1
|
Chakka R, Vadaguru Dakshinamurthy R, Rawal P, Belladamadagu Appajappa S, Pramanik S. Gallic acid a flavonoid isolated from Euphorbia hirta antagonizes gamma radiation induced radiotoxicity in lymphocytes in vitro. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:146-152. [PMID: 36398419 DOI: 10.1515/jcim-2022-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The current study was executed to isolate and evaluate gallic acid from Euphorbia hirta for in vitro radioprotective potentials against gamma irradiation caused radiotoxicity in human lymphocytes. METHODS The defatted E. hirta plant material was treated to methanol extraction using the soxhlet device. Bioflavonoids were isolated from the E. hirta methanol extract using column chromatography. In human cells exhibited to gamma radiation, separated flavonoid gallic acid was examined for in vitro radioprotective potentials using the micronucleus test, DNA fragmentation assay, superoxide free radical scavenging method, and apoptic assay. RESULTS The frequency of micronuclei was considerably declined when cells were preprocessed with gallic acid (25 g/mL) before being exhibited to 2 Gy gamma radiation, as determined by the cytokinesis blocked micronucleus test. Similarly, pre-gamma radiation treatment of human cells with gallic acid led in markedly less DNA injury, as assessed by comet metrics like olive tail moment and percent tail DNA. Gallic acid (25 g/mL) given to lymphocytes prior to gamma irradiation considerably decreased the percentage of apoptotic bodies. Gallic acid also considerably lowered the reactive oxygen species concentrations elicited by gamma radiation. CONCLUSIONS Our findings showed that gallic acid protects lymphocytes isolated from human blood from gamma radiation-induced DNA destruction and anti-apoptotic activity, which could be because of inhibition of free radicals formed by gamma radiation as well as the decline of gamma radiation-induced oxidative stress.
Collapse
Affiliation(s)
- Ramesh Chakka
- Department of Pharmacology, East West College of Pharmacy, Bangalore, India
| | | | - Pinkey Rawal
- Department of Pharmaceutical Chemistry, East West College of Pharmacy, Bangalore, India
| | | | - Soma Pramanik
- Department of Pharmaceutical Chemistry, East West College of Pharmacy, Bangalore, India
| |
Collapse
|
2
|
Güzel D, Güneş M, Yalçın B, Akarsu E, Rencüzoğulları E, Kaya B. Genotoxic potential of different nano-silver halides in cultured human lymphocyte cells. Drug Chem Toxicol 2022:1-13. [PMID: 35801365 DOI: 10.1080/01480545.2022.2096056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most antibacterial applications in nanotechnology are carried out using silver nanoparticles (AgNPs). However, there is a dearth of information on the biological effects of AgNPs on human blood cells. In this study, the cytotoxic and genotoxic potentials of ionic silver (Ag+), AgNP, silver bromide (AgBr), silver chloride (AgCl), and silver iodide (AgI) were evaluated through chromosome aberration (CA) test and cytokinesis-blocked micronucleus (CBMN) test in human cultured lymphocytes in vitro. Furthermore, the potential damages that can cause to DNA were evaluated through alkaline single cell gel electrophoresis (Comet) assay on isolated lymphocytes. The results showed that AgNPs exerted cytotoxic effects by reducing the cytokinesis-block proliferation index and mitotic index at 24 and 48 h. AgNPs also increased micronucleus (MN) formation at both exposure times in the cultured cells. Meanwhile, AgCl had no genotoxic effects on the human lymphocyte cultured cells but had a cytotoxic effect at high doses. AgNP, Ag+, AgBr, and AgI caused substantial DNA damage by forming DNA strand breaks. They may also have clastogenic, genotoxic and cytotoxic effects on human lymphocyte cells. Based on the foregoing findings, silver nanomaterials may have genotoxic and cytotoxic potentials on human peripheral lymphocytes in vitro.
Collapse
Affiliation(s)
- Devrim Güzel
- Department of Biology, Adıyaman University, Adıyaman, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Esin Akarsu
- Department of Chemistry, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Bálintová L, Matúšková M, Gábelová A. The evaluation of the efficacy and potential genotoxic hazard of combined SAHA and 5-FU treatment in the chemoresistant colorectal cancer cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503445. [PMID: 35151424 DOI: 10.1016/j.mrgentox.2022.503445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
5-Fluorouracil (5-FU) is an essential chemotherapeutic drug for colorectal cancer (CRC) treatment. However, the frequent development of drug resistance has dramatically affected its clinical use. Therefore, novel treatment strategies are critical to improving patient outcomes. Herein, we investigated the ability of the epigenetic drug SAHA to increase the sensitivity of chemoresistant CRC cells to 5-FU. In addition, we evaluated the potential genotoxic risk of SAHA+5-FU combination treatment. As a model system, we used three CRC cell lines, HT-29, SW480, and HT-29/EGFP/FUR, differing in their resistance to 5-FU. CRC cell lines were exposed to sub-toxic SAHA concentrations for 24 h, followed by a 48 h treatment with 5-FU. The cytotoxicity of SAHA, 5-FU, and SAHA+5-FU was measured by the MTT test, the genotoxicity by the comet assay, and the micronucleus test. The apoptotic/necrotic activity was assessed using morphological criteria. We found a synergic decrease in the viability of HT-29 and SW480 cells, but not the most resistant HT-29/EGFP/FUR cells after combined SAHA+5-FU exposure compared to 5-FU. Remarkably, SAHA most efficiently induced apoptosis in HT-29/EGFP/FUR cells compared to HT-29 and SW480 cells. Combined SAHA+5-FU treatment resulted in a synergistic increase in apoptotic/necrotic cells in HT-29 cell line, while rather additive/sub-additive effect was determined in the SW480 and HT-29/EGFP/FUR cells. At the same time, however, a synergistic rise in micronuclei was found in CRC cell lines (at least at some concentrations). We have shown that SAHA can sensitize CRC cells to 5-FU; therefore, epigenetic and convential drug combinations could be beneficial for the patients. However, the increase in micronucleus formation after combined SAHA+5-FU treatment indicates a potential health hazard. The clastogenic activity could contribute to cancer heterogeneity, favoring progeny of such aberrant cells to clonal expansion. Therefore, developing new specific epigenetic drugs or nanocarriers for targeted drug delivery might reduce the potential genotoxic risk.
Collapse
Affiliation(s)
- Lucia Bálintová
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 54, Bratislava, Slovak Republic.
| | - Miroslava Matúšková
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 54, Bratislava, Slovak Republic
| | - Alena Gábelová
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 54, Bratislava, Slovak Republic
| |
Collapse
|
4
|
Dördü TC, Hatipoğlu R, Topaktaş M, İstifli ES. In Vitro Genotoxicity and Molecular Docking Study of Ellagic Acid. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1573407215666191102130417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Ellagic Acid (EA) is a polyphenolic compound that is classified in the natural
antioxidants group. Polyphenolic compounds that exert antioxidant activity possess particular importance
for scientists, food producers and consumers due to their positive effects on human health. However,
despite considerable evidence that EA shows antigenotoxic activity by binding to DNA, there is no
systematic genotoxicity study of this substance, which can covalently bind to DNA. This study aims to
reveal the possible genotoxic activity of EA using widely accepted assays for the assessment of DNA
clastogenic activity: sister chromatid exchange, chromosome aberration, micronucleus and comet assays
as well as to predict the interactions among EA and DNA through molecular docking.
Methods:
Different assays were carried out to identify the clastogenic activity of EA on human lymphocyte
DNA using Sister Chromatid Exchange (SCE), Chromosome Aberration (CA), Micronucleus (MN)
and single-cell gel electrophoresis (SCGE/comet) assays. For this aim, human peripheral blood lymphocytes
were treated with EA (60, 80 and 100 μg/ml) for 24 and 48 hrs in the SCE, CA and MN assays
and for 1 hr in the comet assay. Furthermore, molecular docking experiments were also performed to
calculate the binding energy of EA on human B-DNA structure (B-DNA dodecamer) as well as to predict
noncovalent interactions among these macromolecules.
Results:
At the concentrations and treatment times (24- or 48-hr) tested, EA did not induce either SCE or
Chromosome Aberrations (CAs) as compared to the negative and solvent controls. Although EA slightly
increased the percentage of Micronucleated Binuclear (%MNBN) cells as well as the percentage of Micronucleus
(%MN) in 24 or 48-hr treatment periods at all concentrations, this increase was not statistically
significant as compared to both controls. The effect of EA on DNA replication (nuclear division) was determined
by the Proliferation Index (PI), the Nuclear Division Index (NDI) and the Mitotic Index (MI). No
statistically significant differences were observed in the PI or NDI in 24- or 48-hr treatment periods in
human lymphocyte cultures treated with EA at various concentrations. EA generally had no significant
effect on the MI, as observed with the PI and NDI.
Discussion:
Although the concentrations of 60 and 80 μg/mL at a 24-hr treatment period and the concentrations
of 60 μg/mL and 100 μg/mL at 48-hr treatment period generally decreased the MI, those decreases
were not statistically significant when compared to negative and solvent controls. Moreover, none of the
concentrations of EA tested in this study were able to increase DNA damage determined by the tail DNA
length, %DNA in tail and tail moment parameters in the comet assay. Although the amount of DNA damage
in the comet assay decreased with increasing concentrations of EA, this decrease was not statistically
significant as compared to both controls. However, molecular docking experiments interestingly showed
that the binding free energy of EA with B-DNA was -7.84 kcal/mol-1, indicating a strong interaction between
the two molecules.
Conclusion :
Although the findings of our study show that EA does not have genotoxic potential in human
chromosomes, molecular docking experiments revealed strong hydrogen bonding between EA and
B-DNA molecules. Therefore, it has been proposed that the prevailing information suggesting that the
molecules that bind to DNA cause genotoxic effects should be reconsidered from a wider perspective.
Collapse
Affiliation(s)
- Tuba C. Dördü
- Department of Biotechnology, Institute of Basic and Applied Sciences, Cukurova University, Adana, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Mehmet Topaktaş
- Department of Biology, Faculty of Science and Letters, Cukurova University, Adana, Turkey
| | - Erman S. İstifli
- Department of Biology, Faculty of Science and Letters, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Babeľová J, Šefčíková Z, Čikoš Š, Kovaříková V, Špirková A, Pisko J, Koppel J, Fabian D. In vitro exposure to pyrethroid-based products disrupts development of mouse preimplantation embryos. Toxicol In Vitro 2019; 57:184-193. [DOI: 10.1016/j.tiv.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
6
|
Bogdanović U, Dimitrijević S, Škapin SD, Popović M, Rakočević Z, Leskovac A, Petrović S, Stoiljković M, Vodnik V. Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:49-60. [PMID: 30274082 DOI: 10.1016/j.msec.2018.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/04/2018] [Accepted: 07/23/2018] [Indexed: 01/27/2023]
Abstract
Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs' size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman and XPS analysis), as well as rapid copper ions release, Cu-PANI nanocomposite showed efficient bactericidal and fungicidal activities at the concentrations ≤1 ppm, within the incubation time of 2 h. Beside the quantitative analysis, the high levels of cellular disruption for all tested microbes were evidenced by atomic force microscopy. Moreover, the minimum inhibitory and bactericidal concentrations of the Cu-PANI nanocomposite were lower than those reported for other nanocomposites. Using such low concentrations is recognized as a good way to avoid its toxicity toward the environment. For this purpose, Cu-PANI nanocomposite is tested for its genotoxicity and influence on the oxidative status of the human cells in vitro.
Collapse
Affiliation(s)
- Una Bogdanović
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Suzana Dimitrijević
- Department of Bioengineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Srečo D Škapin
- Jožef Stefan Institute, Department of Advanced Materials, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maja Popović
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Zlatko Rakočević
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Andreja Leskovac
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Sandra Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Milovan Stoiljković
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Vesna Vodnik
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia.
| |
Collapse
|
7
|
Rencüzoğulları E, Aydın M. Genotoxic and mutagenic studies of teratogens in developing rat and mouse. Drug Chem Toxicol 2018; 42:409-429. [PMID: 29745766 DOI: 10.1080/01480545.2018.1465950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this review, genotoxic and mutagenic effects of teratogenic chemical agents in both rat and mouse have been reviewed. Of these chemicals, 97 are drugs and 33 are pesticides or belong to other groups. Large literature searches were conducted to determine the effects of chemicals on chromosome abnormalities, sister chromatid exchanges, and micronucleus formation in experimental animals such as rats and mice. In addition, studies that include unscheduled DNA synthesis, DNA adduct formations, and gene mutations, which help to determine the genotoxicity or mutagenicity of chemicals, have been reviewed. It has been estimated that 46.87% of teratogenic drugs and 48.48% of teratogenic pesticides are positive in all tests. So, all of the teratogens involved in this group have genotoxic and mutagenic effects. On the other hand, 36.45% of the drugs and 21.21% of the pesticides have been found to give negative results in at least one test, with the majority of the tests giving positive results. However, only 4.16% of the drugs and 18.18% of the pesticides were determined to give negative results in the majority of the tests. Among tests with major negative results, 12.50% of the teratogenic drugs and 12.12% of the teratogenic pesticides were negative in all conducted tests.
Collapse
Affiliation(s)
- Eyyüp Rencüzoğulları
- a Department of Biology, Faculty of Science and Letters , Adiyaman University , Adiyaman , Turkey
| | - Muhsin Aydın
- a Department of Biology, Faculty of Science and Letters , Adiyaman University , Adiyaman , Turkey
| |
Collapse
|
8
|
Güzel Bayülken D, Ayaz Tüylü B. In vitro genotoxic and cytotoxic effects of some paraben esters on human peripheral lymphocytes. Drug Chem Toxicol 2018; 42:386-393. [PMID: 29681198 DOI: 10.1080/01480545.2018.1457049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Parabens (PBs) are p-hydroxybenzoic acid ester compounds commonly employed as antimicrobial preservatives, mainly in food, cosmetic, and pharmaceutical products. The aim of the present study was to investigate the genotoxic and cytotoxic effects of some paraben esters (butyl paraben, propyl paraben, isobutyl paraben, and isopropyl paraben) on human peripheral lymphocytes, using in vitro sister chromatid exchange (SCE), chromosome aberration (CA), and cytokinesis-block micronucleus (CBMN) tests. Lymphocyte cultures were treated with four concentrations of PBs (100, 50, 25 and 10 µg/mL) for 24 and 48 h. Paraben esters significantly induced MN formations as compared to solvent control. Furthermore, butyl paraben and propyl paraben increased MN formations a concentration-dependent manner at 24 and 48 h. PBs increased the CA at 24 and 48 h. However, this increase was not meaningful for butyl paraben and isopropyl paraben at 48 h when compared with solvent control. Butyl, isobutyl, and isopropyl paraben significantly increased the SCE at 24 and 48 h. However, propyl paraben did not induce SCE meaningfully in both treatment periods. A significant decrease in the cytokinesis-block proliferation index and mitotic index was observed in cells exposed to all concentrations of PBs at 24 and 48 h. However, proliferation index was not affected at all concentrations of PBs after 24 h treatment, although it was decreased at the highest concentration of PBs at 48 h. It is concluded that all of the paraben esters used in this study have highly genotoxic and cytotoxic effects on human lymphocytes cells in vitro.
Collapse
Affiliation(s)
- Devrim Güzel Bayülken
- a Department of Biology, Faculty of Sciences , Anadolu University , Eskisehir , Turkey
| | - Berrin Ayaz Tüylü
- a Department of Biology, Faculty of Sciences , Anadolu University , Eskisehir , Turkey
| |
Collapse
|
9
|
Güzel Bayülken D, Ayaz Tüylü B, Sinan H, Sivas H. Investigation of genotoxic effects of paraben in cultured human lymphocytes. Drug Chem Toxicol 2017; 42:349-356. [DOI: 10.1080/01480545.2017.1414834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Berrin Ayaz Tüylü
- Department of Biology, Anadolu University, Faculty of Sciences, Eskisehir, Turkey
| | - Handan Sinan
- Department of Biology, Anadolu University, Faculty of Sciences, Eskisehir, Turkey
| | - Hülya Sivas
- Department of Biology, Anadolu University, Faculty of Sciences, Eskisehir, Turkey
| |
Collapse
|
10
|
Liu Q, Lei Z, Zhu F, Ihsan A, Wang X, Yuan Z. A Novel Strategy to Predict Carcinogenicity of Antiparasitics Based on a Combination of DNA Lesions and Bacterial Mutagenicity Tests. Front Public Health 2017; 5:288. [PMID: 29170735 PMCID: PMC5684118 DOI: 10.3389/fpubh.2017.00288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Genotoxicity and carcinogenicity testing of pharmaceuticals prior to commercialization is requested by regulatory agencies. The bacterial mutagenicity test was considered having the highest accuracy of carcinogenic prediction. However, some evidences suggest that it always results in false-positive responses when the bacterial mutagenicity test is used to predict carcinogenicity. Along with major changes made to the International Committee on Harmonization guidance on genotoxicity testing [S2 (R1)], the old data (especially the cytotgenetic data) may not meet current guidelines. This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity of 136 antiparasitics. Neither genotoxicity nor carcinogenicity data is available for 84 (61.8%), while 52 (38.2%) have been evaluated in at least one genotoxicity or carcinogenicity study, and only 20 (14.7%) in both genotoxicity and carcinogenicity studies. Among 33 antiparasitics with at least one old result in in vitro genotoxicity, 15 (45.5%) are in agreement with the current ICH S2 (R1) guidance for data acceptance. Compared with other genotoxicity assays, the DNA lesions can significantly increase the accuracy of prediction of carcinogenicity. Together, a combination of DNA lesion and bacterial tests is a more accurate way to predict carcinogenicity.
Collapse
Affiliation(s)
- Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Feng Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
11
|
Petrović S, Vasić V, Mitrović T, Lazović S, Leskovac A. The impact of concentration and administration time on the radiomodulating properties of undecylprodigiosin in vitro. Arh Hig Rada Toksikol 2017; 68:1-8. [PMID: 28365670 DOI: 10.1515/aiht-2017-68-2897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/01/2017] [Indexed: 01/10/2023] Open
Abstract
Undecylprodigiosin pigment (UPP) is reported to display cytotoxic activity towards various types of tumours. Nevertheless, its efficacy in modifying the cellular response to ionising radiation is still unknown. In this study, the radiomodulating effects of UPP were investigated. The effects of UPP were assessed in vitro by treating cultures of human peripheral blood with UPP and ionising radiation using two treatment regimens, the UPP pre-irradiation treatment and UPP post-irradiation treatment. The activity of UPP was investigated evaluating its effects on the radiation-induced micronuclei formation, cell proliferation, and induction of apoptosis. The redox modulating effects of UPP were examined measuring the catalase activity and the level of malondialdehyde, as a measure of oxidative stress. The results showed that UPP effects on cellular response to ionising radiation depend on its concentration and the timing of its administration. At low concentration, the UPP displayed radioprotective effects in γ-irradiated human lymphocytes while at higher concentrations, it acted as a radiosensitiser enhancing either mitotic catastrophe or apoptosis depending on the treatment regimen. The UPP modified redox processes in cells, particularly when it was employed prior to γ-irradiation. Our data highlight the importance of further research of the potential of UPP to sensitize tumour cells to radiation therapy by inhibiting pathways that lead to treatment resistance.
Collapse
Affiliation(s)
| | - Vesna Vasić
- Vinča Institute of Nuclear Sciences, Belgrade
| | - Tatjana Mitrović
- University of Belgrade, Institute for Development of Water Resources "Jaroslav Černi", Belgrade
| | | | - Andreja Leskovac
- Vinča Institute of Nuclear Sciences, University of Belgrade, M. Petrovića Alasa 12-14, 11001 Belgrade
| |
Collapse
|
12
|
Bondžić AM, Čolović MB, Janjić GV, Zarić B, Petrović S, Krstić DZ, Marzo T, Messori L, Vasić VM. The influence of oxo-bridged binuclear gold(III) complexes on Na/K-ATPase activity: a joint experimental and theoretical approach. J Biol Inorg Chem 2017; 22:819-832. [PMID: 28432453 DOI: 10.1007/s00775-017-1460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/09/2017] [Indexed: 11/29/2022]
Abstract
The in vitro effects of oxo-bridged binuclear gold(III) complexes, i.e., [(bipy2Me)2Au2(μ-O)2][PF6]2 (Auoxo6), Au2[(bipydmb-H)2(μ-O)][PF6] (Au2bipyC) and [Au2(phen2Me)2(μ-O)2](PF6)2 (Au2phen) on Na/K-ATPase, purified from the porcine cerebral cortex, were investigated. All three studied gold complexes inhibited the enzyme activity in a concentration-dependent manner achieving IC50 values in the low micromolar range. Kinetic analysis suggested an uncompetitive mode of inhibition for Auoxo6 and Au2bipyC, and a mixed type one for Au2phen. Docking studies indicated that the inhibitory actions of all tested complexes are related to E2-P enzyme conformation binding to ion channel and intracellular part between N and P sub-domain. In addition, Au2phen was able to inhibit the enzyme by interacting with its extracellular part as well. Toxic effects of the gold(III) complexes were evaluated in vitro by following lactate dehydrogenase activity in rat brain synaptosomes and incidence of micronuclei and cytokinesis-block proliferation index in cultivated human lymphocytes. All investigated complexes turned out to induce cytogenetic damage consisting of a significant decrease in cell proliferation and an increase in micronuclei in a dose-dependent manner. On the other hand, lactate dehydrogenase activity, an indicator of membrane integrity/viability, was not affected by Auoxo6 and Au2bipyC, while Au2phen slightly modified its activity.
Collapse
Affiliation(s)
- Aleksandra M Bondžić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia
| | - Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia
| | - Goran V Janjić
- Institute of Chemistry, Metallurgy and Technology, University of Belgrade, Belgrade, Serbia
| | - Božidarka Zarić
- Institute of Chemistry, Metallurgy and Technology, University of Belgrade, Belgrade, Serbia
| | - Sandra Petrović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia
| | - Danijela Z Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| | - Tiziano Marzo
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia.
| |
Collapse
|
13
|
Wirbisky SE, Freeman JL. Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:1-8. [PMID: 28111253 PMCID: PMC5325771 DOI: 10.1016/j.cbpc.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/30/2022]
Abstract
Atrazine is an agricultural herbicide used throughout the Midwestern United States that frequently contaminates potable water supplies resulting in human exposure. Using the zebrafish model system, an embryonic atrazine exposure was previously reported to decrease spawning rates with an increase in progesterone and ovarian follicular atresia in adult females. In addition, alterations in genes associated with distinct molecular pathways of the endocrine system were observed in brain and gonad tissue of the adult females and males. Current hypotheses for mechanistic changes in the developmental origins of health and disease include genetic (e.g., copy number alterations) or epigenetic (e.g., DNA methylation) mechanisms. As such, in the current study we investigated whether an atrazine exposure would generate copy number alterations (CNAs) in the zebrafish genome. A zebrafish fibroblast cell line was used to limit detection to CNAs caused by the chemical exposure. First, cells were exposed to a range of atrazine concentrations and a crystal violet assay was completed, showing confluency decreased by ~60% at 46.3μM. Cells were then exposed to 0, 0.463, 4.63, or 46.3μM atrazine and array comparative genomic hybridization completed. Results showed 34, 21, and 44 CNAs in the 0.463, 4.63, and 46.3μM treatments, respectively. Furthermore, CNAs were associated with previously reported gene expression alterations in adult male and female zebrafish. This study demonstrates that atrazine exposure can generate CNAs that are linked to gene expression alterations observed in adult zebrafish exposed to atrazine during embryogenesis providing a mechanism of the developmental origins of atrazine endocrine disruption.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| |
Collapse
|
14
|
Comparative cytotoxic and genotoxic effects of permethrin and its nanometric form on human erythrocytes and lymphocytes in vitro. Chem Biol Interact 2016; 257:119-24. [PMID: 27502151 DOI: 10.1016/j.cbi.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022]
|
15
|
Akyıl D, Eren Y, Konuk M, Tepekozcan A, Sağlam E. Determination of mutagenicity and genotoxicity of indium tin oxide nanoparticles using the Ames test and micronucleus assay. Toxicol Ind Health 2016; 32:1720-8. [DOI: 10.1177/0748233715579804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, the mutagenicity and genotoxicity of indium tin oxide (ITO) nanomaterial were assessed using two standard genotoxicity assays, the Salmonella reverse mutation assay (Ames test) and the in vitro micronucleus (MN) assay. Seven different concentrations (12.5, 25, 50, 75, 100, 125, and 150 µg/plate) of this nanomaterial were tested using the Ames test on the TA98 and TA100 strains in the presence and absence of the S9 mixture. At all the concentrations tested, this substance did not significantly increase the number of revertant colonies compared with the control with or without S9 mixture. The genotoxic effects of ITO were investigated in human peripheral lymphocytes treated with 125, 250, 500, and 750 µg/ml concentrations of this substance for 24- and 48-h treatment periods using an MN test. Nuclear division index (NDI) was also calculated in order to determine the cytotoxicity of ITO. It was determined that ITO increased MN frequency in the 750 µg/ml concentration in 24- and 48-h treatments. In addition, ITO dose dependently decreased the NDI significantly for two treatment periods.
Collapse
Affiliation(s)
- Dilek Akyıl
- Department of Biology, Faculty of Science and Literatures, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Yasin Eren
- Department of Science Education, Faculty of Education, Suleyman Demirel University, Isparta, Turkey
| | - Muhsin Konuk
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Altunizade, Istanbul, Turkey
| | - Aykut Tepekozcan
- Department of Biology, Faculty of Science and Literatures, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Esra Sağlam
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Altunizade, Istanbul, Turkey
| |
Collapse
|
16
|
Pereira LC, de Souza AO, Meireles G, Franco-Bernardes MF, Tasso MJ, Bruno V, Dorta DJ, de Oliveira DP. Comparative Study of Genotoxicity Induced by Six Different PBDEs. Basic Clin Pharmacol Toxicol 2016; 119:396-404. [DOI: 10.1111/bcpt.12595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Lílian Cristina Pereira
- Department of Clinical; Toxicological and Bromatological Analysis; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Alecsandra Oliveira de Souza
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Paulo Brazil
| | - Gabriela Meireles
- Department of Clinical; Toxicological and Bromatological Analysis; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Mariana Furio Franco-Bernardes
- Department of Clinical; Toxicological and Bromatological Analysis; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Maria Júlia Tasso
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Paulo Brazil
| | - Vítor Bruno
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Paulo Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Paulo Brazil
| | - Danielle Palma de Oliveira
- Department of Clinical; Toxicological and Bromatological Analysis; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
17
|
Joksić G, Stašić J, Filipović J, Šobot AV, Trtica M. Size of silver nanoparticles determines proliferation ability of human circulating lymphocytes in vitro. Toxicol Lett 2016; 247:29-34. [DOI: 10.1016/j.toxlet.2016.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
18
|
Sedlačková E, Bábelová A, Kozics K, Šelc M, Srančíková A, Frecer V, Gábelová A. Ultraviolet A radiation potentiates the cytotoxic and genotoxic effects of 7 H-dibenzo[c,g]carbazole and its methyl derivatives. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:388-403. [PMID: 25421724 DOI: 10.1002/em.21927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
7H-Dibenzo[c,g]carbazole (DBC) is a heterocyclic aromatic hydrocarbon that is carcinogenic in many species and tissues. DBC is a common environmental pollutant, and is therefore constantly exposed to sunlight. However, there are limited data exploring the toxicity of DBC photoexcitation products. Here, we investigated the impact of ultraviolet (UV) A radiation on the biological activity of DBC and its methyl derivatives, 5,9-dibenzo[c,g]carbazole and N-methyl dibenzo[c,g]carbazole, on human skin HaCaT keratinocytes. Co-exposure of HaCaT cells to UVA and DBC derivatives resulted in a sharp dose-dependent decrease in cell survival and apparent changes in cell morphology. Under the same treatment conditions, significant increases in DNA strand breaks, intracellular reactive oxygen species, and oxidative damage to DNA were observed in HaCaT cells. Consistent with these results, an apparent inhibition in superoxide dismutase, but not glutathione peroxidase activity, was detected in cells treated with DBC and its derivatives under UVA irradiation. The photoactivation-induced toxicity of individual DBC derivatives correlated with the electron excitation energies approximately expressed as the energy difference between the highest occupied and the lowest vacant molecular orbital. Our data provide the first evidence that UVA can enhance the toxicity of DBC and its derivatives. Photoactivation-induced conversion of harmless chemical compounds to toxic photoproducts associated with reactive oxygen species generation may substantially amplify the adverse health effects of UVA radiation and contribute to increased incidence of skin cancer.
Collapse
Affiliation(s)
- Eva Sedlačková
- Laboratory of Mutagenesis and Carcinogenesis, Cancer Research Institute, SAS, Vlarska 7, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
19
|
Sakaki H, Kakehi M, Sadamoto K, Nemoto S, Kurata M. In vitro comet assay in cultured human corneal epithelial cells. ACTA ACUST UNITED AC 2015. [DOI: 10.2131/fts.2.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hideyuki Sakaki
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Masaki Kakehi
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Kazuyo Sadamoto
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Shingo Nemoto
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Masaaki Kurata
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| |
Collapse
|
20
|
Inhibition of Na(+)/K(+)-ATPase and cytotoxicity of a few selected gold(III) complexes. J Inorg Biochem 2014; 140:228-35. [PMID: 25173578 DOI: 10.1016/j.jinorgbio.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/24/2022]
Abstract
Na(+)/K(+)-ATPase is in charge of maintaining the ionic and osmotic intracellular balance by using ATP as an energy source to drive excess Na(+) ions out of the cell in exchange for K(+) ions. We explored whether three representative cytotoxic gold(III) compounds might interfere with Na(+)/K(+)-ATPase and cause its inhibition at pharmacologically relevant concentrations. The tested complexes were [Au(bipy)(OH)2][PF6] (bipy=2,2'-bipyridine), [Au(py(dmb)-H)(CH3COO)2] (py(dmb)-H=deprotonated 6-(1,1-dimethylbenzyl)-pyridine), and [Au(bipy(dmb)-H)(OH)][PF6] (bipy(dmb)-H=deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine). We found that all of them caused a pronounced and similar inhibition of Na(+)/K(+)-ATPase activity. Inhibition was found to be non-competitive and reversible. Remarkably, treatment with cysteine resulted in reversal or prevention of Na(+)/K(+)-ATPase inhibition. It is very likely that the described effects may contribute to the overall cytotoxic profile of these gold complexes.
Collapse
|
21
|
Leskovac A, Petrovic S, Guc-Scekic M, Vujic D, Joksic G. Radiation-induced mitotic catastrophe in FANCD2 primary fibroblasts. Int J Radiat Biol 2014; 90:373-81. [PMID: 24512567 DOI: 10.3109/09553002.2014.892224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE As the Fanconi anemia (FA) pathway is required for appropriate cell cycle progression through mitosis and the completion of cell division, the aim of the present study was to determine the destiny of FA cells after irradiation in vitro and to elucidate any difference in radiosensitivity between FA and control cells. MATERIALS AND METHODS Analyses of phosphorylated histone H2AX (γ-H2AX) foci, micronuclei formation and cell cycle analysis were performed in unirradiated (0 min) and irradiated primary FA fibroblasts and in a control group at different post-irradiation times (30 min, 2 h, 5 h and 24 h). RESULTS The accumulation of γ-H2AX foci in irradiated FA fibroblasts was observed. At 24 h post-irradiation, 57% of FA cells were γ-H2AX foci-positive, significantly higher than in the control (p < 0.01). The cell cycle analysis has shown the transient G2/M arrest in irradiated FA fibroblasts. The portion of cells in the G2/M phase showed initial increase at 30 min post-irradiation and afterwards decreased over time reaching the pretreatment level 24 h after irradiation. Irradiated FA fibroblasts progressed to abnormal mitosis, as is shown by the production of cells with different nuclear morphologies from binucleated to multinucleated surrounded with micronuclei, and also by a high percentage of foci-positive micronuclei. The majority of radiation-induced micronuclei were γ-H2AX foci-positive, indicating that radiation-induced micronuclei contain fragments of damaged chromosomes. In contrast, in the control group, most of the micronuclei were classified as γ-H2AX foci-negative, which indicates that cells with unrepaired damage were blocked before entering mitosis. CONCLUSION The results clearly indicate that mitotic catastrophe might be an important cell-death mechanism involved in the response of FA fibroblasts to ionizing radiation.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade , Belgrade , Serbia
| | | | | | | | | |
Collapse
|
22
|
Grujičić D, Stošić I, Kosanić M, Stanojković T, Ranković B, Milošević-Djordjević O. Evaluation of in vitro antioxidant, antimicrobial, genotoxic and anticancer activities of lichen Cetraria islandica. Cytotechnology 2014; 66:803-13. [PMID: 24590925 DOI: 10.1007/s10616-013-9629-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/04/2013] [Indexed: 10/25/2022] Open
Abstract
In this study, the antioxidant, antimicrobial, genotoxic and anticancer activities of Cetraria islandica methanol extract were determined by using free radical and superoxide anion scavenging activity, reducing power, determination of total phenolic compounds and flavonoid contents, broth microdilution minimal inhibitory concentration against five bacterial and five fungal species, cytokinesis block micronucleus (MN) assay on peripheral blood lymphocytes (PBLs) and the microculture tetrazolium test on FemX (human melanoma) and LS174 (human colon carcinoma) cell lines. As a result of the study, we found that C. islandica methanol extract exhibited moderate free-radical-scavenging activity with IC50 values 678.38 μg/ml. Moreover, the tested extract had effective reducing power and superoxide anion radical scavenging. The minimal inhibitory concentration values against the tested microorganisms ranged from 0.312 to 5 mg/ml. The extract increased MN frequency in a dose dependent manner, but it was significant in higher tested concentrations (50, 100 and 200 μg/ml). No significant differences were observed between NDI values in all treatments and untreated PBLs. In addition, the tested extract had strong anticancer activity towards both cell lines with IC50 values of 22.68 and 33.74 μg/ml. It can be concluded that the tested extract exhibited a certain level of in vitro antioxidant, antimicrobial, genotoxic and anticancer activities.
Collapse
Affiliation(s)
- Darko Grujičić
- Faculty of Science, University of Kragujevac, 34000, Kragujevac, Serbia
| | | | | | | | | | | |
Collapse
|
23
|
Gábelová A, Poláková V, Prochazka G, Kretová M, Poloncová K, Regendová E, Luciaková K, Segerbäck D. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation. Toxicol Appl Pharmacol 2013; 271:1-12. [DOI: 10.1016/j.taap.2013.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
|
24
|
Speit G. Does the recommended lymphocyte cytokinesis-block micronucleus assay for human biomonitoring actually detect DNA damage induced by occupational and environmental exposure to genotoxic chemicals? Mutagenesis 2013; 28:375-80. [DOI: 10.1093/mutage/get026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Petrović V, Čolović M, Krstić D, Vujačić A, Petrović S, Joksić G, Bugarčić Z, Vasić V. In vitro effects of some gold complexes on Na(+)/K(+) ATPase activity and cell proliferation. J Inorg Biochem 2013; 124:35-41. [PMID: 23591145 DOI: 10.1016/j.jinorgbio.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
The in vitro influence of gold(III) complexes, H[AuCl4], [Au(DMSO)2Cl2]Cl and [Au(bipy)Cl2]Cl (bipy = 2,2'-bipyridine), upon commercially available Na(+)/K(+) ATPase activity, purified from porcine brain cortex, was investigated. Additionally, the complexes were tested on human lymphocytes, and incidence of micronuclei and cell proliferation index was determined. Concentration-dependent inhibition of the enzyme for all three compounds was obtained, but with differing potencies. Calculated IC50 from Hill analysis were (in M): 5.75×10(-7), 5.50×10(-6) and 3.98×10(-5), for H[AuCl4], [Au(DMSO)2Cl2]Cl and [Au(bipy)Cl2]Cl, respectively, while Hill coefficient values, n, were above 1 in all cases. This inhibition can be prevented using -SH donating ligands such as L-Cys and glutathione, and these ligands can also cause a recovery of the enzyme activity after the induced inhibition. Kinetic analysis demonstrated that each of the studied gold(III) complexes affects Na(+)/K(+) ATPase reducing maximum enzymatic velocity, Vmax, but not significantly changing the affinity for the substrate (KM value), implying a noncompetitive mode of the interaction. Furthermore, among investigated gold(III) complexes, the [Au(bipy)Cl2]Cl complex exhibits a strong cytotoxic effect on human lymphocytes, which suggests its potential for use in antitumor therapy.
Collapse
Affiliation(s)
- Voin Petrović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Speit G, Linsenmeyer R, Schutz P, Kuehner S. Insensitivity of the in vitro cytokinesis-block micronucleus assay with human lymphocytes for the detection of DNA damage present at the start of the cell culture. Mutagenesis 2012; 27:743-7. [DOI: 10.1093/mutage/ges041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Abstract
Veterinary pesticides are used to treat a range of parasitic conditions in companion and farm animals. These products are based on a number of different compounds with different modes of action and different spectra of toxicity. The older agents include the synthetic pyrethroids and organophosphorus compounds, while the newer examples include, for example, representatives of the insect growth promoters, the neonicotinoids, and the oxadiazones. For many of these compounds, toxicity is associated with their pharmacological activity or mode of action. Thus the synthetic pyrethroids and the organophosphorus compounds exert neurotoxic effects. For others, toxicity may be associated with mechanisms that are independent of their mode of action. When used according to the manufacturer's instructions, these products are generally safe and efficacious. However, accidental contamination and misuse can lead to toxicity in operators and treated animals. These compounds are important in the treatment of parasitic disease in animals and their regulation and uses are based on favourable risk-benefit outcomes.
Collapse
Affiliation(s)
- K N Woodward
- TSGE, Concordia House St James Business Park, Grimbald Crag Court, Knaresborough, North Yorkshire UK.
| |
Collapse
|
28
|
Yamamoto KN, Hirota K, Kono K, Takeda S, Sakamuru S, Xia M, Huang R, Austin CP, Witt KL, Tice RR. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:547-61. [PMID: 21538559 PMCID: PMC3278799 DOI: 10.1002/em.20656] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/02/2011] [Indexed: 05/23/2023]
Abstract
Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.
Collapse
Affiliation(s)
- Kimiyo N Yamamoto
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rossi D, Mares D, Romagnoli C, Andreotti E, Manfredini S, Vicentini CB. Antidermatophytic activity of pyrazolo[3,4-c]isothiazoles: a preliminary approach on 4-chlorophenyl derivative for evaluation of mutagenic and clastogenic effects on bacteria and human chromosomes in vitro. Drug Chem Toxicol 2011; 34:324-31. [PMID: 21649488 DOI: 10.3109/01480545.2010.536772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The antifungal activity of eight pyrazolo[3,4-c]isothiazole derivatives was evaluated on five dermatophytes: three were of an anthropophilic species (i.e., Epidermophyton floccosum, Trichophyton rubrum, and Trichophyton tonsurans) and two were of a geophilic species (i.e., Microsporum gypseum and Nannizzia cajetani). The new compounds proved to be unlikely effective in inhibiting the growth of the different strains. In general, the fungi parasitic on man were more sensitive than the geophilic species. This fact can be positive for a possible practical-therapeutic utilization of this class of compounds. To verify their possible use against fungi of medical interest, the most interesting substance at low doses, 6-(4-chlorophenyl)-4-methyl-6H-pyrazolo[3,4-c]isothiazol-3-amine, was chosen to perform in vitro genotoxicity tests using the following: Salmonella/microsome test (SAL), sister chromatid excange test (SCE), cytokinesis-blocked micronucleus test (CBMN), and its improvement (Ara-C/CBMN). The compound showed no mutagenic activity at low doses, whereas at the highest dose (100 µg/mL), it caused a generalized cytotoxic effect. The high growth inhibition exerted on fungi at the lowest dose and the concomitant lack of genotoxicity, at least until the dose of 50 µg/mL, might suggest the compound as a safe candidate as an antidermatophytic substance.
Collapse
Affiliation(s)
- Damiano Rossi
- Dipartimento di Biologia ed Evoluzione, Sezione di Risorse Agrotecnologiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Jowa L, Howd R. Should atrazine and related chlorotriazines be considered carcinogenic for human health risk assessment? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:91-144. [PMID: 21660819 DOI: 10.1080/10590501.2011.577681] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chloro-s-triazines have been a mainstay of preemergent pesticides for a number of decades and have generally been regarded as having low human toxicity. Atrazine, the major pesticide in this class, has been extensively studied. In a number of experimental studies, exposure to high doses of atrazine resulted in increased weight loss not attributable to decreased food intake. Chronic studies of atrazine and simazine and their common metabolites show an elevated incidence of mammary tumors only in female Sprague Dawley (SD) rats. On the basis of the clear tumor increase in female SD rats, atrazine was proposed to be classified as a likely human carcinogen by US Environmental Protection Agency (EPA) in 1999. With Fischer rats, all strains of mice, and dogs, there was no evidence of increased incidence of atrazine-associated tumors of any type. Evidence related to the pivotal role of hormonal control of the estrus cycle in SD rats appears to indicate that the mechanism for mammary tumor induction is specific to this strain of rats and thus is not relevant to humans. In humans the menstrual cycle is controlled by estrogen released by the ovary rather than depending on the LH surge, as estrus is in SD rats. However, the relevance of the tumors to humans continues to be debated based on endocrine effects of triazines. No strong evidence exists for atrazine mutagenicity, while there is evidence of clastogenicity at elevated concentrations. Atrazine does not appear to interact strongly with estrogen receptors α or β but may interact with putative estrogen receptor GPR30 (G-protein-coupled receptor). A large number of epidemiologic studies conducted on manufacturing workers, pesticide applicators, and farming families do not indicate that triazines are carcinogenic in these populations. A rat-specific hormonal mechanism for mammary tumors has now been accepted by US EPA, International Agency for Research on Cancer, and the European Union. Chlorotriazines do influence endocrine responses, but their potential impact on humans appears to be primarily on reproduction and development and is not related to carcinogenesis.
Collapse
Affiliation(s)
- Lubow Jowa
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Sacramento, CA 95812, USA.
| | | |
Collapse
|
31
|
Protective effect of Zingerone, a dietary compound against radiation induced genetic damage and apoptosis in human lymphocytes. Eur J Pharmacol 2011; 657:59-66. [DOI: 10.1016/j.ejphar.2011.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 11/24/2022]
|
32
|
Kaivalya M, Nageshwar Rao BN, Satish Rao BS. Mangiferin: A xanthone attenuates mercury chloride induced cytotoxicity and genotoxicity in HepG2 cells. J Biochem Mol Toxicol 2011; 25:108-16. [PMID: 21308892 DOI: 10.1002/jbt.20366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/29/2010] [Accepted: 07/07/2010] [Indexed: 12/30/2022]
Abstract
Mangiferin (MGN), a dietary C-glucosylxanthone present in Mangifera indica, is known to possess a spectrum of beneficial pharmacological properties. This study demonstrates antigenotoxic potential of MGN against mercuric chloride (HgCl2)-induced genotoxicity in HepG2 cell line. Treatment of HepG2 cells with various concentrations of HgCl2 for 3 h caused a dose-dependent increase in micronuclei frequency and elevation in DNA strand breaks (olive tail moment and tail DNA). Pretreatment with MGN significantly (p < 0.01) inhibited HgCl2 -induced (20 µM for 30 h) DNA damage. An optimal antigenotoxic effect of MGN, both in micronuclei and comet assay, was observed at a concentration of 50 µM. Furthermore, HepG2 cells treated with various concentrations of HgCl2 resulted in a dose-dependent increase in the dichlorofluorescein fluorescence, indicating an increase in the generation of reactive oxygen species (ROS). However, MGN by itself failed to generate ROS at a concentration of 50 µM, whereas it could significantly decrease HgCl2 -induced ROS. Our study clearly demonstrates that MGN pretreatment reduced the HgCl2-induced DNA damage in HepG2 cells, thus demonstrating the genoprotective potential of MGN, which is mediated mainly by the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Mudholkar Kaivalya
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576 104, India
| | | | | |
Collapse
|
33
|
Cui Y, Guo J, Xu B, Chen Z. Genotoxicity of chlorpyrifos and cypermethrin to ICR mouse hepatocytes. Toxicol Mech Methods 2010; 21:70-4. [DOI: 10.3109/15376516.2010.529192] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Cytogenetic biomonitoring of inhabitants of a large uranium mineralization area: the municipalities of Monte Alegre, Prainha, and Alenquer, in the State of Pará, Brazil. Cell Biol Toxicol 2010; 26:403-19. [DOI: 10.1007/s10565-010-9152-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
35
|
Colović M, Krstić D, Petrović S, Leskovac A, Joksić G, Savić J, Franko M, Trebse P, Vasić V. Toxic effects of diazinon and its photodegradation products. Toxicol Lett 2009; 193:9-18. [PMID: 19948211 DOI: 10.1016/j.toxlet.2009.11.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The toxic effects of diazinon and its irradiated solutions were investigated using cultivated human blood cells (lymphocytes and erythrocytes) and skin fibroblasts. Ultra Performance Liquid Chromatography (UPLC)-UV/VIS system was used to monitor the disappearance of starting diazinon during 115-min photodegradation and formation of its by-products (diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol (IMP)) as a function of time. Dose-dependent AChE and Na(+)/K(+)-ATPase inhibition by diazinon was obtained for all investigated cells. Calculated IC(50) (72 h) values, in M, were: 7.5x10(-6)/3.4x10(-5), 8.7x10(-5)/6.6x10(-5), and 3.0x10(-5)/4.6x10(-5) for fibroblast, erythrocyte and lymphocyte AChE/Na(+)/K(+)-ATPase, respectively. Results obtained for reference commercially purified target enzymes indicate similar sensitivity of AChE towards diazinon (IC(50) (20 min)-7.8x10(-5)M), while diazinon concentrations below 10mM did not noticeably affect Na(+)/K(+)-ATPase activity. Besides, diazinon and IMP induced increasing incidence of micronuclei (via clastogenic mode of action) in a dose-dependent manner up to 2x10(-6)M and significant inhibition of cell proliferation and increased level of malondialdehyde at all investigated concentrations. Although after 15-min diazinon irradiation formed products do not affect purified commercial enzymes activities, inhibitory effect of irradiated solutions on cell enzymes increased as a function of time exposure to UV light and resulted in significant reduction of AChE (up to 28-45%) and Na(+)/K(+)-ATPase (up to 35-40%) at the end of irradiation period. Moreover, photodegradation treatment strengthened prooxidative properties of diazinon as well as its potency to induce cytogenetic damage.
Collapse
Affiliation(s)
- Mirjana Colović
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The aim of this study was to investigate radioprotective properties of Echinacea purpurea tablets in vivo. We analysed lymphocyte chromosome aberrations (CA), micronuclei (MN), apoptosis of leukocytes and haematological parameters in a group of radiation workers who were identified as carrying dicentric chromosomes in their lymphocytes. All radiation workers were taking two 275 mg Echinacea tablets b.i.d., according to a pharmacist's recommendation. All parameters were analysed before and after the two-week treatment. At the end of the treatment lymphocyte CA frequency dropped significantly, and the number of apoptotic cells increased. The inverse lymphocyte-to-granulocyte ratio at the beginning of the study changed to normal at its end. In conclusion, biological effects observed after administration of Echinacea purpurea preparation suggest that it may be beneficial for the prevention of adverse health effects in workers exposed to ionising radiation.
Collapse
|
37
|
Scarfi MR, Zeni O, Noce MD, Di Pietro R, Prisco F, Lioi MB, Franceschi C, Bersani F. 50-Hz, 1-mT Sinusoidal Magnetic Fields Do Not Affect Micronucleus Frequency and Cell Proliferation in Human Lymphocytes from Normal and Turner's Syndrome Subjects. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379709015661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Ustundag A, Duydu Y. Induction of excision repairable DNA lesions in lymphocytes exposed to lead and ALA in vitro. Biol Trace Elem Res 2009; 128:31-7. [PMID: 18979072 DOI: 10.1007/s12011-008-8254-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/30/2008] [Indexed: 11/26/2022]
Abstract
Numbers of studies have been carried out on the potential of lead genotoxicity. The mechanisms of lead genotoxicity are not fully known but partly attributed to the formation of highly reactive oxygen metabolites (ROM). However, lead ions have no ability to generate ROM. In this study, we have investigated the ability of lead and ALA to induce excision repairable DNA lesions by using cytosine arabinoside or cytokinesis block micronucleus (ARA-C/CBMN) assay. N-methyl-N-nitrosourea was used as a positive control which is a mutagen and known to induce excision repair. The results of the ARA-C/CBMN assay show that ALA exposures have significantly (p < 0.01) increased the ratio of excision repairable DNA lesions in peripheral blood lymphocytes; however, lead have not. Accordingly, accumulation of ALA should be considered as an effective partner of lead induced DNA damage in lead exposure.
Collapse
Affiliation(s)
- A Ustundag
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara.
| | | |
Collapse
|
39
|
Li YC, Huang FM, Lee SS, Lin RH, Chou MY, Chang YC. Protective effects of antioxidants on micronuclei induced by irradiated 9-fluorenone/N,N-dimethyl-p-toluidine in CHO cells. J Biomed Mater Res B Appl Biomater 2008; 84:58-63. [PMID: 17455275 DOI: 10.1002/jbm.b.30843] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
9-Fluorenone (9F), the aromatic photosensitizer, is widely used as an initiator in visible-light (VL) cured resin systems. There is growing concern that 9F may produce genetic damage by inducing mutation. In this study, 9F in the presence or absence of reducing agent N,N-dimethyl-p-toluidine (DMT) with or without VL irradiation was analyzed for the induction of chromosomal aberrations indicated by micronuclei (MN) induced in CHO cells. Our data demonstrated that a dose-related increase in the frequency of MN and prolonged cell cycles in 9F with or without DMT in the presence or absence of VL irradiation (p < 0.05). The rank orders with respect to genotoxicity and cytotoxicity were found to be as follows: 9F/DMT +VL > 9F/DMT = 9F + VL > 9F. To determine whether oxidative stress could modulate MN induced by 9F/DMT with or without VL irradiation in CHO cells, cells were pretreated with N-acetyl-L-cysteine (NAC), ascorbic acid, and alpha-tocopherol. The pretreatment with antioxidants could diminish not only the prolonged cell cycle but also the decreased frequency of MN which is induced by 9F with or without DMT in the presence or absence of VL irradiation in CHO cells (p < 0.05). Our findings provide the evidences for the induction of MN by 9F in the presence or absence of DMT with or without VL irradiation in CHO cells, indicating clastogenic activity of 9F/DMT in vitro. These antioxidants act as the antagonists against the genotoxicity and cytotoxicity of 9F/DMT. Thus, leaching photoinitiator and reducing agent might be contributing the sources of oxidative stress.
Collapse
Affiliation(s)
- Yi-Ching Li
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The cytokinesis-block micronucleus cytome assay is a comprehensive system for measuring DNA damage, cytostasis and cytotoxicity. DNA damage events are scored specifically in once-divided binucleated (BN) cells and include (a) micronuclei (MNi), a biomarker of chromosome breakage and/or whole chromosome loss, (b) nucleoplasmic bridges (NPBs), a biomarker of DNA misrepair and/or telomere end-fusions, and (c) nuclear buds (NBUDs), a biomarker of elimination of amplified DNA and/or DNA repair complexes. Cytostatic effects are measured via the proportion of mono-, bi- and multinucleated cells and cytotoxicity via necrotic and/or apoptotic cell ratios. Further information regarding mechanisms leading to MNi, NPBs and NBUDs formation is obtained using centromere and/or telomere probes. The assay is being applied successfully for biomonitoring of in vivo genotoxin exposure, in vitro genotoxicity testing and in diverse research fields such as nutrigenomics and pharmacogenomics as well as a predictor of normal tissue and tumor radiation sensitivity and cancer risk. The procedure can take up to 5 days to complete.
Collapse
Affiliation(s)
- Michael Fenech
- Genome Health Nutrigenomics Laboratory, CSIRO Human Nutrition, Food Science Australia, PO Box 10041, Adelaide 5000, South Australia, Australia.
| |
Collapse
|
41
|
Abstract
The study of DNA damage at the chromosome level is an essential part of genetic toxicology because chromosomal mutation is an important event in carcinogenesis. Micronucleus assays have emerged as one of the preferred methods for assessing chromosome damage because they enable both chromosome loss and chromosome breakage to be measured reliably. Because micronuclei can only be expressed in cells that complete nuclear, division a special method was developed that identifies such cells by their binucleate appearance when blocked from performing cytokinesis by cytochalasin-B, a microfilament-assembly inhibitor. The cytokinesis-block micronucleus (CBMN) assay allows better precision because the data obtained are not confounded by altered cell division kinetics caused by cytotoxicity of agents tested or suboptimal cell culture conditions. The method is now applied to various cell types for population monitoring of genetic damage, screening of chemicals for genotoxic potential and for specific purposes such as the prediction of the radiosensitivity of tumors and the interindividual variation in radiosensitivity. In its current basic form the CBMN assay can provide, using simple morphological criteria, the following measures of genotoxicity and cytotoxicity: chromosome breakage, chromosome loss, chromosome rearrangement (nucleoplasmic bridges), gene amplification (nuclear buds), cell division inhibition, necrosis and apoptosis. The cytosine arabinoside modification of the CBMN assay allows for measurement of excision repairable lesions. The use of molecular probes enables chromosome loss to be distinguished from chromosome breakage and importantly nondisjunction in nonmicronucleated binucleated cells can be efficiently measured. The CBMN technique therefore provides multiple and complementary measures of genotoxicity and cytotoxicity which can be achieved with relative ease within one system. The basic principles and methods (including detailed scoring criteria for all the genotoxicity and cytotoxicity end points) of the CBMN assay are described and areas for future development identified.
Collapse
Affiliation(s)
- Michael Fenech
- CSIRO Human Nutrition, Adelaide BC, South Australia, Australia
| |
Collapse
|
42
|
Detection of excision repaired DNA damage in the comet assay by using Ara-C and hydroxyurea in three different cell types. Cell Biol Toxicol 2007; 25:73-80. [PMID: 18027091 DOI: 10.1007/s10565-007-9042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
Because of its characteristics, the comet assay has been used to evaluate the ability of virtually any type of eukaryotic cell to repair different kinds of DNA damage, including double and single strand breaks and base damage. The ability to detect excision repair sites using the alkaline version can be enhanced by the inclusion of repair inhibitors, DNA synthesis inhibitors, or chain terminators. In this sense, we evaluated the ability of hydroxyurea (HU) and cytosine arabinoside (Ara-C), for detecting lesions produced by the alkylating agents ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) in three different cell systems. Two hundred cells for experimental point were analyzed in the alkaline version of the comet assay, and the results are evidences of the utility of the assay to detect alkylation of bases in the cells lines MRC-5 and TK-6, as the treatment with HU +Ara-C significantly increases both the basal and induced frequency of DNA damage. The use of whole blood, although it detected the effects of MMS, with and without repair inhibitors, failed to detect the effect of the selected dose of EMS and does not permit detection increases in the background level.
Collapse
|
43
|
Li YC, Huang FM, Lee SS, Lin RH, Chang YC. Protective effects of antioxidants on micronuclei induced by camphorquinone/N,N-dimethyl-p-toluidine employing in vitro mammalian test system. J Biomed Mater Res B Appl Biomater 2007; 82:23-8. [PMID: 17041928 DOI: 10.1002/jbm.b.30700] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Camphorquinone (CQ) is widely used as an initiator in modern visible-light (VL) cured resin systems. CQ is also characterized as a potential allergenic compound. To date, there is growing concern that CQ may produce genetic damage by inducing mutation. In this study, CQ in the presence of reducing agent N,N-dimethyl-p-toluidine (DMT) with or without VL irradiation was analyzed for the induction of chromosomal aberrations indicated by micronuclei (MN) induced in CHO cells. Our data demonstrated that an increase in the numbers of MN was observed with CQ/DMT with or without VL irradiation (p < 0.05). Significant prolongation of cell cycles was observed by the treatment with CQ/DMT with or without VL irradiation (p < 0.05). In addition, VL irradiated CQ/DMT was found to exhibit significantly genotoxic and cytotoxic effects as compared with CQ/DMT alone (p < 0.05). Furthermore, to determine whether oxidative stress could modulate the MN induced by CQ/DMT with or without VL irradiation in CHO cells, cells were pre-treated with various antioxidants 10 mM N-acetyl-L-cysteine (NAC), 2 mM ascorbic acid, and 2 mM alpha-tocopherol. The pre-treatment with antioxidants could antagonize not only the increased MN cells but also the prolonged cell cycle induced by CQ/DMT with or without VL irradiation in CHO cells (p < 0.05). Our findings provide the evidences for the induction of MN by CQ/DMT employing mammalian test system, indicating clastogenic activity of CQ/DMT with or without VL irradiation in vitro. In addition, VL irradiated CQ/DMT exhibits higher genotoxic and cytotoxic effects than CQ/DMT alone. Moreover, NAC, ascorbic acid, and alpha-tocopherol act as the antagonists against the genotoxicity and cytotoxicity of CQ/DMT with or without VL irradiation.
Collapse
Affiliation(s)
- Yi-Ching Li
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Zhang SY, Ito Y, Yamanoshita O, Yanagiba Y, Kobayashi M, Taya K, Li C, Okamura A, Miyata M, Ueyama J, Lee CH, Kamijima M, Nakajima T. Permethrin may disrupt testosterone biosynthesis via mitochondrial membrane damage of Leydig cells in adult male mouse. Endocrinology 2007; 148:3941-9. [PMID: 17463061 DOI: 10.1210/en.2006-1497] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Permethrin, a popular synthetic pyrethroid insecticide used to control noxious insects in agriculture, forestry, households, horticulture, and public health throughout the world, poses risks of environmental exposure. Here we evaluate the reproductive toxicity of cis-permethrin in adult male ICR mice that were orally administered cis-permethrin (0, 35, or 70 mg/kg d) for 6 wk. Caudal epididymal sperm count and sperm motility in the treated groups were statistically reduced in a dose-dependent manner. Testicular testosterone production and plasma testosterone concentration were significantly and dose-dependently decreased with an increase in LH, and a significant regression was observed between testosterone levels and cis-permethrin residues in individual mice testes after exposure. However, no significant changes were observed in body weight, reproductive organ absolute and relative weights, sperm morphology, and plasma FSH concentration after cis-permethrin treatment. Moreover, cis-permethrin exposure significantly diminished the testicular mitochondrial mRNA expression levels of peripheral benzodiazepine receptor (PBR), steroidogenic acute regulatory protein (StAR), and cytochrome P450 side-chain cleavage (P450scc) and enzyme and protein expression levels of StAR and P450scc. At the electron microscopic level, mitochondrial membrane damage was found in Leydig cells of the exposed mouse testis. Our results suggest that the insecticide permethrin may cause mitochondrial membrane impairment in Leydig cells and disrupt testosterone biosynthesis by diminishing the delivery of cholesterol into the mitochondria and decreasing the conversion of cholesterol to pregnenolone in the cells, thus reducing subsequent testosterone production.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rossi D, Aiello V, Mazzoni L, Sensi A, Calzolari E. In vitro short-term test evaluation of catecholestrogens genotoxicity. J Steroid Biochem Mol Biol 2007; 105:98-105. [PMID: 17590328 DOI: 10.1016/j.jsbmb.2006.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 11/22/2006] [Indexed: 11/22/2022]
Abstract
Estrogens are indicated as being the most important etiological factors for the development and progression of breast cancer. The implication of estrogen in breast cancer has been associated mostly with the estrogen receptors that mediate cell proliferation. Evidence also exists to support the hypothesis of a direct role of estrogens as tumor initiators. However, the role of estrogen genotoxicity in breast cancer is still questionable. In this study the genotoxic activity of catecholestrogens and 16alpha-hydroxy estrone has been investigated by performing Salmonella strain TA98 and TA100 Ames tests, sister chromatide exchange assays (SCE) and micronucleus assays on human peripheral lymphocytes (CBMN and ARA/CBMN). We found a lack of positive results with micronucleus assays, except for 2-hydroxy estradiol (2-OHE(2)), which shows a peculiar "bell shaped" trend of micronucleus number versus concentrations. SCE assay suggests weak genotoxic activity of all tested catechol metabolites, except 4-hydroxy estrone (4-OHE(1)), which also showed negative results by ARA/CBMN. In this open debate, our results support the hypothesis of a weak genotoxicity, not correlated with the carcinogenetic potential of estrogens.
Collapse
Affiliation(s)
- Damiano Rossi
- CAT Group, Centro Analisi Territoriali, via Provinciale 73, I 44030 Copparo (Ferrara), Italy.
| | | | | | | | | |
Collapse
|
46
|
Costa C, Silva S, Coelho P, Roma-Torres J, Teixeira JP, Mayan O. Micronucleus analysis in a Portuguese population exposed to pesticides: Preliminary survey. Int J Hyg Environ Health 2007; 210:415-8. [PMID: 17320478 DOI: 10.1016/j.ijheh.2007.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The general population is exposed in their everyday life to different chemicals namely to pesticides. Many of these compounds are capable of inducing mutations in DNA and lead to several diseases including cancer. With this study we intended to evaluate DNA damage inflicted by pesticide exposure in a population occupationally exposed to those chemicals by means of the micronucleus (MN) test. The obtained results showed a significant increase in MN frequency in occupationally exposed individuals (p<0.001) compared with the control group. Higher frequencies of MN were associated with a specific workplace (greenhouses) and the lack of protective measures (gloves) during labour activities. These results reinforce that conditions in workplace should be improved to minimize exposure to these chemicals. This study also emphasizes the need to reinforce the good practices campaigns in order to enlighten those who work with pesticides on the potential hazard of occupational exposure and the importance of using protective measures.
Collapse
Affiliation(s)
- Carla Costa
- National Institute of Health, Centre of Environmental and Occupational Health, Praça Coronel Pacheco, 15, 4050-453 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
47
|
Zeljezic D, Garaj-Vrhovac V, Perkovic P. Evaluation of DNA damage induced by atrazine and atrazine-based herbicide in human lymphocytes in vitro using a comet and DNA diffusion assay. Toxicol In Vitro 2006; 20:923-35. [PMID: 16527446 DOI: 10.1016/j.tiv.2006.01.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 01/24/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
Atrazine is one of the most widely used herbicides in the world. When applied, it is not used as a pure active ingredient but in the form of commercial formulations. Besides atrazine, these formulations contain other substances that might represent a risk to human health due to their mutual interactions. We evaluated the genotoxicity, apoptosis and necrosis induction of atrazine as an active ingredient, the commercial formulation Gesaprim, and a Gesaprim adjuvant mixture without atrazine by comet and DNA diffusion assay, respectively. Human lymphocytes were treated for 0.5, 1, 3, 5, and 8 h with 0.047 microg/ml, 0.47 microg/ml, 4.7 microg/ml of substances tested both in the presence and in the absence of an exogenous metabolic activator. Atrazine did not appear to be genotoxic or to be capable of inducing apoptosis or necrosis. Unlike atrazine, Gesaprime and the adjuvant mixture increased DNA damage in lymphocytes. After 5 h of treatment, it also increased the number of apoptotic cells. Metabolic activation additionally enhanced the DNA-damaging potential of Gesaprim and the adjuvant mixture but did not affect atrazine genotoxicity. Thus, both assay endpoints differed significantly for the active ingredient and formulation. To evaluate the potential health risk of simultaneous exposure to adjuvants and an active ingredient, further efforts using a biomonitoring approach should be made.
Collapse
Affiliation(s)
- Davor Zeljezic
- Institute for Medical Research and Occupational Health, Division for Mutagenesis, Ksaverska 2, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
48
|
Leopardi P, Zijno A, Marcon F, Conti L, Carere A, Verdina A, Galati R, Tomei F, Baccolo TP, Crebelli R. Analysis of micronuclei in peripheral blood lymphocytes of traffic wardens: effects of exposure, metabolic genotypes, and inhibition of excision repair in vitro by ARA-C. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 41:126-130. [PMID: 12605382 DOI: 10.1002/em.10138] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cytokinesis-block micronucleus (MN) assay in peripheral lymphocytes was used to assess the genetic effects of the occupational exposure to traffic fumes in policemen from the Municipality of Rome. The study population consisted of 192 subjects engaged in traffic control (exposed, 134 subjects), or in office work (controls, 58 subjects). Groups were balanced for age, gender, and smoking habits. The average benzene exposure during the workshift was 9.5 and 3.8 microg/m(3) in exposed individuals and controls, respectively. All subjects were genotyped for CYP1A1, CYP2E1, GSTM1, GSTT1, and DT-diaphorase polymorphisms. The incidence of micronuclei and micronucleated cells was recorded in 1,000 binucleated cells harvested 66 hr after mitogen stimulation. Regression analysis of data showed that MN frequency was mainly modulated by the age (P = 0.001) and gender (P = 0.001) of the study subjects (relatively higher in the elderly and females), whereas it was unaffected by the occupational exposure to traffic fumes and smoking habits. A weak (P = 0.02) association between lower MN frequency and the GSTM1 null genotype was also observed. In order to improve the sensitivity of the method to excision-repairable lesions, a modified protocol, with exposure of cells to the repair inhibitor cytosine arabinoside (Ara-C) during the first 16 hr of growth, was applied to 78 subjects (46 exposed and 32 controls). The results confirmed the higher MN frequency in females (P < 0.05), but failed to demonstrate any significant effect of chemical exposure (occupational or related to smoking habits). When the frequency of MN induced by Ara-C (i.e., spontaneous values subtracted) was considered, a significant inverse correlation with age was observed (P = 0.005), possibly related to the age-dependent decrease in repair proficiency.
Collapse
Affiliation(s)
- P Leopardi
- Istituto Superiore di Sanita', Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Alachlor is an herbicide used primarily in the production of corn (maize), peanuts, and soybeans and is associated with cancer of the nasal cavity, thyroid, and stomach in rats. Previous work from our laboratory demonstrated that the nasal cavity tumours originate from the olfactory mucosa, and that neoplasms were present following 6 months of exposure (126 mg/kg/day in the diet). The studies presented herein were conducted to determine more precisely the earliest time point at which alachlor-induced tumours were present, and to describe the histological changes that occur en route to tumour formation. We determined that dramatic histological changes, including respiratory metaplasia of the olfactory mucosa, were present following 3 months of exposure, and the earliest alachlor-induced olfactory mucosal tumours were detected following 5 months of treatment. Because alachlor is positive in short-term mutagenicity assays with olfactory mucosal activation, and because of the relatively short time-to-tumour formation observed with alachlor, we also conducted a 'stop' study in which rats were treated with alachlor for 1 month and then held without further treatment for an additional 5 months. This study demonstrated that abbreviated alachlor exposure did not result in subsequent tumour formation within the 6-month observation period.
Collapse
Affiliation(s)
- Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, ML 670056, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|
50
|
Giri S, Sharma GD, Giri A, Prasad SB. Fenvalerate-induced chromosome aberrations and sister chromatid exchanges in the bone marrow cells of mice in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2002; 520:125-32. [PMID: 12297152 DOI: 10.1016/s1383-5718(02)00197-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fenvalerate, a synthetic pyrethroid insecticide, is commonly used in agriculture and other domestic applications due to its high insecticidal activity and low mammalian-, avian- and phyto-toxicities. However, the genotoxic effect of fenvalerate is highly equivocal. In the present study the genotoxic effects of fenvalerate was evaluated using structural chromosome aberration (CA) and sister chromatid exchange (SCE) assays in mice. Out of the three doses (5, 10 and 20 mg/kg) tested, statistically significant increase in CA was found following intra peritoneal (i.p.) treatment of 2 0 mg/kg of fenvalerate for 24 h (P<0.01) and 48 h (P<0.05) only. Neither the acute doses of 5 and 10 mg/kg, nor the sub-acute dose (5x4 mg/kg) of fenvalerate could induce any significant effect. All the three acute doses induced significant increase in the frequency of SCEs (P<0.01) in the bone marrow cells, which showed a significant dose-response correlation (r=0.9541, P<0.05). With certain reservations to possible impurities, from the present findings technical grade fenvalerate may be considered as a weak clastogen and a potent inducer of SCEs in mice.
Collapse
Affiliation(s)
- S Giri
- Genetic Toxicology Laboratory, Department of Life Science, Assam University, P.O. Box 11, 788011, Silchar, India.
| | | | | | | |
Collapse
|