1
|
Chan SF, Wen QQ, Ao CM, Wang W, Wang CG, Zhao YF. Transcriptome responses of RNAi-mediated ETH knockdown in Scylla paramamosain at different premolt substages. Front Endocrinol (Lausanne) 2022; 13:917088. [PMID: 35966071 PMCID: PMC9370559 DOI: 10.3389/fendo.2022.917088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
Ecdysis triggering hormone (ETH) plays an important role in molting, reproduction, and courtship behavior in insects. To investigate the potential downstream pathways and genes of ETH in Scylla paramamosain, RNA interference (RNAi) was conducted on crabs at early (D0) and late (D2) premolt substages, and the transcriptome profiles of each group were compared by RNA sequencing. Real-time quantitative polymerase chain reaction (RT-qPCR) and semiquantitative polymerase chain reaction (RT-PCR) results showed a significant knockdown of ETH at D0 stage, whereas a significant increase was shown conversely in crabs at D2 substage after the injection of dsETH. A total of 242,979 transcripts were assembled, and 44,012 unigenes were identified. Transcriptomic comparison between crabs at D2 and D0 substages showed 2,683 differentially expressed genes (DEGs); these genes were enriched in ribosome and pathways related to transcription factor complex and cell part. Twenty DEGs were identified between dsETH-injected and dsGFP-injected crabs at D0 substage; these DEGs were involved in carbohydrate metabolism, one carbon pool by folate, and chitin binding. Twenty-six DEGs were identified between dsETH-injected and dsGFP-injected crabs at D2 substage; these DEGs were involved in calcium channel inhibitor activity, fat digestion and absorption, and cardiac muscle contraction. RT-qPCR verified the differential expression of the selected genes. In conclusion, crabs at D0 substage are more active in preparing the macromolecular complex that is needed for molting. Moreover, ETH has potential roles in carbohydrate metabolism, one carbon pool by folate, and chitin binding for crabs at D0 substage, while the role of ETH turns to be involved in calcium channel inhibitor activity, fat digestion and absorption, and cardiac muscle contraction at D2 substage to facilitate the occurrence of molting. The selected DEGs provide valuable insight into the role of ETH in the regulation of crustacean molting.
Collapse
Affiliation(s)
| | - Qi-Qiao Wen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Chun-Mei Ao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, China
| | - Cheng-Gui Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yan-Fei Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Yan-Fei Zhao,
| |
Collapse
|
2
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
3
|
Lappalainen P. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks. Mol Biol Cell 2017; 27:2519-22. [PMID: 27528696 PMCID: PMC4985253 DOI: 10.1091/mbc.e15-10-0728] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022] Open
Abstract
The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
5
|
Egidi MG, Rinalducci S, Marrocco C, Vaglio S, Zolla L. Proteomic analysis of plasma derived from platelet buffy coats during storage at room temperature. An application of ProteoMiner™ technology. Platelets 2011; 22:252-69. [PMID: 21405958 DOI: 10.3109/09537104.2010.550348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was aimed at revealing new insights into the analysis of storage-related processes occurring in the supernatants of platelet concentrates (PCs) derived from pooled buffy coats suspended in whole plasma. To reduce the dynamic range of plasma protein concentrations and access low-abundance proteins, we made use of a solid-phase combinatorial peptide ligand library, known under the trade name of ProteoMiner™. Afterwards, two-dimensional electrophoresis (2-DE) was coupled with mass spectrometry (MS) to reveal changes in proteomic profiles. Several storage-induced protein alterations were identified including changes to major plasma proteins. In particular, a precursor of the secretory form of clusterin was shown to accumulate during storage of PC supernatants, together with platelet-derived tropomyosin, suggesting a progressive loss of platelet integrity. Platelet-released proteins following activation have also been detected (alpha-1-B-glycoprotein, kininogen-1, and serpin proteinase inhibitor 8). Moreover, specific protein fragments (vitronectin, plakoglobin, hornerin, and apolipoprotein A-IV) were found to be modulated upon storage, possibly indicating a time-dependent buffy-coat PC deterioration. Globally, our findings provided the disclosure of unique proteins in PC supernatants with respect to previous studies conducted in similar experimental conditions, suggesting ProteoMiner enrichment technology to be a possible complementary tool in the identification of diagnostically relevant proteins as age/quality biomarkers of therapeutic products.
Collapse
Affiliation(s)
- Maria Giulia Egidi
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy
| | | | | | | | | |
Collapse
|
6
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
7
|
Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R. Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 2009; 388:673-81. [PMID: 19341744 PMCID: PMC2693027 DOI: 10.1016/j.jmb.2009.03.060] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 11/19/2022]
Abstract
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca(2+) on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca(2+) and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca(2+) allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca(2+)-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca(2+), troponin operates as an inhibitor, while in activated muscles at high Ca(2+), it acts as a promoter to initiate contraction.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology and Biophysics, Boston University, School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
8
|
Adelstein RS, Conti MA, Daniel JL, Anderson W. The interaction of platelet actin, myosin and myosin light chain kinase. CIBA FOUNDATION SYMPOSIUM 2008; 35:101-9. [PMID: 132340 DOI: 10.1002/9780470720172.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Abstract
AIMS We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. METHODS AND RESULTS The anti-adhesive activity was assayed against Escherchia coli K-12, and bacterial adhesion was quantified by crystal violet staining and sonication methods. Proteolytic digestion, elution and fractionation experiments revealed that the anti-adhesive activity of the extract was linked to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein adsorption profiles obtained from the various materials did not differ significantly, but elution was often incomplete making minor qualitative/quantitative differences indiscernible. CONCLUSIONS The data highlights the significance of protein conditioning films on bacterial adhesion and emphasizes the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion. SIGNIFICANCE AND IMPACT OF THE STUDY Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing bacterial colonization of inert surfaces.
Collapse
Affiliation(s)
- R M Vejborg
- Microbial Adhesion Group, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
10
|
Greenberg MJ, Wang CLA, Lehman W, Moore JR. Modulation of actin mechanics by caldesmon and tropomyosin. CELL MOTILITY AND THE CYTOSKELETON 2008; 65:156-64. [PMID: 18000881 PMCID: PMC2975105 DOI: 10.1002/cm.20251] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability of cells to sense and respond to physiological forces relies on the actin cytoskeleton, a dynamic structure that can directly convert forces into biochemical signals. Because of the association of muscle actin-binding proteins (ABPs) may affect F-actin and hence cytoskeleton mechanics, we investigated the effects of several ABPs on the mechanical properties of the actin filaments. The structural interactions between ABPs and helical actin filaments can vary between interstrand interactions that bridge azimuthally adjacent actin monomers between filament strands (i.e. by molecular stapling as proposed for caldesmon) or, intrastrand interactions that reinforce axially adjacent actin monomers along strands (i.e. as in the interaction of tropomyosin with actin). Here, we analyzed thermally driven fluctuations in actin's shape to measure the flexural rigidity of actin filaments with different ABPs bound. We show that the binding of phalloidin increases the persistence length of actin by 1.9-fold. Similarly, the intrastrand reinforcement by smooth and skeletal muscle tropomyosins increases the persistence length 1.5- and 2- fold respectively. We also show that the interstrand crosslinking by the C-terminal actin-binding fragment of caldesmon, H32K, increases persistence length by 1.6-fold. While still remaining bound to actin, phosphorylation of H32K by ERK abolishes the molecular staple (Foster et al. 2004. J Biol Chem 279;53387-53394) and reduces filament rigidity to that of actin with no ABPs bound. Lastly, we show that the effect of binding both smooth muscle tropomyosin and H32K is not additive. The combination of structural and mechanical studies on ABP-actin interactions will help provide information about the biophysical mechanism of force transduction in cells.
Collapse
Affiliation(s)
- M. J. Greenberg
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - C.-L. A. Wang
- Boston Biomedical Research Institute, Watertown, Massachusetts
| | - W. Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - J. R. Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Pho DB, Vasseur C, Desbruyeres E, Olomucki A. Evidence for the presence of tropomyosin in the cytoskeletons of ADP- and thrombin-stimulated blood platelets. FEBS Lett 2001; 173:164-8. [PMID: 6540206 DOI: 10.1016/0014-5793(84)81039-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of porcine platelets with ADP or thrombin and subsequent analyses of their cytoskeletons by SDS-polyacrylamide gel electrophoresis have shown the presence of a 30.5-kDa polypeptide in the cytoskeletons of activated as well as aggregated platelets. This polypeptide comigrates with pure porcine platelet tropomyosin in SDS gels, their mobilities being similarly and markedly decreased in the presence of 6 M urea. One-dimensional peptide mapping after limited proteolysis by Staphylococcus aureus protease gives the same pattern for pure tropomyosin and the 30.5-kDa polypeptide. This latter may thus be identified as the porcine platelet tropomyosin subunit, the role of which may not be solely structural.
Collapse
|
12
|
Anyanful A, Sakube Y, Takuwa K, Kagawa H. The third and fourth tropomyosin isoforms of Caenorhabditis elegans are expressed in the pharynx and intestines and are essential for development and morphology. J Mol Biol 2001; 313:525-37. [PMID: 11676537 DOI: 10.1006/jmbi.2001.5052] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tropomyosin gene tmy-1/lev-11 of Caenorhabditis elegans spans 14.5 kb and encodes three isoforms by alternative splicing. To identify, characterize and compare the genome and tissue expression of a fourth isoform, the technique of rapid amplification of cDNA ends and microinjection with lacZ and gfp fusion plasmids were employed. We elucidated CeTMIV, a fourth isoform of tmy-1, which encoded a 256 residue polypeptide. CeTMIV isoform had a similar promoter region to CeTMIII isoform, but was alternatively spliced to generate a cDNA that differed in two exons. The tmy-1::lacZ and tmy-1::gfp fusion genes, with 3.2 kb promoter sequence and 1.1 kb of CeTMIV isoform specific exons, were expressed in the pharyngeal and intestinal cells. Further unidirectional deletion of the sequence located the primary promoter region 853 bp upstream from the initial codon. We show within the upstream region, the presence of B and C subelement-like sequences of myo-2, which may be used to stimulate pharyngeal expression. Despite the presence of a ges-1 like sequence, we were unable to locate the two GATA sites required for intestinal expression. Reassessing tissue expression for CeTMIII isoform with newly constructed fusion plasmids, we showed further expression in germ-line tissue and intestinal cells in addition to pharyngeal expression. Finally, to demonstrate that tropomyosin is essential for development, we inactivated the body wall and pharynx-specific isoforms by RNA-mediated interference. In addition to 50-75 % embryonic lethality in both cases, the worms that survived body wall interference had abnormal body morphology and uncoordinated movements, and those that survived pharynx interference had deformed pharynges and gut regions. These results show the function of tropomyosin in normal muscle filament assembly and embryonic development, and illustrate the different expression patterns characteristic of tropomyosin isoforms in C. elegans.
Collapse
Affiliation(s)
- A Anyanful
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
13
|
Rosol M, Lehman W, Craig R, Landis C, Butters C, Tobacman LS. Three-dimensional reconstruction of thin filaments containing mutant tropomyosin. Biophys J 2000; 78:908-17. [PMID: 10653803 PMCID: PMC1300693 DOI: 10.1016/s0006-3495(00)76648-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interactions of the components of reconstituted thin filaments were investigated using a tropomyosin internal deletion mutant, D234, in which actin-binding pseudo-repeats 2, 3, and 4 are missing. D234 retains regions of tropomyosin that bind troponin and form end-to-end tropomyosin bonds, but has a length to span only four instead of seven actin monomers. It inhibits acto-myosin subfragment 1 ATPase (acto-S-1 ATPase) and filament sliding in vitro in both the presence and absence of Ca(2+) (, J. Biol. Chem. 272:14051-14056) and lowers the affinity of S-1.ADP for actin while increasing its cooperative binding. Electron microscopy and three-dimensional reconstruction of reconstituted thin filaments containing actin, troponin, and wild-type or D234 tropomyosin were carried out to determine if Ca(2+)-induced movement of D234 occurred in the filaments. In the presence and absence of Ca(2+), the D234 position was indistinguishable from that of the wild-type tropomyosin, demonstrating that the mutation did not affect normal tropomyosin movement induced by Ca(2+) and troponin. These results suggested that, in the presence of Ca(2+) and troponin, D234 tropomyosin was trapped on filaments in the Ca(2+)-induced position and was unable to undergo a transition to a completely activated position. By adding small amounts of rigor-bonded N-ethyl-maleimide-treated S-1 to mutant thin filaments, thus mimicking the myosin-induced "open" state, inhibition could be overcome and full activation restored. This myosin requirement for full activation provides support for the existence of three functionally distinct thin filament states (off, Ca(2+)-induced, myosin-induced; cf.;, J. Mol. Biol. 266:8-14). We propose a further refinement of the three-state model in which the binding of myosin to actin causes allosteric changes in actin that promote the binding of tropomyosin in an otherwise energetically unfavorable "open" state.
Collapse
Affiliation(s)
- M Rosol
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sohn RL, Vikstrom KL, Strauss M, Cohen C, Szent-Gyorgyi AG, Leinwand LA. A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. J Mol Biol 1997; 266:317-30. [PMID: 9047366 DOI: 10.1006/jmbi.1996.0790] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myosin is a motor protein whose functional unit in the sarcomere is the thick filament. The myosin molecule is capable of self-assembly into thick filaments through its alpha-helical coiled-coil rod domain. To define more precisely the sequence requirements for this assembly, segments of the human fast IId skeletal myosin rod were expressed in Escherichia coli and examined differential solubility and the formation of ordered paracrystals. We show that both properties appear to require a 29 residue sequence (residues 1874 to 1902) near the C terminus of the rod region. To test further the role of this region in assembly, a protein was constructed which consisted of this assembly competence domain (ACD) fused to the carboxy terminus of an assembly-incompetent myosin rod fragment. This chimeric fragment exhibited myosin's characteristic solubility properties and formed ordered paracrystals. To complement these in vitro experiments, both a full-length myosin heavy chain (MYH) and one from which the 29 residues were deleted were transfected into cultured mammalian cells. While the full-length construct formed the spindle-shaped structures characteristic of arrays of thick filaments, the deleted MYH showed only diffuse staining throughout the cytoplasm by light microscopy. Thus, there appears to be a specific sequence in the C-terminal region of the myosin heavy chain rod which is necessary for ordered paracrystal formation and is sufficient to confer assembly properties to an assembly-incompetent rod fragment.
Collapse
Affiliation(s)
- R L Sohn
- Department of Molecular, Cellular and Developmental Biology, Universityof Colorado, Boulder 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
15
|
Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL. Tropomyosin isoforms in nonmuscle cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:1-38. [PMID: 9002235 DOI: 10.1016/s0074-7696(08)61619-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vertebrate nonmuscle cells, such as human and rat fibroblasts, express multiple isoforms of tropomyosin, which are generated from four different genes and a combination of alternative promoter activities and alternative splicing. The amino acid variability among these isoforms is primarily restricted to three alternatively spliced exon regions; an amino-terminal region, an internal exon, and a carboxyl-terminal exon. Recent evidence reveals that these variable exon regions encode amino acid sequences that may dictate isoform-specific functions. The differential expression of tropomyosin isoforms found in cell transformation and cell differentiation, as well as the differential localization of tropomyosin isoforms in some types of culture cells and developing neurons suggest a differential isoform function in vivo. Tropomyosin in striated muscle works together with the troponin complex to regulate muscle contraction in a Ca(2+)-dependent fashion. Both in vitro and in vivo evidence suggest that multiple isoforms of tropomyosin in nonmuscle cells may be required for regulating actin filament stability, intracellular granule movement, cell shape determination, and cytokinesis. Tropomyosin-binding proteins such as caldesmon, tropomodulin, and other unidentified proteins may be required for some of these functions. Strong evidence for the distinct functions carried out by different tropomyosin isoforms has been generated from genetic analysis of yeast and Drosophila tropomyosin mutants.
Collapse
Affiliation(s)
- J J Lin
- Department of Biological Sciences, University of Iowa, Iowa City 52242-1324, USA
| | | | | | | | | |
Collapse
|
16
|
Prasad GL, Fuldner RA, Cooper HL. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc Natl Acad Sci U S A 1993; 90:7039-43. [PMID: 8346214 PMCID: PMC47071 DOI: 10.1073/pnas.90.15.7039] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Synthesis of certain members of the tropomyosin family of microfilament-associated proteins is suppressed in fibroblasts neoplastically transformed by a number of retroviral oncogenes, by transforming growth factor alpha, and by chemical mutagens. To test whether tropomyosin suppression is a required event in neoplastic transformation, expression of one of two suppressed tropomyosins in NIH 3T3 mouse cells transformed by the ras oncogene was restored by retrovirally mediated cDNA transfer. Cells expressing the inserted cDNA showed partial restoration of microfilament bundle formation (which is typically deranged in transformed cells) together with increased cytoplasmic spreading. More importantly, they lost anchorage-independent growth capability, and the onset of tumor growth in athymic mice was delayed. When tumors arose they no longer expressed the inserted cDNA. These observations support the conclusion that tropomyosin suppression is a necessary event for the expression of components of the transformed phenotype, particularly with respect to anchorage-independent growth and tumorigenesis, which correlate closely with neoplastic potential. This potentially reversible requirement may link different initial events produced by a variety of oncogenic modalities to a common pathway leading to neoplastic growth.
Collapse
Affiliation(s)
- G L Prasad
- Cell and Molecular Physiology Section, National Cancer Institute, Bethesda, MD 20892
| | | | | |
Collapse
|
17
|
Xie L, Hirabayashi T, Miyazaki J. Histological distribution and developmental changes of tropomyosin isoforms in three chicken digestive organs. Cell Tissue Res 1992; 269:391-401. [PMID: 1423507 DOI: 10.1007/bf00353894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Histological localization of tropomyosin isoforms in three digestive organs from embryonic and adult chickens was performed by using rabbit antisera against chicken skeletal muscle tropomyosin and against low-Mr-type tropomyosin from chicken small intestine mucosa. The former antiserum (named TM-SH) reacted with alpha, beta, and high-Mr-type isoforms, and the latter (named TM-HL) reacted with alpha, beta, high-Mr-type and low-Mr-type isoforms, alpha and beta Isoforms were detected in muscle cells of the muscular layer and the muscularis mucosa. Low-Mr-type isoforms, however, were detected along the cell membrane and cytoplasm of almost all nonmuscle cells, especially in terminal webs of epithelial cells. Developmental changes of tropomyosin isoforms in digestive organs were studied by two-dimensional gel electrophoresis and image analysis. The relative amounts of alpha and beta isoforms increased in the course of development, but those of low-Mr-type and high-Mr-type isoforms decreased.
Collapse
Affiliation(s)
- L Xie
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
18
|
Abstract
Gizzard smooth muscle tropomyosin, which is close to 100% gamma beta heterodimer in the native state, was heated to about 100 degrees C, at which temperature the chains are dissociated, followed by reassociation by rapid cooling to 0 degree C. This heat-treated tropomyosin was composed of about 58% heterodimer and 42% of the gamma gamma and beta beta homodimers and had a lower viscosity than that of the native protein, indicating a reduced end-to-end polymerization. Close to 100% heterodimer was regenerated if the heat-treated tropomyosin was subjected to slow cooling from 50 degrees C. However, the viscosity remained low and did not return to the value for untreated tropomyosin, suggesting that the 100 degrees C treatment results in irreversible chemical damage to tropomyosin which affects its end-to-end interaction. Therefore, heat treatment of tropomyosin, a procedure widely used in the preparation of smooth muscle and non-muscle tropomyosins, may result in tropomyosin with a different heterodimer/homodimer distribution and different properties from those of the native protein and should be used with caution.
Collapse
Affiliation(s)
- P Graceffa
- Boston Biomedical Research Institute, Department of Muscle Research, MA 02114
| |
Collapse
|
19
|
Schaier SR. Purification and characterization of platelet actin, actin-binding protein, and alpha-actinin. Methods Enzymol 1992; 215:58-77. [PMID: 1435344 DOI: 10.1016/0076-6879(92)15053-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Hitchcock-DeGregori SE, Varnell TA. Tropomyosin has discrete actin-binding sites with sevenfold and fourteenfold periodicities. J Mol Biol 1990; 214:885-96. [PMID: 2143787 DOI: 10.1016/0022-2836(90)90343-k] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Analysis of the periodic distribution of amino acids in tropomyosin has revealed the presence of seven or 14 quasi-equivalent actin-binding sites. We tested the hypothesis of periodic actin-binding sites by making deletions of chicken striated alpha-tropomyosin cDNA using oligonucleotide-directed mutagenesis. The deletions corresponded to one-half (amino acid residues 47 to 67), two-thirds (residues 47 to 74) and one actin-binding site (residues 47 to 88), on the basis of there being seven sites. The mutant cDNAs were expressed as fusion and non-fusion proteins in Escherichia coli and analyzed for actin binding and regulatory function. Fusion tropomyosin binds to actin with an affinity similar to that of muscle tropomyosin. Of the mutant fusion tropomyosins, only that with a full site deleted retained actin affinity and the ability to inhibit the actomyosin S1 ATPase, though it was less effective than wild-type. We conclude that an integral number of half-turns of the tropomyosin coiled-coil, and the consequential sevenfold periodicity, as well as the correct orientation of the ends with respect to each other, are important for actin binding. On the other hand, non-fusion tropomyosin binds well to actin only in the presence of troponin, and the binding is calcium-sensitive. Assay of non-fusion mutant tropomyosins showed that mutants with deletion of one-half and one actin binding site both had high affinity for actin, equal to or slightly less than wild-type. The ability of these two mutants to regulate the actomyosin or acto-S1 ATPase with troponin in the absence of calcium was indistinguishable from that of the wild-type. The normal regulatory function of the mutant with a 1/14 deletion (removal of a quarter turn or half a site) indicates that a 14-fold periodicity is adequate for regulation, consistent with the presence of two sets of seven alpha and seven beta quasi-equivalent actin-binding sites. An alternative explanation is that the alpha-sites are of primary importance and that proper alignment of the alpha-sites in every second tropomyosin, as when half a site is deleted, is sufficient for normal regulatory function. Deletion of a non-integral period (2/3 of a site) severely compromised actin-binding and regulatory function, presumably due to the inability of the mutant to align properly on the actin filament.
Collapse
Affiliation(s)
- S E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854
| | | |
Collapse
|
21
|
Lehman W. 35 kDa proteins are not components of vertebrate smooth muscle thin filaments. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 996:57-61. [PMID: 2736259 DOI: 10.1016/0167-4838(89)90094-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A 35 kDa protein present in vertebrate smooth muscle and capable of binding to purified actin does not appear to be a constituent of smooth-muscle thin filaments in vivo; instead, it is more likely to be a component easily solubilized from particulate material which then spuriously interacts with actin.
Collapse
Affiliation(s)
- W Lehman
- Department of Physiology, Boston University School of Medicine, MA 02118
| |
Collapse
|
22
|
Lehman W, Craig R, Lui J, Moody C. Caldesmon and the structure of smooth muscle thin filaments: immunolocalization of caldesmon on thin filaments. J Muscle Res Cell Motil 1989; 10:101-12. [PMID: 2760189 DOI: 10.1007/bf01739966] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibodies reacting with chicken gizzard caldesmon were used to determine the distribution of caldesmon on smooth muscle thin filaments. Antibodies developed against both the intact caldesmon molecule and a 40 kilodalton proteolytic fragment cause thin filaments to aggregate laterally. Aggregates produced with the latter antibody display regular periodic labelling with a repeat of approximately 38 nm, a distribution characteristic of proteins associated with tropomyosin on thin filaments. The stoichiometry of caldesmon on thin filaments has been critically reevaluated and alternative models of caldesmon distribution on thin filaments are proposed.
Collapse
Affiliation(s)
- W Lehman
- Department of Physiology, Boston University School of Medicine, Massachusetts 02118
| | | | | | | |
Collapse
|
23
|
Maekawa S, Toriyama M, Sakai H. Tropomyosin in the sea urchin egg cortex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 178:657-62. [PMID: 2912726 DOI: 10.1111/j.1432-1033.1989.tb14495.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tropomyosin was purified from the Triton-treated cortex fraction of fertilized sea urchin egg. Egg tropomyosin showed characteristics typical of nonmuscle tropomyosins such as low molecular mass, short periodicity of Mg2+-paracrystals, low lysine/arginine ratio, high Mg2+ requirement in binding to F-actin, in addition to the properties of all tropomyosins, namely, stability to high temperature, anomalous migration of SDS/urea gel, dissociation from F-actin under high ionic conditions and very acidic isoelectric point. Co-sedimentation assay of egg tropomyosin with actin in the presence of the previously purified high-molecular-mass actin binding protein (260-kDa protein) showed that these two proteins bind to actin filaments in a non-competitive manner. This suggested that both the proteins play a cooperative role in the formation of actin-filament-based cytoskeletal structure in the cortex.
Collapse
Affiliation(s)
- S Maekawa
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
24
|
Lin JJ, Hegmann TE, Lin JL. Differential localization of tropomyosin isoforms in cultured nonmuscle cells. J Cell Biol 1988; 107:563-72. [PMID: 3047141 PMCID: PMC2115218 DOI: 10.1083/jcb.107.2.563] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have previously shown that chicken embryo fibroblast (CEF) cells and human bladder carcinoma (EJ) cells contain multiple isoforms of tropomyosin, identified as a, b, 1, 2, and 3 in CEF cells and 1, 2, 3, 4, and 5 in human EJ cells by one-dimensional SDS-PAGE (Lin, J. J.-C., D. M. Helfman, S. H. Hughes, and C.-S. Chou. 1985. J. Cell Biol. 100: 692-703; and Lin, J. J.-C., S. Yamashiro-Matsumura, and F. Matsumura. 1984. Cancer Cells 1:57-65). Both isoform 3 (TM-3) of CEF and isoforms 4,5 (TM-4,-5) of human EJ cells are the minor isoforms found respectively in normal chicken and human cells. They have a lower apparent molecular mass and show a weaker affinity to actin filaments when compared to the higher molecular mass isoforms. Using individual tropomyosin isoforms immobilized on nitrocellulose papers and sequential absorption of polyclonal antiserum on these papers, we have prepared antibodies specific to CEF TM-3 and to CEF TM-1,-2. In addition, two of our antitropomyosin mAbs, CG beta 6 and CG3, have now been demonstrated by Western blots, immunoprecipitation, and two-dimensional gel analysis to have specificities to human EJ TM-3 and TM-5, respectively. By using these isoform-specific reagents, we are able to compare the intracellular localizations of the lower and higher molecular mass isoforms in both CEF and human EJ cells. We have found that both lower and higher molecular mass isoforms of tropomyosin are localized along stress fibers of cells, as one would expect. However, the lower molecular mass isoforms are also distributed in regions near ruffling membranes. Further evidence for this different localization of different tropomyosin isoforms comes from double-label immunofluorescence microscopy on the same CEF cells with affinity-purified antibody against TM-3, and monoclonal CG beta 6 antibody against TM-a, -b, -1, and -2 of CEF tropomyosin. The presence of the lower molecular mass isoform of tropomyosin in ruffling membranes may indicate a novel way for the nonmuscle cell to control the stability and organization of microfilaments, and to regulate the cell motility.
Collapse
Affiliation(s)
- J J Lin
- Department of Biology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
25
|
A novel hybrid alpha-tropomyosin in fibroblasts is produced by alternative splicing of transcripts from the skeletal muscle alpha-tropomyosin gene. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47688-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Ruiz-Opazo N, Nadal-Ginard B. Alpha-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61260-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
|
28
|
Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol Cell Biol 1987. [PMID: 2432392 DOI: 10.1128/mcb.6.11.3582] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular basis for the expression of rat embryonic fibroblast tropomyosin 1 and skeletal muscle beta-tropomyosin was determined. cDNA clones encoding these tropomyosin isoforms exhibit complete identity except for two carboxy-proximal regions (amino acids 189 to 213 and 258 to 284) and different 3'-untranslated sequences. The isoform-specific regions delineate the troponin T-binding domains of skeletal muscle tropomyosin. Analysis of genomic clones indicates that there are two separate loci in the rat genome that contain sequences complementary to these mRNAs. One locus is a pseudogene. The other locus contains a single gene made up of 11 exons and spans approximately 10 kilobases. Sequences common to all mRNAs were found in exons 1 through 5 (amino acids 1 to 188) and exons 8 and 9 (amino acids 214 to 257). Exons 6 and 11 are specific for fibroblast mRNA (amino acids 189 to 213 and 258 to 284, respectively), while exons 7 and 10 are specific for skeletal muscle mRNA (amino acids 189 to 213 and 258 to 284, respectively). In addition, exons 10 and 11 each contain the entire 3'-untranslated sequences of the respective mRNAs including the polyadenylation site. Although the gene is also expressed in smooth muscle (stomach, uterus, and vas deferens), only the fibroblast-type splice products can be detected in these tissues. S1 and primer extension analyses indicate that all mRNAs expressed from this gene are transcribed from a single promoter. The promoter was found to contain G-C-rich sequences, a TATA-like sequence TTTTA, no identifiable CCAAT box, and two putative Sp1-binding sites.
Collapse
|
29
|
MIZUSHIMA YUMIKO, KANDA KEIKO, HAMAOKA TOSHIYUKI, FUJIWARA HIROMI, SOBUE KENJI. REDISTRIBUTION OF CALDESMON AND TROPOMYOSIN ASSOCIATED WITH CONCANAVALIN A RECEPTOR CAPPING ON SPLENIC T-LYMPHOCYTES . Biomed Res 1987. [DOI: 10.2220/biomedres.8.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- YUMIKO MIZUSHIMA
- Department of Oncogenesis, Institute for Cancer Research, Osaka University Medical School
| | - KEIKO KANDA
- Department of Neurochemistry and Neuropharmacology, Institute of Higher Nervous Activity, Osaka University Medical School
| | - TOSHIYUKI HAMAOKA
- Department of Oncogenesis, Institute for Cancer Research, Osaka University Medical School
| | - HIROMI FUJIWARA
- Department of Oncogenesis, Institute for Cancer Research, Osaka University Medical School
| | - KENJI SOBUE
- Department of Neurochemistry and Neuropharmacology, Institute of Higher Nervous Activity, Osaka University Medical School
| |
Collapse
|
30
|
Lin JJ, Lin JL. Assembly of different isoforms of actin and tropomyosin into the skeletal tropomyosin-enriched microfilaments during differentiation of muscle cells in vitro. J Biophys Biochem Cytol 1986; 103:2173-83. [PMID: 3536961 PMCID: PMC2114574 DOI: 10.1083/jcb.103.6.2173] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have used a monoclonal antibody (CL2) directed against striated muscle isoforms of tropomyosin to selectively isolate a class of microfilaments (skeletal tropomyosin-enriched microfilaments) from differentiating muscle cells. This class of microfilaments differed from the one (tropomyosin-enriched microfilaments) isolated from the same cells by a monoclonal antibody (LCK16) recognizing all isoforms of muscle and nonmuscle tropomyosin. In myoblasts, the skeletal tropomyosin-enriched microfilaments had a higher content of alpha-actin and phosphorylated isoforms of tropomyosin as compared with the tropomyosin-enriched microfilaments. Moreover, besides muscle isoforms of actin and tropomyosin, significant amounts of nonmuscle isoforms of actin and tropomyosin were found in the skeletal tropomyosin-enriched microfilaments of myoblasts and myotubes. These results suggest that different isoforms of actin and tropomyosin can assemble into the same set of microfilaments, presumably pre-existing microfilaments, to form the skeletal tropomyosin-enriched microfilaments, which will eventually become the thin filaments of myofibrils. Therefore, the skeletal tropomyosin-enriched microfilaments detected here may represent an intermediate class of microfilaments formed during thin filament maturation. Electron microscopic studies of the isolated microfilaments from myoblasts and myotubes showed periodic localization of tropomyosin molecules along the microfilaments. The tropomyosin periodicity in the microfilaments of myoblasts and myotubes was 35 and 37 nm, respectively, whereas the nonmuscle tropomyosin along chicken embryo fibroblast microfilaments had a 34-nm repeat.
Collapse
|
31
|
Phillips GN. Construction of an atomic model for tropomyosin and implications for interactions with actin. J Mol Biol 1986; 192:128-31. [PMID: 3820300 DOI: 10.1016/0022-2836(86)90469-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Helfman DM, Cheley S, Kuismanen E, Finn LA, Yamawaki-Kataoka Y. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol Cell Biol 1986; 6:3582-95. [PMID: 2432392 PMCID: PMC367118 DOI: 10.1128/mcb.6.11.3582-3595.1986] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular basis for the expression of rat embryonic fibroblast tropomyosin 1 and skeletal muscle beta-tropomyosin was determined. cDNA clones encoding these tropomyosin isoforms exhibit complete identity except for two carboxy-proximal regions (amino acids 189 to 213 and 258 to 284) and different 3'-untranslated sequences. The isoform-specific regions delineate the troponin T-binding domains of skeletal muscle tropomyosin. Analysis of genomic clones indicates that there are two separate loci in the rat genome that contain sequences complementary to these mRNAs. One locus is a pseudogene. The other locus contains a single gene made up of 11 exons and spans approximately 10 kilobases. Sequences common to all mRNAs were found in exons 1 through 5 (amino acids 1 to 188) and exons 8 and 9 (amino acids 214 to 257). Exons 6 and 11 are specific for fibroblast mRNA (amino acids 189 to 213 and 258 to 284, respectively), while exons 7 and 10 are specific for skeletal muscle mRNA (amino acids 189 to 213 and 258 to 284, respectively). In addition, exons 10 and 11 each contain the entire 3'-untranslated sequences of the respective mRNAs including the polyadenylation site. Although the gene is also expressed in smooth muscle (stomach, uterus, and vas deferens), only the fibroblast-type splice products can be detected in these tissues. S1 and primer extension analyses indicate that all mRNAs expressed from this gene are transcribed from a single promoter. The promoter was found to contain G-C-rich sequences, a TATA-like sequence TTTTA, no identifiable CCAAT box, and two putative Sp1-binding sites.
Collapse
|
33
|
Low Mr tropomyosin isoforms from chicken brain and intestinal epithelium have distinct actin-binding properties. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)69311-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Côté A, Doucet JP, Trifaró JM. Adrenal medullary tropomyosins: purification and biochemical characterization. J Neurochem 1986; 46:1771-82. [PMID: 3517231 DOI: 10.1111/j.1471-4159.1986.tb08495.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tropomyosins have been isolated from bovine adrenal medulla. Purified from a heat-stable extract, the adrenal medullary tropomyosins show the same chromatographic patterns as platelet tropomyosin components purified under very similar conditions on ion-exchange (DEAE-Sephacel) and hydroxylapatite columns. When analyzed by polyacrylamide gel electrophoresis, the purified fraction, reduced and denatured, yielded three polypeptides with apparent molecular weights of 38,000, 35,500, and 32,000. The molar ratio of the two major polypeptides (38 kd and 32 kd) was 2:1. The predominant form of 38 kd is different from other nonmuscle tropomyosins previously isolated and with which an apparent molecular weight of 30,000 is normally associated. The three adrenal medullary tropomyosins have similar isoelectric points of about 4.7. When adrenal tropomyosins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea, each form showed a shift to a higher molecular weight, which is a characteristic of muscle tropomyosin. The 38,000 adrenal medullary tropomyosin exhibits a stronger affinity for F-actin than the other forms. Peptide profiles obtained after limited proteolytic digestion show some similarity between the two predominant tropomyosins of the bovine adrenal medulla and also between these and the alpha and beta forms of bovine skeletal muscle tropomyosin.
Collapse
|
35
|
|
36
|
Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38803-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Yamawaki-Kataoka Y, Helfman DM. Rat embryonic fibroblast tropomyosin 1. cDNA and complete primary amino acid sequence. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38588-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes. Mol Cell Biol 1985. [PMID: 4000123 DOI: 10.1128/mcb.5.5.972] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To identify proteins whose production may be altered as a common event in the expression of structurally diverse oncogenes, we compared two-dimensional electropherograms of newly synthesized proteins from NIH/3T3 cell lines transformed by a variety of retroviral oncogenes, from cellular revertant lines, and from a line (433.3) which expresses the v-ras oncogene in response to corticosteroids. Most alterations in the synthesis of specific proteins detected by this approach appeared to be the result of selection during prolonged cultivation and were probably unrelated to the transformation process. However, we detected seven proteins whose synthesis was strongly suppressed in cell lines transformed by each of the six retroviral oncogenes we studied and whose production was fully or partially restored in two cellular revertant lines. Suppression of two of these proteins was also correlated with the initial appearance of morphological alteration during corticosteroid-induced oncogene expression in 433.3 cells. These proteins (p37/4.78 and p41/4.75) were identified as tropomyosins, a group of at least five cytoskeletal proteins. Transformation by the papovaviruses simian virus 40 and polyomavirus caused no suppression of synthesis of these tropomyosins. This indicates that suppression of tropomyosin synthesis is not a nonspecific response by cells to being forced to grow with the transformed phenotype but is specifically associated with oncogenesis by diverse retroviral oncogenes. The results are consistent with the hypothesis that the different biochemical processes initiated by expression of structurally diverse retroviral oncogenes may converge on a limited number of common targets, one of which is the mechanism which regulates the synthesis of tropomyosins.
Collapse
|
39
|
Keiser T, Wegner A. Isolation from bovine brain of tropomyosins that bind to actin filaments with different affinities. FEBS Lett 1985; 187:76-80. [PMID: 4040476 DOI: 10.1016/0014-5793(85)81218-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tropomyosin was isolated from bovine brain using mild conditions thereby avoiding heat precipitation. Separation by DEAE ion exchange chromatography yielded a 33 kDa tropomyosin and a mixture of 30 and 32 kDa tropomyosin. Binding of the tropomyosins to actin filaments was measured by a newly developed method. The binding was assayed by the retarding effect of tropomyosin on actin polymerization. The 33 kDa tropomyosin was found to bind to actin filaments with considerably higher affinity than the 30 and 32 kDa tropomyosin.
Collapse
|
40
|
Cooper HL, Feuerstein N, Noda M, Bassin RH. Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes. Mol Cell Biol 1985; 5:972-83. [PMID: 4000123 PMCID: PMC366812 DOI: 10.1128/mcb.5.5.972-983.1985] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To identify proteins whose production may be altered as a common event in the expression of structurally diverse oncogenes, we compared two-dimensional electropherograms of newly synthesized proteins from NIH/3T3 cell lines transformed by a variety of retroviral oncogenes, from cellular revertant lines, and from a line (433.3) which expresses the v-ras oncogene in response to corticosteroids. Most alterations in the synthesis of specific proteins detected by this approach appeared to be the result of selection during prolonged cultivation and were probably unrelated to the transformation process. However, we detected seven proteins whose synthesis was strongly suppressed in cell lines transformed by each of the six retroviral oncogenes we studied and whose production was fully or partially restored in two cellular revertant lines. Suppression of two of these proteins was also correlated with the initial appearance of morphological alteration during corticosteroid-induced oncogene expression in 433.3 cells. These proteins (p37/4.78 and p41/4.75) were identified as tropomyosins, a group of at least five cytoskeletal proteins. Transformation by the papovaviruses simian virus 40 and polyomavirus caused no suppression of synthesis of these tropomyosins. This indicates that suppression of tropomyosin synthesis is not a nonspecific response by cells to being forced to grow with the transformed phenotype but is specifically associated with oncogenesis by diverse retroviral oncogenes. The results are consistent with the hypothesis that the different biochemical processes initiated by expression of structurally diverse retroviral oncogenes may converge on a limited number of common targets, one of which is the mechanism which regulates the synthesis of tropomyosins.
Collapse
|
41
|
Gerhard MD, DiGirolamo PM, Hitchcock-DeGregori SE. Isolation and characterization of a tropomyosin binding protein from human blood platelets. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89494-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Lin JJ, Helfman DM, Hughes SH, Chou CS. Tropomyosin isoforms in chicken embryo fibroblasts: purification, characterization, and changes in Rous sarcoma virus-transformed cells. J Biophys Biochem Cytol 1985; 100:692-703. [PMID: 2982883 PMCID: PMC2113520 DOI: 10.1083/jcb.100.3.692] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Seven polypeptides (a, b, c, 1, 2, 3a, and 3b) have been previously identified as tropomyosin isoforms in chicken embryo fibroblasts (CEF) (Lin, J. J.-C., Matsumura, F., and Yamashiro-Matsumura, S., 1984, J. Cell. Biol., 98:116-127). Spots a and c had identical mobility on two-dimensional gels with the slow-migrating and fast-migrating components, respectively, of chicken gizzard tropomyosin. However, the remaining isoforms of CEF tropomyosin were distinct from chicken skeletal and cardiac tropomyosins on two-dimensional gels. The mixture of CEF tropomyosin has been isolated by the combination of Triton/glycerol extraction of monolayer cells, heat treatment, and ammonium sulfate fractionation. The yield of tropomyosin was estimated to be 1.4% of total CEF proteins. The identical set of tropomyosin isoforms could be found in the antitropomyosin immunoprecipitates after the cell-free translation products of total poly(A)+ RNAs isolated from CEF cells. This suggested that at least seven mRNAs coding for these tropomyosin isoforms existed in the cell. Purified tropomyosins (particularly 1, 2, and 3) showed different actin-binding abilities in the presence of 100 mM KCl and no divalent cation. Under this condition, the binding of tropomyosin 3 (3a + 3b) to actin filaments was significantly weaker than that of tropomyosin 1 or 2. CEF tropomyosin 1, and probably 3, could be cross-linked to form homodimers by treatment with 5,5'-dithiobis-(2-nitrobenzoate), whereas tropomyosin a and c formed a heterodimer. These dimer species may reflect the in vivo assembly of tropomyosin isoforms, since dimer formation occurred not only with purified tropomyosin but also with microfilament-associated tropomyosin. The expression of these tropomyosin isoforms in Rous sarcoma virus-transformed CEF cells has also been investigated. In agreement with the previous report by Hendricks and Weintraub (Proc. Natl. Acad. Sci. USA., 78:5633-5637), we found that major tropomyosin 1 was greatly reduced in transformed cells. We have also found that the relative amounts of tropomyosin 3a and 3b were increased in both the total cell lysate and the microfilament fraction of transformed cells. Because of the different actin-binding properties observed for CEF tropomyosins, changes in the expression of these isoforms may, in part, be responsible for the reduction of actin cables and the alteration of cell shape found in transformed cells.
Collapse
|
43
|
Bourguignon LY, Field S, Bourguignon GJ. Phosphorylation of a tropomyosin-like (30 KD) protein during platelet activation. J Cell Biochem 1985; 29:19-30. [PMID: 4055920 DOI: 10.1002/jcb.240290103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we have used the tumor promoter 12-o-tetradecanoylphorbol-13-acetate (TPA), as well as its biologically inactive analogue 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), to investigate platelet protein phosphorylation and its possible correlation with platelet activation. Our data show that TPA, but not 4 alpha-PDD, induces a preferential phosphorylation of a 30,000 dalton (30 KD) protein. This phosphoprotein is found to be physically associated with an actomyosin-containing platelet cytoskeleton complex. Further analysis using both standard two-dimensional gel electrophoresis and one-dimensional urea-SDS gel electrophoresis reveals that this 30 KD protein has several tropomyosin-like properties. Most importantly, the degree of TPA-induced phosphorylation of the 30 KD protein is directly proportional to the extent of platelet granule release and the shape change of the platelet, as well as to the degree of aggregation. We speculate that this phosphorylated tropomyosinlike protein may play a pivotal role in the regulation of actomyosin-mediated platelet contractility, which has been previously implicated in a variety of platelet functions.
Collapse
|
44
|
Abstract
Platelets are discoidal cytoplasmic particles that respond to a variety of stimuli by developing filopodia and rounding up (shape change), developing the ability to bind fibrinogen from the medium, and, with strong stimuli such as thrombin and PAF-acether, secreting the contents of several types of granules. Arachidonic acid is cleaved from phospholipids by phospholipase A2 and converted by the platelets to endoperoxides, and then to thromboxane A2. The bound dimeric fibrinogen molecules probably cause aggregation by forming bridges between platelets. Aggregation is reinforced by secreted fibrinogen and thrombospondin, which binds the platelets, and by thromboxane A2 and endoperoxides, as well as secreted ADP, which cause additional receptor-mediated activation. The responses to these stimuli are initiated when the agonists bind to specific receptors on the plasma membrane. Subsequent steps resemble those in other types of responsive cells: breakdown of phosphatidylinositol bisphosphate into diacylglycerol, a stimulator of protein kinase C, and inositol-1,4,5-trisphosphate, recently shown to be a potent calcium ionophore. The response of shape change results from increased cytoplasmic Ca2+ which permits phosphorylation of one of the light chains of myosin by a calcium-calmodulin-dependent kinase, with resulting enhanced actin-myosin interaction. Secretion is associated with phosphorylation of a 40,000 to 47,000 dalton protein by the diacylglycerol-activated protein kinase C. These recent findings have increased our understanding of the mechanisms of platelet activation, but much remains to be learned. How do agonist-receptor complexes influence PIP2 breakdown? Is this indeed the first step in activation? What mediates adhesion of platelets to the injured blood vessel wall? Does transduction of this stimulus occur by the same mechanism as transduction of commonly used soluble stimuli? What is the role of the phosphorylated 40-47 K protein in secretion? What change in GP IIb-IIIa promotes their ability to bind fibrinogen? What is the role of calcium-activated protease? Of the phosphorylation of actin-binding protein? Progress is being made rapidly, and these questions may be answered within a few years.
Collapse
|
45
|
Hartwig JH, Niederman R, Lind SE. Cortical actin structures and their relationship to mammalian cell movements. Subcell Biochem 1985; 11:1-49. [PMID: 3904083 DOI: 10.1007/978-1-4899-1698-3_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
|
47
|
Helfman DM, Feramisco JR, Ricci WM, Hughes SH. Isolation and sequence of a cDNA clone that contains the entire coding region for chicken smooth-muscle alpha-tropomyosin. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)89867-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Ishimoda-Takagi T, Chino I, Sato H. Evidence for the involvement of muscle tropomyosin in the contractile elements of the coelom-esophagus complex in sea urchin embryos. Dev Biol 1984; 105:365-76. [PMID: 6434356 DOI: 10.1016/0012-1606(84)90293-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sea urchin morphogenesis, especially formation of the coelom-esophagus complex, was observed correlating the distribution of tropomyosin-specific immunofluorescence. Coelomic cells arranged at both sides of the esophagus extended their pseudopods toward the esophagus to form the contractile bands, which surrounded the esophagus and brought about the contraction of the esophagus. The earliest stage at which the tropomyosin-specific immunofluorescence was recognized coincided with the appearance of the coelomic pseudopods. The tropomyosin-specific immunofluorescence located at the contractile bands and the cell bodies from which they derived, when the ectoderm-disrupted embryos were used to investigate the detailed distribution of tropomyosin. The tropomyosin-specific immunofluorescence remained in the same regions when the embryos were stained with the antiserum absorbed with egg tropomyosin, which detected only muscle tropomyosin. From these observations, the coelomic pseudopod-forming cells were conclusively shown to be muscle cells.
Collapse
|
49
|
Nosaka S, Onji T, Shibata N. Enhancement of actomyosin ATPase activity by tropomyosin. Recombination of myosin and tropomyosin between muscles and platelet. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 788:290-7. [PMID: 6235857 DOI: 10.1016/0167-4838(84)90040-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In skeletal muscle, the physiological role of tropomyosin has been assumed to be the 'blocking' of the actin-myosin interaction. In smooth muscle and platelet, however, tropomyosin was shown to 'enhance' the interaction. To investigate the reason for this apparent contradiction, we carried out recombination experiments using reconstituted actomyosins and different tropomyosins. Tropomyosins from skeletal muscle, arterial smooth muscle and platelet were recombined with skeletal, arterial and platelet myosins. The effects of tropomyosins on the actin-activated ATPase activities of myosins were then examined. The results are as follows. (i) Although tropomyosins from artery and platelet are distinctively different in molecular weight, they are interchangeable in enhancing the ATPase activities of both arterial and platelet actomyosins. The enhancement, however, is reduced by increasing the concentration of Mg X ATP and decreasing the concentration of myosin. (ii) Arterial and platelet tropomyosins are not capable of inhibiting the ATPase activity of skeletal actomyosin. (iii) Skeletal tropomyosin enhances arterial and platelet actomyosin ATPase activities in the same way as arterial and platelet tropomyosins. The results indicate that the major determinant of the effect of tropomyosin on the actomyosin-ATPase activity is the state of actomyosin. We suggest that any tropomyosin enhances the actin-activated ATPase activity of myosin recombined with skeletal actin, under the condition where actin and myosin form a 'rigor' (tight) complex.
Collapse
|
50
|
|