1
|
Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS. J Neurosci Methods 2020; 335:108623. [DOI: 10.1016/j.jneumeth.2020.108623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
|
2
|
Garcia AR, Deacon TW, Dinsmore J, Isacson O. Extensive Axonal and Glial Fiber Growth from Fetal Porcine Cortical Xenografts in the Adult Rat Cortex. Cell Transplant 2017; 4:515-27. [PMID: 8520835 DOI: 10.1177/096368979500400512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Axonal growth from cortically placed fetal neural transplants to subcortical targets in adult hosts has been difficult to demonstrate and is assumed to be minimal; however, experiments using xenogeneic neural grafts of either human or porcine fetal tissues into the adult rat striatum, mesencephalon, and spinal cord have demonstrated the capability for long-distance axonal growth. This study reports similar results for porcine cortical xenografts placed in the adult rat cerebral cortex and compares these findings with results from cortical allografts. Adult rats that previously received unilateral cortical lesions by an oblique intracortical stereotaxic injection of quinolinic acid, were implanted with suspensions of either E14 rat or E38 xenogeneic porcine fetal cortical cells. Xenografted rats were immunosuppressed by cyclosporin A. The corpus callosum was intact in all cases and grafts were confined to the overlying cortex. After a 31-34 wk posttransplant survival period, acetylcholinesterase (AChE) staining and tyrosine hydroxylase (TH) immunocytochemistry revealed that both allo- and xenografts received host afferents. Retrograde tracer injections into the ipsilateral striatum and cerebral peduncle in allografted animals failed to show any axonal growth to either subcortical target. Using a porcine-specific axonal marker in xenografted animals, we found graft axons in white matter tracts (corpus callosum, internal capsule, cingulum bundle, and medial forebrain bundle) and within the caudate-putamen and both the ipsilateral and contralateral cerebral cortex. Graft axons were not found in the thalamus, midbrain, or spinal cord. In addition, using an antibody to porcine glial fibers, we observed more extensive graft glial fiber growth into the same host fiber tracts, as far caudally as the cerebral peduncle, but not into gray matter targets outside the cortex. These results demonstrate that porcine cortical xenograft axons and glia can extend from lesioned cerebral cortex to cortical and subcortical targets in the adult rat brain. These findings are relevant for prospects of repairing cortical damage and obtaining functional recovery.
Collapse
Affiliation(s)
- A R Garcia
- Neuroregeneration Laboratory, McLean Hospital, Belmont, MA 02178, USA
| | | | | | | |
Collapse
|
3
|
A Delay between Motor Cortex Lesions and Neuronal Transplantation Enhances Graft Integration and Improves Repair and Recovery. J Neurosci 2017; 37:1820-1834. [PMID: 28087762 DOI: 10.1523/jneurosci.2936-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023] Open
Abstract
We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged motor cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. Here, we report that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, and proliferation of grafted cells. More importantly, the delay dramatically increases the density of projections developed by grafted neurons and improves functional repair and recovery as assessed by intravital dynamic imaging and behavioral tests. These findings open new avenues in cell transplantation strategies as they indicate successful brain repair may occur following delayed transplantation.SIGNIFICANCE STATEMENT Cell transplantation represents a promising therapy for cortical trauma. We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. We demonstrate that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, proliferation, and the density of the projections developed by grafted neurons. More importantly, the delay has a beneficial impact on functional repair and recovery. These results impact the effectiveness of transplantation strategies in a wide range of traumatic injuries for which therapeutic intervention is not immediately feasible.
Collapse
|
4
|
Shin E, Palmer MJ, Li M, Fricker RA. GABAergic neurons from mouse embryonic stem cells possess functional properties of striatal neurons in vitro, and develop into striatal neurons in vivo in a mouse model of Huntington's disease. Stem Cell Rev Rep 2012; 8:513-31. [PMID: 21720791 DOI: 10.1007/s12015-011-9290-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disease where GABAergic medium spiny neurons (MSNs) in the striatum degenerate. Embryonic stem cell-derived neural transplantation may provide an appropriate therapy for HD. Here we aimed to develop a suitable protocol to obtain a high percentage of functional GABAergic neurons from mouse embryonic stem cells (mESCs), and then tested their differentiation potential in vivo. The monolayer method was compared with the embryoid body and five stage method for its efficiency in generating GABAergic neurons from mESCs. All three methods yielded a similar percentage of GABAergic neurons from mESCs. Monolayer method-derived GABAergic neurons expressed the MSN marker dopamine- and cyclic AMP-regulated phosphoprotein (DARPP32). The pluripotent stem cell population could be eliminated in vitro by treating cells with puromycin and retinoic acid. Using patch-clamp recordings, the functional properties of GABAergic neurons derived from mESCs were compared to GABAergic neurons derived from primary lateral ganglionic eminence. Both types of neurons showed active membrane properties (voltage-gated Na(+) and K(+) currents, Na(+)-dependent action potentials, and spontaneous postsynaptic currents) and possessed functional glutamatergic receptors and transporters. mESC-derived neural progenitors were transplanted into a mouse model of HD. Grafted cells differentiated to mature neurons expressing glutamate decarboxylase, dopamine type 1 receptors, and DARPP32. Also, neural precursors and dividing populations were found in the grafts. In summary, mESCs are able to differentiate efficiently into functional GABAergic neurons using defined in vitro conditions, and these survive and differentiate following grafting to a mouse model of HD.
Collapse
Affiliation(s)
- Eunju Shin
- Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
| | | | | | | |
Collapse
|
5
|
Abstract
AbstractThe work of Sinden et al. suggests that it may be possible to produce improvement in the “highest” areas of brain function by transplanting brain tissue. What appears to be the limiting factor is not the complexity of the mental process under consideration but the discreteness of the lesion which causes the impairment and the appropriateness and accuracy of placement of the grafted tissue.
Collapse
|
6
|
Abstract
AbstractIn spite of Stein and Glasier's justifiable conclusion that initial optimism concerning the immediate clinical applicability of neural transplantation was premature, there exists much experimental evidence to support the potential for incorporating this procedure into a therapeutic arsenal in the future. To realize this potential will require continued evolution of our knowledge at multiple levels of the clinical and basic neurosciences.
Collapse
|
7
|
Abstract
AbstractThe concept of structure, operation, and functionality, as they may be understood by clinicians or researchers using neural transplantation techniques, are briefly defined. Following Stein & Glasier, we emphasize that the question of whether an intracerebral graft is really functional should be addressed not only in terms of what such a graft does in a given brain structure, but also in terms of what it does at the level of the organism.
Collapse
|
8
|
The NGF superfamily of neurotrophins: Potential treatment for Alzheimer's and Parkinson's disease. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStein & Glasier suggest embryonic neural tissue grafts as a potential treatment strategy for Alzheimer's and Parkinson's disease. As an alternative, we suggest that the family of nerve growth factor-related neurotrophins and their trk (tyrosine kinase) receptors underlie cholinergic basal forebrain (CBF) and dopaminergic substantia nigra neuron degeneration in these diseases, respectively. Therefore, treatment approaches for these disorders could utilize neurotrophins.
Collapse
|
9
|
Some practical and theoretical issues concerning fetal brain tissue grafts as therapy for brain dysfunctions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGrafts of embryonic neural tissue into the brains of adult patients are currently being used to treat Parkinson's disease and are under serious consideration as therapy for a variety of other degenerative and traumatic disorders. This target article evaluates the use of transplants to promote recovery from brain injury and highlights the kinds of questions and problems that must be addressed before this form of therapy is routinely applied. It has been argued that neural transplantation can promote functional recovery through the replacement of damaged nerve cells, the reestablishment of specific nerve pathways lost as a result of injury, the release of specific neurotransmitters, or the production of factors that promote neuronal growth. The latter two mechanisms, which need not rely on anatomical connections to the host brain, are open to examination for nonsurgical, less intrusive therapeutic use. Certain subjective judgments used to select patients who will receive grafts and in assessment of the outcome of graft therapy make it difficult to evaluate the procedure. In addition, little long-term assessment of transplant efficacy and effect has been done in nonhuman primates. Carefully controlled human studies, with multiple testing paradigms, are also needed to establish the efficacy of transplant therapy.
Collapse
|
10
|
Abstract
AbstractThe transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.
Collapse
|
11
|
O'Driscoll C, O'Connor J, O'Brien CJ, Cotter TG. Basic fibroblast growth factor-induced protection from light damage in the mouse retina in vivo. J Neurochem 2007; 105:524-36. [PMID: 18088352 DOI: 10.1111/j.1471-4159.2007.05189.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Basic fibroblast growth factor (bFGF) has proven neuroprotective efficacy in the rodent retina against a diverse array of injurious stimuli. However, there is no consensus to date as to the molecular mechanisms underlying this neuroprotection. The study presented herein demonstrates increased expression of endogenous bFGF in the albino mouse retina in response to acute exposure to sublethal levels of light stress. The increased expression correlates with significant photoreceptor protection from light damage. The neuroprotection is likely to be mediated by bFGF as we demonstrate that a shorter exposure to bright light stress that does not up-regulate bFGF fails to protect photoreceptors from light damage. Furthermore, intravitreal bFGF injection into the retina of mice 3 h prior to light damage affords almost complete photoreceptor protection from light-induced degeneration. In addition, injected bFGF induces the activation of protein kinase B and extracellular signal-regulated kinase 1/2 signalling which correlate directly with the pathways we find to be activated in response to light stress and up-regulated bFGF. Moreover, we demonstrate that both bright light pre-conditioning and intravitreal bFGF injection result in dramatic increases in levels of inactive glycogen synthase kinase 3beta and cyclic AMP response element binding protein phosphorylation indicating a potential mechanism by which bFGF promotes survival of photoreceptors in vivo.
Collapse
Affiliation(s)
- Carolyn O'Driscoll
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
12
|
Gage FH, Björklund A. Trophic and growth-regulating mechanisms in the central nervous system monitored by intracerebral neural transplants. CIBA FOUNDATION SYMPOSIUM 2007; 126:143-59. [PMID: 3556083 DOI: 10.1002/9780470513422.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro studies have demonstrated the presence of nerve growth factor (NGF) and other neurotrophic factors in the mammalian central nervous system (CNS). This paper reviews a series of experiments in which the intracerebral neural grafting technique was used to monitor the in vivo expression of such neurotrophic factors and the changes induced by denervating lesions, with the hippocampal formation as a model. Neonatal or adult sympathetic ganglionic neurons, and fetal septal cholinergic neurons, were grafted into or adjacent to the hippocampal formation in adult rats, and the effect of removal of the major afferent inputs (i.e. the septal, commissural or entorhinal inputs) on neuronal survival and fibre outgrowth was assessed histochemically or biochemically. Damage to the septohippocampal (partly cholinergic) pathway had a dramatic effect on survival and fibre outgrowth from neonatal and adult sympathetic ganglionic neurons, and increased the survival of both cholinergic and noncholinergic neurons in the fetal septal grafts. These effects were specific for lesions of the septohippocampal system (fimbria-fornix transection or medial septal lesions), and were not seen after transection of the entorhinal perforant path or the commissural system. It is proposed that neurotrophic factors in the hippocampal formation are under some type of regulation from the afferent inputs, and that removal of the septal afferents, in particular, will increase the availability of NGF or an NGF-like factor from the denervated target. This mechanism may play a normal role in the induction and regulation or regeneration and compensatory collateral sprouting from the remaining afferents in partially denervated brain regions.
Collapse
|
13
|
Soares S, Traka M, von Boxberg Y, Bouquet C, Karagogeos D, Nothias F. Neuronal and glial expression of the adhesion molecule TAG-1 is regulated after peripheral nerve lesion or central neurodegeneration of adult nervous system. Eur J Neurosci 2005; 21:1169-80. [PMID: 15813926 DOI: 10.1111/j.1460-9568.2005.03961.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression of the cell adhesion molecule TAG-1 is down-regulated in adult brain, with the exception of certain areas exhibiting structural plasticity. Here, we present evidence that TAG-1 expression persists also in adult rat spinal cord and dorsal root ganglia (DRG), and can be up-regulated after injury. On Western blots of adult tissue, TAG-1 is detected as a 135-kDa band, with an additional specific 90-kDa band, not present in developing tissue. TAG-1 expression is found both in DRG neurons and in Schwann cells, particularly those associated with the peripherally projecting DRG processes. Quantitative in situ hybridization revealed that TAG-1 expression is significantly higher in small neurons that give rise to unmyelinated fibers, than in large DRG neurons. The regulation of TAG-1 was then examined in two different lesion paradigms. After a sciatic nerve lesion, TAG-1 expression is not up-regulated in DRG neurons, but decreases with time. At the lesion site, reactive Schwann cells up-regulate TAG-1, as demonstrated by both immunohistochemistry and in situ hybridization. In a second paradigm, we injected kainic acid into the spinal cord that kills neurons but spares glia and axons. TAG-1 is up-regulated in the spinal neuron-depleted area as well as in the corresponding dorsal and ventral roots, associated with both target-deprived afferent fibers and with the non-neuronal cells that invade the lesion site. These results demonstrate a local up-regulation of TAG-1 in the adult that is induced in response to injury, suggesting its involvement in axonal re-modelling, neuron-glia interactions, and glial cell migration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cells, Cultured
- Contactin 2
- DNA-Binding Proteins/metabolism
- Early Growth Response Protein 2
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Indoles/metabolism
- Kainic Acid
- Microtubule-Associated Proteins/metabolism
- Nerve Degeneration/chemically induced
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Neuroglia/metabolism
- Neurons/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- S100 Proteins/metabolism
- Schwann Cells
- Sciatic Neuropathy/metabolism
- Spinal Cord/cytology
- Spinal Cord/growth & development
- Spinal Cord/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Sylvia Soares
- Laboratoire de Neurobiologie des Signaux Intercellulaires, UMR7101, CNRS-UPMC, Case 02, Bat. A, 3étage, 7 Quai Saint Bernard, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Williams LR, Manthorpe M, Barbin G, Nieto-Sampedro M, Cotman CW, Varon S. High ciliary neuronotrophic specific activity in rat peripheral nerve. Int J Dev Neurosci 2003; 2:177-80. [DOI: 10.1016/0736-5748(84)90009-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/1983] [Indexed: 10/27/2022] Open
Affiliation(s)
- Lawrence R. Williams
- Department of Biology; School of Medicine; University of California; San Diego, La Jolla CA 92093 U.S.A
| | - Marston Manthorpe
- Department of Biology; School of Medicine; University of California; San Diego, La Jolla CA 92093 U.S.A
| | - Gilles Barbin
- Department of Biology; School of Medicine; University of California; San Diego, La Jolla CA 92093 U.S.A
| | | | - Carl W. Cotman
- Department of Psychobiology; University of California; Irvine Irvine CA U.S.A
| | - Silvio Varon
- Department of Biology; School of Medicine; University of California; San Diego, La Jolla CA 92093 U.S.A
| |
Collapse
|
15
|
Nieto-Sampedro M. CNS Schwann-like glia and functional restoration of damaged spinal cord. PROGRESS IN BRAIN RESEARCH 2002; 136:303-18. [PMID: 12143391 DOI: 10.1016/s0079-6123(02)36026-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- M Nieto-Sampedro
- Department of Neural Plasticity, Instituto Cajal de Neurobiología, CSIC, Av. Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
16
|
Hama T, Maruyama M, Katoh-Semba R, Takizawa M, Iwashima M, Nara K. Identification and molecular cloning of a novel brain-specific receptor protein that binds to brain injury-derived neurotrophic peptide. Possible role for neuronal survival. J Biol Chem 2001; 276:31929-35. [PMID: 11399754 DOI: 10.1074/jbc.m100617200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain injury-derived neurotrophic peptide (BINP) is a synthetic 13-mer peptide that supports neuronal survival and protects hippocampal neurons in primary cultures from cell death caused by glutamate. We have developed a monoclonal antibody named mAb 6A22 against the 40-kDa BINP-binding protein, p40BBP. mAb 6A22 inhibits binding between BINP and rat brain synaptosomes and abolishes the protective effect of BINP. The antigen of mAb 6A22 should be the BINP-binding protein that mediates the neuroprotective action of BINP. Using an expression cloning approach with mAb 6A22, we isolated a cDNA encoding a novel receptor protein that shows binding activity of BINP. COS7 cells transfected with the cloned cDNA show binding of BINP and cell surfaces that are stained by 6A22. The mRNA for p40BBP is specific for the rat brain and is increased after birth. From immunohistochemical studies using mAb 6A22, p40BBP increased after kainic acid treatment in rat hippocampal neurons.
Collapse
Affiliation(s)
- T Hama
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Hama T, Maruyama M. Development of an antibody against a 40,000 mol. wt brain injury-derived neurotrophic peptide-binding protein and identification of a 40,000 mol. wt brain injury-derived neurotrophic peptide-binding protein in hippocampal neurons. Neuroscience 2000; 98:567-72. [PMID: 10869850 DOI: 10.1016/s0306-4522(00)00136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Brain injury-derived neurotrophic peptide is a 13-amino acid peptide derived from a 15,000 mol. wt neurotrophic factor released from sites of mechanical injury in neonatal rat brain. This peptide promotes survival of septal cholinergic neurons and mesencephalic dopaminergic neurons, and protects hippocampal neurons from glutamate-induced neurotoxicity. In this study, we have developed a monoclonal antibody against a brain injury-derived neurotrophic peptide-binding protein by immunizing mice with septal synaptosomes from five-week-old rat brain. Monoclonal antibodies were screened for inhibition of the binding of a 125I-labeled analogue of brain injury-derived neurotrophic peptide to rat brain synaptosomes. The monoclonal antibody 6A22 suppressed the biological activity of brain injury-derived neurotrophic peptide and abolished the protective effect of the neurotrophic peptide against glutamate-induced neurotoxicity. This monoclonal antibody recognized a 40,000 mol. wt brain injury-derived neurotrophic peptide-binding protein, which was also identified by cross-linking experiments. Immunohistochemical studies showed that the 6A22 antibody bound to the cell surfaces of a subpopulation (about 60%) of hippocampal neurons in culture. These results are consistent with the possibility that the 40,000 mol. wt protein belongs to brain injury-derived neurotrophic peptide receptors.
Collapse
Affiliation(s)
- T Hama
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, 194-8511, Tokyo, Japan.
| | | |
Collapse
|
18
|
Maruyama M, Sato K, Ohtake A, Ogura A, Hama T. Characteristics of brain injury-derived neurotrophic peptide-binding sites on rat brain synaptosomes and neurons in culture. Neuroscience 1999; 89:149-56. [PMID: 10051224 DOI: 10.1016/s0306-4522(98)00297-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Brain injury-derived neurotrophic peptide is the fragmental 13-mer peptide of the novel neurotrophic factor which was extracted and purified from Sponge Gelform made of gelatin implanted at the mechanically-induced injury site in neonatal rat brains. Brain injury-derived neurotrophic peptide supports survival of septal cholinergic and mesencephalic dopaminergic neurons in culture, and rescues hippocampal neurons in culture from glutamate neurotoxicity. Here we studied the binding characteristics of brain injury-derived neurotrophic peptide to synaptosomes from normal adult rat brains and neurons in culture from neonatal rat brains. [125I]Asp-[Tyr11]-brain injury-derived neurotrophic peptide binding to rat brain synaptosomes was specific and saturable. Equilibrium binding studies revealed that [125I]Asp-[Tyr11]-brain injury-derived neurotrophic peptide bound to 1.1 pmol/mg protein with a Kd (dissociation constant) of 0.17 microM in hippocampal synaptosomes and to 2.0 pmol/mg protein with a Kd of 0.38 microM in septal synaptosomes. [125I]Asp-[Tyr11]-brain injury-derived neurotrophic peptide could bind to a subpopulation of hippocampal neurons in culture from embryonic rat brains. Affinity cross-linking with the carboxyl-reactive cross-linking reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide-HCl and [125I]Asp-[Tyr11]-brain injury-derived neurotrophic peptide produced radiolabeled bands corresponding to 100,000, 50,000 and 40,000 mol. wt molecules on hippocampal neurons in culture. These results suggest that the 13-mer sequence of brain injury-derived neurotrophic peptide plays a crucial role in expressing the neurotrophic properties of the factor.
Collapse
Affiliation(s)
- M Maruyama
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Duan WM, Widner H, Cameron RM, Brundin P. Quinolinic acid-induced inflammation in the striatum does not impair the survival of neural allografts in the rat. Eur J Neurosci 1998; 10:2595-606. [PMID: 9767390 DOI: 10.1046/j.1460-9568.1998.00279.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been suggested that inflammation related to intracerebral transplantation surgery can affect the survival of intrastriatal neural allografts. To test this hypothesis, we transplanted dissociated embryonic mesencephalic tissue from one of two rat strains, Lewis (allogeneic grafts) or Sprague-Dawley (syngeneic grafts), to the striatum of Sprague-Dawley rats. The target striatum was either intact or had received a local injection of quinolinic acid 9 days earlier, in order to induce a marked inflammation. At 6 or 12 weeks after transplantation, there was no significant difference between the different groups regarding the number of surviving grafted tyrosine hydroxylase immunoreactive neurons. However, the graft volume of both the syngeneic and allogeneic implants was significantly larger in the quinolinate-lesioned than in the intact striatum. There were dramatically increased levels of expression of major histocompatibility complex class I and II antigens, marked infiltrates of macrophages, activated microglia and astrocytes, and accumulation of large numbers of CD4 and CD8 positive T-lymphocytes in the quinolinate-lesioned striatum. In contrast, these immunological markers were much less abundant around both syngeneic and allogeneic grafts placed in intact striatum. We conclude that severe inflammation caused by quinolinic acid does not lead to rejection of intrastriatal neural allografts.
Collapse
Affiliation(s)
- W M Duan
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, University of Lund, S olvegatan 17, S-223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
20
|
Keirstead HS, Hughes HC, Blakemore WF. A quantifiable model of axonal regeneration in the demyelinated adult rat spinal cord. Exp Neurol 1998; 151:303-13. [PMID: 9628765 DOI: 10.1006/exnr.1998.6806] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strategies to increase the extent of axonal regeneration in the adult CNS must address an array of intrinsic and environmental factors which influence neuritic outgrowth. In order to develop an in vivo model of axonal regeneration in which potential therapies may be assessed, we have quantified growth cones within demyelinated regions in the dorsal funiculus of the spinal cord, following a discrete axotomy. Demyelinated lesions were produced by the intraspinal injection of galactocerebroside antibodies plus serum complement proteins. Axonal integrity was not compromised by the demyelination protocol. Axonal injury was induced at the caudal extent of the demyelinated region using a micromanipulator-controlled Scouten knife. The severity of axonal injury was varied in different animals at the time of surgery and was quantified 8 days later by counting degenerate axons in transverse 1-microm resin sections. Evidence of axonal regeneration within these animals was assessed by an electron microscopic analysis of growth cone frequency and position relative to the site of axotomy. Growth cones were identified within the region of demyelination only; no growth cones were identified within the dorsal column white matter adjacent to the demyelinated region, or rostral or caudal to the region of demyelination, or in animals with an injury but no demyelination. Quantification of growth cones within regions of demyelination indicated a strong linear relationship (P < 0.001) between the number of growth cones and the number of axons severed. These findings indicate that demyelination facilitates axonal regeneration in the adult rat CNS and illustrate a quantifiable method of assessing axonal regeneration.
Collapse
Affiliation(s)
- H S Keirstead
- Department of Clinical Veterinary Medicine, University of Cambridge, Robinson Way, Cambridge, CB2 2PY , United Kingdom.
| | | | | |
Collapse
|
21
|
Neurotransmitter and Amino Acid Analysis and Ultrastructural Observations of Fetal Brain Cortex Transplantation to Adult Rat Brain under the Effect of Dexamethasone. Neurosurgery 1998. [DOI: 10.1097/00006123-199805000-00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Hama T, Ogura A, Omori A, Murayama M, Kubota M, Sekiguchi M, Ishiguro M, Maruyama M, Hatanaka H, Sato K. A 13-Mer peptide of a brain injury-derived protein supports neuronal survival and rescues neurons from injury caused by glutamate. J Biol Chem 1995; 270:29067-70. [PMID: 7493927 DOI: 10.1074/jbc.270.49.29067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neuronal survival is mediated by several kinds of proteins. Among these, neurotrophic factors play important roles in the nervous system by supporting neuronal activity and survival. It has been suggested recently that certain factors promote neuronal survival in the case of brain injury. To examine this possibility, we purified a novel neurotrophic factor from Gelfoam that was implanted at the site of injury caused in neonatal rats. During amino acid sequence analysis, we found that a fragmental peptide of this neurotrophic protein consisting of 13 amino acids showed neurotrophic activity. This 13-mer peptide promoted survival of septal cholinergic and mesencephalic dopaminergic neurons in culture and rescued hippocampal neurons from injury caused by glutamate in culture. This peptide rescued neurons from cell death caused by glutamate, even when added 4.5 h after glutamate exposure.
Collapse
Affiliation(s)
- T Hama
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tillotson GL, Schulz MK, Hogan TP, Castro AJ. Analysis of neocortical grafts placed into focal ischemic lesions in adult rats. Neurosci Lett 1995; 201:69-72. [PMID: 8830316 DOI: 10.1016/0304-3940(95)12140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigated the viability of fetal neocortical block grafts transplanted into adult ischemic cortical lesions. Recipient rats sustained focal ischemic lesions by permanent occlusion of the middle cerebral artery 4-7 days prior to transplantation. Twenty days later, the animals were sacrificed and the brains examined using triphenyltetrazolium chloride, routine Nissl or acetylcholinesterase histochemistry. Ischemic infarctions were localized to the ipsilateral sensorimotor cortex and transplants were integrated with the host cerebral cortex or striatum. Cholinergic fibers were found crossing the host-transplant interface, presumably innervating the graft. This study demonstrates that fetal neocortical block grafts placed into adult focal ischemic lesions following permanent arterial occlusion can survive and establish connections with the host brain.
Collapse
Affiliation(s)
- G L Tillotson
- Department of Neurology, Hines VA Hospital/Loyola University Medical Center, IL 60141, USA
| | | | | | | |
Collapse
|
24
|
The spinal cord as an alternative model for nerve tissue graft. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe spinal cord provides an alternative model for nerve tissue grafting experiments. Anatomo-functional correlations are easier to make here than in any other region of the CNS because of a direct implication of spinal cord neurons in sensorimotor activities. Lesions can be easily performed to isolate spinal cord neurons from descending inputs. The anatomy of descending monoaminergic systems is well defined and these systems offer a favourable paradigm for lesion-graft experiments.
Collapse
|
25
|
Multiple obstacles to gene therapy in the brain. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003747x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractNeuwelt et al. have proposed gene-transfer experiments utilizing an animal model that offers many important advantages for investigating the feasibility of gene therapy in the human brain. A variety of tissues concerning the viral vector and mode of delivery of the corrective genes need to be resolved, however, before such therapy is scientifically supportable.
Collapse
|
26
|
Principles of brain tissue engineering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIt is often presumed that effects of neural tissue transplants are due to release of neurotransmitter. In many cases, however, effects attributed to transplants may be related to phenomena such as trophic effects mediated by glial cells or even tissue reactions to injury. Any conclusion regarding causation of graft effects must be based on the control groups or other comparisons used. In human clinical studies, for example, comparing the same subject before and after transplantation allows for many interpretations of the causes of clinical changes.
Collapse
|
27
|
Lessons on transplant survival from a successful model system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractStudies on the snailMelampusreveal that connectivity is crucial to the survival of transplanted ganglia. Transplanted CNS ganglia can innervate targets or induce supernumerary structures. Neuron survival is optimized by the neural incorporation that occurs when a transplanted ganglion is substituted for an excised ganglion. Better provision for the trophic requirements of neurons will improve the success of mammalian fetal transplants.
Collapse
|
28
|
Repairing the brain: Trophic factor or transplant? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThree experiments on neural grafting with adult rat hosts are described. Working memory impairments were produced by lesioning the hippocampus or severing its connections with the septum by ablating the fimbria-fornix. The results suggest that the survival and growth of a neural graft, whether an autograft or a xenograft, is not a necessary condition for functional recovery on a task tapping working memory.
Collapse
|
29
|
Will brain tissue grafts become an important therapy to restore visual function in cerebrally blind patients? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGrafting embryonic brain tissue into the brain of patients with visual field loss due to cerebral lesions may become a method to restore visual function. This method is not without risk, however, and will only be considered in cases of complete blindness after bilateral occipital lesions, when other, risk-free neuropsychological methods fail.
Collapse
|
30
|
Difficulties inherent in the restoration of dynamically reactive brain systems. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractThe responses displayed by an injured or diseased nervous system are complex. Some of the responses may effect a functional reorganization of the affected neural circuitry. Strategies aimed at the restoration of function, whether or not these involve transplantation, need to recognize the innate reactive capacity of the nervous system to damage. More successful strategies will probably incorporate, rather than ignore, the adaptive responses of the compromised neural systems.
Collapse
|
31
|
Elegant studies of transplant-derived repair of cognitive performance. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCholinergic-rich grafts have been shown to be effective in restoring maze-learning deficits in rats with lesions of the forebrain cholinergic projection system. However, the relevance of those studies to developing novel therapies for Alzheimer's disease is questioned.
Collapse
|
32
|
Neural transplants are grey matters. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe lesion and transplantation data cited by Sinden et al., when considered in tandem, seem to harbor an internal inconsistency, raising questions of false localization of function. The extrapolation of such data to cognitive impairment and potential treatment strategies in Alzheimer's disease is problematic. Patients with focal basal forebrain lesions (e.g., anterior communicating artery aneurysm rupture) might be a more appropriate target population.
Collapse
|
33
|
Immunobiology of neural transplants and functional incorporation of grafted dopamine neurons. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIn contrast to the views put forth by Stein & Glasier, we support the use of inbred strains of rodents in studies of the immunobiology of neural transplants. Inbred strains demonstrate homology of the major histocompatibility complex (MHC). Virtually all experimental work in transplantation immunology is performed using inbred strains, yet very few published studies of immune rejection in intracerebral grafts have used inbred animals.
Collapse
|
34
|
Local and global gene therapy in the central nervous system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractFor focal neurodegenerative diseases or brain tumors, localized delivery of protein or genetic vectors may be sufficient to alleviate symptoms, halt disease progression, or even cure the disease. One may circumvent the limitation imposed by the blood-brain barrier by transplantation of genetically altered cell grafts or focal inoculation of virus or protein. However, permanent gene replacement therapy for diseases affecting the entire brain will require global delivery of genetic vectors. The neurotoxicity of currently available viral vectors and the transient nature of transgene expression invivomust be overcome before their use in human gene therapy becomes clinically applicable.
Collapse
|
35
|
Neural grafting in human disease versus animal models: Cautionary notes. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractOver the past two decades, research on neural transplantation in animal models of neurodegeneration has provided provocative in sights into the therapeutic use of grafted tissue for various neurological diseases. Although great strides have been made and functional benefits gained in these animal models, much information is still needed with regard to transplantation in human patients. Several factors are unique to human disease, for example, age of the recipient, duration of disease, and drug interaction with grafted cells; these need to be explored before grafting can be considered a safe and effective therapeutic tool.
Collapse
|
36
|
Building a rational foundation for neural transplantation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe neural transplantation research described by Sinden and colleagues provides part of the rationale for the clinical application of neural transplantation. The authors are asked to clarify their view of the role of the cholinergic system in cognition, to address extrahippocampal damage caused by transient forebrain ischemia, and to consider the effects of delayed neural degeneration in their structure-function analysis.
Collapse
|
37
|
Intraretrosplenial grafts of cholinergic neurons and spatial memory function. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe transplantation of cholinergic neurons into the hippocampal formation has been well characterized. We describe our studies on the effects of cholinergic transplants in the retrosplenial cortex. These transplants were capable of ameliorating spatial navigation deficits in rats with septohippocampal lesions. In addition, we provide evidence for the modulation of transplanted neurons by the host brain.
Collapse
|
38
|
Gene therapy and neural grafting: Keeping the message switched on. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA major problem in developing an effective gene therapy for the nervous system lies in understanding the principles that maintain or turn off the expression of genes following their transfer into the CNS.
Collapse
|
39
|
Therapeutic neural transplantation: Boon or boondoggle? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractDespite reports of recovery of function after neural transplantation, the biological interactions between transplanted neurons and the host brain that are necessary to mediate recovery are unclear at present. One source of confusion is in the variety of models and protocols used in these studies. It is suggested that multisite experimentation using standard protocols, models, and recovery criteria would be helpful in moving neural transplantation from the laboratory to the clinic.
Collapse
|
40
|
The ethics of fetal tissue grafting should be considered along with the science. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIn addition to the scientific and medical issues surrounding the use of fetal tissue transplants, the ethical implications should be considered. Two major ethical issues are relevant. The first of these is whether this experimental procedure can be justified on the basis of potential benefit to the patient. The second is whether the use of tissue obtained from intentionally aborted fetuses can be justified in the context of historical and existing guidelines for the protection of human subjects. The separation of ethical decisions from medical practice and scientific research is necessary to prevent the exploitation of innocent human life.
Collapse
|
41
|
Gene therapy for neurodegenerative disorders and malignant brain tumors. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGene therapy approaches have great promise in the treatment of neurodegenerative disorders and malignant brain tumors. Neuwelt et al. review available viral-mediated gene therapy methods and their blood-brain-barrier (BBB) disruption delivery technique, briefly mentioning nonviral mediated gene therapy methods. This commentary discussed the BBB disruption delivery technique, viral and nonviral mediated gene therapy approaches to Parkinson's disease, and the potential use of antisense oligo to suppress malignant brain tumors.
Collapse
|
42
|
Behavioral effects of neural grafts: Action still in search of a mechanism. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThis commentary reviews data supporting circuitry reconstruction, replacement neurotransmitters, and trophic action as mechanisms whereby transplants promote recovery of function. Issue is taken with the thesis of Sinden et al. that adequate data exist to indicate that reconstruction of hippocampal circuitry damaged by hypoxia with CA1 transplants is a confirmed mechanism whereby these transplants produce recovery. Sinden et al.'s and Stein & Glasier's proposal that there is definitive evidence showing that all transplants produce trophic effects is also questioned.
Collapse
|
43
|
Neural transplantation, cognitive aging and speech. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractResearch on neural transplantation has great potential societal importance in part because of the expanding proportion of the population that is elderly. Transplantation studies can benefit from the guidance of research on cognitive aging, especially in connection with the assessment of behavioral outcomes. Speech for example, might be explored using avian models.
Collapse
|
44
|
Pathway rewiring with neural transplantation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA lesion to the brain is not necessary for a successful neural transplantation. Embryonic Purkinje cells placed on the surface of an uninjured adult cerebellum can develop and migrate into the host molecular layer. Both the Purkinje cells that migrated into the host cerebellum and those that remained in the graft were innervated by collateral sprouting of adult intact climbing fibers.
Collapse
|
45
|
Abstract
AbstractIt is well established that neural grafts can exert functional effects on the host animal by a multiplicity of different mechanisms – by diffuse release of trophic molecules, neurohormones, and deficient neurotransmitters, as well as by growth and reformation of neural circuits. Our challenge is to understand how these different mechanisms complement each other.
Collapse
|
46
|
Grafts and the art of mind's reconstruction. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe use of neural transplantation to alleviate cognitive deficits is still in its infancy. We have an inadequate understanding of the deficits induced by different types of brain damage and their homologies in animal models against which to assess graft-induced recovery, and of the ways in which graft growth and function are influenced by factors within the host brain and the environment in which the host is operating. Further, use of fetal tissue may only be a transitory phase in the search for appropriate donor sources. Nevertheless, findings from our laboratory and elsewhere have made aprima faciecase for successful cognitive reconstruction by graft methods.
Collapse
|
47
|
Studying restoration of brain function with fetal tissue grafts: Optimal models. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003750x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWe concur that basic research on the use of CNS grafts is needed. Two important model systems for functional studies of grafts are ignored by Stein & Glasier. In the first, reproductive function is restored in hypogonadal mice by transplantation of GnRH-synthesizing neurons. In the second, circadian rhythmicity is restored by transplantation of the suprachiasmatic nucleus.
Collapse
|
48
|
Gene replacement therapy in the CNS: A view from the retina. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGene replacement therapy holds great promise in the treatment of many genetic CNS disorders. This commentary discusses the feasibility of gene replacement therapy in the unique context of the retina, with regard to: (1) the genetics of retinal neoplasia and degeneration, (2) available gene transfer technology, and (3) potential gene delivery vehicles.
Collapse
|
49
|
The limitations of central nervous systemdirected gene transfer. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003733x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractComplementation and correction of a genetic defect with CNS manifestations lags behind gene therapy for inherited disorders affecting other organ systems because of shortcomings in delivery vehicles and access to the CNS. The effects of improvements in viral and nonviral vectors, coupled with the development of delivery strategies designed to transfer genetic material thoughout the CNS are being investigated by a number of laboratories in efforts to overcome these problems.
Collapse
|
50
|
CNS transplant utility may surive even their hasty clinical application. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractNeural cell transplants have been introduced in clinical practice during the last decade with mixed results, encouraged by success with simple animal models. This commentary is a reminder that although the ideas and techniques of transplantation appear simple, the variables involved in host-transplant integration still require further study. The field may benefit from a concerted, multidisciplinary approach.
Collapse
|