1
|
Li J, Chabaytah N, Babik J, Behmand B, Bekerat H, Connell T, Evans M, Ruo R, Vuong T, Abbasinejad Enger S. Relative biological effectiveness of clinically relevant photon energies for the survival of human colorectal, cervical, and prostate cancer cell lines. Phys Med Biol 2024; 69:205008. [PMID: 39299263 DOI: 10.1088/1361-6560/ad7d5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective.Relative biological effectiveness (RBE) differs between radiation qualities. However, an RBE of 1.0 has been established for photons regardless of the wide range of photon energies used clinically, the lack of reproducibility in radiobiological studies, and outdated reference energies used in the experimental literature. Moreover, due to intrinsic radiosensitivity, different cancer types have different responses to radiation. This study aimed to characterize the RBE of clinically relevant high and low photon energiesin vitrofor three human cancer cell lines: HCT116 (colon), HeLa (cervix), and PC3 (prostate).Approach.Experiments were conducted following dosimetry protocols provided by the American Association of Physicists in Medicine. Cells were irradiated with 6 MV x-rays, an192Ir brachytherapy source, 225 kVp and 50 kVp x-rays. Cell survival post-irradiation was assessed using the clonogenic assay. Survival fractions were fitted using the linear quadratic model, and survival curves were generated for RBE calculations.Main results.Cell killing was more efficient with decreasing photon energy. Using 225 kVp x-rays as the reference, the HCT116 RBESF0.1for 6 MV x-rays,192Ir, and 50 kVp x-rays were 0.89 ± 0.03, 0.95 ± 0.03, and 1.24 ± 0.04; the HeLa RBESF0.1were 0.95 ± 0.04, 0.97 ± 0.05, and 1.09 ± 0.03, and the PC3 RBESF0.1were 0.84 ± 0.01, 0.84 ± 0.01, and 1.13 ± 0.02, respectively. HeLa and PC3 cells had varying radiosensitivity when irradiated with 225 and 50 kVp x-rays.Significance.This difference supports the notion that RBE may not be 1.0 for all photons through experimental investigations that employed precise dosimetry. It highlights that different cancer types may not have identical responses to the same irradiation quality. Additionally, the RBE of clinically relevant photons was updated to the reference energy of 225 kVp x-rays.
Collapse
Affiliation(s)
- Joanna Li
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Naim Chabaytah
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Joud Babik
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Behnaz Behmand
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Hamed Bekerat
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Montreal, Quebec, Canada
| | - Tanner Connell
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Evans
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Russell Ruo
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Te Vuong
- Jewish General Hospital, Montreal, Quebec, Canada
| | - Shirin Abbasinejad Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Han Y, Geng C, Altieri S, Bortolussi S, Liu Y, Wahl N, Tang X. Combined BNCT-CIRT treatment planning for glioblastoma using the effect-based optimization. Phys Med Biol 2023; 69:015024. [PMID: 38048635 DOI: 10.1088/1361-6560/ad120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Objective. Boron neutron capture therapy (BNCT) and carbon ion radiotherapy (CIRT) are emerging treatment modalities for glioblastoma. In this study, we investigated the methodology and feasibility to combine BNCT and CIRT treatments. The combined treatment plan illustrated how the synergistic utilization of BNCT's biological targeting and CIRT's intensity modulation capabilities could lead to optimized treatment outcomes.Approach. The Monte Carlo toolkit, TOPAS, was employed to calculate the dose distribution for BNCT, while matRad was utilized for the optimization of CIRT. The biological effect-based approach, instead of the dose-based approach, was adopted to develop the combined BNCT-CIRT treatment plans for six patients diagnosed with glioblastoma, considering the different radiosensitivity and fraction. Five optional combined treatment plans with specific BNCT effect proportions for each patient were evaluated to identify the optimal treatment that minimizes damage on normal tissue.Main results. Individual BNCT exhibits a significant effect gradient along with the beam direction in the large tumor, while combined BNCT-CIRT treatments can achieve uniform effect delivery within the clinical target volume (CTV) through the effect filling with reversed gradient by the CIRT part. In addition, the increasing BNCT effect proportion in combined treatments can reduce damage in the normal brain tissue near the CTV. Besides, the combined treatments effectively minimize damage to the skin compared to individual BNCT treatments.Significance. The initial endeavor to combine BNCT and CIRT treatment plans is achieved by the effect-based optimization. The observed advantages of the combined treatment suggest its potential applicability for tumors characterized by pleomorphic, infiltrative, radioresistant and voluminous features.
Collapse
Affiliation(s)
- Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Saverio Altieri
- Department of Physics, University of Pavia, Pavia, Italy
- National Institute of Nuclear Physics, Unit of Pavia, Pavia, Italy
| | - Silva Bortolussi
- Department of Physics, University of Pavia, Pavia, Italy
- National Institute of Nuclear Physics, Unit of Pavia, Pavia, Italy
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Neuboron Medtech. Ltd, Nanjing, People's Republic of China
| | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Cartiaux B, Deviers A, Delmas C, Abadie J, Pumarola Battle M, Cohen-Jonathan Moyal E, Mogicato G. Evaluation of in vitro intrinsic radiosensitivity and characterization of five canine high-grade glioma cell lines. Front Vet Sci 2023; 10:1253074. [PMID: 38098992 PMCID: PMC10720585 DOI: 10.3389/fvets.2023.1253074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Glioma is the most common primary brain tumor in dogs and predominantly affects brachycephalic breeds. Diagnosis relies on CT or MRI imaging, and the proposed treatments include surgical resection, chemotherapy, and radiotherapy depending on the tumor's location. Canine glioma from domestic dogs could be used as a more powerful model to study radiotherapy for human glioma than the murine model. Indeed, (i) contrary to mice, immunocompetent dogs develop spontaneous glioma, (ii) the canine brain structure is closer to human than mice, and (iii) domestic dogs are exposed to the same environmental factors than humans. Moreover, imaging techniques and radiation therapy used in human medicine can be applied to dogs, facilitating the direct transposition of results. The objective of this study is to fully characterize 5 canine glioma cell lines and to evaluate their intrinsic radiosensitivity. Canine cell lines present numerous analogies between the data obtained during this study on different glioma cell lines in dogs. Cell morphology is identical, such as doubling time, clonality test and karyotype. Immunohistochemical study of surface proteins, directly on cell lines and after stereotaxic injection in mice also reveals close similarity. Radiosensitivity profile of canine glial cells present high profile of radioresistance.
Collapse
Affiliation(s)
- Benjamin Cartiaux
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| | - Alexandra Deviers
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| | - Caroline Delmas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- IUCT-oncopole, Toulouse, France
| | - Jérôme Abadie
- Department of Biology, Pathology and Food Sciences, Laboniris, Nantes, France
| | - Martí Pumarola Battle
- Unit of Murine and Comparative Pathology, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Barcelona, Spain
| | - Elizabeth Cohen-Jonathan Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- IUCT-oncopole, Toulouse, France
| | - Giovanni Mogicato
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| |
Collapse
|
4
|
Best MP, Straw RC, Gumpel E, Fry DR. Long-term remission and survival in dogs with high-grade, B cell lymphoma treated with chemotherapy with or without sequential low-dose rate half-body irradiation. J Vet Intern Med 2023; 37:2368-2374. [PMID: 37700548 PMCID: PMC10658474 DOI: 10.1111/jvim.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Standard of care for dogs with high-grade lymphoma, multiagent chemotherapy, achieves good initial responses but long-term remissions are infrequent; previous studies using half-body irradiation suggest improved long-term outcomes. HYPOTHESIS The addition of low-dose rate half-body irradiation would improve outcomes in dogs with B-cell lymphoma. ANIMALS Client-owned dogs with stage III or higher, substage a, B-cell lymphoma that achieved complete remission after 4 doses of multiagent chemotherapy. METHODS A case-controlled design comparing 2-year remission and survival rates between dogs treated with CHOP-based chemotherapy and those treated with chemotherapy and sequential low-dose rate half-body irradiation. RESULTS Thirty-eight dogs were enrolled with 18 included in final analysis, 9 prospectively-enrolled dogs and 9 case-matched historical controls. The irradiation cohort's 2-year disease-free rate was 56% whereas median duration exceeded the 730-day study period compared with 0% and 261 days in the chemotherapy only group. Remission duration significantly differed between cohorts (P < .01), hazard ratio 0.218 (95% CI: 0.06-0.77). The irradiation cohort's 2-year survival rate was 78% with median overall survival duration exceeding the 730 day study period compared with 11% and 286 days in the chemotherapy only group. Overall survival time significantly differed between cohorts (P < .02), hazard ratio 0.173 (95% CI: 0.03-0.839). CONCLUSIONS AND CLINICAL IMPORTANCE The improved long-term outcome achieved by dogs administered sequential low-dose rate half-body irradiation in this study is similar to previous observational studies. Where long-term remission is sought in dogs with B-cell lymphoma low-dose rate half-body irradiation could be considered in addition to standard chemotherapy.
Collapse
Affiliation(s)
| | - Rod C. Straw
- Brisbane Veterinary Specialist CentreBrisbaneQueenslandAustralia
- The Australian Animal Cancer FoundationAlbany CreekQueenslandAustralia
| | - Elias Gumpel
- Small Animal Specialist HospitalNorth RydeNew South WalesAustralia
| | - Darren R. Fry
- Brisbane Veterinary Specialist CentreBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Mistry HB. Radiosensitivity Index is Not Fit to be Used for Dose Adjustments: A Pan-Cancer Analysis. Clin Oncol (R Coll Radiol) 2023; 35:565-570. [PMID: 36922240 DOI: 10.1016/j.clon.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
AIMS To explore the preclinical and latest clinical evidence of the radiation sensitivity signature termed 'radiosensitivity index' (RSI), to assess its suitability as an input into dose-adjustment algorithms. MATERIALS AND METHODS The original preclinical test-set data from the publication where RSI was derived were collected and reanalysed by comparing the observed versus predicted survival fraction at 2 Gy (SF2). In addition, the predictive capability of RSI was also compared to random guessing. Clinical data were collected from a recently published dataset that included RSI values, overall survival outcomes, radiotherapy dose and tumour site for six cancers (glioma, triple-negative breast, endometrial, melanoma, pancreatic and lung cancer). Cox proportional hazards models were used to assess: (i) does adjusting for RSI elucidate a dose response and (ii) does an interaction between RSI and dose exist with good precision. RESULTS Preclinically, RSI showed a negative correlation (Spearman's rho = -0.61) between observed and predicted SF2, which remained negative after removing leukaemia cell lines. Furthermore, random guesses showed better correlation to SF2 than RSI, 98% of the time on the full dataset and 80% after removing leukaemia cell lines. The preclinical data show that RSI does not explain the variance in SF2 better than random guessing. Clinically, a dose response was not seen after adjusting for RSI (hazard ratio = 1.00, 95% confidence interval 0.97-1.04; P = 0.876) and no evidence of an interaction between RSI and dose was found (P = 0.844). CONCLUSIONS These results suggest that RSI does not explain a sufficient amount of the outcome variance to be used within dose-adjustment algorithms.
Collapse
Affiliation(s)
- H B Mistry
- Division of Pharmacy, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Tallman MM, Zalenski AA, Stabl I, Schrock MS, Kollin L, de Jong E, De K, Grubb TM, Summers MK, Venere M. Improving Localized Radiotherapy for Glioblastoma via Small Molecule Inhibition of KIF11. Cancers (Basel) 2023; 15:3173. [PMID: 37370783 DOI: 10.3390/cancers15123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma, IDH-wild type (GBM) is the most common and lethal malignant primary brain tumor. Standard of care includes surgery, radiotherapy, and chemotherapy with the DNA alkylating agent temozolomide (TMZ). Despite these intensive efforts, current GBM therapy remains mainly palliative with only modest improvement achieved in overall survival. With regards to radiotherapy, GBM is ranked as one of the most radioresistant tumor types. In this study, we wanted to investigate if enriching cells in the most radiosensitive cell cycle phase, mitosis, could improve localized radiotherapy for GBM. To achieve cell cycle arrest in mitosis we used ispinesib, a small molecule inhibitor to the mitotic kinesin, KIF11. Cell culture studies validated that ispinesib radiosensitized patient-derived GBM cells. In vivo, we validated that ispinesib increased the fraction of tumor cells arrested in mitosis as well as increased apoptosis. Critical for the translation of this approach, we validated that combination therapy with ispinesib and irradiation led to the greatest increase in survival over either monotherapy alone. Our data highlight KIF11 inhibition in combination with radiotherapy as a new combinatorial approach that reduces the overall radioresistance of GBM and which can readily be moved into clinical trials.
Collapse
Affiliation(s)
- Miranda M Tallman
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Abigail A Zalenski
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Ian Stabl
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Morgan S Schrock
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Luke Kollin
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Eliane de Jong
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kuntal De
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Treg M Grubb
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Bouleftour W, Guy JB, Moreno-Acosta P, Rodriguez Lafrasse C, Sargos P, Magné N. Challenges in radiobiology - technology duality as a key for a risk-free α/β ratio. Bull Cancer 2023:S0007-4551(23)00091-7. [PMID: 36872128 DOI: 10.1016/j.bulcan.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023]
Abstract
Since radiotherapy discovery, prediction of biological response to ionizing radiation remains a major challenge. Indeed, several radiobiological models appeared through radiotherapy history. Nominal single dose so popular in the 1970s, was tragically linked to the dark years in radiobiology by underestimating the late toxicity of the high-dose fractions. The actual prominent linear-quadratic model continues to prove to be an effective tool in radiobiology. Mainly with its pivotal α/β ratio, which gives a reliable estimate of tissues sensitivity to fractions. Despite these arguments, this model experiences limitations with substantial doubts of α/β ratio values. Interestingly, the story of radiobiology since X-ray discovery is truly instructive and teaches modern clinicians to refine fractionation schemes. Many fractionation schemes have been tested with successes or dramas. This review retraces radiobiological models' history, and confronts these models to new fractionation schemes, drawing a preventive message.
Collapse
Affiliation(s)
- Wafa Bouleftour
- University Hospital of Saint-Etienne, North Hospital, Medical oncology department, 42270 Saint-Priest-en-Jarez, France.
| | - Jean-Baptiste Guy
- Centre Marie-Curie, Radiotherapy department, 159, boulevard Maréchal-Juin, 26000 Valence, France
| | - Pablo Moreno-Acosta
- Clinical, Molecular and Cellular Radiobiology Research Group, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia
| | - Claire Rodriguez Lafrasse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Université de Lyon, Lyon 1 University, 69921 Oullins, France; Université de Lyon, Lyon 1 University, UMR CNRS5822/IP2I, 69100 Villeurbanne, France
| | - Paul Sargos
- Institut Bergonié, Department of Radiation Oncology, 33076 Bordeaux, France
| | - Nicolas Magné
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Université de Lyon, Lyon 1 University, 69921 Oullins, France; Université de Lyon, Lyon 1 University, UMR CNRS5822/IP2I, 69100 Villeurbanne, France; Institut Bergonié, Department of Radiation Oncology, 33076 Bordeaux, France
| |
Collapse
|
8
|
Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 2023; 20:83-98. [PMID: 36477705 DOI: 10.1038/s41571-022-00709-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.
Collapse
|
9
|
Sung SY, Lee SW, Hong JH, Kang HJ, Lee SJ, Kim M, Kim JH, Kwak YK. Linear Tumor Regression of Rectal Cancer in Daily MRI during Preoperative Chemoradiotherapy: An Insight of Tumor Regression Velocity for Personalized Cancer Therapy. Cancers (Basel) 2022; 14:3749. [PMID: 35954413 PMCID: PMC9367607 DOI: 10.3390/cancers14153749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Neoadjuvant chemoradiotherapy (CCRT) is current standards of care for locally advanced rectal cancer. The precise and thorough investigation of a tumor during the full course of CCRT by means of daily MRI can provide an idea on real-time treatment sensitivity in addition to tumor biology. Tumor volumetry from daily MRI during CCRT may allow patient-driven treatment decisions. Material and Methods: Patients diagnosed with cT3-4 and/or cN+ rectal adenocarcinoma undergoing preoperative CCRT with capecitabine on the pelvis up to 50 Gy in 25 daily fractions from November 2018 to June 2019 were consecutively included. Rectal tumor volume was uniformly measured by a single physician (YKK) in daily 0.35T MRI obtained with MR-guided linear accelerator. Primary endpoint was to assess the pattern of tumor volume regression throughout the full course of CCRT using daily registration MRI. Secondary endpoint was to assess the effect of tumor regression velocity on disease-free survival (DFS). Tumor regression velocity (cc) per fraction of each patient was calculated using the simple regression analysis of tumor volumes from fraction 1 to fraction 25. Results: Twenty patients were included. Daily tumor volumetry demonstrated linear tumor regression during CCRT. The tumor regression velocity of all 20 patients was 2.40 cc per fraction (R2 = 0.93; p < 0.001). The median tumor regression velocity was 1.52 cc per fraction. Patients with tumor regression velocity ≥ 1.52 cc per fraction were grouped as rapid regressors (N = 9), and those with tumor regression velocity < 1.52 cc per fraction were grouped as slow regressors (N = 11). Rapid regressors had greater tumor regression velocity (4.58 cc per fraction) compared to that of slow regressors (0.78 cc per fraction) with statistical significance (p < 0.001). The mean DFS of rapid regressors was 36.8 months, numerically longer than the 31.9 months of slow regressors (p = 0.400) without statistical significance. Rapid regressors had numerically superior DFS rate compared to slow regressors without statistical significance. The 2-year DFS was 88.9% for rapid regressors and 72.7% for slow regressors, respectively (p = 0.400). Conclusion: This study is the first observation of linear tumor regression in daily MRI during the preoperative CCRT of locally advanced rectal cancer. Daily tumor regression velocity discriminated DFS, although without statistical significance. This study with a phenomenal approach is hypothesis-generating. Nevertheless, the potential of CCRT from therapeutics to a newer level, the “theranostics”, has been inceptively suggested. Further validation studies for the value of daily tumor volumetry on treatment decisions are warranted.
Collapse
Affiliation(s)
- Soo-Yoon Sung
- Department of Radiation Oncology, Eunpyeong St. Mary’s Hospital, Catholic University of Korea College of Medicine, Seoul 06591, Korea; (S.-Y.S.); (S.-W.L.)
| | - Sea-Won Lee
- Department of Radiation Oncology, Eunpyeong St. Mary’s Hospital, Catholic University of Korea College of Medicine, Seoul 06591, Korea; (S.-Y.S.); (S.-W.L.)
| | - Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, Catholic University of Korea College of Medicine, Seoul 06591, Korea;
| | - Hye Jin Kang
- Department of Radiation Oncology, Incheon St. Mary’s Hospital, Catholic University of Korea College of Medicine, Seoul 06591, Korea; (H.J.K.); (S.J.L.); (M.K.)
| | - So Jung Lee
- Department of Radiation Oncology, Incheon St. Mary’s Hospital, Catholic University of Korea College of Medicine, Seoul 06591, Korea; (H.J.K.); (S.J.L.); (M.K.)
| | - Myungsoo Kim
- Department of Radiation Oncology, Incheon St. Mary’s Hospital, Catholic University of Korea College of Medicine, Seoul 06591, Korea; (H.J.K.); (S.J.L.); (M.K.)
| | - Ji-Hoon Kim
- Department of Surgery, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yoo-Kang Kwak
- Department of Radiation Oncology, Incheon St. Mary’s Hospital, Catholic University of Korea College of Medicine, Seoul 06591, Korea; (H.J.K.); (S.J.L.); (M.K.)
| |
Collapse
|
10
|
Chen S, Qin A, Yan D. Dynamic Characteristics and Predictive Capability of Tumor Voxel Dose-Response Assessed Using 18F-FDG PET/CT Imaging Feedback. Front Oncol 2022; 12:876861. [PMID: 35875108 PMCID: PMC9299377 DOI: 10.3389/fonc.2022.876861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Tumor voxel dose–response matrix (DRM) can be quantified using feedback from serial FDG-PET/CT imaging acquired during radiotherapy. This study investigated the dynamic characteristics and the predictive capability of DRM. Methods FDG-PET/CT images were acquired before and weekly during standard chemoradiotherapy with the treatment dose 2 Gy × 35 from 31 head and neck cancer patients. For each patient, deformable image registration was performed between the pretreatment/baseline PET/CT image and each weekly PET/CT image. Tumor voxel DRM was derived using linear regression on the logarithm of the weekly standard uptake value (SUV) ratios for each tumor voxel, such as SUV measured at a dose level normalized to the baseline SUV0. The dynamic characteristics were evaluated by comparing the DRMi estimated using a single feedback image acquired at the ith treatment week (i = 1, 2, 3, or 4) to the DRM estimated using the last feedback image for each patient. The predictive capability of the DRM estimated using 1 or 2 feedback images was evaluated using the receiver operating characteristic test with respect to the treatment outcome of tumor local–regional control or failure. Results The mean ± SD of tumor voxel SUV measured at the pretreatment and the 1st, 2nd, 3rd, 4th, and last treatment weeks was 6.76 ± 3.69, 5.72 ± 3.43, 3.85 ± 2.22, 3.27 ± 2.25, 2.5 ± 1.79, and 2.23 ± 1.27, respectively. The deviations between the DRMi estimated using the single feedback image obtained at the ith week and the last feedback image were 0.86 ± 4.87, −0.06 ± 0.3, −0.09 ± 0.17, and −0.09 ± 0.12 for DRM1, DRM2, DRM3, and DRM4, respectively. The predictive capability of DRM3 and DRM4 was significant (p < 0.001). The area under the curve (AUC) was increased with the increase in treatment dose level. The DRMs constructed using the single feedback image achieved an AUC of 0.86~1. The AUC was slightly improved to 0.94~1 for the DRMs estimated using 2 feedback images. Conclusion Tumor voxel metabolic activity measured using FDG-PET/CT fluctuated noticeably during the first 2 treatment weeks and obtained a stabilized reduction rate thereafter. Tumor voxel DRM constructed using a single FDG-PET/CT feedback image after the 2nd treatment week (>20 Gy) has a good predictive capability. The predictive capability improved continuously using a later feedback image and marginally improved when two feedback images were applied.
Collapse
Affiliation(s)
- Shupeng Chen
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - An Qin
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Di Yan
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States.,Radiation Oncology, Huaxi Hospital/School of Medicine, Chengdu, China
| |
Collapse
|
11
|
Parisi A, Furutani KM, Beltran CJ. On the calculation of the relative biological effectiveness of ion radiation therapy using a biological weighting function, the microdosimetric kinetic model (MKM) and subsequent corrections (non-Poisson MKM and modified MKM). Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fdf] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/31/2022]
Abstract
Abstract
Objective. To investigate similarities and differences in the formalism, processing, and the results of relative biological effectiveness (RBE) calculations with a biological weighting function (BWF), the microdosimetric kinetic model (MKM) and subsequent modifications (non-Poisson MKM, modified MKM). This includes: (a) the extension of the V79-RBE10% BWF to model the RBE for other clonogenic survival levels; (b) a novel implementation of MKMs as weighting functions; (c) a benchmark against Chinese Hamster lung fibroblast (V79) in vitro data; (d) a study on the effect of pre- or post- processing the average biophysical quantities used for the RBE calculations; (e) a possible modification of the modified MKM parameters to improve the model accuracy at high linear energy transfer (LET). Methodology. Lineal energy spectra were simulated for two spherical targets (diameter = 0.464 or 1.0 μm) using PHITS for 1H, 4He, 12C, 20Ne, 40Ar, 56Fe and 132Xe ions. The results of the in silico calculations were compared with published in vitro data. Main results. All models appear to underestimate the RBE
α
of hydrogen ions. All MKMs generally overestimate the RBE50%, RBE10% and RBE1% for ions with an LET greater than ∼200 keV μm−1. This overestimation is greater for small surviving fractions and is likely due to the assumption of a radiation-independent quadratic term of clonogenic survival (ß). The overall RBE trends seem to be best described by the novel ‘post-processing average’ implementation of the non-Poisson MKM. In case of calculations with the non-Poisson MKM, pre- or post- processing the average biophysical quantities affects the computed RBE values significantly. Significance. This study presents a systematic analysis of the formalism and results of widely used microdosimetric models of clonogenic survival for ions relevant for cancer particle therapy and space radiation protection. Points for improvements were highlighted and will contribute to the development of upgraded biophysical models.
Collapse
|
12
|
Blair TC, Bambina S, Kramer GF, Dowdell AK, Alice AF, Baird JR, Lund AW, Piening BD, Crittenden MR, Gough MJ. Fluorescent tracking identifies key migratory dendritic cells in the lymph node after radiotherapy. Life Sci Alliance 2022; 5:5/9/e202101337. [PMID: 35487695 PMCID: PMC9058260 DOI: 10.26508/lsa.202101337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Radiation therapy impacts all cells within the treatment field. Using novel technology, we track dendritic cells from the tumor to lymph nodes and demonstrate their importance in immune control of tumors. Radiation therapy generates extensive cancer cell death capable of promoting tumor-specific immunity. Within the tumor, conventional dendritic cells (cDCs) are known to carry tumor-associated antigens to the draining lymph node (TdLN) where they initiate T-cell priming. How radiation influences cDC migration is poorly understood. Here, we show that immunological efficacy of radiation therapy is dependent on cDC migration in radioimmunogenic tumors. Using photoconvertible mice, we demonstrate that radiation impairs cDC migration to the TdLN in poorly radioimmunogenic tumors. Comparative transcriptional analysis revealed that cDCs in radioimmunogenic tumors express genes associated with activation of endogenous adjuvant signaling pathways when compared with poorly radioimmunogenic tumors. Moreover, an exogenous adjuvant combined with radiation increased the number of migrating cDCs in these poorly radioimmunogenic tumors. Taken together, our data demonstrate that cDC migration play a critical role in the response to radiation therapy.
Collapse
Affiliation(s)
- Tiffany C Blair
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Shelly Bambina
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Gwen F Kramer
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Alexa K Dowdell
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Alejandro F Alice
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Jason R Baird
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Amanda W Lund
- Ronald O Perelman Department of Dermatology, Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Brian D Piening
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Marka R Crittenden
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA.,The Oregon Clinic, Portland, OR, USA
| | - Michael J Gough
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| |
Collapse
|
13
|
Najafi M, Jahanbakhshi A, Gomar M, Iotti C, Giaccherini L, Rezaie O, Cavallieri F, Deantonio L, Bardoscia L, Botti A, Sardaro A, Cozzi S, Ciammella P. State of the Art in Combination Immuno/Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis. Curr Oncol 2022; 29:2995-3012. [PMID: 35621634 PMCID: PMC9139474 DOI: 10.3390/curroncol29050244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Common origins for brain metastases (BMs) are melanoma, lung, breast, and renal cell cancers. BMs account for a large share of morbidity and mortality caused by these cancers. The advent of new immunotherapeutic treatments has made a revolution in the treatment of cancer patients and particularly, as a new concept, if it is combined with radiotherapy, may lead to considerably longer survival. This systematic review and meta-analysis aimed to evaluate the survival rate and toxicities of such a combination in brain metastases. METHODS To perform a systematic review of the literature until January 2021 using electronic databases such as PubMed, Cochrane Library, and Embase; the Newcastle-Ottawa Scale was used to evaluate the quality of cohort studies. For data extraction, two reviewers extracted the data blindly and independently. Hazard ratio with 95% confidence interval (CI), fixed-effect model, and inverse-variance method was calculated. The meta-analysis has been evaluated with the statistical software Stata/MP v.16 (The fastest version of Stata). RESULTS In the first step, 494 studies were selected to review the abstracts, in the second step, the full texts of 86 studies were reviewed. Finally, 28 studies were selected consisting of 1465 patients. The addition of IT to RT in the treatment of brain metastasis from melanoma and non-small-cell lung carcinoma was associated with a 39% reduction in mortality rate and has prolonged overall survival, with an acceptable toxicity profile. The addition of IT to RT compared with RT alone has a hazard ratio of 0.39(95% CI 0.34-0.44). CONCLUSIONS A combination of immuno/radiotherapy (IR) for the treatment of patients with BMs from melanoma and non-small-cell lung carcinoma has prolonged overall survival and reduced mortality rate, with acceptable toxicity. In terms of timing, RT seems to have the best effect on the result when performed before or simultaneously with immunotherapy.
Collapse
Affiliation(s)
- Masoumeh Najafi
- Skull Base Research Center, Iran University of Medical Sciences, Tehran 1997667665, Iran;
| | - Amin Jahanbakhshi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran 1997667665, Iran;
| | - Marzieh Gomar
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
| | - Cinzia Iotti
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| | - Lucia Giaccherini
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| | - Omid Rezaie
- Hematology-Oncology Department, Jam Hospital, Tehran 1997667665, Iran;
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland;
| | - Lilia Bardoscia
- Radiation Oncology Unit, S. Luca Hospital, Healthcare Company Tuscany Nord Ovest, 55100 Lucca, Italy;
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Angela Sardaro
- Section of Radiology and Radiation Oncology, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Salvatore Cozzi
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| | - Patrizia Ciammella
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| |
Collapse
|
14
|
Borzillo V, Muto P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers (Basel) 2021; 13:cancers13225859. [PMID: 34831017 PMCID: PMC8616425 DOI: 10.3390/cancers13225859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The non-surgical treatment of cutaneous and/or subcutaneous melanoma lesions involves a multitude of local treatments, including radiotherapy. This is often used when other local methods fail, and there are currently no clear guidelines or evidence-based recommendations to support its use in this setting. This review, collecting the retrospective and prospective experiences on radiotherapy alone or in combination with other methods, aims to provide a scenario of the possible advantages and disadvantages related to its use in the treatment of skin/subcutaneous melanoma lesions. Abstract Malignant melanoma frequently develops cutaneous and/or subcutaneous metastases during the course of the disease. These may present as non-nodal locoregional metastases (microsatellite, satellite, or in-transit) included in stage III or as distant metastases in stage IV. Their presentation is heterogeneous and associated with significant morbidity resulting from both disease-related functional damage and treatment side effects. The standard treatment is surgical excision, whereas local therapies or systemic therapies have a role when surgery is not indicated. Radiotherapy can be used in the local management of ITM, subcutaneous relapses, or distant metastases to provide symptom relief and prolong regional disease control. To increase the local response without increasing toxicity, the addition of hyperthermia and intralesional therapies to radiotherapy appear to be very promising. Boron neutron capture therapy, based on nuclear neutron capture and boron isotope fission reaction, could be an alternative to standard treatments, but its use in clinical practice is still limited. The potential benefit of combining radiotherapy with targeted therapies and immunotherapy has yet to be explored in this lesion setting. This review explores the role of radiotherapy in the treatment of cutaneous and subcutaneous lesions, its impact on outcomes, and its association with other treatment modalities.
Collapse
|
15
|
Park S, Kim J, Choi J, Lee C, Lee W, Park S, Park Z, Baek J, Nam J. Lipid raft-disrupting miltefosine preferentially induces the death of colorectal cancer stem-like cells. Clin Transl Med 2021; 11:e552. [PMID: 34841679 PMCID: PMC8567043 DOI: 10.1002/ctm2.552] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lipid rafts (LRs), cholesterol-enriched microdomains on cell membranes, are increasingly viewed as signalling platforms governing critical facets of cancer progression. The phenotype of cancer stem-like cells (CSCs) presents significant hurdles for successful cancer treatment, and the expression of several CSC markers is associated with LR integrity. However, LR implications in CSCs remain unclear. METHODS This study evaluated the biological and molecular functions of LRs in colorectal cancer (CRC) by using an LR-disrupting alkylphospholipid (APL) drug, miltefosine. The mechanistic role of miltefosine in CSC inhibition was examined through normal or tumour intestinal mouse organoid, human CRC cell, CRC xenograft and miltefosine treatment gene expression profile analyses. RESULTS Miltefosine suppresses CSC populations and their self-renewal activities in CRC cells, a CSC-targeting effect leading to irreversible disruption of tumour-initiating potential in vivo. Mechanistically, miltefosine reduced the expression of a set of genes, leading to stem cell death. Among them, miltefosine transcriptionally inhibited checkpoint kinase 1 (CHEK1), indicating that LR integrity is essential for CHEK1 expression regulation. In isolated CD44high CSCs, we found that CSCs exhibited stronger therapy resistance than non-CSC counterparts by preventing cell death through CHEK1-mediated cell cycle checkpoints. However, inhibition of the LR/CHEK1 axis by miltefosine released cell cycle checkpoints, forcing CSCs to enter inappropriate mitosis with accumulated DNA damage and resulting in catastrophic cell death. CONCLUSION Our findings underscore the therapeutic potential of LR-targeting APLs for CRC treatment that overcomes the therapy-resistant phenotype of CSCs, highlighting the importance of the LR/CHEK1 axis as a novel mechanism of APLs.
Collapse
Affiliation(s)
- So‐Yeon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
- Cell Logistics Research CenterGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jee‐Heun Kim
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jang‐Hyun Choi
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Choong‐Jae Lee
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Won‐Jae Lee
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jeong‐Heum Baek
- Division of Colon and Rectal SurgeryDepartment of SurgeryGil Medical CenterGachon University College of MedicineIncheonRepublic of Korea
| | - Jeong‐Seok Nam
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
- Cell Logistics Research CenterGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| |
Collapse
|
16
|
Parisi A, Struelens L, Vanhavere F. Comparison between the results of a recently-developed biological weighting function (V79-RBE 10BWF) and the in vitroclonogenic survival RBE 10of other repair-competent asynchronized normoxic mammalian cell lines and ions not used for the development of the model. Phys Med Biol 2021; 66. [PMID: 34710862 DOI: 10.1088/1361-6560/ac344e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022]
Abstract
728 simulated microdosimetric lineal energy spectra (26 different ions between 1H and 238U, 28 energy points from 1 to 1000 MeV/n) were used in combination with a recently-developed biological weighting function (Parisi et al., 2020) and 571 published in vitro clonogenic survival curves in order to: 1) assess prediction intervals for the in silico results by deriving an empirical indication of the experimental uncertainty from the dispersion in the in vitro hamster lung fibroblast (V79) data used for the development of the biophysical model; 2) explore the possibility of modeling the relative biological effectiveness (RBE) of the 10% clonogenic survival of asynchronized normoxic repair-competent mammalian cell lines other than the one used for the development of the model (V79); 3) investigate the predictive power of the model through a comparison between in silico results and in vitro data for 10 ions not used for the development of the model. At first, different strategies for the assessment of the in silico prediction intervals were compared. The possible sources of uncertainty responsible for the dispersion in the in vitro data were also shortly reviewed. Secondly, also because of the relevant scatter in the in vitro data, no statistically-relevant differences were found between the RBE10 of the investigated different asynchronized normoxic repair-competent mammalian cell lines. The only exception (Chinese Hamster peritoneal fibroblasts, B14FAF28), is likely due to the limited dataset (all in vitro ion data were extracted from a single publication), systematic differences in the linear energy transfer (LET) calculations for the employed very-heavy ions, and the use of reference photon survival curves extracted from a different publication. Finally, the in silico predictions for the 10 ions not used for the model development were in good agreement with the corresponding in vitro data.
Collapse
Affiliation(s)
- Alessio Parisi
- Radiation Protection Dosimetry and Calibration, Studiecentrum voor Kernenergie, Boeretang 200, Mol, Belgiun, Mol, 2400, BELGIUM
| | - Lara Struelens
- Radiation Protection, Dosimetry and Calibration, Belgian Nuclear Research Centre SCK.CEN, Boeretang 200, Mol, 2400, BELGIUM
| | - Filip Vanhavere
- Institute of Advanced Nuclear Systems, Belgian Nuclear Research Centre SCK.CEN, Boeretang 200, B-2400 Mol, Mol, BELGIUM
| |
Collapse
|
17
|
Dabestani PJ, Dawson AJ, Neumeister MW, Bradbury CM. Radiation Therapy for Local Cutaneous Melanoma. Clin Plast Surg 2021; 48:643-649. [PMID: 34503724 DOI: 10.1016/j.cps.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While primary treatment for melanoma consists of surgical resection and chemotherapeutics, radiation can be used as either definitive or adjuvant therapy in certain clinical scenarios. This chapter aims to explore the indications for primary definitive radiotherapy as well as adjuvant treatment following resection. Delivery, dose, fractionation, and toxicity of radiation treatment will be discussed. As our understanding of melanoma tumor biology increases, the role of radiotherapy may expand for more effective treatment of oligometastatic disease.
Collapse
Affiliation(s)
- Parinaz J Dabestani
- Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Michael W Neumeister
- Southern Illinois University School of Medicine, Institute for Plastic Surgery, 747 N. Rutledge St #3, Springfield, IL 62702, USA
| | - C Matthew Bradbury
- Springfield Clinic Cancer Center and Southern Illinois University School of Medicine, 900 N. 1st Street, Springfield, IL 62702, USA
| |
Collapse
|
18
|
Flint DB, Bright SJ, McFadden CH, Konishi T, Ohsawa D, Turner B, Lin SH, Grosshans DR, Chiu HS, Sumazin P, Shaitelman SF, Sawakuchi GO. Cell lines of the same anatomic site and histologic type show large variability in intrinsic radiosensitivity and relative biological effectiveness to protons and carbon ions. Med Phys 2021; 48:3243-3261. [PMID: 33837540 DOI: 10.1002/mp.14878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To show that intrinsic radiosensitivity varies greatly for protons and carbon (C) ions in addition to photons, and that DNA repair capacity remains important in governing this variability. METHODS We measured or obtained from the literature clonogenic survival data for a number of human cancer cell lines exposed to photons, protons (9.9 keV/μm), and C-ions (13.3-77.1 keV/μm). We characterized their intrinsic radiosensitivity by the dose for 10% or 50% survival (D10% or D50% ), and quantified the variability at each radiation quality by the coefficient of variation (COV) in D10% and D50% . We also treated cells with DNA repair inhibitors prior to irradiation to assess how DNA repair capacity affects their variability. RESULTS We found no statistically significant differences in the COVs of D10% or D50% between any of the radiation qualities investigated. The same was true regardless of whether the cells were treated with DNA repair inhibitors, or whether they were stratified into histologic subsets. Even within histologic subsets, we found remarkable differences in radiosensitivity for high LET C-ions that were often greater than the variations in RBE, with brain cancer cells varying in D10% (D50% ) up to 100% (131%) for 77.1 keV/μm C-ions, and non-small cell lung cancer and pancreatic cancer cell lines varying up to 55% (76%) and 51% (78%), respectively, for 60.5 keV/μm C-ions. The cell lines with modulated DNA repair capacity had greater variability in intrinsic radiosensitivity across all radiation qualities. CONCLUSIONS Even for cell lines of the same histologic type, there are remarkable variations in intrinsic radiosensitivity, and these variations do not differ significantly between photon, proton or C-ion radiation. The importance of DNA repair capacity in governing the variability in intrinsic radiosensitivity is not significantly diminished for higher LET radiation.
Collapse
Affiliation(s)
- David B Flint
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Conor H McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daisuke Ohsawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Broderick Turner
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua-Sheng Chiu
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Simona F Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel O Sawakuchi
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Pangal DJ, Baertsch H, Kellman EM, Cardinal T, Brunswick A, Rutkowski M, Strickland B, Chow F, Attenello F, Zada G. Complementary and Alternative Medicine for the Treatment of Gliomas: Scoping Review of Clinical Studies, Patient Outcomes, and Toxicity Profiles. World Neurosurg 2021; 151:e682-e692. [PMID: 33940275 DOI: 10.1016/j.wneu.2021.04.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Complementary and alternative medicine (CAM) are highly used among those diagnosed with glioma. Further research is warranted, however, as it remains important to clearly delineate CAM practices that are unproven, disproven, or promising for future research and implementation. METHODS A systematic review was conducted to identify all articles that investigated the effect of any CAM therapy on survival of patients with newly diagnosed or recurrent glioma. RESULTS Eighteen papers and 4 abstracts pertaining to the effects of ketogenic diet (4), antioxidants (3), hyperbaric oxygen (4), cannabinoids (2), carbogen and nicotinamide (3), mistletoe extract (2), hypocupremia and penicillamine (1), and overall CAM use (3) on overall and progression-free survival in patients with low- and high-grade glioma were identified (Levels of Evidence I-IV). Ketogenic diets, hyperbaric oxygen therapy, and cannabinoids appear to be safe and well tolerated by patients; preliminary studies demonstrate tumor response and increased progression-free survival and overall survival when combined with standard of care therapies. Antioxidant usage exhibit mixed results perhaps associated with glioma grade with greater effect on low-grade gliomas; vitamin D intake was associated with prolonged survival. Conversely, carbogen breathing and hypocupremia were found to have no effect on the survival of patients with glioma, with associated significant toxicity. Most modalities under the CAM umbrella have not been appropriately studied and require further investigation. CONCLUSIONS Despite widespread use, Level I or II evidence for CAM for the treatment of glioma is lacking, representing future research directions to optimally counsel and treat glioma patients.
Collapse
Affiliation(s)
- Dhiraj J Pangal
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
| | - Hans Baertsch
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Eliza M Kellman
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Tyler Cardinal
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Andrew Brunswick
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Martin Rutkowski
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Ben Strickland
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Frances Chow
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Frank Attenello
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Gabriel Zada
- USC Brain Tumor Center, USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Bavoux M, Kamio Y, Vigneux-Foley E, Lafontaine J, Najyb O, Refet-Mollof E, Carrier JF, Gervais T, Wong P. X-ray on chip: Quantifying therapeutic synergies between radiotherapy and anticancer drugs using soft tissue sarcoma tumor spheroids. Radiother Oncol 2021; 157:175-181. [DOI: 10.1016/j.radonc.2021.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|
21
|
Sosa-Marrero C, de Crevoisier R, Hernandez A, Fontaine P, Rioux-Leclercq N, Mathieu R, Fautrel A, Paris F, Acosta O. Towards a Reduced In Silico Model Predicting Biochemical Recurrence After Radiotherapy in Prostate Cancer. IEEE Trans Biomed Eng 2021; 68:2718-2729. [PMID: 33460366 DOI: 10.1109/tbme.2021.3052345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Purposes of this work were i) to develop an in silico model of tumor response to radiotherapy, ii) to perform an exhaustive sensitivity analysis in order to iii) propose a simplified version and iv) to predict biochemical recurrence with both the comprehensive and the reduced model. METHODS A multiscale computational model of tumor response to radiotherapy was developed. It integrated the following radiobiological mechanisms: oxygenation, including hypoxic death; division of tumor cells; VEGF diffusion driving angiogenesis; division of healthy cells and oxygen-dependent response to irradiation, considering, cycle arrest and mitotic catastrophe. A thorough sensitivity analysis using the Morris screening method was performed on 21 prostate computational tissues. Tumor control probability (TCP) curves of the comprehensive model and 15 reduced versions were compared. Logistic regression was performed to predict biochemical recurrence after radiotherapy on 76 localized prostate cancer patients using an output of the comprehensive and the reduced models. RESULTS No significant difference was found between the TCP curves of the comprehensive and a simplified version which only considered oxygenation, division of tumor cells and their response to irradiation. Biochemical recurrence predictions using the comprehensive and the reduced models improved those made from pre-treatment imaging parameters (AUC = 0.81 ± 0.02 and 0.82 ± 0.02 vs. 0.75 ± 0.03, respectively). CONCLUSION A reduced model of tumor response to radiotherapy able to predict biochemical recurrence in prostate cancer was obtained. SIGNIFICANCE This reduced model may be used in the future to optimize personalized fractionation schedules.
Collapse
|
22
|
Wegner RE, Abel S, D'Amico RS, Mehta GU, Sheehan J. Time from stereotactic radiosurgery to immunotherapy in patients with melanoma brain metastases and impact on outcome. J Neurooncol 2021; 152:79-87. [PMID: 33432380 DOI: 10.1007/s11060-020-03663-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of immunotherapy for metastatic melanoma has expanded over the past decade triggering questions regarding the combination and timing of immunotherapy and radiation for brain metastases. We used the National Cancer Database (NCDB) to see if the time from radiation to immunotherapy in patients with melanoma brain metastases had an impact on survival. METHODS We queried the NCDB from 2010 to 2015 for patients with melanoma brain metastases treated with immunotherapy and stereotactic radiosurgery (SRS). Receiver operator characteristic (ROC) curve analysis was done to determine a timepoint associated with outcome. Cox regression was used to identify predictors of survival. Propensity matching was done to account for indication bias. RESULTS We identified 247 patients meeting the above criteria. The median patient age was 62 years (27-90) and the vast majority were Caucasian (99%). The median SRS dose was 22 Gy (18-24 Gy).The median time to SRS was 39 days (0-344) and the median time to immunotherapy was 56 days (6-454). The ROC analysis revealed 8 days from SRS to immunotherapy as associated with outcome. Fifty-six patients had immunotherapy prior to SRS, 30 patients had immunotherapy within 0-7 days of SRS, and the remaining 161 had immunotherapy greater than 7 days from SRS. Three year survival rates were 21%, 55%, and 35% for those timeframes, respectively (p = 0.0153). Propensity matching of the 0-7 day and > 7 day groups yielded 28 pairs and Kaplan Meier analysis showed 3 year overall survival of 55% and 35%, in favor of immunotherapy within 7 days of SRS (p = 0.0357). Multivariable Cox regression identified lack of extracranial disease, more recent year of treatment, and time from SRS to immunotherapy of 0-7 days as predictors of improved survival. CONCLUSIONS Immunotherapy within 7 days of SRS shows a possible association with improve outcomes in patients with brain metastases from melanoma.
Collapse
Affiliation(s)
- Rodney E Wegner
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, USA.
| | - Stephen Abel
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, USA
| | - Gautam U Mehta
- Division of Neurosurgery, House Ear Institute, Los Angeles, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, USA
| |
Collapse
|
23
|
Ravi K, Pushpa NB, Kishore S, Kaur S, Mehta V, Krishnan A. Karyoanomalic frequency assay during radiation therapy – A promising marker in the prognosis of oral and oropharyngeal carcinoma. J Family Med Prim Care 2021; 10:4548-4552. [PMID: 35280601 PMCID: PMC8884334 DOI: 10.4103/jfmpc.jfmpc_948_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction: Radiotherapy is commonly used in the treatment of oral and oropharyngeal carcinomas, either alone or in combination with other modalities of treatment like surgery/chemotherapy. It is always essential to know the nature of tumor response to the irradiation for successful outcomes and prognosis. With this view, the study has been conducted to document the usefulness of nuclear changes, karyolysis (KL), and karyorrhexis (KR) in particular as prognostic markers during the treatment. Materials and Method: Sixty patients, aged between 28 and 73 years (56 males and 4 females) years, histopathologically confirmed cases of oral and oropharyngeal carcinoma of different degrees of differentiation, were included in the study. The mode of treatment for the patients was radiotherapy with a radiation dose plan of 4 Gy, 14 Gy, 24 Gy, and 60 Gy on the 2nd, 7th, 12th, 30th days, respectively. The mucosal scrapings obtained from the site of the lesion at each interval were stained with Giemsa and May-Grunwald's stain. The stained slides were studied to assess the frequency of KL and KR. Results: It was observed that there was no significant difference between the site of lesion and tumor differentiation with the frequency of KL or KR. However, there was a statistically significant difference in the KL and KR indices with each interval of treatment. The percentage of relative increment among both the studied parameters was also significant, indicating their efficiency as a promising prognostic marker in radiotherapy. Conclusion: Hence, assessment of KL and KR at different intervals of time during radiotherapy could be used as an efficient tool to determine the radiosensitivity and prognosis in oral and oropharyngeal carcinoma patients.
Collapse
|
24
|
Oike T, Komatsu S, Komatsu Y, Nachankar A, Darwis NDM, Shibata A, Ohno T. Reporting of methodologies used for clonogenic assays to determine radiosensitivity. JOURNAL OF RADIATION RESEARCH 2020; 61:828-831. [PMID: 32823284 PMCID: PMC7674694 DOI: 10.1093/jrr/rraa064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Indexed: 05/09/2023]
Abstract
Radiotherapy treatment strategies should be personalized based on the radiosensitivity of individual tumors. Clonogenic assays are the gold standard method for in vitro assessment of radiosensitivity. Reproducibility is the critical factor for scientific rigor; however, this is reduced by insufficient reporting of methodologies. In reality, the reporting standards of methodologies pertaining to clonogenic assays remain unclear. To address this, we performed a literature search and qualitative analysis of the reporting of methodologies pertaining to clonogenic assays. A comprehensive literature review identified 1672 papers that report the radiosensitivity of human cancer cells based on clonogenic assays. From the identified papers, important experimental parameters (i.e. number of biological replicates, technical replicates, radiation source and dose rate) were recorded and analyzed. We found that, among the studies, (i) 30.5% did not report biological or technical replicates; (ii) 47.0% did not use biological or technical replicates; (iii) 3.8% did not report the radiation source; and (iv) 32.3% did not report the dose rate. These data suggest that reporting of methodologies pertaining to clonogenic assays in a considerable number of previously published studies is insufficient, thereby threatening reproducibility. This highlights the need to raise awareness of standardization of the methodologies used to conduct clonogenic assays.
Collapse
Affiliation(s)
- Takahiro Oike
- Corresponding author. Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan. Tel: 81-27-220-8383; Fax: 81-27-220-8397;
| | - Shuichiro Komatsu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yuka Komatsu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Ankita Nachankar
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Narisa Dewi Maulany Darwis
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia – Dr. Cipto Mangunkusumo Hospital, Jl. P. Diponegoro no. 71, Jakarta 10430, Indonesia
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research (GIAR), 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
25
|
Ristic-Fira AM, Keta OD, Petković VD, Cammarata FP, Petringa G, Cirrone PG, Cuttone G, Incerti S, Petrović IM. DNA damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1825035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Francesco P. Cammarata
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
- CNR-IBFM, UOS, Cefalù, Italy
| | - Giada Petringa
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Pablo G.A. Cirrone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Giacomo Cuttone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | | | - Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Özçelik S, Pratx G. Nuclear-targeted gold nanoparticles enhance cancer cell radiosensitization. NANOTECHNOLOGY 2020; 31:415102. [PMID: 32585647 DOI: 10.1088/1361-6528/aba02b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiation therapy aims to kill or inhibit proliferation of cancer cells while sparing normal cells. To enhance radiosensitization, we developed 40 nm-sized gold nanoparticles targeting the nucleus. We exploited a strategy that combined RGD and NLS peptides respectively targeting cancer cell and the nucleus to initiate cell-death activated by x-ray irradiation. We observed that the modified gold nanoparticles were either translocated in the nuclei or accumulated in the vicinity of the nuclei. We demonstrated that x-ray irradiation at 225 kVp energy reduced cell proliferation by 3.8-fold when the nuclear targeted gold nanoparticles were used. We determined that the radiation dose to have a 10% survival fraction was reduced from 11.0 Gy to 7.1 Gy when 10.0 µg ml-1 of the NLS/RGD/PEG-AuNP was incubated with A549 cancer cells. We conclude that the peptide-modified gold nanoparticles targeting the nucleus significantly enhance radiosensitization.
Collapse
Affiliation(s)
- Serdar Özçelik
- İzmir Institute of Technology, Department of Chemistry, Gülbahçe-Urla 35430, İzmir, Turkey. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States of America
| | | |
Collapse
|
27
|
Baliga S, Bajaj BVM, Kabarriti R, Grassberger C, Patteson B, Yeap B, Fox JL, Garg MK, Yock TI. Prolongation of radiotherapy duration is associated with inferior overall survival in patients with pediatric medulloblastoma and central nervous system primitive neuroectodermal tumors. Pediatr Blood Cancer 2020; 67:e28558. [PMID: 32710698 DOI: 10.1002/pbc.28558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The importance of radiotherapy (RT) duration in medulloblastoma in the modern era of chemotherapy has not been well elucidated. The aim of this study was to determine the impact of RT treatment duration on overall survival (OS) in pediatric medulloblastoma and cenral nervous system neuroectodermal tumors (PNETs). METHODS The National Cancer Database (NCDB) was queried to identify patients with newly diagnosed medulloblastoma and CNS PNETs diagnosed between 2004 and 2014. Patients were excluded if they had extraneural metastasis, did not receive standard craniospinal irradiation dose, had a nonstandard total dose outside of 54 or 55.8 Gy, did not receive adjuvant chemotherapy, or if the RT duration was outside of the expected range of 37 to 80 days. The Kaplan-Meier estimator was used to estimate the association between RT duration (≤45 days or >45 days) and OS. Multivariate Cox regression was used to assess other confounders of OS. RESULTS Six-hundred twenty-five patients met inclusion criteria, of which 181 were assigned to the "RT long" (>45 days) cohort (29.0%) and 444 (71.0%) to the "RT short" group (≤45 days). The five-year OS for the "RT short" compared with "RT long" cohort was 82.2% versus 70.9%, respectively (log-rank, P < 0.0037). For average risk patients, the five-year OS was 84.6% versus 86.4% for "RT short" and "RT long," respectively (log-rank, P = 0.40). However, for high-risk patients, five-year OS was 77.7% versus 51.0% (log-rank, P < 0.0001) in the "RT short" and "RT long" cohorts. CONCLUSION For patients with high-risk medulloblastoma and CNS PNETs, RT duration >45 days was associated with inferior OS.
Collapse
Affiliation(s)
- Sujith Baliga
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210, United States
| | - Benjamin V M Bajaj
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Brooke Patteson
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Beow Yeap
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Jana L Fox
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | - Madhur K Garg
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Melanoma brain metastases: is it time to eliminate radiotherapy? J Neurooncol 2020; 149:27-33. [PMID: 32556863 DOI: 10.1007/s11060-020-03485-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Immunotherapy has demonstrated efficacy in treatment of intracranial metastasis from melanoma, calling into question the role of intracranial radiotherapy (RT). Herein, we assessed the utilization patterns of intracranial RT in patients with melanoma brain metastasis and compared outcomes in patients treated with immunotherapy alone versus immunotherapy in addition to intracranial RT. METHODS We queried the National Cancer Database (NCDB) for patients with melanoma brain metastases treated with immunotherapy and intracranial RT or immunotherapy alone. Multivariable logistic regression identified variables associated with increased likelihood of receiving immunotherapy alone. Multivariable Cox regression was used to identify co-variates predictive of overall survival (OS). Propensity matching was used to account for indication bias. RESULTS We identified 528 and 142 patients that were treated with combination therapy and immunotherapy alone, respectively. Patients with lower comorbidity score were more likely to receive immunotherapy alone. Extracranial disease and treatment at a non-academic center were associated with worse OS. Median OS for all patients was 11.0 months. Treatment with stereotactic radiosurgery (SRS) in addition to immunotherapy was superior to immunotherapy alone, median OS of 19.0 versus 11.5 months (p = 0.006). Whole brain radiation therapy (WBRT) in combination with immunotherapy performed worse than immunotherapy alone, median OS of 7.7 versus 11.5 months (p = 0.0255). CONCLUSIONS For melanoma patients requiring WBRT, immunotherapy alone may be reasonable in asymptomatic patients. For those eligible for SRS, combination therapy may provide better outcomes. Results of ongoing prospective studies will help provide guidance regarding the use of radioimmunotherapy in this population.
Collapse
|
29
|
Schultzhaus Z, Romsdahl J, Chen A, Tschirhart T, Kim S, Leary D, Wang Z. The response of the melanized yeast Exophiala dermatitidis to gamma radiation exposure. Environ Microbiol 2020; 22:1310-1326. [PMID: 32011087 DOI: 10.1111/1462-2920.14936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 01/21/2023]
Abstract
The melanized yeast Exophiala dermatitidis is resistant to many environmental stresses and is used as a model for understanding the diverse roles of melanin in fungi. Here, we describe the extent of resistance of E. dermatitidis to acute γ-radiation exposure and the major mechanisms it uses to recover from this stress. We find that melanin does not protect E. dermatitidis from γ-radiation. Instead, environmental factors such as nutrient availability, culture age and culture density are much greater determinants of cell survival after exposure. We also observe a dramatic transcriptomic response to γ-radiation that mobilizes pathways involved in morphological development, protein degradation and DNA repair, and is unaffected by the presence of melanin. Together, these results suggest that the ability of E. dermatitidis to survive γ-radiation exposure is determined by the prior and the current metabolic state of the cells as well as DNA repair mechanisms, and that small changes in these conditions can lead to large effects in radiation resistance, which should be taken into account when understanding how diverse fungi recover from this unique stress.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- National Research Council Postdoctoral Research Associate, National Research Laboratory, Washington, DC, USA
| | - Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, National Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Tanya Tschirhart
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Seongwon Kim
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Dagmar Leary
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
30
|
Schröter P, Hartmann L, Osen W, Baumann D, Offringa R, Eisel D, Debus J, Eichmüller SB, Rieken S. Radiation-induced alterations in immunogenicity of a murine pancreatic ductal adenocarcinoma cell line. Sci Rep 2020; 10:686. [PMID: 31959787 PMCID: PMC6971029 DOI: 10.1038/s41598-020-57456-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is highlighted by resistance to radiotherapy with the possible exception of hypofractionated irradiation. As single photon doses were reported to increase immunogenicity, we investigated dose-dependent irradiation effects on clonogenic survival, expression of immunologically relevant cell surface molecules and susceptibility to cytotoxic T cell (CTL) mediated killing using a murine PDA cell line. Clonogenicity decreased in a dose-responsive manner showing enhanced radioresistance at single photon doses below 5 Gy. Cell cycle analysis revealed a predominant G2/M arrest, being most pronounced 12 h after irradiation. Polyploidy increased in a dose- and time-dependent manner reaching a maximum frequency 60 h following irradiation with 10 Gy. Irradiation increased surface expression of MHC class I molecules and of immunological checkpoint molecules PDL-1 and CD73, especially at doses ≥ 5 Gy, but not of MHC class II molecules and CXCR4 receptors. Cytotoxicity assays revealed increased CTL lysis of PDA cells at doses ≥ 5 Gy. For the PDA cell line investigated, our data show for the first time that single photon doses ≥ 5 Gy effectively inhibit colony formation and induce a G2/M cell cycle arrest. Furthermore, expression levels of immunomodulatory cell surface molecules became altered possibly enhancing the susceptibility of tumour cells to CTL lysis.
Collapse
Affiliation(s)
- Philipp Schröter
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, D-69120, Heidelberg, Germany
| | - Laura Hartmann
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Daniel Baumann
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- University Hospital Heidelberg, Department of Surgery, Im Neuenheimer Feld 110, D-69120, Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- University Hospital Heidelberg, Department of Surgery, Im Neuenheimer Feld 110, D-69120, Heidelberg, Germany
| | - David Eisel
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Jürgen Debus
- University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, D-69120, Heidelberg, Germany
| | - Stefan B Eichmüller
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - Stefan Rieken
- University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, D-69120, Heidelberg, Germany
| |
Collapse
|
31
|
Stripay JL, Merchant TE, Roussel MF, Tinkle CL. Preclinical Models of Craniospinal Irradiation for Medulloblastoma. Cancers (Basel) 2020; 12:cancers12010133. [PMID: 31948065 PMCID: PMC7016884 DOI: 10.3390/cancers12010133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma is an embryonal tumor that shows a predilection for distant metastatic spread and leptomeningeal seeding. For most patients, optimal management of medulloblastoma includes maximum safe resection followed by adjuvant craniospinal irradiation (CSI) and chemotherapy. Although CSI is crucial in treating medulloblastoma, the realization that medulloblastoma is a heterogeneous disease comprising four distinct molecular subgroups (wingless [WNT], sonic hedgehog [SHH], Group 3 [G3], and Group 4 [G4]) with distinct clinical characteristics and prognoses has refocused efforts to better define the optimal role of CSI within and across disease subgroups. The ability to deliver clinically relevant CSI to preclinical models of medulloblastoma offers the potential to study radiation dose and volume effects on tumor control and toxicity in these subgroups and to identify subgroup-specific combination adjuvant therapies. Recent efforts have employed commercial image-guided small animal irradiation systems as well as custom approaches to deliver accurate and reproducible fractionated CSI in various preclinical models of medulloblastoma. Here, we provide an overview of the current clinical indications for, and technical aspects of, irradiation of pediatric medulloblastoma. We then review the current literature on preclinical modeling of and treatment interventions for medulloblastoma and conclude with a summary of challenges in the field of preclinical modeling of CSI for the treatment of leptomeningeal seeding tumors.
Collapse
Affiliation(s)
- Jennifer L. Stripay
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Thomas E. Merchant
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Martine F. Roussel
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Christopher L. Tinkle
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Correspondence: ; Tel.: +1-(901)-595-8735; Fax: +1-(901)-595-3113
| |
Collapse
|
32
|
Ji WO, Lee MH, Kim GH, Kim EH. Quantitation of the ROS production in plasma and radiation treatments of biotargets. Sci Rep 2019; 9:19837. [PMID: 31882663 PMCID: PMC6934759 DOI: 10.1038/s41598-019-56160-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Medical treatment utilizing non-thermal plasma is based on the production of reactive oxygen species (ROS) and their interactions with biomatters. On the basis of empirical data from practices, plasma treatment has been planned with regard to the setup of a plasma generator's parameters, including gas combination, gas-flow rate, and applied voltage. In this study, we quantitated plasma treatment in terms of the plasma dose on the target matter, which can be contrasted with the radiation dose to targets under radiation exposure. We measured the OH radical production in cell culture medium and intracellular ROS production from plasma treatment in comparison with those from X-ray exposure. The clonogenic cell deaths from plasma and X-ray exposures were also compared. In plasma treatment, the clonogenic cell death was better predicted by intracellular ROS production rather than by medium OH production.
Collapse
Affiliation(s)
- Wan-Ook Ji
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min-Ho Lee
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Gon-Ho Kim
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front Oncol 2019; 9:1009. [PMID: 31649878 PMCID: PMC6795692 DOI: 10.3389/fonc.2019.01009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy (RT) is widely used in cancer care strategies. Its effectiveness relies mainly on its ability to cause lethal damage to the DNA of cancer cells. However, some cancers have shown to be particularly radioresistant partly because of efficient and redundant DNA repair capacities. Therefore, RT efficacy might be enhanced by using drugs that can disrupt cancer cells' DNA repair machinery. Here we review the recent advances in the development of novel inhibitors of DNA repair pathways in combination with RT. A large number of these compounds are the subject of preclinical/clinical studies and target key enzymes involved in one or more DNA repair pathways. A totally different strategy consists of mimicking DNA double-strand breaks via small interfering DNA (siDNA) to bait the whole DNA repair machinery, leading to its global inhibition.
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France.,Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Pathology Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre Verrelle
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France
| |
Collapse
|
34
|
Manem VS, Lambie M, Smith I, Smirnov P, Kofia V, Freeman M, Koritzinsky M, Abazeed ME, Haibe-Kains B, Bratman SV. Modeling Cellular Response in Large-Scale Radiogenomic Databases to Advance Precision Radiotherapy. Cancer Res 2019; 79:6227-6237. [PMID: 31558563 DOI: 10.1158/0008-5472.can-19-0179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/03/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
Radiotherapy is integral to the care of a majority of patients with cancer. Despite differences in tumor responses to radiation (radioresponse), dose prescriptions are not currently tailored to individual patients. Recent large-scale cancer cell line databases hold the promise of unravelling the complex molecular arrangements underlying cellular response to radiation, which is critical for novel predictive biomarker discovery. Here, we present RadioGx, a computational platform for integrative analyses of radioresponse using radiogenomic databases. We fit the dose-response data within RadioGx to the linear-quadratic model. The imputed survival across a range of dose levels (AUC) was a robust radioresponse indicator that correlated with biological processes known to underpin the cellular response to radiation. Using AUC as a metric for further investigations, we found that radiation sensitivity was significantly associated with disruptive mutations in genes related to nonhomologous end joining. Next, by simulating the effects of different oxygen levels, we identified putative genes that may influence radioresponse specifically under hypoxic conditions. Furthermore, using transcriptomic data, we found evidence for tissue-specific determinants of radioresponse, suggesting that tumor type could influence the validity of putative predictive biomarkers of radioresponse. Finally, integrating radioresponse with drug response data, we found that drug classes impacting the cytoskeleton, DNA replication, and mitosis display similar therapeutic effects to ionizing radiation on cancer cell lines. In summary, RadioGx provides a unique computational toolbox for hypothesis generation to advance preclinical research for radiation oncology and precision medicine. SIGNIFICANCE: The RadioGx computational platform enables integrative analyses of cellular response to radiation with drug responses and genome-wide molecular data. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/24/6227/F1.large.jpg.See related commentary by Spratt and Speers, p. 6076.
Collapse
Affiliation(s)
- Venkata Sk Manem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Meghan Lambie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ian Smith
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada
| | - Petr Smirnov
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada
| | - Victor Kofia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Freeman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed E Abazeed
- Department of Translational Hematology Oncology Research, Cleveland, Ohio.,Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Kim HJ, Chang JS, Roh MR, Oh BH, Chung KY, Shin SJ, Koom WS. Effect of Radiotherapy Combined With Pembrolizumab on Local Tumor Control in Mucosal Melanoma Patients. Front Oncol 2019; 9:835. [PMID: 31552171 PMCID: PMC6738222 DOI: 10.3389/fonc.2019.00835] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Mucosal melanoma is an aggressive malignancy with a poor response to conventional therapies. The efficacy of radiotherapy (RT), especially combined with immune checkpoint inhibitors (ICIs), for this rare melanoma subtype remains unknown. We investigated the reciprocal effect of RT and ICI on mucosal melanoma patients. Materials and Methods: We identified 23 patients with 31 tumors who were treated with RT between July 2008 and February 2017. All patients received RT for primary or metastatic gross tumor mass with a median dose of 4 Gy per fraction (range 1.8–12 Gy). Eleven patients (14 lesions) were treated with RT alone, whereas 12 (17 lesions) were administered pembrolizumab combined with RT (ICI+RT group). The local control (LC) and adverse event (AE) rates were compared between the groups. Eight patients with metastatic mucosal melanoma treated with ICI alone during the same study period were included as a comparison group. Results: The median follow-up period was 17.4 (range 3.7–95.2) months. The target lesion control rate at 1-year was significantly higher in the ICI+RT group than in the RT-alone group or ICI-alone group (94.1% vs. 57.1% vs. 25%; P < 0.05). No abscopal effect was observed in our cohort. Treatment-related AEs were not significantly increased in the combined treatment group compared with the RT-alone group (P > 0.05). No grade ≥3 AEs occurred in the ICI+RT group. Conclusions: Besides RT acting as an immune adjuvant, ICI might have a radiosensitizing effect and may increase LC without severe toxicity. We have initiated a phase II study to determine the effects of RT in patients with melanoma undergoing anti-PD1 (NCT04017897).
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Radiation Oncology, Gachon University Gil Hospital, Incheon, South Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Ryung Roh
- Department of Dermatology, Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Byung Ho Oh
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee-Yang Chung
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Matsui T, Nuryadi E, Komatsu S, Hirota Y, Shibata A, Oike T, Nakano T. Robustness of Clonogenic Assays as a Biomarker for Cancer Cell Radiosensitivity. Int J Mol Sci 2019; 20:ijms20174148. [PMID: 31450688 PMCID: PMC6747107 DOI: 10.3390/ijms20174148] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023] Open
Abstract
Photon radiation therapy is a major curative treatment for cancer. However, the lack of robust predictive biomarkers for radiosensitivity precludes personalized radiation therapy. Clonogenic assays are the gold standard method for measuring the radiosensitivity of cancer cells. Although a large number of publications describe the use of clonogenic assays to measure cancer cell radiosensitivity, the robustness of results from different studies is unclear. To address this, we conducted a comprehensive detailed literature search of 256 common cancer cell lines and identified the eight cell lines most-frequently examined for photon sensitivity using clonogenic assays. Survival endpoints and experimental parameters from all 620 relevant experiments were compiled and analyzed. We found that the coefficients of variation for SF2 (surviving fraction after 2 Gy irradiation) and for D10 (dose that yields a surviving fraction of 10%) were below 30% for all cell lines, indicating that SF2 and D10 have acceptable inter-assay precision. These data support further analysis of published data on clonogenic assays using SF2 and D10 as survival endpoints, which facilitates robust identification of biological profiles representative of cancer cell sensitivity to photons.
Collapse
Affiliation(s)
- Toshiaki Matsui
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Endang Nuryadi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Department of Radiotherapy, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Shuichiro Komatsu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuka Hirota
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan.
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
37
|
Radiosensitivity Differences between EGFR Mutant and Wild-Type Lung Cancer Cells are Larger at Lower Doses. Int J Mol Sci 2019; 20:ijms20153635. [PMID: 31349558 PMCID: PMC6696360 DOI: 10.3390/ijms20153635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022] Open
Abstract
In the era of precision medicine, radiotherapy strategies should be determined based on genetic profiles that predict tumor radiosensitivity. Accordingly, pre-clinical research aimed at discovering clinically applicable genetic profiles is needed. However, how a given genetic profile affects cancer cell radiosensitivity is unclear. To address this issue, we performed a pilot in vitro study by utilizing EGFR mutational status as a model for genetic profile. Clonogenic assays of EGFR mutant (n = 6) and wild-type (n = 9) non-small cell lung carcinoma (NSCLC) cell lines were performed independently by two oncologists. Clonogenic survival parameters SF2, SF4, SF6, SF8, mean inactivation dose (MID), D10, D50, α, and β were obtained using the linear quadratic model. The differences in the clonogenic survival parameters between the EGFR mutant and wild-type cell lines were assessed using the Mann-Whitney U test. As a result, for both datasets, the p values for SF2, SF4, D50, α, and α/β were below 0.05, and those for SF2 were lowest. These data indicate that a genetic profile of NSCLC cell lines might be predictive for their radiation response; i.e., EGFR mutant cell lines might be more sensitive to low dose- and low fraction sized-irradiation.
Collapse
|
38
|
Song KH, Jung SY, Park JI, Ahn J, Park JK, Um HD, Park IC, Hwang SG, Ha H, Song JY. Inhibition of Karyopherin-α2 Augments Radiation-Induced Cell Death by Perturbing BRCA1-Mediated DNA Repair. Int J Mol Sci 2019; 20:ijms20112843. [PMID: 31212646 PMCID: PMC6600173 DOI: 10.3390/ijms20112843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Ionizing radiation (IR) has been widely used in the treatment of cancer. Radiation-induced DNA damage triggers the DNA damage response (DDR), which can confer radioresistance and early local recurrence by activating DNA repair pathways. Since karyopherin-α2 (KPNA2), playing an important role in nucleocytoplasmic transport, was significantly increased by IR in our previous study, we aimed to determine the function of KPNA2 with regard to DDR. Exposure to radiation upregulated KPNA2 expression in human colorectal cancer HT29 and HCT116 cells and breast carcinoma MDA-MB-231 cells together with the increased expression of DNA repair protein BRCA1. The knockdown of KPNA2 effectively increased apoptotic cell death via inhibition of BRCA1 nuclear import following IR. Therefore, we propose that KPNA2 is a potential target for overcoming radioresistance via interruption to DDR.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - Hong-Duck Um
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - In-Chul Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| |
Collapse
|
39
|
de Jong Y, Ingola M, Briaire-de Bruijn IH, Kruisselbrink AB, Venneker S, Palubeckaite I, Heijs BPAM, Cleton-Jansen AM, Haas RLM, Bovée JVMG. Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clin Sarcoma Res 2019; 9:9. [PMID: 31160965 PMCID: PMC6540537 DOI: 10.1186/s13569-019-0119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Conventional chondrosarcomas are malignant cartilage tumors considered radioresistant. Nevertheless, retrospective series show a small but significant survival benefit for patients with locally advanced disease treated with radiotherapy. And, in daily practice when considered inoperable their irradiation is an accepted indication for proton beam radiotherapy. Therefore, we investigated the sensitivity of chondrosarcoma cell lines and -tissue samples towards radiotherapy and screened for biomarkers to identify predictors of radiosensitivity. Methods Proliferation and clonogenic assays were performed in chondrosarcoma cell lines after γ-radiation in combination with mutant IDH1 inhibitor AGI-5198. In addition, glutathione levels were measured using mass spectrometry. Chondrosarcoma tumor explants were irradiated after which γ-H2AX foci were counted. Mutation analysis was performed using the Ion AmpliSeq™ Cancer Hotspot Panel and immunohistochemical staining’s were performed for P-S6, LC-3B, P53, Bcl-2, Bcl-xl and Survivin. Results were correlated with the number of γ-H2AX foci. Results Chondrosarcoma cell lines were variably γ-radiation resistant. No difference in radiosensitivity, nor glutathione levels was observed after treatment with AGI-5198. Irradiated chondrosarcoma patient tissue presented a variable increase in γ-H2AX foci compared to non-radiated tissue. Samples were divided into two groups, high and low radioresistant, based on the amount of γ-H2AX foci. All four highly resistant tumors exhibited mutations in the pRb pathway, while none of the less radioresistant tumors showed mutations in these genes. Conclusions Chondrosarcoma cell lines as well as primary tumors are variably radioresistant, particularly in case of a defective Rb pathway. Whether selection for radiotherapy can be based upon an intact Rb pathway should be further investigated. Electronic supplementary material The online version of this article (10.1186/s13569-019-0119-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvonne de Jong
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Martha Ingola
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge H Briaire-de Bruijn
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alwine B Kruisselbrink
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sanne Venneker
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ieva Palubeckaite
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bram P A M Heijs
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Marie Cleton-Jansen
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Rick L M Haas
- 3Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands.,4Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Judith V M G Bovée
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
40
|
Becker BV, Majewski M, Abend M, Palnek A, Nestler K, Port M, Ullmann R. Gene expression changes in human iPSC-derived cardiomyocytes after X-ray irradiation. Int J Radiat Biol 2018; 94:1095-1103. [PMID: 30247079 DOI: 10.1080/09553002.2018.1516908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Radiation-induced heart disease caused by cardiac exposure to ionizing radiation comprises a variety of cardiovascular effects. Research in this field has been hampered by limited availability of clinical samples and appropriate test models. In this study, we wanted to elucidate the molecular mechanisms underlying electrophysiological changes, which we have observed in a previous study. Materials and methods: We employed RNA deep-sequencing of human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) 48 h after 5 Gy X-ray irradiation. By comparison to public data from hiPSC-CMs and human myocardium, we verified the expression of cardiac-specific genes in hiPSC-CMs. Results were validated by qRT-PCR. Results: Differentially gene expression analysis identified 39 and 481 significantly up- and down-regulated genes after irradiation, respectively. Besides, a large fraction of genes associated with cell cycle processes, we identified genes implicated in cardiac calcium homeostasis (PDE3B), oxidative stress response (FDXR and SPATA18) and the etiology of cardiomyopathy (SGCD, BBC3 and GDF15). Conclusions: Notably, observed gene expression characteristics specific to hiPSC-CMs might be relevant regarding further investigations of the response to external stressors like radiation. The genes and biological processes highlighted in our study present promising starting points for functional follow-up studies for which hiPSC-CMs could pose an appropriate cell model when cell type specific peculiarities are taken into account.
Collapse
Affiliation(s)
- Benjamin V Becker
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Matthäus Majewski
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Andreas Palnek
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Kai Nestler
- b Bundeswehr Institute for Preventive Medicine , Koblenz , Germany
| | - Matthias Port
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Reinhard Ullmann
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| |
Collapse
|
41
|
The role of radiation therapy in the treatment of metastatic cancer. Clin Exp Metastasis 2018; 35:535-546. [PMID: 30062507 DOI: 10.1007/s10585-018-9926-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
Radiation therapy continues to play an important role in the management of cancer. In this review, we discuss the use of radiation therapy to target and control micrometastatic disease (adjuvant use of radiation), or using stereotactic radiation therapy to address small volumes of gross disease, such as oligometastases, and finally the use of radiation therapy in the era of immunotherapy. Radiation therapy is commonly used to treat nodal basins suspected of harboring microscopic disease. More recently, computer and technical innovations have allowed radiation oncologists to treat small volumes of gross disease within the brain and also in the body with great success, adding to the cancer armamentarium. This modality of cancer treatment that began shortly after the discovery of X-rays by William Roentgen continues to evolve and finds new clinical applications which minimize toxicity while increasing effectiveness. The newly discovered interactions of high dose/fraction radiation (stereotactic radiosurgery) with immune check point inhibitors in melanoma is the latest example of how synergism can be achieved between two different modalities thus increasing the therapeutic ratio to control metastatic cancer.
Collapse
|
42
|
van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, Kok HP. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 2018. [PMID: 29769103 DOI: 10.1186/s13014a018-1040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD2), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy. METHODS AND MATERIALS We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I2 statistic, i.e. the percentage of variance in reported values not explained by chance. RESULTS A large heterogeneity in LQ parameters was found within and between studies (I2 > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control). CONCLUSIONS The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour should be selected carefully, based on tumour site, histology and the applied LQ model. To account for uncertainties in LQ parameter estimates, exploring a range of values is recommended.
Collapse
Affiliation(s)
- C M van Leeuwen
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A L Oei
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - N A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L J A Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - H P Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.
| |
Collapse
|
43
|
van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, Kok HP. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 2018; 13:96. [PMID: 29769103 PMCID: PMC5956964 DOI: 10.1186/s13014-018-1040-z] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Background Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD2), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy. Methods and materials We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I2 statistic, i.e. the percentage of variance in reported values not explained by chance. Results A large heterogeneity in LQ parameters was found within and between studies (I2 > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control). Conclusions The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour should be selected carefully, based on tumour site, histology and the applied LQ model. To account for uncertainties in LQ parameter estimates, exploring a range of values is recommended. Electronic supplementary material The online version of this article (10.1186/s13014-018-1040-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C M van Leeuwen
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A L Oei
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - N A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L J A Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - H P Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.
| |
Collapse
|
44
|
Nolan C, Deangelis LM. Overview of metastatic disease of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 149:3-23. [PMID: 29307359 DOI: 10.1016/b978-0-12-811161-1.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In 2016, the American Society of Clinical Oncology reported that 1.7 million Americans were diagnosed with cancer; this number will rise to 2.3 million in the United States and 22 million worldwide in 2030. This rising need is being met by an explosion of new cancer therapies, including: immune checkpoint inhibitors, T-cell therapies, tumor vaccines, antiangiogenic therapies, and various targeted therapies. This armamentarium of targeted therapies has led to better systemic control of disease and longer patient overall survival (OS). The incidence of metastatic disease to the central nervous system (CNS) is rising as patients are living longer with these more effective systemic therapies. Prolonged OS allows increased time to develop CNS metastases. The CNS is also a sanctuary for metastatic tumor cells that are protected from full exposure to therapeutic concentrations of most anticancer agents by the blood-brain barrier, the tumor microenvironment, and immune system. In addition, CNS metastases often develop late in the course of the disease, so patients are frequently heavily pretreated, resulting in drug resistance. Although genomic profiling has led to more effective therapies for systemic disease, the same therapy may not be effective in treating CNS disease, not only due to failure of blood-brain barrier penetration, but from discordance between the molecular profile in systemic and CNS tumor.
Collapse
Affiliation(s)
- Craig Nolan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Lisa M Deangelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
45
|
Abstract
Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research. Radiomic analysis exploits sophisticated image analysis tools and the rapid development and validation of medical imaging data that uses image-based signatures for precision diagnosis and treatment, providing a powerful tool in modern medicine. Herein, we describe the process of radiomics, its pitfalls, challenges, opportunities, and its capacity to improve clinical decision making, emphasizing the utility for patients with cancer. Currently, the field of radiomics lacks standardized evaluation of both the scientific integrity and the clinical relevance of the numerous published radiomics investigations resulting from the rapid growth of this area. Rigorous evaluation criteria and reporting guidelines need to be established in order for radiomics to mature as a discipline. Herein, we provide guidance for investigations to meet this urgent need in the field of radiomics.
Collapse
|
46
|
Lin YF, Chen BP, Li W, Perko Z, Wang Y, Testa M, Schneider R, Lu HM, Gerweck LE. The Relative Biological Effect of Spread-Out Bragg Peak Protons in Sensitive and Resistant Tumor Cells. Int J Part Ther 2017; 4:33-39. [DOI: 10.14338/ijpt-17-00025.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yu-Fen Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Benjamin P. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Wende Li
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Zoltan Perko
- Department of Radiation, Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Yi Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mauro Testa
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Schneider
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Hsaio-Ming Lu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Leo E. Gerweck
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
47
|
In vitro investigation of the dose-rate effect on the biological effectiveness of megavoltage X-ray radiation doses. Appl Radiat Isot 2017; 128:114-119. [DOI: 10.1016/j.apradiso.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/24/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
|
48
|
McMahon SJ, McNamara AL, Schuemann J, Paganetti H, Prise KM. A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Sci Rep 2017; 7:10790. [PMID: 28883414 PMCID: PMC5589818 DOI: 10.1038/s41598-017-10820-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/15/2017] [Indexed: 12/04/2022] Open
Abstract
Predicting the responses of biological systems to ionising radiation is extremely challenging, particularly when comparing X-rays and heavy charged particles, due to the uncertainty in their Relative Biological Effectiveness (RBE). Here we assess the power of a novel mechanistic model of DNA damage repair to predict the sensitivity of cells to X-ray, proton or carbon ion exposures in vitro against over 800 published experiments. By specifying the phenotypic characteristics of cells, the model was able to effectively stratify X-ray radiosensitivity (R2 = 0.74) without the use of any cell-specific fitting parameters. This model was extended to charged particle exposures by integrating Monte Carlo calculated dose distributions, and successfully fit to cellular proton radiosensitivity using a single dose-related parameter (R2 = 0.66). Using these parameters, the model was also shown to be predictive of carbon ion RBE (R2 = 0.77). This model can effectively predict cellular sensitivity to a range of radiations, and has the potential to support developments of personalised radiotherapy independent of radiation type.
Collapse
Affiliation(s)
- Stephen J McMahon
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland. .,Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit St, Boston, MA, 02114, USA.
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit St, Boston, MA, 02114, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit St, Boston, MA, 02114, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit St, Boston, MA, 02114, USA
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland
| |
Collapse
|
49
|
Pessina F, Navarria P, Tomatis S, Cozzi L, Franzese C, Di Guardo L, Ascolese AM, Reggiori G, Franceschini D, Del Vecchio M, Bello L, Scorsetti M. Outcome Evaluation of Patients with Limited Brain Metastasis From Malignant Melanoma, Treated with Surgery, Radiation Therapy, and Targeted Therapy. World Neurosurg 2017; 105:184-190. [DOI: 10.1016/j.wneu.2017.05.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022]
|
50
|
Cui L, Her S, Borst GR, Bristow RG, Jaffray DA, Allen C. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother Oncol 2017; 124:344-356. [PMID: 28784439 DOI: 10.1016/j.radonc.2017.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
The utilization of gold nanoparticles (AuNPs) as radiosensitizers has shown great promise in pre-clinical research. In the current review, the physical, chemical, and biological pathways via which AuNPs enhance the effects of radiation are presented and discussed. In particular, the impact of AuNPs on the 5 Rs in radiobiology, namely repair, reoxygenation, redistribution, repopulation, and intrinsic radiosensitivity, which determine the extent of radiation enhancement effects are elucidated. Key findings from previous studies are outlined. In addition, crucial parameters including the physicochemical properties of AuNPs, route of administration, dosing schedule of AuNPs and irradiation, as well as type of radiation therapy, are highlighted; the optimal selection and combination of these parameters enable the achievement of a greater therapeutic window for AuNP sensitized radiotherapy. Future directions are put forward as a means to provide guidelines for successful translation of AuNPs to clinical applications as radiosensitizers.
Collapse
Affiliation(s)
- Lei Cui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Sohyoung Her
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Gerben R Borst
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Robert G Bristow
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada; Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David A Jaffray
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; TECHNA Institute and Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Techna Institute, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Christine Allen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|