1
|
Astani EK, Ersali S, Lee YC, Lin PJ, Huang YC, Huang PY, Jafarian V, Hosseinkhani S, Chen CJ. Determination and evaluation of secondary structure content derived from calcium-induced conformational changes in wild-type and mutant mnemiopsin 2 by synchrotron-based Fourier-transform infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140528. [PMID: 32853773 DOI: 10.1016/j.bbapap.2020.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022]
Abstract
Mnemiopsin 2 from a luminous ctenophore with two functional EF-hand motifs is a calcium-regulated photoprotein that is responsible for emitting a bright blue bioluminescence upon reacting with coelenterazine and calcium ions in Mnemiopsis leidyi. Synchrotron radiation-based Fourier-transform infrared (SR-FTIR) spectroscopy was applied to analyze the distribution of secondary structures, the conformational changes resulting from calcium binding and the structural stabilities in wild-type mnemiopsin 2, as well as its mutant type that possesses three EF-hand motifs. The distribution of secondary structures of these proteins indicates that mutant apo-mnemiopsin 2 has a more stable secondary structure than the wild-type. Analyses of the SR-FTIR spectra revealed that the conformational changes at the secondary structures of both mnemiopsin 2 depend on the calcium concentrations, such that the most noticeable changes in structures of wild-type and mutant mnemiopsin 2 occur at optimum concentrations 6 and 2 mM of calcium chloride, respectively. The addition of calcium to both proteins increases the proportions of their secondary structures in the amide I and II regions. The major amide I bands in the IR spectra of both mnemiopsin‑calcium complexes shift towards smaller wavenumbers, whereas their main amide II bands are identified at larger wavenumbers.
Collapse
Affiliation(s)
- Elahe K Astani
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Sara Ersali
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca 400028, Romania
| | - Yao-Chang Lee
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Pei-Ju Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Pei-Yu Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Vahab Jafarian
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran.
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan; Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
2
|
Oh J, Eom MS, Han MS. Co-functionalization with phosphate and carboxylate on polydiacetylene for colorimetric detection of calcium ions in serum. Analyst 2020; 144:7064-7070. [PMID: 31660545 DOI: 10.1039/c9an00855a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, co-functionalization with phosphate and carboxylate on polydiacetylene (PDA) was proposed to detect calcium ions in serum, inspired by biologically abundant phosphate-calcium ion and carboxylate-calcium ion binding. The cooperative interaction of calcium ions with phosphate and carboxylate in PDA induced the change of electronic properties in the backbone without aggregation of liposomes, accompanied by blue-to-purple color transition. The cooperative effect through the introduction of mixed ligands facilitated the selective detection of calcium ions over magnesium ions, which was a source of major interference in many calcium ion probes, and in the presence of major serum metal ions. The sensor system exhibited highly sensitive detection of calcium ions with an estimated limit of detection of 0.97 μM. In addition, the detection method was employed to determine the concentration of calcium ions in various serums.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | | | | |
Collapse
|
3
|
Bruton J, Cheng AJ, Westerblad H. Measuring Ca 2+ in Living Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:7-26. [PMID: 31646505 DOI: 10.1007/978-3-030-12457-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measuring free Ca2+ concentration ([Ca2+]) in the cytosol or organelles is routine in many fields of research. The availability of membrane permeant forms of indicators coupled with the relative ease of transfecting cell lines with biological Ca2+ sensors have led to the situation where cellular and subcellular [Ca2+] is examined by many non-specialists. In this chapter, we evaluate the most used Ca2+ indicators and highlight what their major advantages and disadvantages are. We stress the potential pitfalls of non-ratiometric techniques for measuring Ca2+ and the clear advantages of ratiometric methods. Likely improvements and new directions for Ca2+ measurement are discussed.
Collapse
Affiliation(s)
- Joseph Bruton
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Arthur J Cheng
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
McGuigan JAS, Kay JW, Elder HY. Ionized concentrations in Ca 2+ and Mg 2+ buffers must be measured, not calculated. Exp Physiol 2019; 105:427-437. [PMID: 31758871 DOI: 10.1113/ep088345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? The [Ca2+ ]/[Mg2+ ] in buffers are usually calculated using one of eight programs. These all give different values, thus [Ca2+ ]/[Mg2+ ] must be measured. What advances does it highlight? The ligand optimization method (LOM) using electrodes is an accurate method to do this. The limitations of the method are described. The LOM has been generalized to include calibration of fluorochromes and aequorin. It is the method of choice to measure intracellular equilibrium constants. Owing to the uncertainties for the values of resting [Ca2+ ], ∆[Ca2+ ] and the pK' values for intracellular Ca2+ /Mg2+ binding used in modelling, these values must now be re-examined critically. ABSTRACT Modelling intracellular regulation of Ca2+ /Mg2+ is now an established part of physiology. However, the conclusions drawn from such studies depend on accurate knowledge of intracellular [Ca2+ ], ∆[Ca2+ ] and the pK' values for the intracellular binding of Ca2+ /Mg2+ . Calculation of [Ca2+ ]/[Mg2+ ] in buffers is normal. The eight freely available programs all give different values for the [Ca2+ ]/[Mg2+ ] in the buffer solutions, varying by up to a factor of 4.3. As a result, concentrations must be measured. There are two methods to do this, both based on the ligand optimization method (LOM): (1) calibration solutions from 0.5 to 4 mmol l-1 ; and (2) calibration solutions from 0.1 µmol l-1 to 2 mmol l-1 . Both methods can be used to calibrate Ca2+ /Mg2+ electrodes. Only Method 2 can be used directly to calibrate fluorochromes and aequorin. Software in the statistical program R to calculate the [Ca2+ ]/[Mg2+ ] in buffers is provided for both methods. The LOM has now been generalized for use with electrodes, fluorochromes and aequorin, making it the ideal method to determine the pK' values for intracellular binding of Ca2+ /Mg2+ . The [Ca2+ ]/[Mg2+ ] in buffers must be measured routinely, which is best done by calibrating electrodes with the LOM and software written in R. If [Ca2+ ]/[Mg2+ ] in buffers are calculated, the parameters used in modelling show the same degree of variability as the software programs. Uncritical acceptance of such parameters means that conclusions reached from such studies are relative, not absolute, and must now be re-examined.
Collapse
Affiliation(s)
| | - James W Kay
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Hugh Y Elder
- School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
5
|
Burakova LP, Vysotski ES. Recombinant Ca 2+-regulated photoproteins of ctenophores: current knowledge and application prospects. Appl Microbiol Biotechnol 2019; 103:5929-5946. [PMID: 31172204 DOI: 10.1007/s00253-019-09939-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
Bright bioluminescence of ctenophores is conditioned by Ca2+-regulated photoproteins. Although they share many properties characteristic of hydromedusan Ca2+-regulated photoproteins responsible for light emission of marine animals belonging to phylum Cnidaria, a substantial distinction still exists. The ctenophore photoproteins appeared to be extremely sensitive to light-they lose the ability for bioluminescence on exposure to light over the entire absorption spectrum. Inactivation is irreversible because keeping the inactivated photoprotein in the dark does not recover its activity. The capability to emit light can be restored only by incubation of inactivated photoprotein with coelenterazine in the dark at alkaline pH in the presence of oxygen. Although these photoproteins were discovered many years ago, only the cloning of cDNAs encoding these unique bioluminescent proteins in the early 2000s has provided a new impetus for their studies. To date, cDNAs encoding Ca2+-regulated photoproteins from four different species of luminous ctenophores have been cloned. The amino acid sequences of ctenophore photoproteins turned out to completely differ from those of hydromedusan photoproteins (identity less than 29%) though also similar to them having three EF-hand Ca2+-binding sites. At the same time, these photoproteins reveal the same two-domain scaffold characteristic of hydromedusan photoproteins. This review is an attempt to systemize and critically evaluate the data scattered through various articles regarding the structural features of recombinant light-sensitive Ca2+-regulated photoproteins of ctenophores and their bioluminescent and physicochemical properties as well as to compare them with those of hydromedusan photoproteins. In addition, we also discuss the prospects of their biotechnology applications.
Collapse
Affiliation(s)
- Lyudmila P Burakova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia.
| |
Collapse
|
6
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Plenge-Tellechea F, Domínguez-Solís CA, Díaz-Sánchez ÁG, Meléndez-Martínez D, Vargas-Medrano J, Sierra-Fonseca JA. Chlorpromazine and dimethyl sulfoxide modulate the catalytic activity of the plasma membrane Ca 2+-ATPase from human erythrocyte. J Bioenerg Biomembr 2018; 50:59-69. [PMID: 29313294 DOI: 10.1007/s10863-017-9741-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/28/2017] [Indexed: 01/03/2023]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) removes Ca2+ from the cytosol into the extracellular space. Its catalytic activity can be stimulated by calmodulin (CaM) or by limited proteolysis. We evaluated the effect of chlorpromazine (CPZ) and dimethyl sulfoxide (DMSO) over the hydrolytic activity of PMCA. Activity was monitored in three different forms: native, CaM-activated and proteolyzed by trypsin. CPZ appears to inhibit PMCA without directly interfering with the C-terminal site, since it is affected by CaM and proteolysis. Although the treatment of PMCA with trypsin and CaM produces an activation, it also produces an enzymatic form that is more sensitive to inhibition by CPZ. The same case was observed in the DMSO inhibition experiments. In the absence of CPZ, DMSO produces a progressive loss of activity, but in the presence of CPZ the profile of activity against DMSO changes and produces a recovery of activity, indicating a possible partition of CPZ by the solvent. Increasing Ca2+ concentrations indicated that CPZ interacts with PMCA rather than with CaM. This observation is supported by docking analysis that suggests that the CPZ-PMCA interaction is non-competitive. We propose that CPZ interacts with the state of lower affinity for Ca2 +.
Collapse
Affiliation(s)
- Fernando Plenge-Tellechea
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico. .,Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Plutarco Elías Calles #1210, Fovissste Chamizal, Ciudad Juárez, C.P. 32310, Chihuahua, Mexico.
| | - Carlos A Domínguez-Solís
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico
| | - Ángel G Díaz-Sánchez
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico
| | - David Meléndez-Martínez
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico
| | - Javier Vargas-Medrano
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico.,Department of Biomedical Sciences, Center of Emphasis for Neurosciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Jorge A Sierra-Fonseca
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
8
|
Affiliation(s)
- Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Kinoshita N, Nagasato C, Motomura T. Calcium Control of the Sign of Phototaxis in Brown Algal Gametes of Mutimo cylindricus. Photochem Photobiol 2017; 93:1216-1223. [PMID: 28295378 DOI: 10.1111/php.12748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 11/26/2022]
Abstract
Brown algal swarmers usually exhibit positive or negative phototaxis. Such behaviors influence the increasing or decreasing dispersal distance or colonization on the new substratum. We confirmed that the sign of phototaxis (negative or positive) in male gametes of Mutimo cylindricus was affected by extracellular Ca2+ influx through Ca2+ channels. Under the control condition (10-2 m [Ca2+ ]), male gametes swimming with a helical rotation of their cell body mostly showed positive phototaxis. At 10-3 m [Ca2+ ], more than half of the male gametes showed positive phototaxis, whereas the others showed negative phototaxis. From 10-4 -10-5 m [Ca2+ ], the phototactic sign changed to negative. When these negative phototactic gametes were transferred back to the control condition, the phototactic sign reverted to positive. At 10-6 m [Ca2+ ], some of male gametes showed negative phototaxis, but most showed no phototaxis or flagellar beating. Lanthanum, a Ca2+ channel blocker, affected the sign of phototaxis at 10-4 m [La3+ ] under 10-2 m [Ca2+ ], and male gametes mostly showed negative phototaxis. A further increase in [La3+ ] inhibited phototaxis and flagellar beating. These results pointed out the involvement of Ca2+ channels that were blocked by La3+ in phototaxis and flagellar beating.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, Japan
| |
Collapse
|
10
|
Aebisher D, Bartusik D, Tabarkiewicz J. Laser flow cytometry as a tool for the advancement of clinical medicine. Biomed Pharmacother 2017; 85:434-443. [DOI: 10.1016/j.biopha.2016.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
|
11
|
Burakova LP, Natashin PV, Markova SV, Eremeeva EV, Malikova NP, Cheng C, Liu ZJ, Vysotski ES. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:286-297. [PMID: 27395792 DOI: 10.1016/j.jphotobiol.2016.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Chongyun Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia.
| |
Collapse
|
12
|
Vargas-Medrano J, Sierra-Fonseca JA, Plenge-Tellechea LF. 1,2-Dichlorobenzene affects the formation of the phosphoenzyme stage during the catalytic cycle of the Ca(2+)-ATPase from sarcoplasmic reticulum. BMC BIOCHEMISTRY 2016; 17:5. [PMID: 26968444 PMCID: PMC4788898 DOI: 10.1186/s12858-016-0061-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND 1,2-Dichlorobenzene (1,2-DCB) is a benzene-derived molecule with two Cl atoms that is commonly utilized in the synthesis of pesticides. 1,2-DCB can be absorbed by living creatures and its effects on naturally-occurring enzymatic systems, including the effects on Ca(2+)-ATPases, have been poorly studied. Therefore, we aimed to study the effect of 1,2-DCB on the Ca(2+)-ATPase from sarcoplasmic reticulum (SERCA), a critical regulator of intracellular Ca(2+) concentration. RESULTS Concentrations of 0.05-0.2 mM of 1,2-DCB were able to stimulate the hydrolytic activity of SERCA in a medium-containing Ca(2+)-ionophore. At higher concentrations (0.25-0.75 mM), 1,2-DCB inhibited the ATP hydrolysis to ~80 %. Moreover, ATP hydrolysis and Ca(2+) uptake in a medium supported by K-oxalate showed that starting at 0.05 mM,1,2-DCB was able to uncouple the ratio of hydrolysis/Ca(2+) transported. The effect of this compound on the integrity of the SR membrane loaded with Ca(2+) remained unaffected. Finally, the analysis of phosphorylation of SERCA by [γ-(32)P]ATP, starting under different conditions at 0° or 25 °C showed a reduction in the phosphoenzyme levels by 1,2-DCB, mostly at 0 °C. CONCLUSIONS The temperature-dependent decreased levels of phosphoenzyme by 1,2-DCB could be due to the acceleration of the dephosphorylation mechanism - E2P · Ca2 state to E2 and Pi, which explains the uncoupling of the ATP hydrolysis from the Ca(2+) transport.
Collapse
Affiliation(s)
- Javier Vargas-Medrano
- Present address: Department of Biomedical Sciences, Center of Emphasis for Neurosciences, Texas Tech University Health Science Center, El Paso, TX, 79905, USA
| | - Jorge A Sierra-Fonseca
- Present address: Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Luis F Plenge-Tellechea
- Departamento de Ciencias Químico Biológicas, Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Plutarco Elías Calles #1210 Fovissste Chamizal, Ciudad Juárez, Chihuahua, C.P. 32310, Mexico.
| |
Collapse
|
13
|
Lee AK, Tse FW, Tse A. Arginine Vasopressin Potentiates the Stimulatory Action of CRH on Pituitary Corticotropes via a Protein Kinase C-Dependent Reduction of the Background TREK-1 Current. Endocrinology 2015; 156:3661-72. [PMID: 26248219 DOI: 10.1210/en.2015-1293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic hormone arginine vasopressin (AVP) potentiates the stimulatory action of CRH on ACTH secretion from pituitary corticotropes, but the underlying mechanism is elusive. Using the perforated patch-clamp technique to monitor membrane potentials in mouse corticotropes, we found that AVP triggered a transient hyperpolarization that was followed by a sustained depolarization. The hyperpolarization was caused by intracellular Ca(2+) release that in turn activated the small conductance Ca(2+)-activated K(+) (SK) channels. The depolarization was due to the suppression of background TWIK-related K(+) (TREK)-1 channels. Direct activation of protein kinase C (PKC) reduced the TREK-1 current, whereas PKC inhibition attenuated the AVP-mediated reduction of the TREK-1 current, implicating the involvement of PKC. The addition of CRH (which stimulates the protein kinase A pathway) in the presence of AVP, or vice versa, resulted in further suppression of the TREK-1 current. In corticotropes with buffered cytosolic Ca(2+) concentration ([Ca(2+)]i), AVP evoked a sustained depolarization, and the coapplication of AVP and CRH caused a larger depolarization than that evoked by AVP or CRH alone. In cells with minimal perturbation of [Ca(2+)]i and background TREK-1 channels, CRH evoked a sustained depolarization that was superimposed with action potentials, and the subsequent coapplication of AVP and CRH triggered a transient hyperpolarization that was followed by a larger depolarization. In summary, AVP and CRH have additive effects on the suppression of the TREK-1 current, resulting in a more robust depolarization in corticotropes. We suggest that this mechanism contributes to the potentiating action of AVP on CRH-evoked ACTH secretion.
Collapse
Affiliation(s)
- Andy K Lee
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Frederick W Tse
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Amy Tse
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
14
|
Mestres G, Espanol M, Xia W, Persson C, Ginebra MP, Ott MK. Inflammatory response to nano- and microstructured hydroxyapatite. PLoS One 2015; 10:e0120381. [PMID: 25837264 PMCID: PMC4383585 DOI: 10.1371/journal.pone.0120381] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.
Collapse
Affiliation(s)
- Gemma Mestres
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering, Dpt. Materials Science and Metallurgy, Technical University of Catalonia, Barcelona, Spain
| | - Wei Xia
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia Persson
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering, Dpt. Materials Science and Metallurgy, Technical University of Catalonia, Barcelona, Spain
| | - Marjam Karlsson Ott
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
15
|
Posey AD, Kawalekar OU, June CH. Measurement of intracellular ions by flow cytometry. ACTA ACUST UNITED AC 2015; 72:9.8.1-9.8.21. [PMID: 25827486 DOI: 10.1002/0471142956.cy0908s72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using flow cytometry, single-cell measurements of calcium can be made on isolated populations identified by one or more phenotypic characteristics. Most earlier techniques for measuring cellular activation parameters determined the mean value for a population of cells, which did not permit optimal resolution of the responses. The flow cytometer is particularly useful for this purpose because it can measure ion concentrations in large numbers of single cells and thereby allows ion concentration to be correlated with other parameters such as immunophenotype and cell cycle stage. A limitation of flow cytometry, however, is that it does not permit resolution of certain complex kinetic responses such as cellular oscillatory responses. This unit describes the preparation of cells, including labeling with antibodies and with calcium probes, and discusses the principles of data analysis and interpretation.
Collapse
Affiliation(s)
- Avery D Posey
- Abramson Family Cancer Research Institute, and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Omkar U Kawalekar
- Abramson Family Cancer Research Institute, and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H June
- Abramson Family Cancer Research Institute, and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Coca R, Soler F, Cortés-Castell E, Gil-Guillén V, Fernández-Belda F. Inhibition mechanism of the intracellular transporter Ca2+-pump from sarco-endoplasmic reticulum by the antitumor agent dimethyl-celecoxib. PLoS One 2014; 9:e102083. [PMID: 25003576 PMCID: PMC4086972 DOI: 10.1371/journal.pone.0102083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/13/2014] [Indexed: 11/23/2022] Open
Abstract
Dimethyl-celecoxib is a celecoxib analog that lacks the capacity as cyclo-oxygenase-2 inhibitor and therefore the life-threatening effects but retains the antineoplastic properties. The action mechanism at the molecular level is unclear. Our in vitro assays using a sarcoplasmic reticulum preparation from rabbit skeletal muscle demonstrate that dimethyl-celecoxib inhibits Ca2+-ATPase activity and ATP-dependent Ca2+ transport in a concentration-dependent manner. Celecoxib was a more potent inhibitor of Ca2+-ATPase activity than dimethyl-celecoxib, as deduced from the half-maximum effect but dimethyl-celecoxib exhibited higher inhibition potency when Ca2+ transport was evaluated. Since Ca2+ transport was more sensitive to inhibition than Ca2+-ATPase activity the drugs under study caused Ca2+/Pi uncoupling. Dimethyl-celecoxib provoked greater uncoupling and the effect was dependent on drug concentration but independent of Ca2+-pump functioning. Dimethyl-celecoxib prevented Ca2+ binding by stabilizing the inactive Ca2+-free conformation of the pump. The effect on the kinetics of phosphoenzyme accumulation and the dependence of the phosphoenzyme level on dimethyl-celecoxib concentration were independent of whether or not the Ca2+–pump was exposed to the drug in the presence of Ca2+ before phosphorylation. This provided evidence of non-preferential interaction with the Ca2+-free conformation. Likewise, the decreased phosphoenzyme level in the presence of dimethyl-celecoxib that was partially relieved by increasing Ca2+ was consistent with the mentioned effect on Ca2+ binding. The kinetics of phosphoenzyme decomposition under turnover conditions was not altered by dimethyl-celecoxib. The dual effect of the drug involves Ca2+-pump inhibition and membrane permeabilization activity. The reported data can explain the cytotoxic and anti-proliferative effects that have been attributed to the celecoxib analog. Ligand docking simulation predicts interaction of celecoxib and dimethyl-celecoxib with the intracellular Ca2+ transporter at the inhibition site of hydroquinones.
Collapse
Affiliation(s)
- Ramón Coca
- Departamento de Medicina Clínica, Universidad Miguel Hernández en Campus de San Juan, Alicante, Spain
| | - Fernando Soler
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia en Campus de Espinardo, Murcia, Spain
| | - Ernesto Cortés-Castell
- Departamento de Farmacología, Pediatría y Química Orgánica, Universidad Miguel Hernández en Campus de San Juan, Alicante, Spain
| | - Vicente Gil-Guillén
- Departamento de Medicina Clínica, Universidad Miguel Hernández en Campus de San Juan, Alicante, Spain
| | - Francisco Fernández-Belda
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia en Campus de Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|
17
|
Comparison of Luminescent Immunoassays Using Biotinylated Proteins of Aequorin, Alkaline Phosphatase and Horseradish Peroxidase as Reporters. Biosci Biotechnol Biochem 2014; 72:3310-3. [DOI: 10.1271/bbb.80524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker. Anal Bioanal Chem 2014; 406:2965-74. [PMID: 24618986 DOI: 10.1007/s00216-014-7685-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.
Collapse
Affiliation(s)
- Roza R Alieva
- Siberian Federal University, Svobodny Prospect 79, 660041, Krasnoyarsk, Russia
| | | | | | | |
Collapse
|
19
|
Cerana R, Colombo R. K+and Cl−Conductance ofArabidopsis thalianaPlasma Membrane at Depolarized Voltages. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1992.tb00298.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues. Anal Bioanal Chem 2014; 406:2695-707. [DOI: 10.1007/s00216-014-7656-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/28/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
21
|
Bartlett PJ, Gaspers LD, Pierobon N, Thomas AP. Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium 2014; 55:306-16. [PMID: 24630174 DOI: 10.1016/j.ceca.2014.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 02/09/2023]
Abstract
A major role of the liver is to integrate multiple signals to maintain normal blood glucose levels. The balance between glucose storage and mobilization is primarily regulated by the counteracting effects of insulin and glucagon. However, numerous signals converge in the liver to ensure energy demand matches the physiological status of the organism. Many circulating hormones regulate glycogenolysis, gluconeogenesis and mitochondrial metabolism by calcium-dependent signaling mechanisms that manifest as cytosolic Ca(2+) oscillations. Stimulus-strength is encoded in the Ca(2+) oscillation frequency, and also by the range of intercellular Ca(2+) wave propagation in the intact liver. In this article, we describe how Ca(2+) oscillations and waves can regulate glucose output and oxidative metabolism in the intact liver; how multiple stimuli are decoded though Ca(2+) signaling at the organ level, and the implications of Ca(2+) signal dysregulation in diseases such as metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Lawrence D Gaspers
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Nicola Pierobon
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Andrew P Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
22
|
Natashin PV, Ding W, Eremeeva EV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction. ACTA ACUST UNITED AC 2014; 70:720-32. [DOI: 10.1107/s1399004713032434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 11/11/2022]
Abstract
Ca2+-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca2+inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca2+discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2in wild-type obelin is not found. However, in Ca2+-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca2+-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
Collapse
|
23
|
Natashin PV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Crystal structures of the F88Y obelin mutant before and after bioluminescence provide molecular insight into spectral tuning among hydromedusan photoproteins. FEBS J 2014; 281:1432-1445. [DOI: 10.1111/febs.12715] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/15/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Pavel V. Natashin
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Svetlana V. Markova
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - John Lee
- Department of Biochemistry and Molecular Biology; University of Georgia; Athens GA USA
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- iHuman Institute; ShanghaiTech University; Shanghai China
| |
Collapse
|
24
|
Webb SE, Karplus E, Miller AL. Retrospective on the development of aequorin and aequorin-based imaging to visualize changes in intracellular free [Ca2+]. Mol Reprod Dev 2014; 82:563-86. [DOI: 10.1002/mrd.22298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/26/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Sarah E. Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
| | | | - Andrew L. Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
- Marine Biological Laboratory; Woods Hole Massachusetts
| |
Collapse
|
25
|
Role of key residues of obelin in coelenterazine binding and conversion into 2-hydroperoxy adduct. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:133-9. [DOI: 10.1016/j.jphotobiol.2013.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/10/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022]
|
26
|
Jones AM, Grossmann G, Danielson JÅ, Sosso D, Chen LQ, Ho CH, Frommer WB. In vivo biochemistry: applications for small molecule biosensors in plant biology. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:389-95. [PMID: 23587939 PMCID: PMC3679211 DOI: 10.1016/j.pbi.2013.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 05/02/2023]
Abstract
Revolutionary new technologies, namely in the areas of DNA sequencing and molecular imaging, continue to impact new discoveries in plant science and beyond. For decades we have been able to determine properties of enzymes, receptors and transporters in vitro or in heterologous systems, and more recently been able to analyze their regulation at the transcriptional level, to use GFP reporters for obtaining insights into cellular and subcellular localization, and tp measure ion and metabolite levels with unprecedented precision using mass spectrometry. However, we lack key information on the location and dynamics of the substrates of enzymes, receptors and transporters, and on the regulation of these proteins in their cellular environment. Such information can now be obtained by transitioning from in vitro to in vivo biochemistry using biosensors. Genetically encoded fluorescent protein-based sensors for ion and metabolite dynamics provide highly resolved spatial and temporal information, and are complemented by sensors for pH, redox, voltage, and tension. They serve as powerful tools for identifying missing processes (e.g., glucose transport across ER membranes), components (e.g., SWEET sugar transporters for cellular sugar efflux), and signaling networks (e.g., from systematic screening of mutants that affect sugar transport or cytosolic and vacuolar pH). Combined with the knowledge of properties of enzymes and transporters and their interactions with the regulatory machinery, biosensors promise to be key diagnostic tools for systems and synthetic biology.
Collapse
Affiliation(s)
- Alexander M Jones
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Eremeeva EV, Natashin PV, Song L, Zhou Y, van Berkel WJH, Liu ZJ, Vysotski ES. Oxygen activation of apo-obelin-coelenterazine complex. Chembiochem 2013; 14:739-45. [PMID: 23494831 DOI: 10.1002/cbic.201300002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Indexed: 11/09/2022]
Abstract
Ca(2+) -regulated photoproteins use a noncovalently bound 2-hydroperoxycoelenterazine ligand to emit light in response to Ca(2+) binding. To better understand the mechanism of formation of active photoprotein from apoprotein, coelenterazine and molecular oxygen, we investigated the spectral properties of the anaerobic apo-obelin-coelenterazine complex and the kinetics of its conversion into active photoprotein after exposure to air. Our studies suggest that coelenterazine bound within the anaerobic complex might be a mixture of N7-protonated and C2(-) anionic forms, and that oxygen shifts the equilibrium in favor of the C2(-) anion as a result of peroxy anion formation. Proton removal from N7 and further protonation of peroxy anion and the resulting formation of 2-hydroperoxycoelenterazine in obelin might occur with the assistance of His175. It is proposed that this conserved His residue might play a key role both in formation of active photoprotein and in Ca(2+) -triggering of the bioluminescence reaction.
Collapse
Affiliation(s)
- Elena V Eremeeva
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Soler F, Asensio MC, Fernández-Belda F. Inhibition of the intracellular Ca(2+) transporter SERCA (Sarco-Endoplasmic Reticulum Ca(2+)-ATPase) by the natural polyphenol epigallocatechin-3-gallate. J Bioenerg Biomembr 2012; 44:597-605. [PMID: 22851007 DOI: 10.1007/s10863-012-9462-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/08/2012] [Indexed: 11/26/2022]
Abstract
The use of a microsomal preparation from skeletal muscle revealed that both Ca(2+) transport and Ca(2+)-dependent ATP hydrolysis linked to Sarco-Endoplasmic Reticulum Ca(2+)-ATPase are inhibited by epigallocatechin-3-gallate (EGCG). A half-maximal effect was achieved at approx. 12 μM. The presence of the galloyl group was essential for the inhibitory effect of the catechin. The relative inhibition of the Ca(2+)-ATPase activity decreased when the Ca(2+) concentration was raised but not when the ATP concentration was elevated. Data on the catalytic cycle indicated inhibition of maximal Ca(2+) binding and a decrease in Ca(2+) binding affinity when measured in the absence of ATP. Moreover, the addition of ATP to samples in the presence of EGCG and Ca(2+) led to an early increase in phosphoenzyme followed by a time-dependent decay that was faster when the drug concentration was raised. However, phosphorylation following the addition of ATP plus Ca(2+) led to a slow rate of phosphoenzyme accumulation that was also dependent on EGCG concentration. The results are consistent with retention of the transporter conformation in the Ca(2+)-free state, thus impeding Ca(2+) binding and therefore the subsequent steps when ATP is added to trigger the Ca(2+) transport process. Furthermore, phosphorylation by inorganic phosphate in the absence of Ca(2+) was partially inhibited by EGCG, suggesting alteration of the native Ca(2+)-free conformation at the catalytic site.
Collapse
Affiliation(s)
- Fernando Soler
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | | | | |
Collapse
|
29
|
Inouye S, Sato JI. Purification of histidine-tagged aequorin with a reactive cysteine residue for chemical conjugations and its application for bioluminescent sandwich immunoassays. Protein Expr Purif 2012; 83:205-10. [DOI: 10.1016/j.pep.2012.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
30
|
Nanodomain Ca²⁺ of Ca²⁺ channels detected by a tethered genetically encoded Ca²⁺ sensor. Nat Commun 2012; 3:778. [PMID: 22491326 PMCID: PMC3615648 DOI: 10.1038/ncomms1777] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/07/2012] [Indexed: 12/29/2022] Open
Abstract
Coupling of excitation to secretion, contraction and transcription often relies on Ca(2+) computations within the nanodomain-a conceptual region extending tens of nanometers from the cytoplasmic mouth of Ca(2+) channels. Theory predicts that nanodomain Ca(2+) signals differ vastly from the slow submicromolar signals routinely observed in bulk cytoplasm. However, direct visualization of nanodomain Ca(2+) far exceeds optical resolution of spatially distributed Ca(2+) indicators. Here we couple an optical, genetically encoded Ca(2+) indicator (TN-XL) to the carboxy tail of Ca(V)2.2 Ca(2+) channels, enabling near-field imaging of the nanodomain. Under total internal reflection fluorescence microscopy, we detect Ca(2+) responses indicative of large-amplitude pulses. Single-channel electrophysiology reveals a corresponding Ca(2+) influx of only 0.085 pA, and fluorescence resonance energy transfer measurements estimate TN-XL distance to the cytoplasmic mouth at ~55 Å. Altogether, these findings raise the possibility that Ca(2+) exits the channel through the analogue of molecular portals, mirroring the crystallographic images of side windows in voltage-gated K channels.
Collapse
|
31
|
Tanaka E, Konishi M, Kurihara S. Role of Ca(2+) in the rapid cooling-induced Ca(2+) release from sarcoplasmic reticulum in ferret cardiac muscles. J Physiol Sci 2012; 62:241-50. [PMID: 22431072 PMCID: PMC3337403 DOI: 10.1007/s12576-012-0203-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/13/2012] [Indexed: 11/04/2022]
Abstract
Rapid lowering of the solution temperature (rapid cooling, RC) from 24 to 3°C within 3 s releases considerable amounts of Ca2+ from the sarcoplasmic reticulum (SR) in mammalian cardiac muscles. In this study, we investigated the intracellular mechanism of RC-induced Ca2+ release, especially the role of Ca2+, in ferret ventricular muscle. Saponin-treated skinned trabeculae were placed in a glass capillary, and the amount of Ca2+ released from the SR by RC and caffeine (50 mM) was measured with fluo-3. It was estimated that in the presence of ATP about 45% of the Ca2+ content in the SR was released by RC. The amount of SR Ca2+ released by RC was unchanged by the replacement of ATP by AMP-PCP (a non-hydrolysable ATP analogue and agonist for the ryanodine receptor but not for the Ca2+ pump of SR), suggesting that the suppression of the Ca2+ pump of SR at low temperature might not be a major mechanism in RC-induced Ca2+ release. The free Ca2+ concentration of the solution used for triggering RC-induced Ca2+ release was estimated to be only about 20 nM with fluo-3 or aequorin. When this solution was applied to the preparation at 3°C, only a small amount of Ca2+ was released from SR presumably by the Ca2+-induced Ca2+ release (CICR) mechanism. Thus, in mammalian cardiac muscles, RC releases a part of the (<50%) stored Ca2+ contained in the SR, and the mechanism of RC-induced Ca2+ release may differ from that of CICR, which is thought to play a role in frog skeletal muscle fibres that express ryanodine receptors of different types.
Collapse
Affiliation(s)
- Etsuko Tanaka
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | |
Collapse
|
32
|
Markova SV, Burakova LP, Golz S, Malikova NP, Frank LA, Vysotski ES. The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca2+-regulated photoprotein. FEBS J 2012; 279:856-70. [DOI: 10.1111/j.1742-4658.2012.08476.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1145-74. [PMID: 22453987 PMCID: PMC3740791 DOI: 10.1007/978-94-007-2888-2_52] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure (HF) is an increasing public health problem accelerated by a rapidly aging global population. Despite considerable progress in managing the disease, the development of new therapies for effective treatment of HF remains a challenge. To identify targets for early diagnosis and therapeutic intervention, it is essential to understand the molecular and cellular basis of calcium handling and the signaling pathways governing the functional remodeling associated with HF in humans. Calcium (Ca(2+)) cycling is an essential mediator of cardiac contractile function, and remodeling of calcium handling is thought to be one of the major factors contributing to the mechanical and electrical dysfunction observed in HF. Active research in this field aims to bridge the gap between basic research and effective clinical treatments of HF. This chapter reviews the most relevant studies of calcium remodeling in failing human hearts and discusses their connections to current and emerging clinical therapies for HF patients.
Collapse
Affiliation(s)
- Qing Lou
- Department of Biomedical Engineering, Washington University in St. Louis, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
34
|
Cloning, Sequencing, Expression and Structural Investigation of Mnemiopsin from Mnemiopsis leidyi: An Attempt Toward Understanding Ca2+-Regulated Photoproteins. Protein J 2011; 30:566-74. [DOI: 10.1007/s10930-011-9363-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
35
|
Calcium-induced calcium release from the sarcoplasmic reticulum can be evaluated with a half-logistic function model in aequorin-injected cardiac muscles. J Anesth 2011; 25:831-8. [DOI: 10.1007/s00540-011-1234-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
36
|
A unique EF-hand motif in mnemiopsin photoprotein from Mnemiopsis leidyi: implication for its low calcium sensitivity. Biochem Biophys Res Commun 2011; 413:164-70. [PMID: 21871870 DOI: 10.1016/j.bbrc.2011.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/04/2011] [Indexed: 11/21/2022]
Abstract
Up to now, all reported Ca(2+)-regulated photoproteins, except for mnemiopsin, have been cloned and expressed in Escherichia coli. In this study, the cDNA for an isotype of mnemiopsin, from the ctenophore Mnemiopsis leidyi, has been cloned, sequenced, and functionally expressed. The full length cDNA encoding mnemiopsin of M. leidyi was 624 bp open reading frame encoding a protein of 207 amino acid residues with calculated molecular mass of ∼24 kDa. The deduced amino acid sequence showed 90% and 84% identity to berovine (from ctenophore Beroe abyssicola) and bolinopsin 2 (from the ctenophore Bolinopsis infundibulum) respectively. In contrast to all known EF-hand in photoproteins, a unique EF-hand motif was found in mnemiopsin, in which a conserved glycine is substituted with glutamic acid. According to the results, the optimum pH was 9.0, time course of regeneration was 15 h and its Ca(2+) sensitivity was lower than aequorin. Results of pK(a) calculation for ionizable residues, motif scan and hydrophobic interactions of cavity aromatic residues of mnemiopsin in comparison with aequorin showed different patterns in these two photoproteins. In addition, experimental results are confirmed with the theoretical studies.
Collapse
|
37
|
|
38
|
Gwathmey JK, Yerevanian AI, Hajjar RJ. Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol 2010; 50:803-12. [PMID: 21093451 DOI: 10.1016/j.yjmcc.2010.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 10/27/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
While progress in conventional treatments is making steady and incremental gains to reduce mortality associated with heart failure, there remains a need to explore potentially new therapeutic approaches. Heart failure induced by different etiologies such as coronary artery disease, hypertension, diabetes, infection, or inflammation results generally in calcium cycling dysregulation at the myocyte level. Recent advances in understanding of the molecular basis of these calcium cycling abnormalities, together with the evolution of increasingly efficient gene transfer technology, have placed heart failure within reach of gene-based therapy. Furthermore, the recent successful completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium pump (SERCA2a) ushers in a new era for gene therapy for the treatment of heart failure. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
|
39
|
Discharged photoprotein obelin: fluorescence peculiarities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:103-8. [PMID: 20678944 DOI: 10.1016/j.jphotobiol.2010.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
Photoprotein obelin, the enzyme-substrate complex of polypeptide with 2-hydroperoxycoelenterazine, is responsible for bioluminescence of marine hydroid Obelia longissima. Addition of Ca(2+) to the photoprotein triggers the bioluminescent reaction with light emission. The product of the bioluminescent reaction--enzyme-bound coelenteramide--is a fluorescent protein called 'discharged' obelin. It is stable and highly fluorescent. The paper considers dependence of its light-induced fluorescence on Ca(2+) concentration. Increase of Ca(2+) concentration enhanced the fluorescence intensity of discharged obelin; the dependence was found as linear in double logarithmic coordinates at Ca(2+) concentration range 10(-7)-10(-6) M, both in excitation and emission spectra. The spectra were divided into components; contributions of the components to experimental excitation and emission spectra depended on Ca(2+) concentration. The data suggest enzymatic conformational transition in discharged obelin at approximately 5 x 10(-7) M of Ca(2+) concentration. Spectra variations were attributed to acidity changes of discharged obelin chromophore (coelenteramide) in its fluorescent state S(1)*.
Collapse
|
40
|
Suprynowicz FA, Mazia D. Fluctuation of the Ca-sequestering activity of permeabilized sea urchin embryos during the cell cycle. Proc Natl Acad Sci U S A 2010; 82:2389-93. [PMID: 16593554 PMCID: PMC397563 DOI: 10.1073/pnas.82.8.2389] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have followed the sequestration of Ca(2+) by intracellular compartments in sea urchin embryos through the first cell cycles. To gain biochemical access to these compartments, the embryos were permeabilized by brief exposure to an intense electric field. Sequestration was determined as the retention of tracer, (45)Ca, after filtration of aliquots on Millipore filters. The permeabilized cells sequester Ca(2+) at a constant rate for at least 20 min, with the following characteristics: (i) ATP is required. (ii) Sequestration occurs at Ca(2+) levels corresponding to those estimated in vivo. (iii) The Ca(2+) concentration dependence of sequestration and its insensitivity to mitochondrial poisons imply that the activity derives from a single, nonmitochondrial transport system. The Ca(2+)-sequestering activities of embryos that are permeabiized at successive stages of the first cell cycle (one-cell stage) progressively increase to 5 times the initial level. The rate of sequestration is maximal during telophase and, in some populations of zygotes, is nearly as great throughout prophase. Over the course of the second cell cycle (two-cell stage), the activity undergoes a 2-fold oscillation that bears the same temporal relationship to mitosis as the previous fluctuation.
Collapse
Affiliation(s)
- F A Suprynowicz
- Department of Biological Sciences, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
| | | |
Collapse
|
41
|
Influence of cholesterol on catecholamine release from the fusion pore of large dense core chromaffin granules. J Neurosci 2010; 30:3904-11. [PMID: 20237261 DOI: 10.1523/jneurosci.4000-09.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Changes in cellular cholesterol can affect exocytosis, but the influence of cholesterol in fusion pore kinetics is unclear. Using carbon fiber amperometry, we monitored quantal catecholamine release from rat chromaffin cells. To bypass any possible effect of cholesterol perturbation on ion channels or the colocalization of voltage-gated Ca(2+) channels with sites of exocytosis, exocytosis was stimulated via uniform elevation of cytosolic [Ca(2+)] (with whole-cell dialysis of a Ca(2+)-buffered solution). Under this condition, alterations of cellular cholesterol affected neither the mean number of amperometric events triggered per cell nor their quantal size and the kinetics of their main spike (which reflects the rapid release during and after rapid fusion pore dilation). In contrast, the reduction of cellular cholesterol shortened the "prespike foot" signals (which reflect the leakage of catecholamine via a semi-stable fusion pore) and reduced the proportion of "stand-alone foot" signals (which reflect the release via a flickering fusion pore that may close before it dilates significantly), whereas an oversupply of cholesterol had opposite effects. Acute extraction of cholesterol from the cytosol (via whole-cell dialysis of a cholesterol extractor) also shortened the prespike foot signals and reduced the proportion of stand-alone foot signals, but acute extracellular application of cholesterol extractor or "soluble" cholesterol had no effect. Our data raise the possibility that cholesterol molecules, particularly those in the cytoplasmic leaflet, helps to constrain the narrow waistline of a semi-stable fusion pore while it is flickering or before it starts to dilate rapidly.
Collapse
|
42
|
Tsien RY. Nobel lecture: constructing and exploiting the fluorescent protein paintbox. Integr Biol (Camb) 2010; 2:77-93. [DOI: 10.1039/b926500g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Roger Y. Tsien
- Howard Hughes Medical Institute and Departments of Pharmacology and Chemistry & Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0647, USA
| |
Collapse
|
43
|
Tsuji FI. Early history, discovery, and expression of Aequorea green fluorescent protein, with a note on an unfinished experiment. Microsc Res Tech 2010; 73:785-96. [PMID: 20169618 DOI: 10.1002/jemt.20821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bioluminescent hydromedusan jellyfish, Aequorea victoria, emits a greenish light (lambda(max) = 508 nm) when stimulated electrically or mechanically. The light comes from photocytes located along the margin of its umbrella. The greenish light depends on two intracellular proteins working in consort: aequorin (21.4 kDa) and a green fluorescent protein (27 kDa). An excited state green fluorescent protein molecule results, which, on returning to the ground state, emits a greenish light. Similarly, a green light emission may be induced in the green fluorescent protein by exposing it to ultraviolet or blue light. Because the green light can be readily detected under a fluorescence microscope, the green fluorescent protein, tagged to a protein of interest, has been used widely as a marker to locate proteins in cells and to monitoring gene expression. This article reviews the work that took place leading to the discovery, cloning, and expression of the green fluorescent protein, with a note on an unfinished experiment.
Collapse
Affiliation(s)
- Frederick I Tsuji
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA.
| |
Collapse
|
44
|
Tsien RY. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed Engl 2009; 48:5612-26. [PMID: 19565590 DOI: 10.1002/anie.200901916] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roger Y Tsien
- Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647, USA.
| |
Collapse
|
45
|
Abstract
Sensitivity of pancreatic islets to hypoxia is one of the most important of the obstacles responsible for their failure to survive within the recipients. The aim of this study was to compare the in vitro hypoxia tolerance of neonatal and adult rat islet cells and to study the glucose metabolism in these cells after exposure to hypoxia. Islet cells from both age categories were cultured in different hypoxic levels for 24 h and insulin secretion and some metabolites of glucose metabolism were analysed. Glucose-stimulated insulin secretion decreased dramatically in both cell preparations in response to the decrease in oxygen level. The reduction of insulin secretion was more detectable in adult cells and started at 5% O(2), while a significant reduction was obtained at 1% O(2) in neonatal cells. Moreover, basal insulin release of neonatal cells showed an adaptation to hypoxia after a 4-day culture in hypoxia. Intracellular pyruvate was higher in neonatal cells than in adult ones, while no difference in lactate level was observed between them. Similar results to that of pyruvate were observed for adenosine triphosphate (ATP) and the second messenger cyclic adenosine monophosphate (cAMP). The study reveals that neonatal rat islet cells are more hypoxia-tolerant than the adult ones. The most obvious metabolic observation was that both pyruvate and lactate were actively produced in neonatal cells, while adult cells depended mainly on lactate production as an end-product of glycolysis, indicating a more enhanced metabolic flexibility of neonatal cells to utilize the available oxygen and, at the same time, maintain metabolism anaerobically.
Collapse
Affiliation(s)
- Ayman Hyder
- Department of Physiology and Biochemistry of Nutrition, Max Rubner Institute, and Clinical Research Center, Innovation and Technology centre, Kiel, Germany
| | | | | |
Collapse
|
46
|
|
47
|
Lages B, Weiss HJ. Original Article: Comparison of A23187 vs Ionomycin-induced Responses and Cytosolic Calcium Increases in Aequorin-loaded Human Platelets. Evidence for Ionophore-specific Differences in Intracellular Calcium Release. Platelets 2009; 6:359-65. [DOI: 10.3109/09537109509078472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
|
49
|
|
50
|
Abstract
The role of Ca2+ in cardiac excitation-contraction (E-C) coupling has been established by simultaneous measurements of contractility and Ca2+ transients by means of aequorin in intact myocardium and Ca2+ sensitive fluorescent dyes in single myocytes. The E-C coupling process can be classified into 3 processes: upstream (Ca2+ mobilization), central (Ca2+ binding to troponin C) and downstream mechanism (thin filament regulation and crossbridge cycling). These mechanisms are regulated differentially by various inotropic interventions. Positive force-frequency relationship and effects of beta-adrenoceptor stimulation, phosphodiesterase 3 inhibitors and digitalis are essentially exerted via upstream mechanism. Alpha-adrenoceptor stimulation, endothelin-1, angiotensin II, and clinically available Ca2+ sensitizers, such as levosimendan and pimobendan, act by a combination of the upstream and central/downstream mechanism. The Frank-Starling mechanism and effects of Ca2+ sensitizers such as EMD 57033 and Org 30029 are primarily induced via the central/downstream mechanism. Whereas the upstream and central mechanisms are markedly suppressed in failing myocytes and under acidotic conditions, Ca2+ sensitizers such as EMD 57033 and Org 30029 can induce cardiotonic effects under such conditions. Ca2+ sensitizers have high therapeutic potential for the treatment of contractile dysfunction in congestive heart failure and ischemic heart diseases, because they have energetic advantages and less risk of Ca2+ overload and can maintain effectiveness under pathological conditions.
Collapse
Affiliation(s)
- Masao Endoh
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, Yamagata, Japan.
| |
Collapse
|