13685538.2021.1944085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Liquid biopsy refers to the detection and analysis of the components from biological fluids non-invasively, including circulating tumor cells, nucleic acids, and extracellular vesicles (EVs). It is necessary to review the clinical value of liquid biopsy assays in PC and explore its potential application. MATERIALS AND METHODS We systematically reviewed of PubMed was performed to identify relevant literature on potential clinical applications of circulating tumor cells, circulating nucleic acids, and EVs in prostate cancer (PC). RESULTS Liquid biopsy has emerged as a powerful tool to elucidate dynamic genomic, transcriptomic, and epigenomic tumor profiling in real-time. Here, the potential clinical applications of liquid biopsy include early detection, prognosis of survival, assessment of treatment response, and mechanisms of drug resistance in PC. CONCLUSIONS Liquid biopsy provides great value in diagnosis, prognosis, and treatment response in PC. Characterization of liquid biopsy components provides benefits both to unravel underlying resistance mechanisms and to exploit novel clinically actionable targets in PC. In addition, we suggest that analysis of multiparametric liquid biopsies should be analyzed comprehensively, assisting in monitoring tumor characteristics in real-time, guiding therapeutic selection, and early therapeutic switching during disease progression.
Collapse
Affiliation(s)
- Yaqiong Wang
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun, PR China
| | - Zili Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun, PR China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun, PR China
| |
Collapse
|
17
|
Fiard G, Stavrinides V, Chambers ES, Heavey S, Freeman A, Ball R, Akbar AN, Emberton M. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat Rev Urol 2021; 18:597-610. [PMID: 34294916 DOI: 10.1038/s41585-021-00496-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
Collapse
Affiliation(s)
- Gaelle Fiard
- UCL Division of Surgery & Interventional Science, University College London, London, UK.
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - Vasilis Stavrinides
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Susan Heavey
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Alex Freeman
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rhys Ball
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arne N Akbar
- Division of Medicine, The Rayne Building, University College London, London, UK
| | - Mark Emberton
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
18
|
Circulating exosomal miRNAs and cancer early diagnosis. Clin Transl Oncol 2021; 24:393-406. [PMID: 34524618 DOI: 10.1007/s12094-021-02706-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Microribonucleic acids (miRNAs) are small non-coding ribonucleic acids (ncRNAs), which can affect recognition of homologous sequences and interfere with transcription. It plays key roles in the initiation, development, resistance, metastasis or recurrence of cancers. Identifying circulatory indicators will positively improve the prognosis and quality of life of patients with early cancer. Previous studies have shown that miRNA is highly involved in cancer. In addition, miRNA derived from cancers can be encapsulated as exosomes and further extracted into circulatory systems to realize malignant functions. It indicates that circulating exosome-derived miRNAs have the potential to replace conventional biomarkers as cancer derived exosomes carrying miRNAs can be identified by specific markers and might be more stable and accurate for early diagnosis.
Collapse
|
19
|
Santos T, Miranda A, Campello MPC, Paulo A, Salgado G, Cabrita EJ, Cruz C. Recognition of nucleolin through interaction with RNA G-quadruplex. Biochem Pharmacol 2021; 189:114208. [PMID: 32860827 DOI: 10.1016/j.bcp.2020.114208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The development of novel biomarkers for early-stage diagnosis of prostate cancer (PCa) has attracted the attention of researchers in the last decade. Nucleolin (NCL) has emerged as a possible biomarker of PCa due to its high expression levels in the surface of PCa cells and affinity towards parallel G4s since it contains four RNA-binding domains (RBDs). Herein, we developed a novel strategy based on a microfluidic platform for the detection of NCL in biological samples, such as human plasma. The RNA G4 (rG4) sequence found in human precursor microRNA 92b (pre-miR-92b) was used as a molecular recognition probe since it forms a single dominant parallel rG4 conformation in the presence of 0.1 mM K+ as confirmed by NMR spectroscopy. The additional stability of the rG4 structure was provided by the acridine orange derivative ligand C8, which stabilizes the pre-miR-92b rG4 structure, as denoted by an increase in more than 30 °C of its melting temperature. FRET-melting assay revealed a remarkable synergistic effect of NCL RBD1,2 and C8 on the stabilization of the pre-miR-92b rG4. The binding of pre-miR-92b to NCL RBD1,2 was determined by in silico studies, which revealed a binding pocket formed by a 12-residue linker between RBD1 and RBD2. Both, pre-miR-92b rG4 and pre-miR-92b rG4/C8 complex demonstrated high affinity towards NCL RBD1,2, as proved by fluorimetric titrations (KD range between 10-12 and 10-9 M). The stability and nuclease resistance of pre-miR-92b rG4 and pre-miR-92b rG4/C8 complex were evaluated as molecular recognition probes to capture and detect NCL. Finally, the microfluidic platform detects NCL in complex biological samples, such as human plasma. Overall, this work demonstrates the usefulness of the microfluidic platform based on the pre-miR-92b to detect NCL and the possibility to be used as a valuable biomedical tool in PCa diagnosis.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Maria P C Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Gilmar Salgado
- Univ. Bordeaux, ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
20
|
Vickram A, Srikumar P, Srinivasan S, Jeyanthi P, Anbarasu K, Thanigaivel S, Nibedita D, Jenila Rani D, Rohini K. Seminal exosomes - An important biological marker for various disorders and syndrome in human reproduction. Saudi J Biol Sci 2021; 28:3607-3615. [PMID: 34121904 PMCID: PMC8176048 DOI: 10.1016/j.sjbs.2021.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Exosomes are nano-sized membrane vesicles, secreted by different types of cells into the body's biological fluids. They are found in abundance in semen as compared to other fluids. Exosomes contain a cargo of lipid molecules, proteins, phospholipids, cholesterol, mRNAs, and miRNAs. Each molecule of seminal exosomes (SE) has a potential role in male reproduction for childbirth. Many potential candidates are available within the seminal exosomes that can be used as diagnostic markers for various diseases or syndromes associated with male reproduction. Also these seminal exospmes play a major role in female reproductive tract for effective fertilization. AIM The aim of this review is to focus on the advancement of human seminal exosomal research and its various properties. METHODS We used many databases like Scopus, Google scholar, NCBI-NLM and other sources to filter the articles of interest published in exosomes. We used phrases like "Exosomes in human semen", "Composition of exosomes in human semen" and other relevant words to filter the best articles. RESULTS Seminal exosomes play a major role in sperm functions like cell-to-cell communication, motility of the sperm cells, maintaining survival capacity for the sperm in the female reproductive tract and spermatogenesis. Also, seminal exosomes are used as a carrier for many regulatory elements using small RNA molecules. miRNAs of the seminal exosomes can be used as a diagnostic marker for prostate cancer instead of prostate specific antigen (PSA). Epididymosomes can be used as a biomarker for reproductive diseases and male infertility. CONCLUSION Seminal exosomes could be used as biological markers for various reproductive disorders, male infertility diagnosis, and it can be used in anti-retroviral research for the identification of novel therapeutics for HIV-1 infection and transmission.
Collapse
Affiliation(s)
- A.S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P.S. Srikumar
- Unit of Psychiatry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah,Malaysia
| | - S. Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - K. Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Dey Nibedita
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - D. Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
| |
Collapse
|
21
|
Ray SK, Mukherjee S. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in Cancer- An evolving aspect in Medical Biotechnology. Curr Pharm Biotechnol 2020; 23:112-122. [PMID: 33308128 DOI: 10.2174/1389201021666201211102710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
22
|
Sun B, Qu Z, Cheng GL, Yang YW, Miao YF, Chen XG, Zhou XB, Li B. Urinary microRNAs miR-15b and miR-30a as novel noninvasive biomarkers for gentamicin-induced acute kidney injury. Toxicol Lett 2020; 338:105-113. [PMID: 33290828 DOI: 10.1016/j.toxlet.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs serve as potential biomarkers in various pathological models, and are stable and detectable in biofluids. We investigated the urinary microRNA expression profile in a gentamicin-induced acute kidney injury canine model using RNA sequencing. A total of 234 differentially expressed microRNAs were screened after 12 consecutive days of gentamicin administration (P < 0.05). Six candidate microRNAs (miR-15b, -15b-3p, -16, -30a, -30a-3p, and -30c-2-3p) were selected according to a set criterion, and validated by real-time quantitative PCR. The diagnostic values of these six candidate microRNAs were better than the traditional serum biomarkers (all P < 0.05). Further, using receiver operating characteristic curve analysis, we found that miR-15b and -15b-3p were superior to urinary kidney injury molecule-1 (both P < 0.05). Moreover, miR-15b and -30a levels in the urine samples significantly correlated with their respective levels in the kidney tissue samples (r=0.512 and 0.505, respectively, both P < 0.05). Our data concluded that miR-15b and -30a may be promising biomarkers for renal toxicity.
Collapse
Affiliation(s)
- B Sun
- College of Bioengineering, Beijing Polytechnic, Beijing, 100029, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - Z Qu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - G L Cheng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - Y W Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - Y F Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - X G Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - X B Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China.
| | - B Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China.
| |
Collapse
|
23
|
Zhou S, Hu T, Han G, Wu Y, Hua X, Su J, Jin W, Mou Y, Mou X, Li Q, Liu S. Accurate Cancer Diagnosis and Stage Monitoring Enabled by Comprehensive Profiling of Different Types of Exosomal Biomarkers: Surface Proteins and miRNAs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004492. [PMID: 33174389 DOI: 10.1002/smll.202004492] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/26/2020] [Indexed: 05/24/2023]
Abstract
Exosomes are recognized as promising biomarkers for early cancer diagnosis and prognosis owing to a large amount of biological information they carried. But the key is that single type of exosomal biomarker analysis is not sufficient enough for accurate cancer diagnosis and stage monitoring due to the insufficient information and high false positive signal. To address the challenge, here simultaneous in situ detection of different types of exosomal biomarkers (surface proteins: CD81, ephrin type-A receptor 2, and carbohydrate antigen 19-9; miRNAs: miR-451a, miR-21, and miR-10b) is conducted with a 3D microfluidic chip, which works in conjunction with quantum dot (QD) labeling and vesicle fusion technology. After exosomes are efficiently captured by the microfluidic chip, the quantification of multiple exosomal proteins is achieved by using three kinds of QDs with the same excitation and different emission wavelengths, and virus-mimicking fusogenic vesicles encapsulating three exquisitely engineered molecular beacons are introduced for ultrasensitive detection of multiple exosomal miRNAs without requiring RNA extraction. Through comprehensive profiling different types of exosomal biomarkers, the false positive rate is substantially avoided and the accuracy of cancer diagnosis and stage monitoring is improved to ≈100%, which are critical to cancer effective treatment and favorable prognosis.
Collapse
Affiliation(s)
- Sisi Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Tao Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Gaohua Han
- Taizhou People's Hospital, Taizhou, 225300, China
| | - Yafeng Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Juan Su
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Weiwei Jin
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Yiping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Xiaozhou Mou
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
24
|
Karimzadeh MR, Seyedtaghia MR, Soudyab M, Nezamnia M, Kidde J, Sahebkar A. Exosomal Long Noncoding RNAs: Insights into Emerging Diagnostic and Therapeutic Applications in Lung Cancer. JOURNAL OF ONCOLOGY 2020; 2020:7630197. [PMID: 33224198 PMCID: PMC7671817 DOI: 10.1155/2020/7630197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. Annually, millions of people die from lung cancer because of late detection and ineffective therapies. Recently, exosomes have been introduced as new therapeutic players with the potential to improve upon current diagnostic and treatment options. Exosomes are small membranous vesicles produced during endosomal merging. This allows for cell packaging of nucleic acids, proteins, and lipids and transfer to adjacent or distant cells. While exosomes are a part of normal intercellular signaling, they also allow malignant cells to transfer oncogenic material leading to tumor spread and metastasis. Exosomes are an interesting field of discovery for biomarkers and therapeutic targets. Among exosomal materials, lncRNAs have priority; lncRNAs are a class of noncoding RNAs longer than 200 base pairs. In the case of cancer, primary interest regards their oncogene and tumor suppressor functions. In this review, the advantages of exosomal lncRNAs as biomarkers and therapeutic targets will be discussed in addition to reviewing studies of their application in lung cancer.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Jason Kidde
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
25
|
Hernández Jiménez J, Borrás Blasco C. [Analysis of liquid biopsies for cancer diagnosis: Systematic review]. Rev Esp Geriatr Gerontol 2020; 55:343-349. [PMID: 33032851 DOI: 10.1016/j.regg.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The incidence of cancer has increased in recent years, especially in those over 65 years of age, posing a major health problem. Many tumours have a poor prognosis because they are diagnosed at very advanced stages. It is therefore especially important to incorporate liquid biopsy into clinical practice as a method for detecting tumours at very early stages. A systematic review was conducted, with the main objective of analysing the available literature on the use of liquid biopsy in the early diagnosis of cancer, and as a secondary objective, to determine the types of tumours that can be diagnosed early by liquid biopsy and the available biomarkers. The results indicate a lack of agreement with the biomarkers detected and the technologies applied. This highlights the need for multicentre studies to look at large cohorts and to establish protocols of action, as well as to increase analytical validity and the possibility of using a screening test for each type of tumour. This could be a very important step forward, as it could improve the management of cancer patients to a great extent.
Collapse
Affiliation(s)
- Joana Hernández Jiménez
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, España
| | - Consuelo Borrás Blasco
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, España.
| |
Collapse
|
26
|
Zhang Y, Han T, Feng D, Li J, Wu M, Peng X, Wang B, Zhan X, Fu P. Screening of non-invasive miRNA biomarker candidates for metastasis of gastric cancer by small RNA sequencing of plasma exosomes. Carcinogenesis 2020; 41:582-590. [PMID: 31740975 DOI: 10.1093/carcin/bgz186] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 11/14/2022] Open
Abstract
Gastric cancer remains one of the most lethal and prevalent malignancies, particularly in China. The majority of patients are diagnosed with gastric cancer at the late stages of the disease. Besides, the high relapse rate also contributes to the high mortality. Therefore, there exists an imperative need for the development of gastric cancer diagnostic techniques as well as novel indicators for gastric cancer metastasis. Exosomes, secreted by a variety of cell types, play critical roles in intercellular communication, which emerge as promising diagnostic biomarkers for gastric cancer. In this study, we present for the first time, at least to the best of our knowledge, the small RNA sequencing spectra of exosomes derived from the gastric cancer patient plasma using next-generation sequencing, focusing on the exploration of metastasis-related biomarkers. The exosomes enriched from patient plasma samples were well characterized by western blotting, transmission electron microscopy and nanoparticle-tracking analysis. In the following bioinformatic analysis of exosomal miRNAs, three candidates were proposed as the biomarkers for metastasis of gastric cancer, namely miR-10b-5p, miR-101-3p and miR-143-5p, for gastric cancer with lymph node metastasis, gastric cancer with ovarian metastasis and gastric cancer with liver metastasis, respectively. RT-qPCR was performed to test the accuracy of these candidates for validation. In conclusion, we successfully isolated and purified exosomes from plasma of patients with gastric cancer and identified several potential exosomal miRNA markers to distinguish gastric cancer patients with various kinds of metastasis.
Collapse
Affiliation(s)
| | - Ting Han
- Department of Oncology, Department of General Surgery Shanghai, China
| | | | | | | | | | | | | | - Peng Fu
- Department of Oncology, Department of Pharmacy, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Wang H, Chen X, Bao L, Zhang X. Investigating potential molecular mechanisms of serum exosomal miRNAs in colorectal cancer based on bioinformatics analysis. Medicine (Baltimore) 2020; 99:e22199. [PMID: 32925795 PMCID: PMC7489663 DOI: 10.1097/md.0000000000022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/11/2020] [Accepted: 08/16/2020] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant gastrointestinal tumor worldwide. Serum exosomal microRNAs (miRNAs) play a critical role in tumor progression and metastasis. However, the underlying molecular mechanisms are poorly understood.The miRNAs expression profile (GSE39833) was downloaded from Gene Expression Omnibus (GEO) database. GEO2R was applied to screen the differentially expressed miRNAs (DEmiRNAs) between healthy and CRC serum exosome samples. The target genes of DEmiRNAs were predicted by starBase v3.0 online tool. The gene ontology (GO) and Kyoto Encyclopedia of Genomes pathway (KEGG) enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. The protein-protein interaction (PPI) network was established by the Search Tool for the Retrieval of Interacting Genes (STRING) visualized using Cytoscape software. Molecular Complex Detection (MCODE) and cytohubba plug-in were used to screen hub genes and gene modules.In total, 102 DEmiRNAs were identified including 67 upregulated and 35 downregulated DEmiRNAs, and 1437 target genes were predicted. GO analysis showed target genes of upregulated DEmiRNAs were significantly enriched in transcription regulation, protein binding, and ubiquitin protein ligase activity. While the target genes of downregulated DEmiRNAs were mainly involved in transcription from RNA polymerase II promoter, SMAD binding, and DNA binding. The KEGG pathway enrichment analyses showed target genes of upregulated DEmiRNAs were significantly enriched in proteoglycans in cancer, microRNAs in cancer, and phosphatidylinositol-3 kinases/Akt (PI3K-Akt) signaling pathway, while target genes of downregulated DEmiRNAs were mainly enriched in transforming growth factor-beta (TGF-beta) signaling pathway and proteoglycans in cancer. The genes of the top 3 modules were mainly enriched in ubiquitin mediated proteolysis, spliceosome, and mRNA surveillance pathway. According to the cytohubba plugin, 37 hub genes were selected, and 4 hub genes including phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), SRC, cell division cycle 42 (CDC42), E1A binding protein p300 (EP300) were identified by combining 8 ranked methods of cytohubba.The study provides a comprehensive analysis of exosomal DEmiRNAs and target genes regulatory network in CRC, which can better understand the roles of exosomal miRNAs in the development of CRC. However, these findings require further experimental validation in future studies.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| | - Xiliang Chen
- Department of Clinical Laboratory, Zhangqiu District People's Hospital, Jinan, Shandong, China
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| | - Xuede Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| |
Collapse
|
28
|
MicroRNAs from Liquid Biopsy Derived Extracellular Vesicles: Recent Advances in Detection and Characterization Methods. Cancers (Basel) 2020; 12:cancers12082009. [PMID: 32707943 PMCID: PMC7465219 DOI: 10.3390/cancers12082009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsies have become a convenient tool in cancer diagnostics, real-time disease monitoring, and evaluation of residual disease. Yet, the information still encrypted in the variety of tumor-derived molecules identified in biofluids has proven difficult to decipher due to the technological limitations imposed by their biological nature. Such is the case of extracellular vesicle (EV) encapsulated ncRNAs, which have gained traction in recent years as biomarkers. Due to their resilience towards degrading factors they may act as suitable disease indicators. This review addresses the less described issues in this context. We present an overview of less investigated biofluids that can be used for EV isolation in addition to different isolation approaches to overcome the technical challenges these specimens harbor. Furthermore, we summarize the latest technological advances providing improvement to ncRNA detection and analysis. Thereby, this review summarizes the current state-of-the-art methodologies regarding EV and EV derived miRNA analysis and how they compare to current approaches.
Collapse
|
29
|
Ibrahim H, Lim YC. KRAS-associated microRNAs in colorectal cancer. Oncol Rev 2020; 14:454. [PMID: 32685110 PMCID: PMC7365993 DOI: 10.4081/oncol.2020.454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancerrelated death worldwide. Despite progress in treatment of cancers, CRC with KRAS mutations are resistant towards anti-EGFR treatment. MicroRNAs have been discovered in an exponential manner within the last few years and have been known to exert either an onco-miRNA or tumor suppressive effect. Here, the various roles of microRNAs involved in the initiation and progression of KRAS-regulated CRC are summarized. A thorough understanding of the roles and functions of the plethora of microRNAs associated with KRAS in CRC will grant insights into the provision of other potential therapeutic targets as well as treatment. MicroRNAs may also serve as potential molecular classifier or early detection biomarkers for future treatment and diagnosis of CRC.
Collapse
Affiliation(s)
| | - Ya Chee Lim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
30
|
Narita M, Nishida H, Asahina R, Nakata K, Yano H, Dickinson PJ, Tanaka T, Akiyoshi H, Maeda S, Kamishina H. Expression of microRNAs in plasma and in extracellular vesicles derived from plasma for dogs with glioma and dogs with other brain diseases. Am J Vet Res 2020; 81:355-360. [PMID: 32228257 DOI: 10.2460/ajvr.81.4.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure expression of microRNAs (miRNAs) in plasma and in extracellular vesicles (EVs) derived from plasma for dogs with glioma and dogs with other brain diseases. SAMPLE Plasma samples from 11 dogs with glioma and 19 control dogs with various other brain diseases. PROCEDURES EVs were isolated from plasma samples by means of ultracentrifugation. Expression of 4 candidate reference miRNAs (let-7a, miR-16, miR-26a, and miR-103) and 4 candidate target miRNAs (miR-15b, miR-21, miR-155, and miR-342-3p) was quantified with reverse transcription PCR assays. Three software programs were used to select the most suitable reference miRNAs from among the 4 candidate reference miRNAs. Expression of the 4 target miRNAs was then calculated relative to expression of the reference genes in plasma and EVs, and relative expression was compared between dogs with glioma and control dogs with other brain diseases. RESULTS The most suitable reference miRNAs were miR-16 for plasma and let-7a for EVs. Relative expression of miR-15b in plasma and in EVs was significantly higher in dogs with glioma than in control dogs. Relative expression of miR-342-3p in EVs was significantly higher in dogs with glioma than in control dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that miR-15b and miR-342-3p have potential as noninvasive biomarkers for differentiating glioma from other intracranial diseases in dogs. However, more extensive analysis of expression in specific glioma subtypes and grades, compared with expression in more defined control populations, will be necessary to assess their clinical relevance.
Collapse
|
31
|
Wang ZY, Yan BX, Zhou Y, Chen XY, Zhang J, Cai SQ, Zheng M, Man XY. miRNA Profiling of Extracellular Vesicles Reveals Biomarkers for Psoriasis. J Invest Dermatol 2020; 141:185-189.e4. [PMID: 32445741 DOI: 10.1016/j.jid.2020.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Zhao-Yuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Yan Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Jin W, Fei X, Wang X, Song Y, Chen F. Detection and Prognosis of Prostate Cancer Using Blood-Based Biomarkers. Mediators Inflamm 2020; 2020:8730608. [PMID: 32454797 PMCID: PMC7218965 DOI: 10.1155/2020/8730608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is second only to lung cancer as a cause of death. Clinical assessment of patients and treatment efficiency therefore depend on the disease being diagnosed as early as possible. However, due to issues regarding the use of prostate-specific antigen (PSA) for screening purposes, PCa management is among the most contentious of healthcare matters. PSA screening is problematic primarily because of diagnosis difficulties and the high rate of false-positive biopsies. Novel PCa biomarkers, such as the Prostate Health Index (PHI) and the 4Kscore, have been proposed in recent times to improve PSA prediction accuracy and have shown higher performance by preventing redundant biopsies. The 4Kscore also shows high precision in determining the risk of developing high-grade PCa, whereas elevated PHI levels suggest that the tumor is aggressive. Some evidence also supports the effectiveness of miRNAs as biomarkers for distinguishing PCa from benign prostatic hyperplasia and for assessing the aggressiveness of the disease. A number of miRNAs that possibly act as tumor inhibitors or oncogenes are impaired in PCa. These new biomarkers are comprehensively reviewed in the present study in terms of their potential use in diagnosing and treating PCa.
Collapse
Affiliation(s)
- Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fangjie Chen
- Department of Medical Genetics, School of Life Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Fiorini E, Veghini L, Corbo V. Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple. Front Cell Dev Biol 2020; 8:166. [PMID: 32258040 PMCID: PMC7094029 DOI: 10.3389/fcell.2020.00166] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Homotypic and heterotypic interactions between cells are of crucial importance in multicellular organisms for the maintenance of physiological functions. Accordingly, changes in cell-to-cell communication contribute significantly to tumor development. Cancer cells engage the different components of the tumor microenvironment (TME) to support malignant proliferation, escape immune control, and favor metastatic spreading. The interaction between cancerous and non-cancerous cell types within tumors occurs in many ways, including physical contact and paracrine signaling. Furthermore, local and long-range transfer of biologically active molecules (e.g., DNA, RNA, and proteins) can be mediated by small extracellular vesicles (EVs) and this has been shown to influence many aspects of tumor progression. As it stands, there is a critical need for suitable experimental systems that enable modeling the cell-to-cell communications occurring in cancer. Given their intrinsic complexity, animal models represent the ideal system to study cell-to-cell interaction between different cell types; however, they might make difficult to assess individual contribution to a given phenotype. On the other hand, simplest experimental models (i.e., in vitro culture systems) might be of great use when weighing individual contributions to a given phenomenon, yet it is imperative that they share a considerable number of features with human cancer. Of the many culture systems available to the scientific community, patient-derived organoids already proved to faithfully recapitulate many of the traits of patients’ disease, including genetic heterogeneity and response to therapy. The organoid technology offers several advantages over conventional monolayer cell cultures, including the preservation of the topology of cell-to-cell and cell-to-matrix interactions as observed in vivo. Several studies have shown that organoid cultures can be successfully used to study interaction between cancer cells and cellular components of the TME. Here, we discuss the potential of using organoids to model the interplay between cancer and non-cancer cells in order to unveil biological mechanisms involved in cancers initiation and progression, which might ultimately lead to the identification of novel intervention strategy for those diseases.
Collapse
Affiliation(s)
- Elena Fiorini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,Department of Medicine, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
34
|
Li X, Lv J, Liu S. MCM3AP-AS1 KD Inhibits Proliferation, Invasion, and Migration of PCa Cells via DNMT1/DNMT3 (A/B) Methylation-Mediated Upregulation of NPY1R. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:265-278. [PMID: 32193153 PMCID: PMC7078492 DOI: 10.1016/j.omtn.2020.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous tumor that commonly occurs among males worldwide. This study explored the potential role that long non-coding RNA MCM3AP antisense RNA 1 (MCM3AP-AS1) plays in PCa progression, and investigated its mechanism. MCM3AP-AS1 and neuropeptide Y receptor Y1 (NPY1R) expression was determined in PCa cells. The regulatory role of MCM3AP-AS1 in PCa cells was defined using scratch test, Transwell assay, 5-ethynyl-2′-deoxyuridine (EdU) assay, and flow cytometry. Methylation-specific PCR (MSP) was used to test the methylation level of NPY1R. Subsequently, the interaction among MCM3AP-AS1, DNA methyltransferase (DNMT)1/DNMT3 (A/B), and NPY1R was investigated using RNA immunoprecipitation, RNA pull-down, and chromatin immunoprecipitation. Finally, we observed xenograft tumor in nude mice. MCM3AP-AS1 was highly, whereas NPY1R was poorly, expressed in PCa. Lentivirus-mediated overexpression of MCM3AP-AS1 promoted proliferation, invasion, and migration while suppressing apoptosis of PCa cells, whereas opposite trends were detected after inhibition of the mitogen-activated protein kinase (MAPK) pathway. MCM3AP-AS1 promoted methylation of NPY1R promoter via recruitment of DNMT1/DNMT3 (A/B), thereby downregulating NPY1R expression to activate the MAPK pathway. Furthermore, overexpressed MCM3AP-AS1 was observed to facilitate PCa development in vivo, which could be reversed by overexpressed NPY1R. Altogether, MCM3AP-AS1 silencing inhibits PCa progression by disrupting methylation of the NPY1R promoter to inactivate the MAPK pathway.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, P. R. China; Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, P. R. China.
| |
Collapse
|
35
|
Stevic I, Buescher G, Ricklefs FL. Monitoring Therapy Efficiency in Cancer through Extracellular Vesicles. Cells 2020; 9:cells9010130. [PMID: 31935901 PMCID: PMC7017260 DOI: 10.3390/cells9010130] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed vesicles made of a phospholipid bilayer and are secreted by all cell types. EVs are present in a variety of body fluids containing proteins, DNA, RNA species, and lipids, and play an important role in cell- to-cell communication and are worth being considered as biomarkers for both early diagnosis of cancer patients and real-time monitoring of treatment response. Recently, emerging evidence verified EVs to have crucial roles in cancer progression and metastasis and a great potential in therapeutic applications. In this review, we discuss the potential of EVs in monitoring the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Ines Stevic
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Gustav Buescher
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Franz Lennard Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Correspondence: ; Tel.: +49-40-7410-53750
| |
Collapse
|
36
|
Zhang LW, Zhang J, Wang K, Wang RB. Serum microRNA-30c-5p and microRNA-373 expressions as potential biomarkers for Parkinson's disease. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1741453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Lin-wei Zhang
- Neurology Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Jin Zhang
- Thoracic Surgery Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Kang Wang
- Neurology Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Ren-bin Wang
- Neurology Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
37
|
Abstract
Extracellular vesicles (EVs) have an essential functional role in local tumour progression, metastatic spread and the emergence of drug resistance in bladder, kidney and prostate cancer. Thus, EVs could be diagnostic, prognostic and predictive biomarkers for these malignancies. Virtually all biomolecules (including DNA, mRNA, microRNA, long non-coding RNA, proteins and lipids) packaged into EVs have been tested as biomarkers in blood and urine samples. The results are very heterogeneous, but promising biomarker candidates have been identified. Differing methods of EV isolation, characterization and analysis of their content have been used owing to a lack of international consensus; hence, comparing study results is challenging. Furthermore, validation of potential biomarkers in independent cohorts or prospective trials has rarely been performed. Future efforts to establish EV-derived biomarkers need to adequately address these points. In addition, emerging technologies such as mass spectroscopy and chip-based approaches can identify surface markers specific for cancer-associated EVs and will enable specific separation from blood and urine EVs, which probably will improve their performance as biomarkers. Moreover, EVs could be harnessed as therapeutic drug delivery vehicles for precise and effective anticancer therapy.
Collapse
|
38
|
Dai J, Escara-Wilke J, Keller JM, Jung Y, Taichman RS, Pienta KJ, Keller ET. Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis. J Exp Med 2019; 216:2883-2899. [PMID: 31548301 PMCID: PMC6888980 DOI: 10.1084/jem.20190158] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/30/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) metastasizes selectively to bone through unknown mechanisms. In the current study, we identified exosome-mediated transfer of pyruvate kinase M2 (PKM2) from PCa cells into bone marrow stromal cells (BMSCs) as a novel mechanism through which primary tumor-derived exosomes promote premetastatic niche formation. We found that PKM2 up-regulates BMSC CXCL12 production in a HIF-1α-dependent fashion, which subsequently enhances PCa seeding and growth in the bone marrow. Furthermore, serum-derived exosomes from patients with either primary PCa or PCa metastasis, as opposed to healthy men, reveal that increased exosome PKM2 expression is associated with metastasis, suggesting clinical relevance of exosome PKM2 in PCa. Targeting the exosome-induced CXCL12 axis diminished exosome-mediated bone metastasis. In summary, primary PCa cells educate the bone marrow to create a premetastatic niche through primary PCa exosome-mediated transfer of PKM2 into BMSCs and subsequent up-regulation of CXCL12. This novel mechanism indicates the potential for exosome PKM2 as a biomarker and suggests therapeutic targets for PCa bone metastasis.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI
| | - June Escara-Wilke
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI
| | - Jill M Keller
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI
| | - Younghun Jung
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Russell S Taichman
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Kenneth J Pienta
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, MD
| | - Evan T Keller
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
39
|
Vickram AS, Samad HA, Latheef SK, Chakraborty S, Dhama K, Sridharan TB, Sundaram T, Gulothungan G. Human prostasomes an extracellular vesicle - Biomarkers for male infertility and prostrate cancer: The journey from identification to current knowledge. Int J Biol Macromol 2019; 146:946-958. [PMID: 31730983 DOI: 10.1016/j.ijbiomac.2019.09.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are gaining attention among the cell biologists and researchers over the last two decades. Prostasomes are considered to be (Evs) secreted by prostate epithelial cells into the semen during emission or ejaculation. Prostasomes contain various proteins required for immune regulation namely, amino and dipeptidyl peptidase; endopeptidase (neutral); decay accelerating factor; angiotensin-converting enzyme. Sperm cells need a few prerequisites in order to fertilize the egg. The role of prostasomes in enhancing the male fertility was reviewed extensively throughout the manuscript. Also, prostasomes have an immunosuppressive, immunomodulatory, antibacterial role in the female reproductive tract, and in some cases they can be used as immunocontraceptive agent to regulate the fertility status. This review will give insights to many active researchers in the field of prostasomal research and male infertility/fertility research. This review will open many unanswered mechanisms of prostasomes with respect to structure-function analysis, fatty acids patterns in diagnosis as well as prognosis of male infertility/fertility. More scientific reports are in need to support the mechanism of prostasomes and its role in immunomodulation. The development of prostasomes as a biomarker for the prostate cancer is still miserable with a lot of controversial results by various researchers.
Collapse
Affiliation(s)
- A S Vickram
- Saveetha School of Engineering, Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, India.
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Shyma K Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura 799008, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - T B Sridharan
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Saveetha School of Engineering, Department of Biomedical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, India
| | - G Gulothungan
- Saveetha School of Engineering, Department of Biomedical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, India
| |
Collapse
|
40
|
Cho S, Yang HC, Rhee WJ. Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis. Biosens Bioelectron 2019; 146:111749. [PMID: 31600625 DOI: 10.1016/j.bios.2019.111749] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Since the tumor is extremely heterogeneous, a single biomarker cannot reflect the exact symptoms of the disease or its stage. Exosomes are biomarker reservoirs that provide disease information with a high accuracy, especially when specific markers, including microRNAs (miRNAs) and proteins, are combined. However, currently available exosomal miRNA and protein detection methods are time consuming, expensive, and laborious. Meanwhile, simultaneous detection of an exosomal miRNA and protein in a single reaction is even more challenging. Thus, development of an efficient method for detecting multiple miRNAs and proteins in a single exosomal reaction is highly needed. Herein, to increase the value of using exosomes over other circulating biomarkers for prostate cancer (PCa) liquid biopsy, a method for simultaneous multiplexed in situ detection of exosomal miRNAs and proteins was developed. Exosomal miRNAs and surface proteins were simultaneously detected in captured exosomes with a high specificity, using nano-sized molecular beacons and fluorescent dye-conjugated antibodies. The method allowed the quantitative analysis of various disease-specific miRNAs and surface proteins in PCa cell-derived exosomes in a single exosomal reaction. Overall, simultaneous multiplexed in situ detection of exosomal miRNAs and surface proteins can be developed as a simple, cost-effective, non-invasive liquid biopsy method for diagnosing PCa.
Collapse
Affiliation(s)
- Seongcheol Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hee Cheol Yang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
41
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y, Saini S. BRN4 Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with BRN2. Clin Cancer Res 2019; 25:6532-6545. [PMID: 31371344 DOI: 10.1158/1078-0432.ccr-19-0498] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC), an aggressive variant of castration-resistant prostate cancer (CRPC), often emerges after androgen receptor-targeted therapies such as enzalutamide or de novo, via trans-differentiation process of neuroendocrine differentiation. The mechanistic basis of neuroendocrine differentiation is poorly understood, contributing to lack of effective predictive biomarkers and late disease recognition. The purpose of this study was to examine the role of novel proneural Pit-Oct-Unc-domain transcription factors (TF) in NEPC and examine their potential as noninvasive predictive biomarkers.Experimental Design: Prostate cancer patient-derived xenograft models, clinical samples, and cellular neuroendocrine differentiation models were employed to determine the expression of TFs BRN1 and BRN4. BRN4 levels were modulated in prostate cancer cell lines followed by functional assays. Furthermore, extracellular vesicles (EV) were isolated from patient samples and cell culture models, characterized by nanoparticle tracking analyses, Western blotting, and real-time PCR. RESULTS We identify for the first time that: (i) BRN4 is amplified and overexpressed in NEPC clinical samples and that BRN4 overexpression drives neuroendocrine differentiation via its interplay with BRN2, a TF that was previously implicated in NEPC; (ii) BRN4 and BRN2 mRNA are actively released in prostate cancer EVs upon neuroendocrine differentiation induction; and (iii) enzalutamide treatment augments release of BRN4 and BRN2 in prostate cancer EVs, promoting neuroendocrine differentiation induction. CONCLUSIONS Our study identifies a novel TF that drives NEPC and suggests that as adaptive mechanism to enzalutamide treatment, prostate cancer cells express and secrete BRN4 and BRN2 in EVs that drive oncogenic reprogramming of prostate cancer cells to NEPC. Importantly, EV-associated BRN4 and BRN2 are potential novel noninvasive biomarkers to predict neuroendocrine differentiation in CRPC.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California.
| |
Collapse
|
43
|
Zhang K, Yue Y, Wu S, Liu W, Shi J, Zhang Z. Rapid Capture and Nondestructive Release of Extracellular Vesicles Using Aptamer-Based Magnetic Isolation. ACS Sens 2019; 4:1245-1251. [PMID: 30915846 DOI: 10.1021/acssensors.9b00060] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) play important roles in cell-cell communication by transferring cargo proteins and nucleic acids between cells. Due to their small size (50-150 nm) and low density, rapid capture and nondestructive release of EVs remains a technical challenge which significantly hinders study of their biofunction and biomedical application. To address this issue, we designed a DNA aptamer-based system that enabled rapid capture and nondestructive release of EVs in 90 min with similar isolation efficiency to ultracentrifugation (around 78%). Moreover, because we designed a DNA structure-switch process to release the exosomes, the isolated EVs maintained high bioactivity in cell-uptake assay and wound-healing assays. Using this method, we can isolate EVs from clinical samples and found that the amount of MUC1 positive EVs in breast cancer patient plasma sample is significantly higher than that in healthy donors. This DNA aptamer-based magnetic isolation strategy can be potentially applied for the biofunction study of EVs and EV-based point-of-care clinical tests.
Collapse
Affiliation(s)
- Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Yale Yue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| |
Collapse
|
44
|
Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 2019; 15:617-638. [PMID: 29795272 DOI: 10.1038/s41571-018-0036-9] [Citation(s) in RCA: 992] [Impact Index Per Article: 198.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The sustained growth, invasion, and metastasis of cancer cells depend upon bidirectional cell-cell communication within complex tissue environments. Such communication predominantly involves the secretion of soluble factors by cancer cells and/or stromal cells within the tumour microenvironment (TME), although these cell types have also been shown to export membrane-encapsulated particles containing regulatory molecules that contribute to cell-cell communication. These particles are known as extracellular vesicles (EVs) and include species of exosomes and shed microvesicles. EVs carry molecules such as oncoproteins and oncopeptides, RNA species (for example, microRNAs, mRNAs, and long non-coding RNAs), lipids, and DNA fragments from donor to recipient cells, initiating profound phenotypic changes in the TME. Emerging evidence suggests that EVs have crucial roles in cancer development, including pre-metastatic niche formation and metastasis. Cancer cells are now recognized to secrete more EVs than their nonmalignant counterparts, and these particles can be isolated from bodily fluids. Thus, EVs have strong potential as blood-based or urine-based biomarkers for the diagnosis, prognostication, and surveillance of cancer. In this Review, we discuss the biophysical properties and physiological functions of EVs, particularly their pro-metastatic effects, and highlight the utility of EVs for the development of cancer diagnostics and therapeutics.
Collapse
|
45
|
The role of miRNAs as biomarkers in prostate cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:165-174. [PMID: 31416574 DOI: 10.1016/j.mrrev.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
There is an urged need of non-invasive biomarkers for the implementation of precision medicine. These biomarkers are required to these days for improving prostate cancer (PCa) screening, treatment or stratification in current clinical strategies. There are several commercial kits (Oncotype DX genomic prostate score®, Prolaris®, among others) that use genomic changes, rearrangement or even non-coding RNA events. However, none of them are currently used in the routine clinical practice. Many recent studies indicate that miRNAs are relevant molecules (small single-stranded non-coding RNAs that regulate gene expression of more than 30% of human genes) to be implement non-invasive biomarkers. However, contrasting to others tumors, such as breast cancer where miR-21 seems to be consistently upregulated; PCa data are controversial. Here we reported an extended revision about the role of miRNAs in PCa including data of AR signaling, cell cycle, EMT process, CSCs regulation and even the role of miRNAs as PCa diagnostic, prognostic and predictive tool. It is known that current biomedical research uses big-data analysis like Next Generation Sequencing (NGS) analysis. We also conducted an extensive online search, including the main platforms and kits for miRNAs massive analysis (like MiSeq, Nextseq 550, or Ion S5™ systems) indicating their pros, cons and including pre-analytical and analytical issues of miRNA studies.
Collapse
|
46
|
Yang X, Li Y, Zou L, Zhu Z. Role of Exosomes in Crosstalk Between Cancer-Associated Fibroblasts and Cancer Cells. Front Oncol 2019; 9:356. [PMID: 31131261 PMCID: PMC6510008 DOI: 10.3389/fonc.2019.00356] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are important cells of the tumor microenvironment that can communicate with tumor cells through various mechanisms. Recently, increasing studies have found that exosomes transmit biological information by carrying microRNAs, lncRNAs, proteins, metabolites, and other substances, and thus exert biological and therapeutic effects. CAF-secreted exosomes can also affect the tumor phenotype, while the exosomes released by tumor cells can activate CAFs. Here, we review the role of exosomes in the crosstalk between CAFs and tumor cells and elaborate its mechanism.
Collapse
Affiliation(s)
- Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Constâncio V, Barros-Silva D, Jerónimo C, Henrique R. Known epigenetic biomarkers for prostate cancer detection and management: exploring the potential of blood-based liquid biopsies. Expert Rev Mol Diagn 2019; 19:367-375. [PMID: 30961397 DOI: 10.1080/14737159.2019.1604224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Although prostate cancer (PCa) stands as an important cause of cancer-related deaths, a sizeable proportion of diagnosed cases are clinically insignificant. Hence, novel and more specific biomarkers to identify clinically significant PCa are needed. Liquid biopsies offer the potential to accurately identify cancer markers, including PCa. Epigenetic biomarkers such as cell-free DNA and circulating RNAs have emerged as minimally invasive cancer markers. Areas covered: Herein, we provide an overview of epigenetic biomarkers current state based on a comprehensive review of the relevant literature in blood-based liquid biopsies and challenges/limitations of this new and growing field of cancer biomarkers. Expert opinion: The epigenetic-based biomarkers characteristics make them attractive to the clinics and their minimally invasive assessment are a promising opportunity for PCa detection/management. The main limitations are the lack of robust validation studies and integrated approaches. Future studies would benefit from a change in focus to a 'selected PCa detection'.
Collapse
Affiliation(s)
- Vera Constâncio
- a Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP) , Portuguese Oncology Institute of Porto (IPO Porto) , Porto , Portugal
| | - Daniela Barros-Silva
- a Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP) , Portuguese Oncology Institute of Porto (IPO Porto) , Porto , Portugal
| | - Carmen Jerónimo
- a Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP) , Portuguese Oncology Institute of Porto (IPO Porto) , Porto , Portugal.,b Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS) , University of Porto , Porto , Portugal
| | - Rui Henrique
- a Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP) , Portuguese Oncology Institute of Porto (IPO Porto) , Porto , Portugal.,b Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS) , University of Porto , Porto , Portugal.,c Department of Pathology , Portuguese Oncology Institute of Porto (IPO Porto) , Porto , Portugal
| |
Collapse
|
48
|
A Rich Array of Prostate Cancer Molecular Biomarkers: Opportunities and Challenges. Int J Mol Sci 2019; 20:ijms20081813. [PMID: 31013716 PMCID: PMC6515282 DOI: 10.3390/ijms20081813] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/30/2023] Open
Abstract
Prostate cancer is the most prevalent non-skin cancer in men and is the leading cause of cancer-related death. Early detection of prostate cancer is largely determined by a widely used prostate specific antigen (PSA) blood test and biopsy is performed for definitive diagnosis. Prostate cancer is asymptomatic in the early stage of the disease, comprises of diverse clinico-pathologic and progression features, and is characterized by a large subset of the indolent cancer type. Therefore, it is critical to develop an individualized approach for early detection, disease stratification (indolent vs. aggressive), and prediction of treatment response for prostate cancer. There has been remarkable progress in prostate cancer biomarker discovery, largely through advancements in genomic technologies. A rich array of prostate cancer diagnostic and prognostic tests has emerged for serum (4K, phi), urine (Progensa, T2-ERG, ExoDx, SelectMDx), and tumor tissue (ConfirmMDx, Prolaris, Oncoytype DX, Decipher). The development of these assays has created new opportunities for improving prostate cancer diagnosis, prognosis, and treatment decisions. While opening exciting opportunities, these developments also pose unique challenges in terms of selecting and incorporating these assays into the continuum of prostate cancer patient care.
Collapse
|
49
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
50
|
Moustafa AA, Kim H, Albeltagy RS, El-Habit OH, Abdel-Mageed AB. MicroRNAs in prostate cancer: From function to biomarker discovery. Exp Biol Med (Maywood) 2019; 243:817-825. [PMID: 29932371 DOI: 10.1177/1535370218775657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a small functional non-coding RNAs that post-transcriptionally regulate gene expression through mRNA degradation or translational repression. miRNAs are key regulatory components of various cellular networks. Current evidence support that multiple mammalian genome-encoded miRNAs impact the cellular biology, including proliferation, apoptosis, differentiation, and tumorigenesis, by targeting specific subsets of mRNAs. This minireview is focused on the current themes underlying the interactions between miRNAs and their mRNA targets and pathways in prostate tumorigenesis and progression, and their potential clinical utility as biomarkers for prostate cancer. Impact statement The primary goal of this article was to review recent literature on miRNA biogenesis and further elaborate on the identity of newly discovered miRNAs and their potential functional significance in the complex biological network associated with prostate tumorigenesis and disease progression and as biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- 1 Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Hogyoung Kim
- 2 Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rasha S Albeltagy
- 1 Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Ola H El-Habit
- 1 Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Asim B Abdel-Mageed
- 2 Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA.,3 Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|