1
|
Rodrigues de Moura R, Patrizi S, Athanasakis E, Schleef J, Pederiva F, d'Adamo AP. Genomic instability in congenital lung malformations in children. Pediatr Surg Int 2024; 40:248. [PMID: 39237666 DOI: 10.1007/s00383-024-05835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE To study the biological relationship between congenital lung malformations (CLMs) and malignancy. METHODS Biopsies of 12 CPAMs, 6 intralobar sequestrations and 2 extralobar sequestrations were analyzed through whole-genome sequencing. Blood samples from 10 patients were used to confirm or exclude somatic mosaicism. Putative somatic Single Nucleotide Variants (SNVs) were called for each malformed sample with a Panel of Normals built with control DNA samples extracted from blood. The variants were subsequently confirmed by Sanger sequencing and searched, whenever possible, in the blood samples of patients. RESULTS All CLMs but one presented a signature of genomic instability by means of multiple clusters of cells with gene mutations. Seven tumor transformation-related SNVs were detected in 6/20 congenital lung malformations. Four very rare in the general population SNVs were found in a region previously linked to lung cancer in 5p15.33, upstream of TERT oncogene. Furthermore, we identified missense genetic variants, whose tumorigenic role is well known, in the RET, FANCA and MET genes. CONCLUSIONS Genomic instability in 95% of CLMs and genetic variants linked to tumor development in 30% of them, regardless of histopathology, are predisposing factors to malignancy, that combined with exposure to carcinogens, might trigger the development of malignancy and explain the association between CLMs and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Jurgen Schleef
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Federica Pederiva
- Pediatric Surgery, "F. Del Ponte" Hospital, ASST Settelaghi, Via Filippo del Ponte 19, 21100, Varese, Italy.
| | - Adamo Pio d'Adamo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
- University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhang H, Zhang X, Yu J. Integrated Analysis of Altered lncRNA, circRNA, microRNA, and mRNA Expression in Hepatocellular Carcinoma Carrying TERT Promoter Mutations. J Hepatocell Carcinoma 2022; 9:1201-1215. [PMID: 36471741 PMCID: PMC9719279 DOI: 10.2147/jhc.s385026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Telomerase reverse transcriptase (TERT) promoter mutations are one of the most common mutations responsible for the development of hepatocellular carcinoma (HCC). Noncoding RNAs (ncRNAs) play a regulatory role in different cancers through the long noncoding RNA (lncRNA)/circular RNA (circRNA)-microRNA (miRNA)-mRNA axis. The aim of the study was to explore the influence of TERT promoter mutations on the ncRNA regulatory network in HCC. METHODS Four tumor samples with a wildtype TERT promoter and four tumor samples with TERT promoter mutations (sequencing cohort) were collected from HCC patients for high-throughput next-generation sequencing. Selected ncRNAs and mRNAs were validated by qPCR in 15 HCC tumors with a wildtype TERT promoter and seven HCC tumors with TERT promoter mutations (validation cohort, including the sequencing cohort). RESULTS In the mutant TERT promoter group, 536 lncRNAs, 21 circRNAs, 41 miRNAs, and 266 mRNAs were significantly up-regulated, while 1745 lncRNAs, 23 circRNAs, 32 miRNAs, and 1117 mRNAs were significantly down-regulated (P < 0.05) compared with the findings in wildtype group. AL360169.3-201, LINC02672-203, hsa_circ_0021412, hsa-miR-29b-1-5p, hsa-miR-4699-5p, hsa-miR-199a-5p, REG3A, SFRP5, and GSTM1 were verified at the RNA expression level to validate the sequencing results. A differentially expressed lncRNA/circRNA-miRNA-mRNA network was constructed to explore the effects of TERT promoter mutations on ncRNA regulation. Two ncRNA regulatory axes associated with TERT promoter mutations (hsa_circ_0003154/hsa_circ_0008952/IGLL5-AS1/LINC576/LINC575-hsa-miR-1260b -CLPTM1L/GSTM1 and hsa_circ_0031584/LINC2101-hsa-miR-214-3p-CD151) had carcinogenic potential. CONCLUSION This study provides novel insights into the role of TERT promoter mutations on ncRNAs regulatory network in HCC progression.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Jingya Yu
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
4
|
Methylation of Subtelomeric Chromatin Modifies the Expression of the lncRNA TERRA, Disturbing Telomere Homeostasis. Int J Mol Sci 2022; 23:ijms23063271. [PMID: 35328692 PMCID: PMC8955364 DOI: 10.3390/ijms23063271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome healing; nevertheless, the impact of this association has not been investigated during the carcinogenic process. Determining whether changes in TERRA expression are a cause or a consequence of cell transformation is a complex task because studies are usually carried out using either cancerous cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in TERRA homeostasis is a consequence of cellular transformation and that changes in its expression profile can lead to telomeric and genomic instability.
Collapse
|
5
|
Zhou Z, Li Y, Xu H, Xie X, He Z, Lin S, Li R, Jin S, Cui J, Hu H, Liu F, Wu S, Ma W, Songyang Z. An inducible CRISPR/Cas9 screen identifies DTX2 as a transcriptional regulator of human telomerase. iScience 2022; 25:103813. [PMID: 35198878 PMCID: PMC8844827 DOI: 10.1016/j.isci.2022.103813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/12/2023] Open
Abstract
Most tumor cells reactivate telomerase to ensure unlimited proliferation, whereas the expression of human telomerase reverse transcriptase (hTERT) is tightly regulated and rate-limiting for telomerase activity maintenance. Several general transcription factors (TFs) have been found in regulating hTERT transcription; however, a systematic study is lacking. Here we performed an inducible CRISPR/Cas9 KO screen using an hTERT core promoter-driven reporter. We identified numerous positive regulators including an E3 ligase DTX2. In telomerase-positive cancer cells, DTX2 depletion downregulated hTERT transcription and telomerase activity, contributing to progressive telomere shortening, growth arrest, and increased apoptosis. Utilizing BioID, we characterized multiple TFs as DTX2 proximal proteins, among which NFIC functioned corporately with DTX2 in promoting hTERT transcription. Further analysis demonstrated that DTX2 mediated K63-linked ubiquitination of NFIC, which facilitated NFIC binding to the hTERT promoter and enhanced hTERT expression. These findings highlight a new hTERT regulatory pathway that may be exploited for potential cancer therapeutics. An inducible CRISPR/Cas9 screen identifies regulators for hTERT transcription DTX2 deficiency leads to telomere shortening and cell growth arrest DTX2 mediates ubiquitination on NFIC, stabilizing NFIC binding on hTERT promoter DTX2-NFIC functions corporately to promote hTERT transcription and tumorigenesis
Collapse
Affiliation(s)
- Zhifen Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujing Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Huimin Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Su Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Corresponding author
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Corresponding author
| | - Zhou Songyang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Corresponding author
| |
Collapse
|
6
|
Bellon M, Yuan Y, Nicot C. Transcription Independent Stimulation of Telomerase Enzymatic Activity by HTLV-I Tax Through Stimulation of IKK. JOURNAL OF CANCER SCIENCES 2021; 8. [PMID: 34938859 PMCID: PMC8691565 DOI: 10.13188/2377-9292.1000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The persistence and spreading of HTLV-I infected cells relies upon their clonal expansion through cellular replication. The development of adult T cell leukemia (ATLL) occurs decades following primary infection by HTLV-I. Moreover, identical provirus integration sites have been found in samples recovered several years apart from infected individuals. These observations suggest that infected cells persist in the host for an extended period of time. To endure long term proliferation, HTLV-I pre-leukemic cells must acquire critical oncogenic events, two of which are the bypassing of apoptosis and replicative senescence. In the early stages of disease, interleukin-2 (IL-2)/IL-2R signaling likely plays a major role in combination with activation of anti-apoptotic pathways. Avoidance of replicative senescence in HTLV-I infected cells is achieved through reactivation of human telomerase (hTERT). We have previously shown that HTLV-I viral Tax transcriptionally activates the hTERT promoter. In this study we demonstrate that Tax can stimulate hTERT enzymatic activity independently of its transcriptional effects. We further show that this occurs through Tax-mediated NF-KB activating functions. Our results suggest that in ATLL cells acquire Tax-transcriptional and post-transcriptional events to elevate telomerase activity.
Collapse
Affiliation(s)
- M Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | - Y Yuan
- Department of Pharmacology, Baylor College of Medicine, USA
| | - C Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| |
Collapse
|
7
|
Bhari VK, Kumar D, Kumar S, Mishra R. Shelterin complex gene: Prognosis and therapeutic vulnerability in cancer. Biochem Biophys Rep 2021; 26:100937. [PMID: 33553693 PMCID: PMC7859307 DOI: 10.1016/j.bbrep.2021.100937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Telomere encompasses a (TTAGGG)n tandem repeats, and its dysfunction has emerged as the epicenter of driving carcinogenesis by promoting genetic instability. Indeed, they play an essential role in stabilizing chromosomes and therefore protecting them from end-to-end fusion and DNA degradation. Telomere length homeostasis is regulated by several key players including shelterin complex genes, telomerase, and various other regulators. Targeting these regulatory players can be a good approach to combat cancer as telomere length is increasingly correlated with cancer initiation and progression. In this review, we have aimed to describe the telomere length regulator's role in prognostic significance and important drug targets in breast cancer. Moreover, we also assessed alteration in telomeric function by various telomere length regulators and compares this to the regulatory mechanisms that can be associated with clinical biomarkers in cancer. Using publicly available software we summarized mutational and CpG island prediction analysis of the TERT gene breast cancer patient database. Studies have reported that the TERT gene has prognostic significance in breast cancer progression however mechanistic approaches are not defined yet. Interestingly, we reported using the UCSC Xena web-based tool, we confirmed a positive correlation of shelterin complex genes TERF1 and TERF2 in recurrent free survival, indicating the critical role of these genes in breast cancer prognosis. Moreover, the epigenetic landscape of DNA damage repair genes in different breast cancer subtypes also being analyzed using the UCSC Xena database. Together, these datasets provide a comprehensive resource for shelterin complex gene profiles and define epigenetic landscapes of DNA damage repair genes which reveals the key role of shelterin complex genes in breast cancer with the potential to identify novel and actionable targets for treatment.
Collapse
Affiliation(s)
- Vikas Kumar Bhari
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| | - Durgesh Kumar
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Surendra Kumar
- Department of Neurology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
8
|
Yang J, Li C, Tang Y, Guo F, Chen Y, Luo W, Chen X, Ma Y, Zeng L. Diagnostic roles of proliferative markers in pathological Grade of T1 Urothelial Bladder Cancer. J Cancer 2021; 12:2498-2506. [PMID: 33854611 PMCID: PMC8040703 DOI: 10.7150/jca.52336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The stage T1 urothelial bladder cancer (T1 UBC) tumor grade classification is important for prognosis and clinical management. However, the reproducibility of this two-grade classification system is limited in regards to pathological diagnosis, and there is lack of ideal, objective and easily detected markers for pathological diagnosis. In our study, bladder urothelial lesions from a total of 124 patients diagnosed pathologically after transurethral resection of the bladder tumor (TURBT) were collected, including non-cancerous lesions from 33 patients and lesions from 91 T1 UBC patients. A series of previous studies have suggested some common and valuable factors in the diagnosis and prognosis of UBC, but there are still some controversial factors, such as the mitotic figure (MF) of tumor cell, cell proliferation index Ki-67, graded differentiation marker CK20, P53, P504S and carcinogenesis associated telomerase reverse transcriptase (TERT) promoter mutations. The purpose of this study was to evaluate the value of these factors in the pathological grading diagnosis of T1 UBC. The results showed that gender, lesion size, mitotic index (MI), CK20, P53, Ki-67, P504S and TERT promoter hot spot mutations (C228T and C250T) were correlated with T1 UBC diagnosis (P<0.05). The MI, Ki-67 and P504S were correlated with the pathological grade of T1 UBC (P<0.05). Logistic regression analysis showed that the MI and Ki-67 were independent risk factors for high-grade (HG) of T1 UBC (P<0.05). The combined detection of the MI, Ki-67 and P504S in a multivariate diagnostic model improved the diagnostic accuracy of assigning the T1 UBC pathological grade (AUC=0.904, 95%CI: 0.824~0.956, P<0.05). In conclusion, MI and Ki-67, as important markers of histopathology and cell proliferation, can be easily measured and have good reproducibility. These markers may be meaningful parameters for assigning the pathological grade of UBC.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Chunjun Li
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong Tang
- Department of Urology, Wuming Hospital of Guangxi Medical University, Nanning 530199, Guangxi Zhuang Autonomous Region, China
| | - Fang Guo
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Yu Chen
- Department of Urology, Wuming Hospital of Guangxi Medical University, Nanning 530199, Guangxi Zhuang Autonomous Region, China
| | - Wenqi Luo
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiaoyu Chen
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yun Ma
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lixia Zeng
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Emerging Contribution of PancRNAs in Cancer. Cancers (Basel) 2020; 12:cancers12082035. [PMID: 32722129 PMCID: PMC7464463 DOI: 10.3390/cancers12082035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
“Cancer” includes a heterogeneous group of diseases characterized by abnormal growth beyond natural boundaries. Neoplastic transformation of cells is orchestrated by multiple molecular players, including oncogenic transcription factors, epigenetic modifiers, RNA binding proteins, and coding and noncoding transcripts. The use of computational methods for global and quantitative analysis of RNA processing regulation provides new insights into the genomic and epigenomic features of the cancer transcriptome. In particular, noncoding RNAs are emerging as key molecular players in oncogenesis. Among them, the promoter-associated noncoding RNAs (pancRNAs) are noncoding transcripts acting in cis to regulate their host genes, including tumor suppressors and oncogenes. In this review, we will illustrate the role played by pancRNAs in cancer biology and will discuss the latest findings that connect pancRNAs with cancer risk and progression. The molecular mechanisms involved in the function of pancRNAs may open the path to novel therapeutic opportunities, thus expanding the repertoire of targets to be tested as anticancer agents in the near future.
Collapse
|
10
|
Vahidi S, Norollahi SE, Agah S, Samadani AA. DNA Methylation Profiling of hTERT Gene Alongside with the Telomere Performance in Gastric Adenocarcinoma. J Gastrointest Cancer 2020; 51:788-799. [PMID: 32617831 DOI: 10.1007/s12029-020-00427-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Epigenetic modification including of DNA methylation, histone acetylation, histone methylation, histon phosphorylation and non-coding RNA can impress the gene expression and genomic stability and cause different types of malignancies and also main human disorder. Conspicuously, the epigenetic alteration special DNA methylation controls telomere length, telomerase activity and also function of different genes particularly hTERT expression. Telomeres are important in increasing the lifespan, health, aging, and the development and progression of some diseases like cancer. METHODS This review provides an assessment of the epigenetic alterations of telomeres, telomerase and repression of its catalytic subunit, hTERT and function of long non-coding RNAs such as telomeric-repeat containing RNA (TERRA) in carcinogenesis and tumorgenesis of gastric cancer. RESULTS hTERT expression is essential and indispensable in telomerase activation through immortality and malignancies and also plays an important role in maintaining telomere length. Telomeres and telomerase have been implicated in regulating epigenetic factors influencing certain gene expression. Correspondingly, these changes in the sub telomere and telomere regions are affected by the shortening of telomere length and increased telomerase activity and hTERT gene expression have been observed in many cancers, remarkably in gastric cancer. CONCLUSION Epigenetic alteration and regulation of hTERT gene expression are critical in controlling telomerase activity and its expression. Graphical Abstract.
Collapse
Affiliation(s)
- Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Samadani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Zhang F, Cheng D, Wang S, Zhu J. Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region. Biotechnol Bioeng 2020; 117:2816-2826. [PMID: 32449788 DOI: 10.1002/bit.27441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Homologous recombination over large genomic regions is difficult to achieve due to low efficiencies. Here, we report the successful engineering of a humanized mTert allele, hmTert, in the mouse genome by replacing an 18.1-kb genomic region around the mTert gene with a recombinant fragment of over 45.5 kb, using homologous recombination facilitated by the Crispr/Cas9 technology, in mouse embryonic stem cells (mESCs). In our experiments, with DNA double-strand breaks (DSBs) generated by Crispr/Cas9 system, the homologous recombination efficiency was up to 11% and 16% in two mESC lines TC1 and v6.5, respectively. Overall, we obtained a total of 27 mESC clones with heterozygous hmTert/mTert alleles and three clones with homozygous hmTert alleles. DSBs induced by Crispr/Cas9 cleavages also caused high rates of genomic DNA deletions and mutations at single-guide RNA target sites. Our results indicated that the Crispr/Cas9 system significantly increased the efficiency of homologous recombination-mediated gene editing over a large genomic region in mammalian cells, and also caused frequent mutations at unedited target sites. Overall, this strategy provides an efficient and feasible way for manipulating large chromosomal regions.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - De Cheng
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| |
Collapse
|
12
|
Salgado C, Roelse C, Nell R, Gruis N, van Doorn R, van der Velden P. Interplay between TERT promoter mutations and methylation culminates in chromatin accessibility and TERT expression. PLoS One 2020; 15:e0231418. [PMID: 32267900 PMCID: PMC7141627 DOI: 10.1371/journal.pone.0231418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
The telomerase reverse transcriptase (TERT) gene is responsible for telomere maintenance in germline and stem cells, and is re-expressed in 90% of human cancers. CpG methylation in the TERT promoter (TERTp) was correlated with TERT mRNA expression. Furthermore, two hotspot mutations in TERTp, dubbed C228T and C250T, have been revealed to facilitate binding of transcription factor ETS/TCF and subsequent TERT expression. This study aimed to elucidate the combined contribution of epigenetic (promoter methylation and chromatin accessibility) and genetic (promoter mutations) mechanisms in regulating TERT gene expression in healthy skin samples and in melanoma cell lines (n = 61). We unexpectedly observed that the methylation of TERTp was as high in a subset of healthy skin cells, mainly keratinocytes, as in cutaneous melanoma cell lines. In spite of the high promoter methylation fraction in wild-type (WT) samples, TERT mRNA was only expressed in the melanoma cell lines with either high methylation or intermediate methylation in combination with TERT mutations. TERTp methylation was positively correlated with chromatin accessibility and TERT mRNA expression in 8 melanoma cell lines. Cooperation between epigenetic and genetic mechanisms were best observed in heterozygous mutant cell lines as chromosome accessibility preferentially concerned the mutant allele. Combined, these results suggest a complex model in which TERT expression requires either a widely open chromatin state in TERTp-WT samples due to high methylation throughout the promoter or a combination of moderate methylation fraction/chromatin accessibility in the presence of the C228T or C250T mutations.
Collapse
Affiliation(s)
- Catarina Salgado
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celine Roelse
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rogier Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter van der Velden
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Smith-Sonneborn J. Telomerase Biology Associations Offer Keys to Cancer and Aging Therapeutics. Curr Aging Sci 2020; 13:11-21. [PMID: 31544708 PMCID: PMC7403649 DOI: 10.2174/1874609812666190620124324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although telomerase has potential for age-related disease intervention, the overexpression of telomerase in about 90% of cancers, and in HIV virus reservoirs, cautions against se in anti-aging telomerase therapeutics. While multiple reviews document the canonical function of telomerase for maintenance of telomeres, as well as an increasing numbers of reviews that reveal new non-canonical functions of telomerase, there was no systematic review that focuses on the array of associates of the subunit of Telomerase Reverse transcriptase protein (TERT) as pieces of the puzzle to assemble a picture of the how specific TERT complexes uniquely impact aging and age-related diseases and more can be expected. METHODS A structured search of bibliographic data on TERT complexes was undertaken using databases from the National Center for Biotechnology Information Pubmed with extensive access to biomedical and genomic information in order to obtain a unique documented and cited overview of TERT complexes that may uniquely impact aging and age-related diseases. RESULTS The TERT associations include proper folding, intracellular TERT transport, metabolism, mitochondrial ROS (Reactive Oxygen Species) regulation, inflammation, cell division, cell death, and gene expression, in addition to the well-known telomere maintenance. While increase of cell cycle inhibitors promote aging, in cancer, the cell cycle check-point regulators are ambushed in favor of cell proliferation, while cytoplasmic TERT protects a cell cycle inhibitor in oxidative stress. The oncogene cMyc regulates gene expression for overexpression of TERT, and reduction of cell cycle inhibitors-the perfect storm for cancer promotion. TERT binds with the oncogene RMRP RNA, and TERT-RMRP function can regulate levels of that oncogene RNA, and TERT in a TBN complex can regulate heterochromatin. Telomerase benefit and novel function in neurology and cardiology studies open new anti- aging hope. GV1001, a 16 amino acid peptide of TERT that associates with Heat Shock Proteins (HSP's), bypasses the cell membrane with remarkable anti disease potential. CONCLUSIONS TERT "associates" are anti-cancer targets for downregulation, but upregulation in antiaging therapy. The overview revealed that unique TERT associations that impact all seven pillars of aging identified by the Trans-NIH Geroscience Initiative that influence aging and urge research for appropriate targeted telomerase supplements/ stimulation, and inclusion in National Institute on Aging Intervention Testing Program. The preference for use of available "smart drugs", targeted to only cancer, not off-target anti- aging telomerase is implied by the multiplicity of TERT associates functions.
Collapse
Affiliation(s)
- Joan Smith-Sonneborn
- Department Zoology and Physiology, University of Wyoming, Laramie, Wyoming, WY, USA
| |
Collapse
|
14
|
Cleavage and polyadenylation specific factor 4 promotes colon cancer progression by transcriptionally activating hTERT. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1533-1543. [DOI: 10.1016/j.bbamcr.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/30/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
|
15
|
Yuan T, Zhao W, Niu Y, Fu Y, Lu L, Niu D. Exploration of the temporal-spatial expression pattern and DNA methylation-related regulation of the duck telomerase reverse transcriptase gene. Poult Sci 2019; 98:3257-3267. [PMID: 31064004 DOI: 10.3382/ps/pez240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase that adds TTAGGG repeats to the 3'-overhang of telomeres. In the present study, we detected that the duck TERT (dTERT) gene was highly expressed in small intestine and kidney, followed by heart, leg muscle, spleen, pancreas, gonad, and liver at neonatal stage. From embryonic to neonatal stage, the highest dTERT mRNA in liver appeared at stage E19 (19 days at embryonic stage), while for the leg muscle the maximum expression occurred at E26. We also measured the relative telomerase activity (RTA) and relative telomere length (RTL) in the examined tissues and found that the changed tendency of RTA and RTL was not very consistent with that of TERT. In silico analysis revealed that there were three CpG islands (S1, S2, and S3) within the 5' regulatory region of the dTERT gene. Bisulfite sequencing PCR (BSP) assay showed that liver (D7, 7 days after birth) which expressed significantly lower dTERT mRNA had an obviously higher methylation level of S1 compared with small intestine (D7) or liver (E19). Quantitative real-time PCR analysis revealed that the expression of DNA methyltransferase DNMT1 in liver (D7) was significantly higher than that in small intestine (D7) or in liver (E19). In vitro, dTERT expression was upregulated and the methylation status of S1 decreased in both duck embryonic fibroblasts and small intestinal epithelial cells following treatment with the demethylation reagent, 5-aza-2'-deoxycytidine (5-aza-dC), further suggesting that dTERT is epigenetically regulated by DNA methylation. This work lays a solid foundation for further study of TERT function and regulation in avian species.
Collapse
Affiliation(s)
- Taoyan Yuan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Wanqiu Zhao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Yifan Niu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yan Fu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, Zhejiang, China
| | - Dong Niu
- College of Animal Science and Technology, Zhejiang A&F University
| |
Collapse
|
16
|
Bui CB, Le HK, Vu DM, Truong KDD, Nguyen NM, Ho MAN, Truong DQ. ARID1A-SIN3A drives retinoic acid-induced neuroblastoma differentiation by transcriptional repression of TERT. Mol Carcinog 2019; 58:1998-2007. [PMID: 31365169 DOI: 10.1002/mc.23091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Abstract
Aggressive, high-risk neuroblastoma (NB) exhibits an immature differentiation state, profound epigenetic dysregulation and high telomerase activity. It has been suggested that aggressive NB may be treatable by inducing differentiation whereas therapeutic targeting of telomerase is under investigation for multiple cancer types. While epigenetic regulation of the telomerase reverse transcriptase (TERT) promoter has been described in high-risk NB, the exact molecular mechanisms are still not completely understood. Here we used quantitative real-time polymerase chain reaction (PCR), chromatin immunoprecipitation qPCR, quantitative telomeric repeat amplification protocol, and immunoblot techniques to investigate epigenetic regulation of TERT in wild-type and genetically modified NB cell lines. We demonstrated that TERT expression is reduced during 13-cis retinoic acid-induced NB differentiation and that this inversely correlated with increased expression of AT-rich interaction domain 1A (ARID1A), a subunit of the SWItch/sucrose nonfermentable chromatin remodeling complex. We showed that ARID1A directly caused suppression of TERT and was reliant on DNA binding and co-occupancy of the TERT promoter by the SIN3 transcription regulator family member A (SIN3A) repressor complex allowing NB differentiation to proceed. Finally, using data from NB patient cohorts, we reported a significant correlation between low ARID1A expression, elevated expression of TERT, and poorly differentiated, high-risk NB. These results provide insights into a key epigenetic pathway responsible for modulating TERT-driven NB progression, which could represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Chi-Bao Bui
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam.,Department of Molecular Oncology, City Children's Hospital, Ho Chi Minh City, Vietnam
| | - Hoa Kim Le
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Diem My Vu
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Kieu-Diem Dinh Truong
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Nhat Manh Nguyen
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Minh Anh Nguyen Ho
- Department of Molecular and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Dinh Quang Truong
- Department of Molecular Oncology, City Children's Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Engineering a humanized telomerase reverse transcriptase gene in mouse embryonic stem cells. Sci Rep 2019; 9:9683. [PMID: 31273310 PMCID: PMC6609615 DOI: 10.1038/s41598-019-46160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Telomerase is expressed in adult mouse, but not in most human, tissues and mouse telomeres are much longer than those in humans. This interspecies difference of telomere homeostasis poses a challenge in modeling human diseases using laboratory mice. Using chromatinized bacterial artificial chromosome reporters, we discovered that the 5′ intergenic region, introns 2 and 6 of human telomerase gene (hTERT) were critical for regulating its promoter in somatic cells. Accordingly, we engineered a humanized gene, hmTert, by knocking-in a 47-kilobase hybrid fragment containing these human non-coding sequences into the mTert locus in mouse embryonic stem cells (mESCs). The hmTert gene, encoding the wildtype mTert protein, was fully functional, as a mESC line with homozygous hmTert alleles proliferated for over 400 population doublings without exhibiting chromosomal abnormalities. Like human ESCs, the engineered mESCs contained high telomerase activity, which was repressed upon their differentiation into fibroblast-like cells in a histone deacetylase-dependent manner. Fibroblast-like cells differentiated from these mESCs contained little telomerase activity. Thus, telomerase in mESCs with the hmTert alleles was subjected to human-like regulation. Our study revealed a novel approach to engineer a humanized telomerase gene in mice, achieving a milestone in creating a mouse model with humanized telomere homeostasis.
Collapse
|
18
|
ALV Integration-Associated Hypomethylation at the TERT Promoter Locus. Viruses 2018; 10:v10020074. [PMID: 29439385 PMCID: PMC5850381 DOI: 10.3390/v10020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Avian leukosis virus (ALV) is a simple retrovirus that can induce B-cell lymphoma in chicken(s) and other birds by insertional mutagenesis. The promoter region of telomerase reverse transcriptase (TERT) has been identified as an important integration site for tumorigenesis. Tumors with TERT promoter integrations are associated with increased TERT expression. The mechanism of this activation is still under investigation. We asked whether insertion of proviral DNA perturbs the epigenome of the integration site and, subsequently, impacts the regulation of neighboring genes. DNA cytosine methylation, which generally acts to suppress transcription, is one major form of epigenetic regulation. In this study, we examine allele-specific methylation patterns of genomic DNA from chicken tumors by bisulfite sequencing. We observed that alleles with TERT promoter integrations are associated with decreased methylation in the host genome near the site of integration. Our observations suggest that insertion of ALV in the TERT promoter region may induce expression of TERT through inhibition of maintenance methylation in the TERT promoter region.
Collapse
|
19
|
Cleal K, Norris K, Baird D. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture. Int J Mol Sci 2018; 19:E482. [PMID: 29415479 PMCID: PMC5855704 DOI: 10.3390/ijms19020482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB) repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage-fusion-bridge (BFB) cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT) pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Kevin Norris
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Duncan Baird
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| |
Collapse
|
20
|
A Novel Long Non-Coding RNA in the hTERT Promoter Region Regulates hTERT Expression. Noncoding RNA 2017; 4:ncrna4010001. [PMID: 29657298 PMCID: PMC5890388 DOI: 10.3390/ncrna4010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
A novel antisense transcript was identified in the human telomerase reverse transcriptase (hTERT) promoter region, suggesting that the hTERT promoter is bidirectional. This transcript, named hTERT antisense promoter-associated (hTAPAS) RNA, is a 1.6 kb long non-coding RNA. hTAPAS transcription is initiated 167 nucleotides upstream of the hTERT transcription start site and is present in both the nucleus and the cytoplasm. Surprisingly, we observed that a large fraction of the hTERT polyadenylated RNA is localized in the nucleus, suggesting this might be an additional means of regulating the cellular abundance of hTERT protein. Both hTAPAS and hTERT are expressed in immortalized B-cells and human embryonic stem cells but are not detected in normal somatic cells. hTAPAS expression inversely correlates with hTERT expression in different types of cancer samples. Moreover, hTAPAS expression is not promoted by an hTERT promoter mutation (-124 C>T). Antisense-oligonucleotide mediated knockdown of hTAPAS results in an increase in hTERT expression. Conversely, ectopic overexpression of hTAPAS down regulates hTERT expression, suggesting a negative role in hTERT gene regulation. These observations provide insights into hTAPAS as a novel player that negatively regulates hTERT expression and may be involved in telomere length homeostasis.
Collapse
|
21
|
Regulation of human and mouse telomerase genes by genomic contexts and transcription factors during embryonic stem cell differentiation. Sci Rep 2017; 7:16444. [PMID: 29180668 PMCID: PMC5703907 DOI: 10.1038/s41598-017-16764-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Differential regulation of telomerase reverse transcriptase (TERT) genes contribute to distinct aging and tumorigenic processes in humans and mice. To study TERT regulation, we generated mouse embryonic stem cell (ESC) lines containing single-copy bacterial artificial chromosome (BAC) reporters, covering hTERT and mTERT genes and their neighboring loci, via recombinase-mediated BAC targeting. ESC lines with chimeric BACs, in which two TERT promoters were swapped, were also generated. Using these chromatinized BACs, we showed that hTERT silencing during differentiation to embryoid bodies (EBs) and to fibroblast-like cells was driven by the human-specific genomic context and accompanied by increases of repressive epigenetic marks, H3K9me3 and H3K27me3, near its promoter. Conversely, the mouse genomic context did not repress TERT transcription until late during differentiation. The hTERT promoter was more active than its mouse counterpart when compared in the same genomic contexts. Mutations of E-box and E2F consensus sites at the promoter had little effect on hTERT transcription in ESCs. However, the mutant promoters were rapidly silenced upon EB differentiation, indicating that transcription factors (TFs) bound to these sites were critical in maintaining hTERT transcription during differentiation. Together, our study revealed a dynamic hTERT regulation by chromatin environment and promoter-bound TFs during ESC differentiation.
Collapse
|
22
|
Faleiro I, Apolónio JD, Price AJ, De Mello RA, Roberto VP, Tabori U, Castelo-Branco P. The TERT hypermethylated oncologic region predicts recurrence and survival in pancreatic cancer. Future Oncol 2017; 13:2045-2051. [DOI: 10.2217/fon-2017-0167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We explore the biomarker potential of the TERT hypermethylated oncologic region (THOR) in pancreatic cancer. Materials & methods: We assessed the methylation status of THOR using the cancer genome atlas data on the cohort of pancreatic cancer (n = 193 patients). Results: THOR was significantly hypermethylated in pancreatic tumor tissue when compared with the normal tissue used as control (p < 0.0001). Also, THOR hypermethylation could distinguish early stage I disease from normal tissue and was associated with worse prognosis. Discussion: We found that THOR is hypermethylated in pancreatic tumor tissue when compared with normal tissue and that THOR methylation correlates with TERT expression in tumor samples. Conclusion: Our preliminary findings support the diagnostic and prognostic values of THOR in pancreatic cancer.
Collapse
Affiliation(s)
- Inês Faleiro
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Joana Dias Apolónio
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Aryeh J Price
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ramon Andrade De Mello
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Vânia Palma Roberto
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Uri Tabori
- Arthur & Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| |
Collapse
|
23
|
TERT promoter status and gene copy number gains: effect on TERT expression and association with prognosis in breast cancer. Oncotarget 2017; 8:77540-77551. [PMID: 29100407 PMCID: PMC5652798 DOI: 10.18632/oncotarget.20560] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Upregulation of the telomerase reverse transcriptase (TERT) gene in human cancers leads to telomerase activation, which contributes to the growth advantage and survival of tumor cells. Molecular mechanisms of TERT upregulation are complex, tumor-specific and can be clinically relevant. To investigate these mechanisms in breast cancer, we sequenced the TERT promoter, evaluated TERT copy number changes and assessed the expression of the MYC oncogene, a known transcriptional TERT regulator, in two breast cancer cohorts comprising a total of 122 patients. No activating TERT promoter mutations were found, suggesting that this mutational mechanism is not likely to be involved in TERT upregulation in breast cancer. The T349C promoter polymorphism found in up to 50% of cases was not correlated with TERT expression, but T349C carriers had significantly shorter disease-free survival. TERT gains (15-25% of cases) were strongly correlated with increased TERT mRNA expression and worse patient prognosis in terms of disease-free and overall survival. Particularly aggressive breast cancers were characterized by an association of TERT gains with MYC overexpression. These results evidence a significant effect of gene copy number gain on the level of TERT expression and provide a new insight into the clinical significance of TERT and MYC upregulation in breast cancer.
Collapse
|
24
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|
25
|
Kumar A, Nilednu P, Kumar A, Sharma NK. Epigenetic perturbation driving asleep telomerase reverse transcriptase: Possible therapeutic avenues in carcinoma. Tumour Biol 2017; 39:1010428317695951. [PMID: 28347254 DOI: 10.1177/1010428317695951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
Abstract
In the last decade, implications of human telomerase reverse transcriptase (hTERT), a component of ribonucleoprotein telomerase in aging, senescence, and stem cell are highly evident. Besides, the activation of hTERT is also being documented several cancer types including carcinoma. The awakening of telomerase during carcinoma initiation and development is being seen with different perspectives including genetic and epigenetic tools and events. In view of several tumor progenitors genes (also referred as epigenetic mediators), telomerase is placed as key enzyme to achieve the carcinoma phenotype and sustain during the progression. It is true that swaying of telomerase in carcinoma could be facilitated with dedicated set of epigenetic modulators and modifiers players. These epigenetic alterations are heritable, potentially reversible, and seen as the epigenetic signature of carcinoma. Several papers converge to suggest that DNA methylation, histone modification, and small non-coding RNAs are the widely appreciated epigenetic changes towards hTERT modulation. In this review, we summarize the contribution of epigenetic factors in the telomerase activation and discuss potential avenues to achieve therapeutic intervention in carcinoma.
Collapse
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Pritish Nilednu
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Azad Kumar
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| |
Collapse
|
26
|
Differential decrease in soluble and DNA-bound telomerase in senescent human fibroblasts. Biogerontology 2017; 18:525-533. [DOI: 10.1007/s10522-017-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
|
27
|
Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, Lai TP, Zhang N, Wright WE, Shay JW. Regulation of the Human Telomerase Gene TERT by Telomere Position Effect-Over Long Distances (TPE-OLD): Implications for Aging and Cancer. PLoS Biol 2016; 14:e2000016. [PMID: 27977688 PMCID: PMC5169358 DOI: 10.1371/journal.pbio.2000016] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
Telomerase is expressed in early human development and then becomes silenced in most normal tissues. Because ~90% of primary human tumors express telomerase and generally maintain very short telomeres, telomerase is carefully regulated, particularly in large, long-lived mammals. In the current report, we provide substantial evidence for a new regulatory control mechanism of the rate limiting catalytic protein component of telomerase (hTERT) that is determined by the length of telomeres. We document that normal, young human cells with long telomeres have a repressed hTERT epigenetic status (chromatin and DNA methylation), but the epigenetic status is altered when telomeres become short. The change in epigenetic status correlates with altered expression of TERT and genes near to TERT, indicating a change in chromatin. Furthermore, we identified a chromosome 5p telomere loop to a region near TERT in human cells with long telomeres that is disengaged with increased cell divisions as telomeres progressively shorten. Finally, we provide support for a role of the TRF2 protein, and possibly TERRA, in the telomere looping maintenance mechanism through interactions with interstitial TTAGGG repeats. This provides new insights into how the changes in genome structure during replicative aging result in an increased susceptibility to age-related diseases and cancer prior to the initiation of a DNA damage signal.
Collapse
Affiliation(s)
- Wanil Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jaewon Min
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jerome D Robin
- Faculté de Médecine, Tour Pasteur 8éme Étage, Nice, France
| | - Guido Stadler
- Berkeley Lights, Inc., Emeryville, California, United States of America
| | - Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tsung-Po Lai
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ning Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
28
|
Cheng D, Zhao Y, Wang S, Zhang F, Russo M, McMahon SB, Zhu J. Repression of telomerase gene promoter requires human-specific genomic context and is mediated by multiple HDAC1-containing corepressor complexes. FASEB J 2016; 31:1165-1178. [PMID: 27940549 DOI: 10.1096/fj.201601111r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Abstract
The human telomerase reverse transcriptase (hTERT) gene is repressed in most somatic cells, whereas the expression of the mouse mTert gene is widely detected. To understand the mechanisms of this human-specific repression, we constructed bacterial artificial chromosome (BAC) reporters using human and mouse genomic DNAs encompassing the TERT genes and neighboring loci. Upon chromosomal integration, the hTERT, but not the mTert, reporter was stringently repressed in telomerase-negative human cells in a histone deacetylase (HDAC)-dependent manner, replicating the expression of their respective endogenous genes. In chimeric BACs, the mTert promoter became strongly repressed in the human genomic context, but the hTERT promoter was highly active in the mouse genomic context. Furthermore, an unrelated herpes simplex virus-thymidine kinase (HSV-TK) promoter was strongly repressed in the human, but not in the mouse, genomic context. These results demonstrated that the repression of hTERT gene was dictated by distal elements and its chromatin environment. This repression depended on class I HDACs and involved multiple corepressor complexes, including HDAC1/2-containing Sin3B, nucleosome remodeling and histone deacetylase (NuRD), and corepressor of RE1 silencing transcription factor (CoREST) complexes. Together, our data indicate that the lack of telomerase expression in most human somatic cells results from its repressive genomic environment, providing new insight into the mechanism of long-recognized differential telomerase regulation in mammalian species.-Cheng, D., Zhao, Y., Wang, S., Zhang, F., Russo, M., McMahon, S. B., Zhu, J. Repression of telomerase gene promoter requires human-specific genomic context and is mediated by multiple HDAC1-containing corepressor complexes.
Collapse
Affiliation(s)
- De Cheng
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Yuanjun Zhao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; and
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Fan Zhang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Mariano Russo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; and
| | - Steven B McMahon
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA;
| |
Collapse
|
29
|
Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 771:15-31. [PMID: 28342451 DOI: 10.1016/j.mrrev.2016.11.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Telomere repeats at chromosomal ends, critical to genome integrity, are maintained through an elaborate network of proteins and pathways. Shelterin complex proteins shield telomeres from induction of DNA damage response to overcome end protection problem. A specialized ribonucleic protein, telomerase, maintains telomere homeostasis through repeat addition to counter intrinsic shortcomings of DNA replication that leads to gradual sequence shortening in successive mitoses. The biogenesis and recruitment of telomerase composed of telomerase reverse transcriptase (TERT) subunit and an RNA component, takes place through the intricate machinery that involves an elaborate number of molecules. The synthesis of telomeres remains a controlled and limited process. Inherited mutations in the molecules involved in the process directly or indirectly cause telomeropathies. Telomerase, while present in stem cells, is deactivated due to epigenetic silencing of the rate-limiting TERT upon differentiation in most of somatic cells with a few exceptions. However, in most of the cancer cells telomerase reactivation remains a ubiquitous process and constitutes one of the major hallmarks. Discovery of mutations within the core promoter of the TERT gene that create de novo binding sites for E-twenty-six (ETS) transcription factors provided a mechanism for cancer-specific telomerase reactivation. The TERT promoter mutations occur mainly in tumors from tissues with low rates of self-renewal. In melanoma, glioma, hepatocellular carcinoma, urothelial carcinoma and others, the promoter mutations have been shown to define subsets of patients with adverse disease outcomes, associate with increased transcription of TERT, telomerase reactivation and affect telomere length; in stem cells the mutations inhibit TERT silencing following differentiation into adult cells. The TERT promoter mutations cause an epigenetic switch on the mutant allele along with recruitment of pol II following the binding of GABPA/B1 complex that leads to mono-allelic expression. Thus, the TERT promoter mutations hold potential as biomarkers as well as future therapeutic targets.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Avin BA, Umbricht CB, Zeiger MA. Human telomerase reverse transcriptase regulation by DNA methylation, transcription factor binding and alternative splicing (Review). Int J Oncol 2016; 49:2199-2205. [PMID: 27779655 DOI: 10.3892/ijo.2016.3743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), plays an essential role in telomere maintenance to oppose cellular senescence and, is highly regulated in normal and cancerous cells. Regulation of hTERT occurs through multiple avenues, including a unique pattern of CpG promoter methylation and alternative splicing. Promoter methylation affects the binding of transcription factors, resulting in changes in expression of the gene. In addition to expression level changes, changes in promoter binding can affect alternative splicing in a cotranscriptional manner. The alternative splicing of hTERT results in either the full length transcript which can form the active telomerase complex with hTR, or numerous inactive isoforms. Both regulation strategies are exploited in cancer to activate telomerase, however, the exact mechanism is unknown. Therefore, unraveling the link between promoter methylation status and alternative splicing for hTERT could expose yet another level of hTERT regulation. In an attempt to provide insight into the cellular control of active telomerase in cancer, this review will discuss our current perspective on CpG methylation of the hTERT promoter region, summarize the different forms of alternatively spliced variants, and examine examples of transcription factor binding that affects splicing.
Collapse
Affiliation(s)
- Brittany A Avin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher B Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martha A Zeiger
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Avian Leukosis Virus Activation of an Antisense RNA Upstream of TERT in B-Cell Lymphomas. J Virol 2016; 90:9509-17. [PMID: 27512065 DOI: 10.1128/jvi.01127-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Avian leukosis virus (ALV) induces tumors by integrating its proviral DNA into the chicken genome and altering the expression of nearby genes via strong promoter and enhancer elements. Viral integration sites that contribute to oncogenesis are selected in tumor cells. Deep-sequencing analysis of B-cell lymphoma DNA confirmed that the telomerase reverse transcriptase (TERT) gene promoter is a common ALV integration target. Twenty-six unique proviral integration sites were mapped between 46 and 3,552 nucleotides (nt) upstream of the TERT transcription start site, predominantly in the opposite transcriptional orientation to TERT Transcriptome-sequencing (RNA-seq) analysis of normal bursa revealed a transcribed region upstream of TERT in the opposite orientation, suggesting the TERT promoter is bidirectional. This transcript appears to be an uncharacterized antisense RNA. We have previously shown that TERT expression is upregulated in tumors with integrations in the TERT promoter region. We now report that the viral promoter drives the expression of a chimeric transcript containing viral sequences spliced to exons 4 through 7 of this antisense RNA. Clonal expansion of cells with ALV integrations driving overexpression of the TERT antisense RNA suggest it may have a role in tumorigenesis. IMPORTANCE The data suggest that ALV integrations in the TERT promoter region drive the overexpression of a novel antisense RNA and contribute to the development of lymphomas.
Collapse
|
32
|
Ropio J, Merlio JP, Soares P, Chevret E. Telomerase Activation in Hematological Malignancies. Genes (Basel) 2016; 7:genes7090061. [PMID: 27618103 PMCID: PMC5039560 DOI: 10.3390/genes7090061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Telomerase expression and telomere maintenance are critical for cell proliferation and survival, and they play important roles in development and cancer, including hematological malignancies. Transcriptional regulation of the rate-limiting subunit of human telomerase reverse transcriptase gen (hTERT) is a complex process, and unveiling the mechanisms behind its reactivation is an important step for the development of diagnostic and therapeutic applications. Here, we review the main mechanisms of telomerase activation and the associated hematologic malignancies.
Collapse
Affiliation(s)
- Joana Ropio
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
- Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto 4050-313, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup)-Cancer Biology, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Jean-Philippe Merlio
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
- Tumor Bank and Tumor Biology Laboratory, University Hospital Center Bordeaux, Pessac 33604, France.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup)-Cancer Biology, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- Department of Pathology and Oncology, Medical Faculty of Porto University, Porto 4200-319, Portugal.
| | - Edith Chevret
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
| |
Collapse
|
33
|
Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci U S A 2016; 113:E5024-33. [PMID: 27503890 DOI: 10.1073/pnas.1602379113] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc-dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression.
Collapse
|
34
|
Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications. Genes (Basel) 2016; 7:genes7070038. [PMID: 27438857 PMCID: PMC4962008 DOI: 10.3390/genes7070038] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
The accumulated evidence has pointed to a key role of telomerase in carcinogenesis. As a RNA-dependent DNA polymerase, telomerase synthesizes telomeric DNA at the end of linear chromosomes, and attenuates or prevents telomere erosion associated with cell divisions. By lengthening telomeres, telomerase extends cellular life-span or even induces immortalization. Consistent with its functional activity, telomerase is silent in most human normal somatic cells while active only in germ-line, stem and other highly proliferative cells. In contrast, telomerase activation widely occurs in human cancer and the enzymatic activity is detectable in up to 90% of malignancies. Recently, hotspot point mutations in the regulatory region of the telomerase reverse transcriptase (TERT) gene, encoding the core catalytic component of telomerase, was identified as a novel mechanism to activate telomerase in cancer. This review discusses the cancer-specific TERT promoter mutations and potential biological and clinical significances.
Collapse
|
35
|
Zhang F, Cheng D, Wang S, Zhu J. Human Specific Regulation of the Telomerase Reverse Transcriptase Gene. Genes (Basel) 2016; 7:genes7070030. [PMID: 27367732 PMCID: PMC4962000 DOI: 10.3390/genes7070030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Telomerase, regulated primarily by the transcription of its catalytic subunit telomerase reverse transcriptase (TERT), is critical for controlling cell proliferation and tissue homeostasis by maintaining telomere length. Although there is a high conservation between human and mouse TERT genes, the regulation of their transcription is significantly different in these two species. Whereas mTERT expression is widely detected in adult mice, hTERT is expressed at extremely low levels in most adult human tissues and cells. As a result, mice do not exhibit telomere-mediated replicative aging, but telomere shortening is a critical factor of human aging and its stabilization is essential for cancer development in humans. The chromatin environment and epigenetic modifications of the hTERT locus, the binding of transcriptional factors to its promoter, and recruitment of nucleosome modifying complexes all play essential roles in restricting its transcription in different cell types. In this review, we will discuss recent progress in understanding the molecular mechanisms of TERT regulation in human and mouse tissues and cells, and during cancer development.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - De Cheng
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| |
Collapse
|
36
|
Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell Mol Life Sci 2016; 73:1659-70. [PMID: 26846696 PMCID: PMC4805692 DOI: 10.1007/s00018-016-2146-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
Activation of telomerase is a critical step in the development of about 85 % of human cancers. Levels of Tert, which encodes the reverse transcriptase subunit of telomerase, are limiting in normal somatic cells. Tert is subjected to transcriptional, post-transcriptional and epigenetic regulation, but the precise mechanism of how telomerase is re-activated in cancer cells is poorly understood. Reactivation of the Tert promoter involves multiple changes which evolve during cancer progression including mutations and chromosomal re-arrangements. Newly described non-coding mutations in the Tert promoter region of many cancer cells (19 %) in two key positions, C250T and C228T, have added another layer of complexity to telomerase reactivation. These mutations create novel consensus sequences for transcription factors which can enhance Tert expression. In this review, we will discuss gene structure and function of Tert and provide insights into the mechanisms of Tert reactivation in cancers, highlighting the contribution of recently identified Tert promoter mutations.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Bilal Unal
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.
| |
Collapse
|
37
|
Li Y, Tergaonkar V. Telomerase reactivation in cancers: Mechanisms that govern transcriptional activation of the wild-type vs. mutant TERT promoters. Transcription 2016; 7:44-9. [PMID: 27028424 DOI: 10.1080/21541264.2016.1160173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcriptional activation of telomerase reverse transcriptase (TERT) gene is a rate-limiting determinant in the reactivation of telomerase expression in cancers. TERT promoter mutations represent one of the fundamental mechanisms of TERT reactivation in cancer development. We review recent studies that elucidate the molecular mechanisms underscoring activation of mutant TERT promoters.
Collapse
Affiliation(s)
- Yinghui Li
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Singapore
| | - Vinay Tergaonkar
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Singapore.,b Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore (NUS) , Singapore , Singapore.,c Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide , Australia
| |
Collapse
|
38
|
Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training. Sports Med 2016; 46:1213-37. [DOI: 10.1007/s40279-016-0482-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Piciocchi M, Cardin R, Cillo U, Vitale A, Cappon A, Mescoli C, Guido M, Rugge M, Burra P, Floreani A, Farinati F. Differential timing of oxidative DNA damage and telomere shortening in hepatitis C and B virus-related liver carcinogenesis. Transl Res 2016; 168:122-133. [PMID: 26408804 DOI: 10.1016/j.trsl.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
In viral hepatitis, inflammation is correlated with chronic oxidative stress, one of the biological events leading to DNA damage and hepatocellular carcinoma (HCC) development. Aim of this study was to investigate the complex molecular network linking oxidative damage to telomere length and telomerase activity and regulation in hepatitis C and B virus-related liver carcinogenesis. We investigated 142 patients: 21 with HCC (in both tumor and peritumor tissues) and 121 with chronic viral hepatitis in different stages. We evaluated 8-hydroxydeoxyguanosine (8-OHdG), marker of oxidative DNA damage, OGG1 gene polymorphism, telomere length, telomerase activity, TERT promoter methylation, and mitochondrial TERT localization. In hepatitis C-related damage, 8-OHdG levels increased since the early disease stages, whereas hepatitis B-related liver disease was characterized by a later and sharper 8-OHdG accumulation (P = 0.005). In C virus-infected patients, telomeres were shorter (P = 0.03), whereas telomerase activity was higher in tumors than that in the less advanced stages of disease in both groups (P = 0.0001, P = 0.05), with an earlier increase in hepatitis C. Similarly, TERT promoter methylation was higher in tumor and peritumor tissues in both groups (P = 0.02, P = 0.0001). Finally, TERT was localized in mitochondria in tumor and peritumor samples, with 8-OHdG levels significantly lower in mitochondrial than those in genomic DNA (P = 0.0003). These data describe a pathway in which oxidative DNA damage accumulates in correspondence with telomere shortening, telomerase activation, and TERT promoter methylation with a different time course in hepatitis B and C virus-related liver carcinogenesis. Finally, TERT localizes in mitochondria in HCC, where it lacks a canonical function.
Collapse
Affiliation(s)
- Marika Piciocchi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | - Romilda Cardin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Alessandro Vitale
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Andrea Cappon
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | | | - Maria Guido
- Department of Medicine, University of Padova, Padova, Italy
| | - Massimo Rugge
- Department of Medicine, University of Padova, Padova, Italy
| | - Patrizia Burra
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Heeg S. Variations in telomere maintenance and the role of telomerase inhibition in gastrointestinal cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2015; 8:171-80. [PMID: 26675332 PMCID: PMC4675635 DOI: 10.2147/pgpm.s52808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Immortalization is an important step toward the malignant transformation of human cells and is critically dependent upon telomere maintenance. There are two known mechanisms to maintain human telomeres. The process of telomere maintenance is either mediated through activation of the enzyme telomerase or through an alternative mechanism of telomere lengthening called ALT. While 85% of all human tumors show reactivation of telomerase, the remaining 15% are able to maintain telomeres via ALT. The therapeutic potential of telomerase inhibitors is currently investigated in a variety of human cancers. Gastrointestinal tumors are highly dependent on telomerase as a mechanism of telomere maintenance, rendering telomeres as well as telomerase potential targets for cancer therapy. This article focuses on the molecular mechanisms of telomere biology and telomerase activation in gastrointestinal cancers and reviews strategies of telomerase inhibition and their potential therapeutic use in these tumor entities.
Collapse
Affiliation(s)
- Steffen Heeg
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Stern JL, Theodorescu D, Vogelstein B, Papadopoulos N, Cech TR. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev 2015; 29:2219-24. [PMID: 26515115 PMCID: PMC4647555 DOI: 10.1101/gad.269498.115] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
Stern et al. found in multiple cancer cell lines that a TERT gene with a promoter mutation exhibits the H3K4me2/3 mark of active chromatin, while the wild-type allele retains the H3K27me3 mark of epigenetic silencing. Consistent with these differences, only the mutant promoters are transcriptionally active. Somatic mutations in the promoter of the gene for telomerase reverse transcriptase (TERT) are the most common noncoding mutations in cancer. They are thought to activate telomerase, contributing to proliferative immortality, but the molecular events driving TERT activation are largely unknown. We observed in multiple cancer cell lines that mutant TERT promoters exhibit the H3K4me2/3 mark of active chromatin and recruit the GABPA/B1 transcription factor, while the wild-type allele retains the H3K27me3 mark of epigenetic silencing; only the mutant promoters are transcriptionally active. These results suggest how a single-base-pair mutation can cause a dramatic epigenetic switch and monoallelic expression.
Collapse
Affiliation(s)
- Josh Lewis Stern
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA; Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, Colorado 80309, USA
| | - Dan Theodorescu
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; Department of Surgery (Urology), University of Colorado, Aurora, Colorado 80045, USA
| | - Bert Vogelstein
- Ludwig Center, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Thomas R Cech
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA; Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, Colorado 80309, USA; University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA
| |
Collapse
|
42
|
Cheng D, Zhao Y, Wang S, Jia W, Kang J, Zhu J. Human Telomerase Reverse Transcriptase (hTERT) Transcription Requires Sp1/Sp3 Binding to the Promoter and a Permissive Chromatin Environment. J Biol Chem 2015; 290:30193-203. [PMID: 26487723 DOI: 10.1074/jbc.m115.662221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
The transcription of human telomerase gene hTERT is regulated by transcription factors (TFs), including Sp1 family proteins, and its chromatin environment. To understand its regulation in a relevant chromatin context, we employed bacterial artificial chromosome reporters containing 160 kb of human genomic sequence containing the hTERT gene. Upon chromosomal integration, the bacterial artificial chromosomes recapitulated endogenous hTERT expression, contrary to transient reporters. Sp1/Sp3 expression did not correlate with hTERT promoter activity, and these TFs bound to the hTERT promoters in both telomerase-positive and telomerase-negative cells. Mutation of the proximal GC-box resulted in a dramatic decrease of hTERT promoter activity, and mutations of all five GC-boxes eliminated its transcriptional activity. Neither mutations of GC-boxes nor knockdown of endogenous Sp1 impacted promoter binding by other TFs, including E-box-binding proteins, and histone acetylation and trimethylation of histone H3K9 at the hTERT promoter in telomerase-positive and -negative cells. The result indicated that promoter binding by Sp1/Sp3 was essential, but not a limiting step, for hTERT transcription. hTERT transcription required a permissive chromatin environment. Importantly, our data also revealed different functions of GC-boxes and E-boxes in hTERT regulation; although GC-boxes were essential for promoter activity, factors bound to the E-boxes functioned to de-repress hTERT promoter.
Collapse
Affiliation(s)
- De Cheng
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Yuanjun Zhao
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Shuwen Wang
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Wenwen Jia
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiyue Zhu
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210, the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| |
Collapse
|
43
|
Bellon M, Nicot C. Multiple Pathways Control the Reactivation of Telomerase in HTLV-I-Associated Leukemia. ACTA ACUST UNITED AC 2015; 2. [PMID: 26430700 DOI: 10.15436/2377-0902.15.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While telomerase (hTERT) activity is absent from normal somatic cells, reactivation of hTERT expression is a hallmark of cancer cells. Telomerase activity is required for avoiding replicative senescence and supports immortalization of cellular proliferation. Only a minority of cancer cells rely on a telomerase-independent process known as alternative lengthening of telomeres, ALT, to sustain cancer cell proliferation. Multiple genetic, epigenetic, and viral mechanisms have been found to de-regulate telomerase gene expression, thereby increasing the risk of cellular transformation. Here, we review the different strategies used by the Human T-cell leukemia virus type 1, HTLV-I, to activate hTERT expression and stimulate its enzymatic activity in virally infected CD4 T cells. The implications of hTERT reactivation in HTLV-I pathogenesis and disease treatment are discussed.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
44
|
Emerging interplay of genetics and epigenetics in gliomas: a new hope for targeted therapy. Semin Pediatr Neurol 2015; 22:14-22. [PMID: 25976256 DOI: 10.1016/j.spen.2014.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diffusely infiltrating gliomas are inherently heterogeneous tumors, and there are ongoing efforts to establish a classification scheme that incorporates new molecular and traditional histologic features. In less than a decade, high-throughput sequencing of gliomas has transformed the field, uncovering several pivotal, highly prevalent genetic alterations that stratify patients into different prognostic and treatment-response categories. We highlight the genetic aberrations recently discovered in isocitrate dehydrogenase, alpha thalassemia/mental retardation syndrome X-linked, death-domain-associated protein, histone H3.3, and telomerase reverse transcriptase and discuss how these mutations lead to unexpected changes in the epigenetic landscape in gliomas. We describe the opportunities these discoveries might provide for the development of novel targeted therapy aimed at reversing early epigenetic aberrations in glioma precursor cells. Finally, we discuss the challenges for effective treatment of this fatal disease posed by intratumoral heterogeneity and clonal evolution.
Collapse
|
45
|
Ma Y, Hao S, Wang S, Zhao Y, Lim B, Lei M, Spector DJ, El-Deiry WS, Zheng SY, Zhu J. A Combinatory Strategy for Detection of Live CTCs Using Microfiltration and a New Telomerase-Selective Adenovirus. Mol Cancer Ther 2015; 14:835-43. [PMID: 25589497 DOI: 10.1158/1535-7163.mct-14-0693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/29/2014] [Indexed: 01/12/2023]
Abstract
Circulating tumor cells (CTC) have become an important biomarker for early cancer diagnosis, prognosis, and treatment monitoring. Recently, a replication-competent recombinant adenovirus driven by a human telomerase gene (hTERT) promoter was shown to detect live CTCs in blood samples of patients with cancer. Here, we report a new class of adenoviruses containing regulatory elements that repress the hTERT gene in normal cells. Compared with the virus with only the hTERT core promoter, the new viruses showed better selectivity for replication in cancer cells than in normal cells. In particular, Ad5GTSe, containing three extra copies of a repressor element, displayed a superior tropism for cancer cells among leukocytes and was thus selected for CTC detection in blood samples. To further improve the efficiency and specificity of CTC identification, we tested a combinatory strategy of microfiltration enrichment using flexible micro spring arrays and Ad5GTSe imaging. Our experiments showed that this method efficiently detected both cancer cells spiked into healthy blood and potential CTCs in blood samples of patients with breast and pancreatic cancer, demonstrating its potential as a highly sensitive and reliable system for detection and capture of CTCs of different tumor types.
Collapse
Affiliation(s)
- Yanchun Ma
- College of Life Science, Northwest A&F University, Taicheng Road, Yangling, Shaanxi, China. Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sijie Hao
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shuwen Wang
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania. Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Yuanjun Zhao
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Bora Lim
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Ming Lei
- College of Life Science, Northwest A&F University, Taicheng Road, Yangling, Shaanxi, China
| | - David J Spector
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Wafik S El-Deiry
- Division of Hematology-Oncology, Penn State Hershey Cancer Institute, Hershey, Pennsylvania
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania
| | - Jiyue Zhu
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania. Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington.
| |
Collapse
|
46
|
Labussière M, Di Stefano AL, Gleize V, Boisselier B, Giry M, Mangesius S, Bruno A, Paterra R, Marie Y, Rahimian A, Finocchiaro G, Houlston RS, Hoang-Xuan K, Idbaih A, Delattre JY, Mokhtari K, Sanson M. TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. Br J Cancer 2014; 111:2024-32. [PMID: 25314060 PMCID: PMC4229642 DOI: 10.1038/bjc.2014.538] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/18/2014] [Accepted: 09/12/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The role of telomerase reverse transcriptase (TERT) in gliomagenesis has been recently further strengthened by the frequent occurrence of TERT promoter mutations (TERTp-mut) in gliomas and evidence that the TERT SNP genetic rs2736100 influences glioma risk. TERTp-mut creates a binding site for Ets/TCF transcription factors, whereas the common rs2853669 polymorphism disrupts another Ets/TCF site on TERT promoter. METHODS We sequenced for TERTp-mut in 807 glioma DNAs and in 235 blood DNAs and analysed TERT expression by RT-PCR in 151 samples. TERTp-mut status and TERTp polymorphism rs2853669 were correlated with histology, genomic profile, TERT mRNA expression, clinical outcome and rs2736100 genotype. RESULTS TERTp-mut identified in 60.8% of gliomas (491 out of 807) was globally associated with poorer outcome (Hazard ratio (HR)=1.50). We defined, based on TERTp-mut and IDH mutation status, four prognostic groups: (1) TERTp-mut and IDH-mut associated with 1p19q codeletion, overall survival (OS)>17 years; (2) TERTp-wt and IDH-mut, associated with TP53 mutation, OS=97.5 months; (3) TERTp-wt and IDH-wt, with no specific association, OS=31.6 months; (4) TERTp-mut and IDH-wt, associated with EGFR amplification, OS=15.4 months. TERTp-mut was associated with higher TERT mRNA expression, whereas the rs2853669 variant was associated with lower TERT mRNA expression. The mutation of CIC (a repressor of ETV1-5 belonging to the Ets/TCF family) was also associated with TERT mRNA upregulation. CONCLUSIONS In addition to IDH mutation status, defining the TERTp-mut status of glial tumours should afford enhanced prognostic stratification of patients with glioma. We also show that TERTp-mut, rs2853669 variant and CIC mutation influence Tert expression. This effect could be mediated by Ets/TCF transcription factors.
Collapse
Affiliation(s)
- M Labussière
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - A L Di Stefano
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] National Neurological Institute C. Mondino, University of Pavia, 27100 Pavia, Italy
| | - V Gleize
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - B Boisselier
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Institut du Cerveau et de la Moelle épinière (ICM), Plateforme de Génotypage Séquençage, Paris 75013, France
| | - M Giry
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - S Mangesius
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - A Bruno
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - R Paterra
- Dipartimento di Neuro Oncologia Molecolare Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milano 20134, Italy
| | - Y Marie
- 1] Institut du Cerveau et de la Moelle épinière (ICM), Plateforme de Génotypage Séquençage, Paris 75013, France [2] Onconeurothèque, Paris 75013, France
| | - A Rahimian
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France
| | - G Finocchiaro
- Dipartimento di Neuro Oncologia Molecolare Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milano 20134, Italy
| | - R S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Surrey SM2 5NG, UK
| | - K Hoang-Xuan
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| | - A Idbaih
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| | - J-Y Delattre
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France [5] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| | - K Mokhtari
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France [5] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Laboratoire de Neuropathologie R. Escourolle, Paris 75013, France
| | - M Sanson
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France [5] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| |
Collapse
|
47
|
Zhao Y, Cheng D, Wang S, Zhu J. Dual roles of c-Myc in the regulation of hTERT gene. Nucleic Acids Res 2014; 42:10385-98. [PMID: 25170084 PMCID: PMC4176324 DOI: 10.1093/nar/gku721] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/04/2022] Open
Abstract
Human telomerase gene hTERT is important for cancer and aging. hTERT promoter is regulated by multiple transcription factors (TFs) and its activity is dependent on the chromatin environment. However, it remains unsolved how the interplay between TFs and chromatin environment controls hTERT transcription. In this study, we employed the recombinase-mediated BAC targeting and BAC recombineering techniques to dissect the functions of two proximal E-box sites at -165 and +44 nt in regulating the hTERT promoter in the native genomic contexts. Our data showed that mutations of these sites abolished promoter binding by c-Myc/Max, USF1 and USF2, decreased hTERT promoter activity, and prevented its activation by overexpressed c-Myc. Upon inhibition of histone deacetylases, mutant and wildtype promoters were induced to the same level, indicating that the E-boxes functioned to de-repress the hTERT promoter and allowed its transcription in a repressive chromatin environment. Unexpectedly, knockdown of endogenous c-Myc/Max proteins activated hTERT promoter. This activation did not require the proximal E-boxes but was accompanied by increased promoter accessibility, as indicated by augmented active histone marks and binding of multiple TFs at the promoter. Our studies demonstrated that c-Myc/Max functioned in maintaining chromatin-dependent repression of the hTERT gene in addition to activating its promoter.
Collapse
Affiliation(s)
- Yuanjun Zhao
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - De Cheng
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Shuwen Wang
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Jiyue Zhu
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| |
Collapse
|
48
|
Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway. PLoS One 2014; 9:e86990. [PMID: 24551047 PMCID: PMC3925088 DOI: 10.1371/journal.pone.0086990] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/20/2013] [Indexed: 01/06/2023] Open
Abstract
The human TERT (hTERT) gene encodes the telomerase catalytic subunit which plays a role in telomerase regulation. Telomerase is activated in more than 90% of all human malignancies and understanding how telomerase is regulated is necessary for implementation of successful anti-cancer therapies. microRNAs (miRNAs) are important regulators of gene expression in eukaryotic cells but evidence of their role in telomerase regulation has not been documented. To determine whether hTERT activity is regulated by multiple miRNAs, eight miRNAs which have putative binding sites in the hTERT 3'UTR together with miR-138-5p were evaluated in luciferase assays with a reporter containing the hTERT 3'UTR. Six miRNAs (let-7g*, miR-133a, miR-138-5p, miR-342-5p, miR-491-5p, and miR-541-3p) specifically inhibited the expression of the reporter luciferase-driven constructs and let-7g*, miR-133a, miR-138-5p, and miR-491-5p also downregulated endogenous telomerase activity in cells. Moreover, all six miRNAs significantly inhibited cell proliferation. miRNAs (miR-133a, miR-138-5p, 342-5p, 491-5p, 541-3p) also have predicted binding sites within the 3'UTR of three genes involved in Wnt signaling (TCF7, MSI1, and PAX5). These miRNAs inhibited the expression of the luciferase reporter constructs containing 3'UTRs of these genes and downregulated protein expression of the TCF7 transcription factor, which mediates the canonical Wnt pathway. Together, these results suggest the existence of a miRNA regulatory network involving the hTERT and Wnt pathway.
Collapse
|
49
|
Heidenreich B, Rachakonda PS, Hemminki K, Kumar R. TERT promoter mutations in cancer development. Curr Opin Genet Dev 2013; 24:30-7. [PMID: 24657534 DOI: 10.1016/j.gde.2013.11.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/18/2013] [Accepted: 11/03/2013] [Indexed: 12/20/2022]
Abstract
Human telomerase reverse transcriptase (TERT) encodes a rate-limiting catalytic subunit of telomerase that maintains genomic integrity. TERT expression is mostly repressed in somatic cells with exception of proliferative cells in self-renewing tissues and cancer. Immortality associated with cancer cells has been attributed to telomerase over-expression. The precise mechanism behind the TERT activation in cancers has mostly remained unknown. The newly described germline and recurrent somatic mutations in melanoma and other cancers in the TERT promoter that create de novo E-twenty six/ternary complex factors (Ets/TCF) binding sites, provide an insight into the possible cause of tumor-specific increased TERT expression. In this review we discuss the discovery and possible implications of the TERT promoter mutations in melanoma and other cancers.
Collapse
Affiliation(s)
- Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - P Sivaramakrishna Rachakonda
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Sugimoto M. A cascade leading to premature aging phenotypes including abnormal tumor profiles in Werner syndrome (review). Int J Mol Med 2013; 33:247-53. [PMID: 24356923 DOI: 10.3892/ijmm.2013.1592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/11/2013] [Indexed: 11/06/2022] Open
Abstract
This perspective review focused on the Werner syndrome (WS) by addressing the issue of how a single mutation in a WRN gene encoding WRN DNA helicase induces a wide range of premature aging phenotypes accompanied by an abnormal pattern of tumors. The key event caused by WRN gene mutation is the dysfunction of telomeres. Studies on normal aging have identified a molecular circuit in which the dysfunction of telomeres caused by cellular aging activates the TP53 gene. The resultant p53 suppresses cell growth and induces a shorter cellular lifespan, and also compromises mitochondrial biogenesis leading to the overproduction of reactive oxygen species (ROS) causing multiple aging phenotypes. As an analogy of the mechanism in natural aging, we described a hypothetical mechanism of premature aging in WS: telomere dysfunction induced by WRN mutation causes multiple premature aging phenotypes of WS, including shortened cellular lifespan and inflammation induced by ROS, such as diabetes mellitus. This model also explains the relatively late onset of the disorder, at approximately age 20. Telomere dysfunction in WS is closely correlated with abnormality in tumorigenesis. Thus, the majority of wide and complex pathological phenotypes of WS may be explained in a unified manner by the cascade beginning with telomere dysfunction initiated by WRN gene mutation.
Collapse
Affiliation(s)
- Masanobu Sugimoto
- GeneCare Research Institute, Co. Ltd., Kamakura, Kanagawa 247-0063, Japan
| |
Collapse
|