1
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Pan HY, Ye ZW, Zheng QW, Yun F, Tu MZ, Hong WG, Chen BX, Guo LQ, Lin JF. Ergothioneine exhibits longevity-extension effect in Drosophila melanogaster via regulation of cholinergic neurotransmission, tyrosine metabolism, and fatty acid oxidation. Food Funct 2022; 13:227-241. [PMID: 34877949 DOI: 10.1039/d1fo02758a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies have demonstrated the protective effect of ergothioneine (EGT), the unique sulfur-containing antioxidant found in mushrooms, on several aging-related diseases. Nevertheless, to date, no single study has explored the potential role of EGT in the lifespan of animal models. We show here that EGT consistently extends fly lifespan in diverse genetic backgrounds and both sexes, as well as in a dose and gender-dependent manner. Additionally, EGT is shown to increases the climbing activity of flies, enhance acetylcholinesterase (AchE) activity, and maintain the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG)of aged flies. The increase in lifespan by EGT is gut microorganism dependent. We proposed potential mechanisms of lifespan extension in Drosophila by EGT through RNA-seq analysis: preservation of the normal status of the central nervous system via the coordination of cholinergic neurotransmission, tyrosine metabolism, and peroxisomal proteins, regulation of autophagic activity by altering the lysosomal protein CTSD, and the preservation of normal mitochondrial function through controlled substrate feeding into the tricarboxylic acid (TCA) cycle, the major energy-yielding metabolic process in cells.
Collapse
Affiliation(s)
- Hong-Yu Pan
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Zhi-Wei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Fan Yun
- Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Ming-Zhen Tu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China.
| | - Wei-Guo Hong
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China.
| | - Bai-Xiong Chen
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
3
|
Geula C, Dunlop SR, Ayala I, Kawles AS, Flanagan ME, Gefen T, Mesulam MM. Basal forebrain cholinergic system in the dementias: Vulnerability, resilience, and resistance. J Neurochem 2021; 158:1394-1411. [PMID: 34272732 PMCID: PMC8458251 DOI: 10.1111/jnc.15471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/15/2023]
Abstract
The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex. They are involved in the cognitive processes of learning, memory, and attention. These neurons are differentially vulnerable in various neuropathologic entities that cause dementia. This review summarizes the relevance to BFCN of neuropathologic markers associated with dementias, including the plaques and tangles of Alzheimer's disease (AD), the Lewy bodies of diffuse Lewy body disease, the tauopathy of frontotemporal lobar degeneration (FTLD-TAU) and the TDP-43 proteinopathy of FTLD-TDP. Each of these proteinopathies has a different relationship to BFCN and their corticofugal axons. Available evidence points to early and substantial degeneration of the BFCN in AD and diffuse Lewy body disease. In AD, the major neurodegenerative correlate is accumulation of phosphotau in neurofibrillary tangles. However, these neurons are less vulnerable to the tauopathy of FTLD. An intriguing finding is that the intracellular tau of AD causes destruction of the BFCN, whereas that of FTLD does not. This observation has profound implications for exploring the impact of different species of tauopathy on neuronal survival. The proteinopathy of FTLD-TDP shows virtually no abnormal inclusions within the BFCN. Thus, the BFCN are highly vulnerable to the neurodegenerative effects of tauopathy in AD, resilient to the neurodegenerative effect of tauopathy in FTLD and apparently resistant to the emergence of proteinopathy in FTLD-TDP and perhaps also in Pick's disease. Investigations are beginning to shed light on the potential mechanisms of this differential vulnerability and their implications for therapeutic intervention.
Collapse
Affiliation(s)
- Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Sara R Dunlop
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Allegra S Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Fronza MG, Baldinotti R, Sacramento M, Gutierres J, Carvalho FB, Fernandes MDC, Sousa FSS, Seixas FK, Collares T, Alves D, Pratico D, Savegnago L. Effect of QTC-4-MeOBnE Treatment on Memory, Neurodegeneration, and Neurogenesis in a Streptozotocin-Induced Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:109-122. [PMID: 33315382 DOI: 10.1021/acschemneuro.0c00615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that drugs targeting neurogenesis and myelinization could be novel therapeutic targets against Alzheimer's disease (AD). Intracerebroventricular (icv) injection of streptozotocin (STZ) induces neurodegeneration through multiple mechanisms ultimately resulting in reduced adult neurogenesis. Previously, the multitarget compound QTC-4-MeOBnE (1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4-carboxamide) demonstrated beneficial effects in preclinical models of AD. Here we investigated its pharmacokinetics profile and the effect on memory impairments and neurodegeneration induced by STZ. Two icv injections of STZ resulted in significant cognitive and memory impairments, assessed by novel object recognition, Y-maze, social recognition, and step-down passive avoidance paradigms. These deficits were reversed in STZ-injected mice treated with QTC-4-MeOBnE. This effect was associated with reversion of neuronal loss in hippocampal dentate gyrus, reduced oxidative stress, and amelioration of synaptic function trough Na+/K+ ATPase and acetylcholinesterase activities. Furthermore, brains from QTC-4-MeOBnE-treated mice had a significant increase in adult neurogenesis and remyelination through Prox1/NeuroD1 and Wnt/β-catenin pathways. Overall, our findings support the potential anti-AD effect of QTC-4-MeOBnE through multiple pathways, all of which have been involved in the onset and progression of the disease.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Rodolfo Baldinotti
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Manoela Sacramento
- Laboratory of Clean Organic Synthesis−LASOL, Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, Pelotas, RS 96010-610, Brazil
| | - Jessié Gutierres
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Fabiano Barbosa Carvalho
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | | | - Fabiana K. Seixas
- Oncology Research Group, GPO, CDTec, UFPel, CDTec, Pelotas, RS 96010-610, Brazil
| | - Tiago Collares
- Oncology Research Group, GPO, CDTec, UFPel, CDTec, Pelotas, RS 96010-610, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis−LASOL, Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, Pelotas, RS 96010-610, Brazil
| | - Domenico Pratico
- Alzheimer’s Center at Temple−ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
| | - Lucielli Savegnago
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| |
Collapse
|
6
|
Lam J, Lee J, Liu CY, Lozano AM, Lee DJ. Deep Brain Stimulation for Alzheimer's Disease: Tackling Circuit Dysfunction. Neuromodulation 2020; 24:171-186. [PMID: 33377280 DOI: 10.1111/ner.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Treatments for Alzheimer's disease are urgently needed given its enormous human and economic costs and disappointing results of clinical trials targeting the primary amyloid and tau pathology. On the other hand, deep brain stimulation (DBS) has demonstrated success in other neurological and psychiatric disorders leading to great interest in DBS as a treatment for Alzheimer's disease. MATERIALS AND METHODS We review the literature on 1) circuit dysfunction in Alzheimer's disease and 2) DBS for Alzheimer's disease. Human and animal studies are reviewed individually. RESULTS There is accumulating evidence of neural circuit dysfunction at the structural, functional, electrophysiological, and neurotransmitter level. Recent evidence from humans and animals indicate that DBS has the potential to restore circuit dysfunction in Alzheimer's disease, similarly to other movement and psychiatric disorders, and may even slow or reverse the underlying disease pathophysiology. CONCLUSIONS DBS is an intriguing potential treatment for Alzheimer's disease, targeting circuit dysfunction as a novel therapeutic target. However, further exploration of the basic disease pathology and underlying mechanisms of DBS is necessary to better understand how circuit dysfunction can be restored. Additionally, robust clinical data in the form of ongoing phase III clinical trials are needed to validate the efficacy of DBS as a viable treatment.
Collapse
Affiliation(s)
- Jordan Lam
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Justin Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Charles Y Liu
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Andres M Lozano
- Division of Neurological Surgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Darrin J Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| |
Collapse
|
7
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
8
|
Schiel KA. A new etiologic model for Alzheimers Disease. Med Hypotheses 2018; 111:27-35. [DOI: 10.1016/j.mehy.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/19/2017] [Accepted: 12/12/2017] [Indexed: 01/26/2023]
|
9
|
Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, Gupta VB, Rainey-Smith SR, Hone E, Pedrini S, Lim WL, Martins I, Frost S, Gupta S, O’Bryant S, Rembach A, Ames D, Ellis K, Fuller SJ, Brown B, Gardener SL, Fernando B, Bharadwaj P, Burnham S, Laws SM, Barron AM, Goozee K, Wahjoepramono EJ, Asih PR, Doecke JD, Salvado O, Bush AI, Rowe CC, Gandy SE, Masters CL. Alzheimer's Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J Alzheimers Dis 2018; 62:965-992. [PMID: 29562546 PMCID: PMC5870031 DOI: 10.3233/jad-171145] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Worldwide there are over 46 million people living with dementia, and this number is expected to double every 20 years reaching about 131 million by 2050. The cost to the community and government health systems, as well as the stress on families and carers is incalculable. Over three decades of research into this disease have been undertaken by several research groups in Australia, including work by our original research group in Western Australia which was involved in the discovery and sequencing of the amyloid-β peptide (also known as Aβ or A4 peptide) extracted from cerebral amyloid plaques. This review discusses the journey from the discovery of the Aβ peptide in Alzheimer's disease (AD) brain to the establishment of pre-clinical AD using PET amyloid tracers, a method now serving as the gold standard for developing peripheral diagnostic approaches in the blood and the eye. The latter developments for early diagnosis have been largely achieved through the establishment of the Australian Imaging Biomarker and Lifestyle research group that has followed 1,100 Australians for 11 years. AIBL has also been instrumental in providing insight into the role of the major genetic risk factor apolipoprotein E ɛ4, as well as better understanding the role of lifestyle factors particularly diet, physical activity and sleep to cognitive decline and the accumulation of cerebral Aβ.
Collapse
Affiliation(s)
- Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Victor Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Pratishtha Chatterjee
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Tejal M. Shah
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Bentley, WA, Australia
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada
| | - Kevin Taddei
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Veer B. Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Steve Pedrini
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Wei Ling Lim
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ian Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Shaun Frost
- CSIRO Australian e-Health Research Centre/Health and Biosecurity, Perth, WA, Australia
| | - Sunil Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Sid O’Bryant
- University of North Texas Health Science Centre, Fort Worth, TX, USA
| | - Alan Rembach
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George’s Hospital, Kew, VIC, Australia
| | - Kathryn Ellis
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie J. Fuller
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Belinda Brown
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| | - Samantha L. Gardener
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha Burnham
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- eHealth, CSIRO Health and Biosecurity, Parkville, VIC, Australia
| | - Simon M. Laws
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anna M. Barron
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Anglicare, Sydney, NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Eka J. Wahjoepramono
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prita R. Asih
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - James D. Doecke
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Samuel E. Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin L. Masters
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| |
Collapse
|
10
|
Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Sci Rep 2017; 7:17922. [PMID: 29263397 PMCID: PMC5738385 DOI: 10.1038/s41598-017-17911-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Collapse
|
11
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
12
|
Anticholinergic Drug Use and Risk to Cognitive Performance in Older Adults with Questionable Cognitive Impairment: A Cross-Sectional Analysis. Drugs Aging 2017; 33:809-818. [PMID: 27638818 DOI: 10.1007/s40266-016-0400-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Age-associated decline in central cholinergic activity makes older adults susceptible to the harmful effects of anticholinergic (AC) medications; however, there is an inadequate understanding of the association and possible effects of AC drugs on cognition. This cross-sectional study examines the associations of AC medications on cognition among older adults with questionable cognitive impairment (QCI). METHODS For this cross-sectional study, we used a multicenter database of community-dwelling older adults (N = 7351) aged 60+ years with QCI, from September 2005 to March 2014, as the baseline data. The Anticholinergic Drug Scale was used to categorize AC drug load into no, low, or moderate/high groups. Individuals with a Clinical Dementia Rating-Sum of Boxes score between 0.5 and 2.5 were identified as having QCI, while cognitive performance was evaluated using the Neuropsychological Test Battery. The mean z-scores of neuropsychological tests were grouped into a global cognition score. RESULTS Participants who took AC medications were older, largely female, and had a higher prevalence of incontinence than those without AC exposure. Global cognition was significantly greater in the moderate/high-AC group than the no-AC group (-0.23 ± 0.53 vs. -0.32 ± 0.53). Multivariable linear regression showed that the global cognition score among the low- and moderate/high-AC groups, compared with the no-AC group, was 0.064 higher (p = 0.006 and p = 0.12, respectively). CONCLUSIONS This cross-sectional study indicates that older adults with QCI who were exposed to AC medications might have higher global cognitive scores than those without AC exposure. The observed associations indicate that older adults might experience some beneficial cognitive effects from AC drugs, possibly due to the therapeutic effects of these medications in controlling comorbidities, thus outweighing their adverse effects on cognition.
Collapse
|
13
|
Teipel S, Raiser T, Riedl L, Riederer I, Schroeter ML, Bisenius S, Schneider A, Kornhuber J, Fliessbach K, Spottke A, Grothe MJ, Prudlo J, Kassubek J, Ludolph A, Landwehrmeyer B, Straub S, Otto M, Danek A. Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia. Cortex 2016; 83:124-35. [PMID: 27509365 DOI: 10.1016/j.cortex.2016.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p < .001]. Atrophy was most pronounced in the NSP and the posterior BF, and most severe in the semantic variant and the nonfluent variant of PPA. Structural covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p < .001, permutation test). In contrast, the PPA patients showed preserved structural covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p < .001, permutation test). Our findings agree with the neuroanatomically proposed involvement of the cholinergic BF, particularly the NSP, in PPA syndromes. We found a shift from a structural covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA.
Collapse
Affiliation(s)
- Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.
| | - Theresa Raiser
- Department of Neurology, University of Munich, Munich, Germany
| | - Lina Riedl
- Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Isabelle Riederer
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Matthias L Schroeter
- Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany
| | - Sandrine Bisenius
- Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany
| | - Anja Schneider
- Department of Psychiatry, University of Göttingen, Göttingen, Germany
| | | | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE) - Bonn, Bonn, Germany; Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE) - Bonn, Bonn, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Johannes Prudlo
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Sarah Straub
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Adrian Danek
- Department of Neurology, University of Munich, Munich, Germany
| | | |
Collapse
|
14
|
Impaired Cholinergic Excitation of Prefrontal Attention Circuitry in the TgCRND8 Model of Alzheimer's Disease. J Neurosci 2016; 35:12779-91. [PMID: 26377466 DOI: 10.1523/jneurosci.4501-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Attention deficits in Alzheimer's disease can exacerbate its other cognitive symptoms, yet relevant disruptions of key prefrontal circuitry are not well understood. Here, in the TgCRND8 mouse model of this neurological disorder, we demonstrate and characterize a disruption of cholinergic excitation in the major corticothalamic layer of the prefrontal cortex, in which modulation by acetylcholine is essential for optimal attentional function. Using electrophysiology with concurrent multiphoton imaging, we show that layer 6 pyramidal cells are unable to sustain cholinergic excitation to the same extent as their nontransgenic littermate controls, as a result of the excessive activation of calcium-activated hyperpolarizing conductances. We report that cholinergic excitation can be improved in TgCRND8 cortex by pharmacological blockade of SK channels, suggesting a novel target for the treatment of cognitive dysfunction in Alzheimer's disease. SIGNIFICANCE STATEMENT Alzheimer's disease is accompanied by attention deficits that exacerbate its other cognitive symptoms. In brain slices of a mouse model of this neurological disorder, we demonstrate, characterize, and rescue impaired cholinergic excitation of neurons essential for optimal attentional performance. In particular, we show that the excessive activation of a calcium-activated potassium conductance disrupts the acetylcholine excitation of prefrontal layer 6 pyramidal neurons and that its blockade normalizes responses. These findings point to a novel potential target for the treatment of cognitive dysfunction in Alzheimer's disease.
Collapse
|
15
|
Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 2015; 10:4981-5003. [PMID: 26345528 PMCID: PMC4531021 DOI: 10.2147/ijn.s87148] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
16
|
Garibotto V, Tettamanti M, Marcone A, Florea I, Panzacchi A, Moresco R, Virta JR, Rinne J, Cappa SF, Perani D. Cholinergic activity correlates with reserve proxies in Alzheimer's disease. Neurobiol Aging 2013; 34:2694.e13-8. [PMID: 23820589 DOI: 10.1016/j.neurobiolaging.2013.05.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 04/22/2013] [Accepted: 05/19/2013] [Indexed: 12/28/2022]
Abstract
The clinical expression of Alzheimer's disease (AD) occurs as neuropathology exceeds the brain "reserve capacity." A possible association between the cholinergic system and reserve is suggested by preclinical observations that the cholinergic system allows cortical plasticity and by clinical observations of variable responses to cholinergic treatments depending on the patient's educational level. The aim of this study was to investigate the association of reserve proxies, that is, education and occupation, with acetylcholinesterase (AChE) activity, measured voxelwise by [(11)C]-MP4A and positron emission tomography (PET), in 9 healthy controls (HC), 7 patients with early probable AD, and 9 subjects with mild cognitive impairment (MCI) at the time of PET imaging, who progressed to AD at follow-up (prodromal AD). The analysis of prodromal and early AD showed positive correlations between education and AChE activity in the hippocampus, bilaterally, and between occupation and AChE activity in the right posterior cingulate gyrus. The significant correlation between AChE activity in structures belonging to the memory network and reserve proxies suggests that the brain reserve in AD is associated with a preserved/stimulated cholinergic neurotransmission.
Collapse
|
17
|
Gégout C, McAtee ML, Bennett NM, Viranga Tillekeratne LM, Kirchhoff JR. Synthesis and characterization of luminescent cadmium selenide/zinc selenide/zinc sulfide cholinomimetic quantum dots. NANOSCALE 2012; 4:4719-4725. [PMID: 22744377 DOI: 10.1039/c2nr30713h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by (1)H and (31)P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy.
Collapse
Affiliation(s)
- Claire Gégout
- Department of Chemistry, College of Natural Sciences and Mathematics, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
18
|
Atropine-sensitive hippocampal theta oscillations are mediated by Cav2.3 R-type Ca2+ channels. Neuroscience 2012; 205:125-39. [DOI: 10.1016/j.neuroscience.2011.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022]
|
19
|
Lentiviral infection of rhesus macaques causes long-term injury to cortical and hippocampal projections of prostaglandin-expressing cholinergic basal forebrain neurons. J Neuropathol Exp Neurol 2012; 71:15-27. [PMID: 22157616 DOI: 10.1097/nen.0b013e31823cfac5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The simian immunodeficiency virus (SIV) macaque model resembles human immunodeficiency virus-acquired immunodeficiency syndrome (AIDS) and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenase isotypes 1 and 2 (COX1 and COX2) in the brains of SIV-infected macaques with or without encephalitis and antiretroviral therapy and uninfected controls.Cyclooxygenase isotype 1, but not COX2, was coexpressed with markers of cholinergic phenotype, that is, choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human, brain. Cyclooxygenase isotype 1 was decreased in basal forebrain neurons in macaques with AIDS versus uninfected and asymptomatic SIV-infected macaques. The VAChT-positive fiber density was reduced in frontal, parietal, and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2',3'-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results further imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent irreversible brain damage.
Collapse
|
20
|
Kooi EJ, Prins M, Bajic N, Beliën JAM, Gerritsen WH, van Horssen J, Aronica E, van Dam AM, Hoozemans JJM, Francis PT, van der Valk P, Geurts JJG. Cholinergic imbalance in the multiple sclerosis hippocampus. Acta Neuropathol 2011; 122:313-22. [PMID: 21691765 PMCID: PMC3168443 DOI: 10.1007/s00401-011-0849-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 01/21/2023]
Abstract
Hippocampal pathology was shown to be extensive in multiple sclerosis (MS) and is associated with memory impairment. In this post-mortem study, we investigated hippocampal tissue from MS and Alzheimer's disease (AD) patients and compared these to non-neurological controls. By means of biochemical assessment, (immuno)histochemistry and western blot analyses, we detected substantial alterations in the cholinergic neurotransmitter system in the MS hippocampus, which were different from those in AD hippocampus. In MS hippocampus, activity and protein expression of choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was decreased, while the activity and protein expression of acetylcholinesterase (AChE), the acetylcholine degrading enzyme, was found to be unaltered. In contrast, in AD hippocampus both ChAT and AChE enzyme activity and protein expression was decreased. Our findings reveal an MS-specific cholinergic imbalance in the hippocampus, which may be instrumental in terms of future treatment options for memory problems in this disease.
Collapse
Affiliation(s)
- Evert-Jan Kooi
- Department of Pathology (Neuropathology), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nirogi R, Mudigonda K, Kandikere V, Ponnamaneni R. Quantification of acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid chromatography mass spectrometry. Biomed Chromatogr 2010; 24:39-48. [PMID: 19877295 DOI: 10.1002/bmc.1347] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical neurotransmission has been the subject of intensive investigations in recent years. Acetylcholine is an essential neurotransmitter in the central nervous system as it has an effect on alertness, memory and learning. Enzymatic hydrolysis of acetylcholine in the synaptic cleft is fast and quickly metabolizes to choline and acetate by acetylcholinesterase. Hence the concentration in the extracellular fluid of the brain is low (0.1-6 nm). Techniques such as microdialysis are routinely employed to measure acetylcholine levels in living brain systems and the microdialysis sample volumes are usually less than 50 microL. In order to develop medicine for the diseases associated with cognitive dysfunction like mild cognitive impairment, Alzheimer's disease, schizophrenia and Parkinson's disease, or to study the mechanism of the illness, it is important to measure the concentration of acetylcholine in the extracellular fluid of the brain. Recently considerable attention has been focused on the development of chromatographic-mass spectrometric techniques to provide more sensitive and accurate quantification of acetylcholine collected from in-vivo brain microdialysis experiments. This review will provide a brief overview of acetylcholine biosynthesis, microdialysis technique and liquid chromatography mass spectrometry, which is being used to quantitate extracellular levels of acetylcholine.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd, Serene Chambers, Road -5, Avenue -7, Banjara Hills, Hyderabad 500034, India.
| | | | | | | |
Collapse
|
22
|
Electrochemical detection of acetylcholine and choline: application to the quantitative nonradiochemical evaluation of choline transport. Anal Bioanal Chem 2008; 392:651-62. [DOI: 10.1007/s00216-008-2307-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/17/2008] [Indexed: 01/31/2023]
|
23
|
Garrido-Sanabria ER, Perez MG, Banuelos C, Reyna T, Hernandez S, Castaneda MT, Colom LV. Electrophysiological and morphological heterogeneity of slow firing neurons in medial septal/diagonal band complex as revealed by cluster analysis. Neuroscience 2007; 146:931-45. [PMID: 17412516 PMCID: PMC2810285 DOI: 10.1016/j.neuroscience.2007.02.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 01/24/2007] [Accepted: 02/05/2007] [Indexed: 12/15/2022]
Abstract
Slow firing septal neurons modulate hippocampal and neocortical functions. Electrophysiologically, it is unclear whether slow firing neurons belong to a homogeneous neuronal population. To address this issue, whole-cell patch recordings and neuronal reconstructions were performed on rat brain slices containing the medial septum/diagonal band complex (MS/DB). Slow firing neurons were identified by their low firing rate at threshold (<5 Hz) and lack of time-dependent inward rectification (Ih). Unsupervised cluster analysis was used to investigate whether slow firing neurons could be further classified into different subtypes. The parameters used for the cluster analysis included latency for first spike, slow after-hyperpolarizing potential, maximal frequency and action potential (AP) decay slope. Neurons were grouped into three major subtypes. The majority of neurons (55%) were grouped as cluster I. Cluster II (17% of neurons) exhibited longer latency for generation of the first action potential (246.5+/-20.1 ms). Cluster III (28% of neurons) exhibited higher maximal firing frequency (25.3+/-1.7 Hz) when compared with cluster I (12.3+/-0.9 Hz) and cluster II (11.8+/-1.1 Hz) neurons. Additionally, cluster III neurons exhibited faster action potentials at suprathreshold. Interestingly, cluster II neurons were frequently located in the medial septum whereas neurons in cluster I and III appeared scattered throughout all MS/DB regions. Sholl's analysis revealed a more complex dendritic arborization in cluster III neurons. Cluster I and II neurons exhibited characteristics of "true" slow firing neurons whereas cluster III neurons exhibited higher frequency firing patterns. Several neurons were labeled with a cholinergic marker, Cy3-conjugated 192 IgG (p75NTR), and cholinergic neurons were found to be distributed among the three clusters. Our findings indicate that slow firing medial septal neurons are heterogeneous and that soma location is an important determinant of their electrophysiological properties. Thus, slow firing neurons from different septal regions have distinct functional properties, most likely related to their diverse connectivity.
Collapse
Affiliation(s)
- E. R. Garrido-Sanabria
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
- Center for Biomedical Studies, Brownsville, Texas 78520
| | - M. G. Perez
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - C. Banuelos
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - T. Reyna
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - S. Hernandez
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - M. T. Castaneda
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - L. V. Colom
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
- Center for Biomedical Studies, Brownsville, Texas 78520
| |
Collapse
|
24
|
Abstract
Information processing and storing by brain networks requires a highly coordinated operation of multiple neuronal groups. The function of septal neurons is to modulate the activity of archicortical (e.g. hippocampal) and neocortical circuits. This modulation is necessary for the development and normal occurrence of rhythmical cortical activities that control the processing of sensory information and memory functions. Damage or degeneration of septal neurons results in abnormal information processing in cortical circuits and consequent brain dysfunction. Septal neurons not only provide the optimal levels of excitatory background to cortical structures, but they may also inhibit the occurrence of abnormal excitability states.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences, Center of Biomedical Studies, University of Texas at Brownsville/Texas Southmost College, Brownsville, TX 78520, USA.
| |
Collapse
|
25
|
Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease. PROGRESS IN BRAIN RESEARCH 2006; 158:197-222. [PMID: 17027698 DOI: 10.1016/s0079-6123(06)58010-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of gene array techniques to quantify expression levels of dozens to thousands of genes simultaneously within selected tissue samples from control and diseased brain has enabled researchers to generate expression profiles of vulnerable neuronal populations in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, and Creutzfeld-Jakob disease. Intriguingly, gene expression analysis reveals that vulnerable brain regions in many of these diseases share putative pathogenetic alterations in common classes of genes, including decrements in synaptic transcript levels and increments in immune response transcripts. Thus, gene expression profiles of diseased neuronal populations may reveal mechanistic clues to the molecular pathogenesis underlying various neurological diseases and aid in identifying potential therapeutic targets. This chapter will review how regional and single cell gene array technologies have advanced our understanding of the genetics of human neurological disease.
Collapse
|
26
|
Barkhimer TV, Kirchhoff JR, Hudson RA, Messer WS. Classification of the mode of inhibition of high-affinity choline uptake using capillary electrophoresis with electrochemical detection at an enzyme-modified microelectrode. Anal Biochem 2005; 339:216-22. [PMID: 15797561 DOI: 10.1016/j.ab.2005.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Indexed: 10/25/2022]
Abstract
A nonradiochemical in vitro assay using capillary electrophoresis with electrochemical detection at an enzyme-modified microelectrode has been developed to evaluate the inhibition of high-affinity choline transport in synaptosomes. Quantitative analysis of high-affinity choline transporter rates as a function of inhibitor and substrate concentrations allowed determination of the mode of inhibition for the quaternary ammonium-catechol-based inhibitors 3-[(trimethylammonio)methyl]catechol, N,N-dimethylepinephrine, and 6-hydroxy-N,N-dimethylepinephrine. The results are compared to the well-characterized inhibitor of choline transport, hemicholinium-3.
Collapse
Affiliation(s)
- Tatyana V Barkhimer
- Department of Chemistry, College of Arts and Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
27
|
Ishunina TA, Swaab DF. Increased neuronal metabolic activity and estrogen receptors in the vertical limb of the diagonal band of Broca in Alzheimer's disease: relation to sex and aging. Exp Neurol 2003; 183:159-72. [PMID: 12957499 DOI: 10.1016/s0014-4886(03)00138-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Changes in the interaction between sex hormones and the cholinergic system are presumed to play a role in cognitive decline in aging and Alzheimer's disease (AD). The hippocampus is one of the most strongly affected brain structures in AD and the vertical limb of the diagonal band of Broca (VDB) is its major source of innervation. In the present study we found, surprisingly, for the first time that the neuronal metabolic activity as measured by the size of the Golgi apparatus in the VDB gradually increases after the age of 50 years in controls and that this process starts earlier and is more pronounced in Alzheimer's disease patients. Neuronal metabolic activity in the VDB was significantly higher in AD than in control patients younger than 70 years of age and was higher in control patients over 70 years than in control patients younger than 70 years of age. The activation of VDB neurons during aging was accompanied by an increased nuclear estrogen receptor (ER) beta staining, which was stronger in patients over 70 years of age than in younger subjects (in both controls and AD patients). Interestingly, as in the nucleus basalis of Meynert, nuclear ERalpha expression was markedly enhanced in AD patients compared to controls independent of age. In addition, evidence was found for the influence of APOE genotype on ERalpha and ERbeta staining in the human VDB in aging and in AD. APOE genotype was positively correlated (epsilon 2 < epsilon 3 < epsilon 4) with the percentage of cytoplasm ERalpha-positive VDB neurons in elderly control male and female subjects and with both nuclear and cytoplasm ERbeta-positive neurons in control women. In conclusion, the VDB is compensatory activated and shows more nuclear ER expression in aging and AD in a sex- and APOE genotype-dependent way. So neither global degeneration or a strongly decreased neuronal metabolism nor a lack of sex hormone receptors in the VDB seems to contribute to the decline in cognition in aging or AD in which the hippocampus plays such a crucial role.
Collapse
|
28
|
Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68:209-45. [PMID: 12450488 DOI: 10.1016/s0301-0082(02)00079-5] [Citation(s) in RCA: 472] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of degenerative dementia and is characterized by progressive impairment in cognitive function during mid- to late-adult life. Brains from AD patients show several distinct neuropathological features, including extracellular beta-amyloid-containing plaques, intracellular neurofibrillary tangles composed of abnormally phosphorylated tau, and degeneration of cholinergic neurons of the basal forebrain. In this review, we will present evidence implicating involvement of the basal forebrain cholinergic system in AD pathogenesis and its accompanying cognitive deficits. We will initially discuss recent results indicating a link between cholinergic mechanisms and the pathogenic events that characterize AD, notably amyloid-beta peptides. Following this, animal models of dementia will be discussed in light of the relationship between basal forebrain cholinergic hypofunction and cognitive impairments in AD. Finally, past, present, and future treatment strategies aimed at alleviating the cognitive symptomatology of AD by improving basal forebrain cholinergic function will be addressed.
Collapse
Affiliation(s)
- Daniel S Auld
- Douglas Hospital Research Centre, 6875 Blvd Lasalle, Verdun, Que, Canada H4H 1R3
| | | | | | | |
Collapse
|
29
|
DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51:145-55. [PMID: 11835370 DOI: 10.1002/ana.10069] [Citation(s) in RCA: 487] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Alzheimer's disease (AD), loss of cortical and hippocampal choline acetyltransferase (ChAT) activity has been correlated with dementia severity and disease duration, and it forms the basis for current therapies. However, the extent to which reductions in ChAT activity are associated with early cognitive decline has not been well established. We quantified ChAT activity in the hippocampus and four cortical regions (superior frontal, inferior parietal, superior temporal, and anterior cingulate) of 58 individuals diagnosed with no cognitive impairment (NCI; n = 26; mean age 81.4 +/- 7.3 years), mild cognitive impairment (MCI; n = 18; mean age 84.5 +/- 5.7), or mild AD (n =14; mean age 86.3 +/- 6.6). Inferior parietal cortex ChAT activity was also assessed in 12 subjects with end-stage AD (mean age 81.4 +/- 4.3 years) and compared to inferior parietal cortex ChAT levels of the other three groups. Only the end-stage AD group had ChAT levels reduced below normal. In individuals with MCI and mild AD, ChAT activity was unchanged in the inferior parietal, superior temporal, and anterior cingulate cortices compared to NCI. In contrast, ChAT activity in the superior frontal cortex was significantly elevated above normal controls in MCI subjects, whereas the mild AD group was not different from NCI or MCI. Hippocampal ChAT activity was significantly higher in MCI subjects than in either NCI or AD. Our results suggest that cognitive deficits in MCI and early AD are not associated with the loss of ChAT and occur despite regionally specific upregulation. Thus, the earliest cognitive deficits in AD involve brain changes other than simply cholinergic system loss. Of importance, the cholinergic system is capable of compensatory responses during the early stage of dementia. The upregulation in frontal cortex and hippocampal ChAT activity could be an important factor in preventing the transition of MCI subjects to AD.
Collapse
Affiliation(s)
- Steven T DeKosky
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hou YC, Chao PD, Chen SY. Honokiol and magnolol increased hippocampal acetylcholine release in freely-moving rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2001; 28:379-84. [PMID: 11154051 DOI: 10.1142/s0192415x00000441] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Honokiol and magnolol, phenolic compounds isolated from the stem bark of Magnolia officinalis, have been demonstrated to increase choline acetyltransferase activity, inhibit acetylcholinesterase, promote potassium-induced acetylcholine release and exhibit neurotrophic function in in vitro studies. The objective of the present study was to determine the effect of these compounds on hippocampal acetylcholine release in conscious, freely-moving rats. 10(-4) M-10(-6) M of honokiol or magnolol was perfused into rat hippocampus via a dialysis probe. The results showed that at 10(-4) M concentration, honokiol and magnolol markedly increased extracellular acetylcholine release to 165.5+/-5.78% and 237.83+/-9.47% of the basal level, respectively. However, lower concentrations of either compounds failed to elicit significant acetylcholine release. This result suggests that a high dose of honokiol or magnolol may enhance in vivo hippocampal acetylcholine release.
Collapse
Affiliation(s)
- Y C Hou
- School of Pharmacy, China Medical College, Taichung, Taiwan
| | | | | |
Collapse
|
31
|
Chorsky RL, Yaghmai F, Hill WD, Stopa EG. Alzheimer's disease: a review concerning immune response and microischemia. Med Hypotheses 2001; 56:124-7. [PMID: 11133269 DOI: 10.1054/mehy.2000.1148] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), as we think of it today, is the idiopathic progressive loss of cognitive function over a period of several years. The risk of late onset dementia increases significantly with each decade of life such that half of the population over the age of 80 is vulnerable to this disease (1). We know that proper functioning of the central nervous system is dependent on adequate blood flow to remove harmful metabolic products and supply nutrients such as glucose and oxygen to the brain. It has been suggested that cerebral hypoperfusion causes AD (2). Mean cerebral blood flow decreases with age and with sclerosis of cerebral blood vessels. Blood flow appears to increase in stimulated areas of the brain during different activities. However, there is a derangement of blood flow in disease states; this has been documented in the temporal lobes of AD patients, (3,4). English language journal articles located by a MEDLINE search (1960-1999) were reviewed with consideration to the hypothesis that Alzheimer's disease is an autoimmune disease initiated by low oxygen tension and microischemia. Inflammation is thought to be a known contributor to the pathology of AD (5,6). Recent reports support the concept of autoimmunity as a final common pathway of neuron death, particularly for cholinergic in Alzheimer's disease (6). A model of Alzheimer's disease is proposed and related research and treatment modalities are discussed.
Collapse
Affiliation(s)
- R L Chorsky
- Department of Pathology, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The synthesis, storage and release of acetylcholine (ACh) requires the expression of several specialized proteins, including choline acetyltransferase (ChAT) and the vesicular ACh transporter (VAChT). The VAChT gene is located within the first intron of the ChAT gene. This unique genomic organization permits coordinated activation of expression of the two genes by extracellular factors. Much less is known about factors that reduce the expression of the cholinergic phenotype. A cholinergic deficit is one of the primary features of Alzheimer's disease (AD), and AD brains are characterized by amyloid deposits composed primarily of A beta peptides. Although A beta peptides are neurotoxic, part of the cholinergic deficit in AD could be attributed to the suppression of cholinergic markers in the absence of cell death. Indeed, we and others demonstrated that synthetic A beta peptides, at submicromolar concentrations that cause no cytotoxicity, reduce the expression of cholinergic markers in neuronal cells. Another feature of AD is abnormal phospholipid turnover, which might be related to the progressive accumulation of apolipoprotein E (apoE) within amyloid plaques, leading perhaps to the reduction of apoE content in the CSF of AD patients. ApoE is a component of very low density lipoproteins (VLDL). As a first step in investigating a potential neuroprotective function of apoE, we determined the effects of VLDL on ACh content in neuronal cells. We found that VLDL increases ACh levels, and that it can partially offset the anticholinergic actions of A beta peptides.
Collapse
Affiliation(s)
- J K Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, MA 02118, USA.
| | | |
Collapse
|
33
|
Ojika K, Mitake S, Tohdoh N, Appel SH, Otsuka Y, Katada E, Matsukawa N. Hippocampal cholinergic neurostimulating peptides (HCNP). Prog Neurobiol 2000; 60:37-83. [PMID: 10622376 DOI: 10.1016/s0301-0082(99)00021-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuronal development and differentiation require a variety of cell interactions. Diffusible molecules from target neurons play an important part in mediating such interactions. Our early studies used explant culture technique to examine the factors that enhance the differentiation of septo-hippocampal cholinergic neurons, and they revealed that several components resident in the hippocampus are involved in the differentiation of presynaptic cholinergic neurons in the medial septal nucleus. One of these components, originally purified from young rat hippocampus, is a novel undecapeptide (hippocampal cholinergic neurostimulating peptide; HCNP); this enhances the production of ChAT, but not of AchE. Later experiments revealed that: (1) a specific receptor appears to mediate this effect; (2) NGF and HCNP act cooperatively to regulate cholinergic phenotype development in the medial septal nucleus in culture; and (3) these two molecules differ both in their mechanism of release from the hippocampus and their mechanism of action on cholinergic neurons. The amino acid sequence deduced from base sequence analysis of cloned HCNP-precursor protein cDNA shows that HCNP is located at the N-terminal domain of its precursor protein. The 21 kDa HCNP precursor protein shows homology with other proteins, and it functions not only as an HCNP precursor, but also as a binding protein for ATP, opioids and phosphatidylethanolamine. The distribution and localization of HCNP-related components and the expression of their mRNAs support the notion that the precursor protein is multifunctional. In keeping with its multiple functions, the multiple enhancers and promoters found in the genomic DNA for HCNP precursor protein may be involved in the regulation of its gene in a variety of cells and at different stages of development. Furthermore, several lines of evidence obtained from studies of humans and animal models suggest that certain types of memory and learning disorders are associated with abnormal accumulation and expression of HCNP analogue peptide and/or its precursor protein mRNA in the hippocampus.
Collapse
Affiliation(s)
- K Ojika
- Second Department of Internal Medicine, Medical School, Nagoya City University, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sihver W, Gillberg PG, Svensson AL, Nordberg A. Autoradiographic comparison of [3H](-)nicotine, [3H]cytisine and [3H]epibatidine binding in relation to vesicular acetylcholine transport sites in the temporal cortex in Alzheimer's disease. Neuroscience 1999; 94:685-96. [PMID: 10579560 DOI: 10.1016/s0306-4522(99)00295-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The laminar binding distribution of three nicotinic receptor agonists, [3H](-)nicotine, [3H]cytisine, and [3H]epibatidine, and their relation to the [3H]vesamicol binding, which is known to represent the vesicular acetylcholine transport sites, was performed employing in vitro autoradiography on the medial temporal cortex (Brodmann area 21). Autopsied brain tissue from nine Alzheimer patients and seven age-matched controls were used. The binding pattern of the three nicotinic ligands in the normal cortex was in general similar, showing binding maxima in the cortical layers I, III and V. The binding of [3H](-)nicotine, [3H]cytisine, and [3H]epibatidine was lower in the older controls and more uniform throughout the layers as compared with younger controls. There was a significant age-related decrease in the binding of the three nicotinic ligands within the controls (age range: 58 to 89 years; P[3H](-)nicotine = 0.002, P[3H]epibatidine = 0.010, P[3H]cytisine = 0.037). In the older controls, the [3H]epibatidine binding was much decreased as compared with that of [3H](-)nicotine and [3H]cytisine. This may indicate a higher selectivity of [3H]epibatidine for a nicotinic receptor subtype that is particularly affected by aging. The laminar binding pattern of [3H]vesamicol showed one maximum in the outer cortical layers II/III. The [3H]vesamicol binding did not change with aging. The binding of all ligands was significantly decreased in all layers of the temporal cortex in Alzheimer's disease, but the [3H]vesamicol binding decreased only half as much as the nicotinic receptors. Also, choline acetyltransferase activity was percentually more reduced than [3H]vesamicol binding in Alzheimer's disease. The cortical laminar binding pattern of all 3H-ligands was largely absent in the Alzheimer's disease cases. The less severe loss of vesicular acetylcholine transport sites as compared with the loss of the nicotinic receptors and choline acetyltransferase activity may suggest that vesamicol binding sites might be more preserved in presynaptic terminals still existing and thereby expressing compensatory capacity to maintain cholinergic activity.
Collapse
Affiliation(s)
- W Sihver
- PET Center Uppsala, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
35
|
Gustilo MC, Markowska AL, Breckler SJ, Fleischman CA, Price DL, Koliatsos VE. Evidence that nerve growth factor influences recent memory through structural changes in septohippocampal cholinergic neurons. J Comp Neurol 1999; 405:491-507. [PMID: 10098941 DOI: 10.1002/(sici)1096-9861(19990322)405:4<491::aid-cne4>3.0.co;2-n] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We compared, in 4- and 23-month-old Fischer-344 rats, the effects of nerve growth factor (NGF) on basal forebrain cholinergic neurons with behavioral performance in acetylcholine-dependent memory tasks (recent and reference memory). Noncholinergic monoamine markers in target fields of cholinergic neurons were also investigated. We found that NGF has contrasting effects on recent memory in the two age groups in causing improvement in aged rats and deterioration in young rats. In addition, NGF caused significant increase in the size of cholinergic perikarya in all sectors of the basal nucleus complex (BNC). Higher doses of NGF were required to produce hypertrophy in aged animals, a pattern consistent with a lower sensitivity to NGF of aged cholinergic neurons. Analysis of covariance showed that the behavioral effects of NGF were eliminated after covarying out the hypertrophy of cholinergic perikarya. Therefore, NGF causes hypertrophy of cholinergic perikarya regardless of age, and this neurobiological measure correlates with the effects of NGF on recent memory. Reference memory improved moderately only in old rats. This mild effect covaried with an increase in choline acetyltransferase activity in neocortex. Cortical terminal fields of noradrenergic and serotoninergic pathways were not affected by NGF. Taken together, our results indicate that NGF influences recent memory in an age- and transmitter-specific fashion. We postulate that the direct cause of the effects of NGF on memory is not perikaryal hypertrophy per se but rather an increased density of terminals, which always accompanies perikaryal hypertrophy. Although these results continue to support the use of NGF for the treatment of Alzheimer's disease, they raise questions regarding the therapeutic role of NGF for degeneration of BNC neurons occurring in young age.
Collapse
Affiliation(s)
- M C Gustilo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kobayashi Y, Amaral DG. Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Matsukawa N, Tooyama I, Kimura H, Yamamoto T, Tsugu Y, Oomura Y, Ojika K. Increased expression of hippocampal cholinergic neurostimulating peptide-related components and their messenger RNAs in the hippocampus of aged senescence-accelerated mice. Neuroscience 1999; 88:79-92. [PMID: 10051191 DOI: 10.1016/s0306-4522(98)00215-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hippocampal cholinergic neurostimulating peptide stimulates cholinergic phenotype development by inducing choline acetyltransferase in the rat medial septal nucleus in vitro. Adult senescence-accelerated-prone mice/8, a substrain of the senescence-accelerated-prone mouse, show a remarkable age-accelerated deterioration in learning and memory. We cloned mouse hippocampal cholinergic neurostimulating peptide precursor protein complementary DNA. The deduced amino acid sequence showed that the neurostimulating peptide itself is the same as that found in the rat. In situ hybridization revealed that the highest expression of the precursor protein messenger RNA was in hippocampal pyramidal neurons. Compared with a strain of senescence-accelerated-resistant mouse (control mouse), adult senescence-accelerated-prone mice/8 showed increased expression of both the precursor messenger RNA and the neurostimulating peptide-related immunodeposits in the hippocampal CA1 field. The deposits were intensely and diffusely precipitated in neuropils throughout the strata oriens and radiatum in senescence-accelerated-prone mice/8, but not in control mice. The neurostimulating peptide content in the hippocampus was higher in senescence-accelerated-prone mice/8 than in control mice, while its precursor protein itself was not different between the two strains. Furthermore, our previous and present data show that the medial septal and hippocampal choline acetyltransferase activity was significantly lower in senescence-accelerated-prone mice/8 than in control mice. The data suggest that, in hippocampal neurons in adult senescence-accelerated-prone mice/8, the production of hippocampal cholinergic neurostimulating peptide precursor protein in neuronal somata, which is associated with an increased expression of its messenger RNA in the CA1 field, occurs as a consequence of low activity in their presynaptic cholinergic neurons. This is followed by accelerated processing to generate bioactive peptide and transport to its functional fields. However, certain mechanisms reduce the release of the peptide and lead to its accumulation in the neuropil. These disturbances of the septohippocampal cholinergic system might be the biochemical mechanism underlying the characteristic deterioration of senescence-accelerated-prone mice/8.
Collapse
Affiliation(s)
- N Matsukawa
- Second Department of Internal Medicine, Medical School, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Tsugu Y, Ojika K, Matsukawa N, Iwase T, Otsuka Y, Katada E, Mitake S. High levels of hippocampal cholinergic neurostimulating peptide (HCNP) in the CSF of some patients with Alzheimer's disease. Eur J Neurol 1998; 5:561-569. [PMID: 10210891 DOI: 10.1046/j.1468-1331.1998.560561.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from the hippocampus of young rats, enhances the cholinergic development of rat medial septal nuclei in vitro. This report concerns the determination of the HCNP content of the cerebrospinal fluid (CSF) of 173 clinically, and of 22 clinico-pathologically defined patients. A radioimmunoassay was used throughout. The HCNP level was relatively uniform among the clinically defined patients; for almost all non-Alzheimer's patients, the level fell within the range delimited by +/- 2 SD of the mean for all patients taken together, and none of them had a level above this range. By contrast, the early-onset Alzheimer's disease patients could be divided on the basis of their HCNP level into two groups, one with high levels (markedly above the mean +/- 2SD range), and the other with levels similar to those of the other patients. The analysis of the CSF samples obtained postmortem revealed that Group I Alzheimer-type dementia (ATD) patients with clinico-pathologically established diagnoses had a strikingly higher level of HCNP than patients with either Group II ATD or cerebral vascular disease. These results suggest that HCNP is involved in certain pathophysiological alterations associated with dementia, and that its determination may be useful in patient evaluation. Copyright 1998 Lippincott Williams & Wilkins
Collapse
Affiliation(s)
- Y Tsugu
- Second Department of Internal Medicine, Medical School, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Ojika K, Tsugu Y, Mitake S, Otsuka Y, Katada E. NMDA receptor activation enhances the release of a cholinergic differentiation peptide (HCNP) from hippocampal neurons in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:173-80. [PMID: 9555001 DOI: 10.1016/s0165-3806(98)00014-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hippocampal cholinergic neurostimulating peptide (HCNP) is a novel undecapeptide purified from the hippocampus of young rats. The peptide stimulates cholinergic phenotype development in the rat medial septal nucleus in vitro. Here, we have focused on the mechanism of release of the peptide from the hippocampus, by applying tissue culture techniques. Quantitation of HCNP in the culture supernatant after chemical stimulation was carried out by RIA, and by a combination of HPLC and RIA. We found that the N-methyl-D-aspartate (NMDA) receptor specifically mediates release of the deacetylated form of HCNP from the culture. Our results suggest that during the early development of hippocampal neurons, the peptide is released by NMDA receptor activation, and that it may be involved in mediating the effect of activity-dependent cues on developing septal cholinergic neurons.
Collapse
Affiliation(s)
- K Ojika
- Second Department of Internal Medicine, Medical School, Nagoya City University, Japan.
| | | | | | | | | |
Collapse
|
40
|
Mudd LM, Torres J, Lopez TF, Montague J. Effects of growth factors and estrogen on the development of septal cholinergic neurons from the rat. Brain Res Bull 1998; 45:137-42. [PMID: 9443829 DOI: 10.1016/s0361-9230(97)10328-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholinergic neurons of the septum are preferentially subject to degeneration in Alzheimer's disease. There is evidence that nerve growth factor, basic fibroblast growth factor, insulin-like growth factors, and estrogen all have effects on survival of this specific population of neurons at risk. We used a bilaminar culturing method to grow embryonic septal neurons from the rat in the presence of a separate glial plane but in the absence of serum. These neurons were treated with a number of factors, and neurite development of cholinergic neurons was assessed. Basic fibroblast growth factor and estrogen altered the number of primary neurites, number of secondary neurites, and mean total neurite lengths, while none of the other factors affected these end points. This would suggest a mechanism for the effects of these factors on memory.
Collapse
Affiliation(s)
- L M Mudd
- Barry University, School of Natural and Health Sciences, Miami Shores, FL 33161, USA
| | | | | | | |
Collapse
|
41
|
Deller T, Frotscher M. Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion. Prog Neurobiol 1997; 53:687-727. [PMID: 9447617 DOI: 10.1016/s0301-0082(97)00044-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In response to a central nervous system trauma surviving neurons reorganize their connections and form new synapses that replace those lost by the lesion. A well established in vivo system for the analysis of this lesion-induced plasticity is the reorganization of the fascia dentata following unilateral entorhinal cortex lesions in rats. After general considerations of neuronal reorganization following a central nervous system trauma, this review focuses on the sprouting of single fibres in the rat hippocampus after entorhinal lesion and the molecular factors which may regulate this process. First, the connectivity of the fascia dentata in control animals is reviewed and previously unknown commissural fibers to the outer molecular layer and entorhinal fibres to the inner molecular layer are characterized. Second, sprouting of commissural and crossed entorhinal fibres after entorhinal cortex lesion is described. Single fibres sprout by forming additional collaterals, axonal extensions, boutons, and tangle-like axon formations. It is pointed out that the sprouting after entorhinal lesion mainly involves unlesioned fibre systems terminating within the layer of fibre degeneration and is therefore layer-specific. Third, molecular changes associated with axonal growth and synapse formation are considered. In this context, the role of adhesion molecules, glial cells, and neurotrophic factors for the sprouting process are discussed. Finally, an involvement of sprouting processes in the formation of neuritic plaques in Alzheimer's disease is reviewed and discussed with regard to the axonal tangle-like formations observed after entorhinal cortex lesion.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany.
| | | |
Collapse
|
42
|
Abstract
The past decade has witnessed an enormous increase in our knowledge of the variety and complexity of neuropathological and neurochemical changes in Alzheimer's disease. Although the disease is characterized by multiple deficits of neurotransmitters in the brain, this overview emphasizes the structural and neurochemical localization of the elements of the acetylcholine system (choline acetyltransferase, acetylcholinesterase, and muscarinic and nicotinic acetylcholine receptors) in the non-demented brain and in Alzheimer's disease brain samples. The results demonstrate a great variation in the distribution of acetylcholinesterase, choline acetyltransferase, and the nicotinic and muscarinic acetylcholine receptors in the different brain areas, nuclei and subnuclei. When stratification is present in certain brain regions (olfactory bulb, cortex, hippocampus, etc.), differences can be detected as regards the laminar distribution of the elements of the acetylcholine system. Alzheimer's disease involves a substantial loss of the elements of the cholinergic system. There is evidence that the most affected areas include the cortex, the entorhinal area, the hippocampus, the ventral striatum and the basal part of the forebrain. Other brain areas are less affected. The fact that the acetylcholine system, which plays a significant role in the memory function, is seriously impaired in Alzheimer's disease has accelerated work on the development of new drugs for treatment of the disease of the 20th century.
Collapse
Affiliation(s)
- P Kása
- Alzheimer's Disease Research Center, Albert Szent-Györgyi Medical University, Szeged, Hungary.
| | | | | |
Collapse
|
43
|
Naumann T, Deller T, Bender R, Frotscher M. 192 IgG-saporin-induced loss of cholinergic neurons in the septum abolishes cholinergic sprouting after unilateral entorhinal lesion in the rat. Eur J Neurosci 1997; 9:1304-13. [PMID: 9215714 DOI: 10.1111/j.1460-9568.1997.tb01485.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
After unilateral lesion of the entorhinal cortex, cholinergic septohippocampal fibres are believed to sprout in the denervated outer molecular layer of the rat dentate gyrus. This cholinergic sprouting has been demonstrated by acetylcholinesterase (AChE) histochemistry, a method said selectively to label cholinergic septohippocampal fibres in the hippocampus. However, a recent report has questioned this concept, suggesting that AChE may not be an adequate marker to monitor cholinergic sprouting and that other, non-cholinergic axons sprouting after entorhinal cortex lesion cause the dense AChE-positive band in the denervated outer molecular layer. In order to determine the contribution of cholinergic septohippocampal fibres to the dense AChE band appearing after entorhinal cortex lesion, the neurotoxin 192 IgG-saporin, known to destroy cholinergic neurons in the basal forebrain selectively, was used. Rats received bilateral injections of 192 IgG-saporin into the lateral ventricles 3 weeks before entorhinal cortex lesion, simultaneously with entorhinal cortex lesion, or 8 weeks after entorhinal cortex lesion. Immunocytochemistry for choline acetyltransferase (ChAT) and in situ hybridization for ChAT mRNA demonstrated the loss of cholinergic neurons in the medial septum and diagonal band after 192 IgG-saporin treatment. The cholinergic sprouting response in the molecular layer, as visualized with AChE histochemistry, was abolished in all animals treated with immunotoxin. These data indicate that the dense AChE band forming after entorhinal cortex lesion represents the sprouting of cholinergic septohippocampal fibres.
Collapse
Affiliation(s)
- T Naumann
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | |
Collapse
|
44
|
Chapter V The cholinergic system in the primate brain: basal forebrain and pontine-tegmental cell groups. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0924-8196(97)80007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Chapter VIII Primate cingulate cortex chemoarchitecture and its disruption in Alzheimer's disease. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0924-8196(97)80010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Egashira T, Takayama F, Yamanaka Y. Effects of bifemelane on muscarinic receptors and choline acetyltransferase in the brains of aged rats following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 72:57-65. [PMID: 8902600 DOI: 10.1254/jjp.72.57] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebral hypoperfusion was chronically induced in aged rats via permanent bilateral occlusion of common carotid arteries (2VO). Marked reduction of the Bmax value of the muscarinic receptors (mAChR) in both the cortex and striatum and the Vmax value of choline acetyltransferase (ChAT) activity in the cortex, hippocampus and striatum were observed as compared with those of control aged rats. No significant changes in mAChR and ChAT activity were observed between young control rats and young 2VO rats. One month post-surgery in aged rats, daily doses of bifemelane (10 mg/kg) or aniracetam (50 mg/kg) were administered orally over a 4-week period. Administration of bifemelane significantly increased Bmax values and decreased apparent Kd values for 3H-quinuclidinyl benzilate (QNB) in mAChR in the striatum. Chronic administration of bifemelane or aniracetam also enhanced ChAT activity in the cortex, hippocampus and striatum. In particular, administration of bifemelane resulted in a significant increase in Vmax values of ChAT in all three brain regions, while no significant change in K(m) values for ChAT was observed. These results suggest that bifemelane is responsible for this activity, thereby enhancing the functioning system of CNS cholinergic neurons of cerebral hypoperfused aged rats.
Collapse
Affiliation(s)
- T Egashira
- Department of Pharmacology, Oita Medical University, Japan
| | | | | |
Collapse
|
47
|
Blokland A, Hinz V, Schmidt BH. Effects of metrifonate and tacrine in the spatial morris task and modified irwin test: Evaluation of the efficacy/safety profile in rats. Drug Dev Res 1995. [DOI: 10.1002/ddr.430360403] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Klimesch W, Schimke H, Schwaiger J. Episodic and semantic memory: an analysis in the EEG theta and alpha band. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1994; 91:428-41. [PMID: 7529682 DOI: 10.1016/0013-4694(94)90164-3] [Citation(s) in RCA: 293] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study examines the hypothesis that in contrast to semantic memory processes that are assumed to be reflected primarily within the alpha band, episodic memory processes are related to activity within the theta band. EEG signals were recorded from subjects as they performed a semantic congruency and an episodic recognition task. In the semantic task, subjects had to judge whether or not sequentially presented concept-feature pairs (such as "eagle-claws" or "pea-huge") are semantically congruent. In the episodic task, which followed the semantic task without prior warning, the same word pairs were presented together with new distractors (generated by repairing known concept-feature pairs). Here, subjects judged whether or not a particular concept-feature pair was already presented during the semantic task. EEG data were analyzed using event-related desynchronization (ERD) as a measure for the amount of event-related changes in band power in the theta band and in the upper and lower alpha bands. The alpha band was determined individually, using the alpha peak frequency during the resting period as the cut-off point to separate the lower from the upper alpha band. The results, which are based on those identical word pairs that demanded a yes response in both tasks, showed that semantic memory processes are indeed primarily reflected in the upper alpha band whereas episodic memory processes are reflected in the theta band. The possible relationship between hippocampal theta activity and the encoding of episodic information is discussed.
Collapse
Affiliation(s)
- W Klimesch
- Department of Physiological Psychology, University of Salzburg, Austria
| | | | | |
Collapse
|
49
|
Dournaud P, Gautron JP, Pattou E, Bons N, Mestre N, Petter A, Kordon C, Epelbaum J. Choline acetyltransferase and somatostatin levels in aged Microcebus murinus brain. Neurobiol Aging 1994; 15:727-31. [PMID: 7891828 DOI: 10.1016/0197-4580(94)90055-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
beta-Amyloid protein (beta-AP) deposits, analoguous to those found in Alzheimer's disease (AD) are observed in the brain of aging Microcebus murinus. Because choline acetyltransferase (ChAT) activity and somatostatin (SRIH) content are consistently decreased in AD, we tested whether such changes could be observed in middle aged to aged Microcebus cerebral cortex and whether they were accompanied by beta-AP deposits. A positive correlation was observed between age and ChAT activity. By HPLC, SRIH immunoreactivity eluted as four peaks, two of which being identical with SRIH-28 and SRIH-14 while the other two likely represented precursor forms. Cortical SRIH content was not significantly affected by age. ChAT activity and SRIH content were not significantly correlated. Amyloid angiopathy was observed in every brain examined and the presence of cortical lesions analoguous to senile plaques observed in the oldest case only which did not demonstrate important alterations in ChAT and somatostatin levels.
Collapse
Affiliation(s)
- P Dournaud
- INSERM U159, Centre Paul Broca, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ishii Y, Kojima J, Ikeda N, Kawashima K. Effect of NIK-247 on basal concentrations of extracellular acetylcholine in the cerebral cortex of conscious, freely moving rats. JAPANESE JOURNAL OF PHARMACOLOGY 1994; 66:289-93. [PMID: 7869615 DOI: 10.1254/jjp.66.289] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We studied the effect of orally administered NIK-247 (9-amino-2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinoline monohydrochloride monohydrate) on basal extracellular acetylcholine (ACh) concentrations in the rat cerebral cortex using microdialysis without the addition of cholinesterase inhibitor to the perfusion fluid and radioimmunoassay for ACh. In addition, the effect of oral administration of NIK-247 on acetylcholinesterase (AChE) activity in rat cerebral cortex was determined. The mean basal ACh content in the perfusate from the cerebral cortex of freely moving rats was 123.2 +/- 21.8 fmol/30 min (n = 7). NIK-247 (2.5-10.0 mg/kg, p.o.) increased the ACh content of the perfusate in a dose-dependent manner. NIK-247 at 10 mg/kg significantly increased the ACh content in the perfusate from 0.5 to 2.5 hr after administration, and the maximum increase was attained at 1 hr after administration. 9-Amino-1,2,3,4-tetrahydroacridine (5 mg/kg, p.o.) and physostigmine (0.5 mg/kg, i.p.) significantly increased the ACh content in the perfusate from 1 to 2 hr and from 0.5 to 1.5 hr after administration, respectively. AChE activities in the cerebral cortex were about 32% and 12% below the control value at 1 hr and 3 hr after administration of NIK-247 at 10 mg/kg, respectively. These findings demonstrate that NIK-247 increases extracellular ACh concentration and inhibits AChE activity in the cerebral cortex after oral administration, and they suggest that NIK-247 facilitates central cholinergic transmission.
Collapse
Affiliation(s)
- Y Ishii
- Division of Pharmacology, Omiya Research Laboratory, Nikken Chemicals Co., Ltd., Saitama, Japan
| | | | | | | |
Collapse
|