1
|
Negrón-Piñeiro LJ, Di Gregorio A. Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network. Integr Comp Biol 2024; 64:1194-1213. [PMID: 38914463 PMCID: PMC11579531 DOI: 10.1093/icb/icae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins able to modulate the timing, location, and levels of gene expression by binding to regulatory DNA regions. Therefore, the repertoire of TFs present in the genome of a multicellular organism and the expression of variable constellations of TFs in different cellular cohorts determine the distinctive characteristics of developing tissues and organs. The information on tissue-specific assortments of TFs, their cross-regulatory interactions, and the genes/regulatory regions targeted by each TF is summarized in gene regulatory networks (GRNs), which provide genetic blueprints for the specification, development, and differentiation of multicellular structures. In this study, we review recent transcriptomic studies focused on the complement of TFs expressed in the notochord, a distinctive feature of all chordates. We analyzed notochord-specific datasets available from organisms representative of the three chordate subphyla, and highlighted lineage-specific variations in the suite of TFs expressed in their notochord. We framed the resulting findings within a provisional evolutionary scenario, which allows the formulation of hypotheses on the genetic/genomic changes that sculpted the structure and function of the notochord on an evolutionary scale.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
2
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
3
|
Ristoratore F. A journey with ascidians in the pigmentation world. Genesis 2023; 61:e23569. [PMID: 37937350 DOI: 10.1002/dvg.23569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023]
Affiliation(s)
- Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
4
|
Di Gregorio A. Searching for marine embryos, finding my path. Genesis 2023; 61:e23576. [PMID: 37994390 PMCID: PMC10773608 DOI: 10.1002/dvg.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
5
|
Spagnuolo A. Our motto: Ciona is beautiful! Genesis 2023; 61:e23564. [PMID: 37974336 DOI: 10.1002/dvg.23564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
6
|
Di Gregorio A, Locascio A, Ristoratore F, Spagnuolo A. Women researchers in tunicate biology at the Stazione Zoologica Anton Dohrn in Napoli. Genesis 2023; 61:e23573. [PMID: 37969000 PMCID: PMC11606312 DOI: 10.1002/dvg.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| |
Collapse
|
7
|
Raghavan R, Coppola U, Wu Y, Ihewulezi C, Negrón-Piñeiro LJ, Maguire JE, Hong J, Cunningham M, Kim HJ, Albert TJ, Ali AM, Saint-Jeannet JP, Ristoratore F, Dahia CL, Di Gregorio A. Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum. BMC Ecol Evol 2023; 23:63. [PMID: 37891482 PMCID: PMC10605842 DOI: 10.1186/s12862-023-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 10/29/2023] Open
Abstract
The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.
Collapse
Affiliation(s)
- Rahul Raghavan
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Ugo Coppola
- Stazione Zoologica 'A. Dohrn', Villa Comunale 1, 80121, Naples, Italy
- Present Address: Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chibuike Ihewulezi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Julie E Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Justin Hong
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Matthew Cunningham
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Han Jo Kim
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd J Albert
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | | | - Chitra L Dahia
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY, 10065, USA.
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
8
|
Auradkar A, Bulger EA, Devkota S, McGinnis W, Bier E. Dissecting the evolutionary role of the Hox gene proboscipedia in Drosophila mouthpart diversification by full locus replacement. SCIENCE ADVANCES 2021; 7:eabk1003. [PMID: 34757777 PMCID: PMC8580299 DOI: 10.1126/sciadv.abk1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Hox genes determine positional codes along the head-to-tail axis. Here, we replaced the entire Drosophila melanogaster proboscipedia (pb) Hox locus, which controls the development of the proboscis and maxillary palps, with that from Drosophila mimica, a related species with highly modified mouthparts. The D. mimica replacement rescues most aspects of adult proboscis morphology; however, the shape and orientation of maxillary palps were modified, resembling D. mimica and closely related species. Expressing the D. mimica Pb protein in the D. melanogaster pattern fully rescued D. melanogaster morphology. However, the expression pattern directed by D. mimica pb cis-regulatory sequences differed from that of D. melanogaster pb in cells that produce altered maxillary structures, indicating that pb regulatory sequences can evolve in related species to alter morphology.
Collapse
Affiliation(s)
- Ankush Auradkar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA
| | - Emily A. Bulger
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, and Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - William McGinnis
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA
| |
Collapse
|
9
|
Fodor ACA, Powers MM, Andrykovich K, Liu J, Lowe EK, Brown CT, Di Gregorio A, Stolfi A, Swalla BJ. The Degenerate Tale of Ascidian Tails. Integr Comp Biol 2021; 61:358-369. [PMID: 33881514 PMCID: PMC10452958 DOI: 10.1093/icb/icab022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ascidians are invertebrate chordates, with swimming chordate tadpole larvae that have distinct heads and tails. The head contains the small brain, sensory organs, including the ocellus (light) and otolith (gravity) and the presumptive endoderm, while the tail has a notochord surrounded by muscle cells and a dorsal nerve cord. One of the chordate features is a post-anal tail. Ascidian tadpoles are nonfeeding, and their tails are critical for larval locomotion. After hatching the larvae swim up toward light and are carried by the tide and ocean currents. When competent to settle, ascidian tadpole larvae swim down, away from light, to settle and metamorphose into a sessile adult. Tunicates are classified as chordates because of their chordate tadpole larvae; in contrast, the sessile adult has a U-shaped gut and very derived body plan, looking nothing like a chordate. There is one group of ascidians, the Molgulidae, where many species are known to have tailless larvae. The Swalla Lab has been studying the evolution of tailless ascidian larvae in this clade for over 30 years and has shown that tailless larvae have evolved independently several times in this clade. Comparison of the genomes of two closely related species, the tailed Molgula oculata and tailless Molgula occulta reveals much synteny, but there have been multiple insertions and deletions that have disrupted larval genes in the tailless species. Genomics and transcriptomics have previously shown that there are pseudogenes expressed in the tailless embryos, suggesting that the partial rescue of tailed features in their hybrid larvae is due to the expression of intact genes from the tailed parent. Yet surprisingly, we find that the notochord gene regulatory network is mostly intact in the tailless M. occulta, although the notochord does not converge and extend and remains as an aggregate of cells we call the "notoball." We expect that eventually many of the larval gene networks will become evolutionarily lost in tailless ascidians and the larval body plan abandoned, with eggs developing directly into an adult. Here we review the current evolutionary and developmental evidence on how the molgulids lost their tails.
Collapse
Affiliation(s)
- Alexander C A Fodor
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Megan M Powers
- Biology Department, University of Washington, Seattle, WA 98195, USA
| | - Kristin Andrykovich
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Jiatai Liu
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Elijah K Lowe
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
| | - C Titus Brown
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
- Population Health and Reproduction, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY 10010, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
| | - Billie J Swalla
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
| |
Collapse
|
10
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
11
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
12
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
13
|
Chen B, Piel WH, Monteiro A. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution. INSECT SCIENCE 2016; 23:335-352. [PMID: 26898323 DOI: 10.1111/1744-7917.12327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China
| | - William H Piel
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
14
|
Matassi G, Imai JH, Di Gregorio A. Molecular phylogeny of four homeobox genes from the purple sea star Pisaster ochraceus. Dev Genes Evol 2015; 225:359-65. [PMID: 26432455 DOI: 10.1007/s00427-015-0516-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
Homeobox genes cloned from the purple sea star Pisaster ochraceus (Phylum Echinodermata/Class Asteroidea) were used along with related sequences available from members of other representative animal phyla to generate molecular phylogenies for Distal-less/Dlx, Hox5, Hox7, and Hox9/10 homeobox genes. Phylogenetic relationships were inferred based on the predicted 60 amino acid homeodomain, using amino acid (AA) and nucleotide (NT) models as well as the recently developed codon substitution models of sequence evolution. The resulting phylogenetic trees were mostly congruent with the consensus species-tree, grouping these newly identified genes with those isolated from other Asteroidea. This analysis also allowed a preliminary comparison of the performance of codon models with that of NT and AA evolutionary models in the inference of homeobox phylogeny. We found that, overall, the NT models displayed low reliability in recovering major clades at the Superphylum/Phylum level, and that codon models were slightly more dependable than AA models. Remarkably, in the majority of cases, codon substitution models seemed to outperform both AA and NT models at both the Class level and homeobox paralogy-group level of classification.
Collapse
Affiliation(s)
- Giorgio Matassi
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy.
| | - Janice Hitomi Imai
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY, 10010, USA.
| |
Collapse
|
15
|
Thompson JM, Di Gregorio A. Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2014; 53:82-104. [PMID: 25378051 DOI: 10.1002/dvg.22832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Insulin plays an extensively characterized role in the control of sugar metabolism, growth and homeostasis in a wide range of organisms. In vertebrate chordates, insulin is mainly produced by the beta cells of the endocrine pancreas, while in non-chordate animals insulin-producing cells are mainly found in the nervous system and/or scattered along the digestive tract. However, recent studies have indicated the notochord, the defining feature of the chordate phylum, as an additional site of expression of insulin-like peptides. Here we show that two of the three insulin-like genes identified in Ciona intestinalis, an invertebrate chordate with a dual life cycle, are first expressed in the developing notochord during embryogenesis and transition to distinct areas of the adult digestive tract after metamorphosis. In addition, we present data suggesting that the transcription factor Ciona Brachyury is involved in the control of notochord expression of at least one of these genes, Ciona insulin-like 2. Finally, we review the information currently available on insulin-producing cells in ascidians and on pancreas-related transcription factors that might control their expression.
Collapse
Affiliation(s)
- Jordan M Thompson
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York
| | | |
Collapse
|
16
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
17
|
Kugler JE, Passamaneck YJ, Feldman TG, Beh J, Regnier TW, Di Gregorio A. Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis. Genesis 2009; 46:697-710. [PMID: 18802963 DOI: 10.1002/dvg.20403] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reconstruct a minimum complement of notochord genes evolutionarily conserved across chordates, we scanned the Ciona intestinalis genome using the sequences of 182 genes reported to be expressed in the notochord of different vertebrates and identified 139 candidate notochord genes. For 66 of these Ciona genes expression data were already available, hence we analyzed the expression of the remaining 73 genes and found notochord expression for 20. The predicted products of the newly identified notochord genes range from the transcription factors Ci-XBPa and Ci-miER1 to extracellular matrix proteins. We examined the expression of the newly identified notochord genes in embryos ectopically expressing Ciona Brachyury (Ci-Bra) and in embryos expressing a repressor form of this transcription factor in the notochord, and we found that while a subset of the genes examined are clearly responsive to Ci-Bra, other genes are not affected by alterations in its levels. We provide a first description of notochord genes that are not evidently influenced by the ectopic expression of Ci-Bra and we propose alternative regulatory mechanisms that might control their transcription.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kikuta H, Fredman D, Rinkwitz S, Lenhard B, Becker TS. Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes. Genome Biol 2007; 8 Suppl 1:S4. [PMID: 18047696 PMCID: PMC2106839 DOI: 10.1186/gb-2007-8-s1-s4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional hotspots uncovered areas around developmental regulatory genes in which an insertion results in the same global expression pattern, irrespective of exact position. These areas coincide with vertebrate chromosomal segments containing identical gene order; a phenomenon known as conserved synteny and thought to be a vestige of evolution. Genomic comparative studies have found large numbers of highly conserved noncoding elements (HCNEs) spanning these and other loci. HCNEs are thought to act as transcriptional enhancers based on the finding that many of those that have been tested direct tissue specific expression in transient or transgenic assays. Although gene order in hox and other gene clusters has long been known to be conserved because of shared regulatory sequences or overlapping transcriptional units, the chromosomal areas found through insertional hotspots contain only one or a few developmental regulatory genes as well as phylogenetically unrelated genes. We have termed these regions genomic regulatory blocks (GRBs), and show that they underlie the phenomenon of conserved synteny through all sequenced vertebrate genomes. After teleost whole genome duplication, a subset of GRBs were retained in two copies, underwent degenerative changes compared with tetrapod loci that exist as single copy, and that therefore can be viewed as representing the ancestral form. We discuss these findings in light of evolution of vertebrate chromosomal architecture and the identification of human disease mutations.
Collapse
Affiliation(s)
- Hiroshi Kikuta
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormoehlensgate, 5008 Bergen, Norway
| | | | | | | | | |
Collapse
|
19
|
Aboitiz F, Montiel J. Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 2007; 18:311-42. [PMID: 18019612 DOI: 10.1515/revneuro.2007.18.3-4.311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article provides an overview of signaling processes during early specification of the anterior neural tube, with special emphasis on the telencephalon. A series of signaling systems based on the action of distinct morphogens acts at different developmental stages, specifying interacting developmental fields that define axes of differentiation in the rostrocaudal and the dorsoventral domains. Interestingly, many of these signaling systems are co-opted for several differentiation processes. This strategy provides a simple and efficient mechanism to generate novel structures in evolution, and may have been especially important in the origin of the telencephalon and the mammalian cerebral cortex. For example, the action of fibroblast growth factor (FGF) secreted in early stages from the anterior neural ridge, but in later stages from the dorsal anterior forebrain, may have been a key factor in the early differentiation of the ventral telencephalon and in the eventual expansion of the mammalian neocortex. Likewise, bone morphogenetic proteins (BMPs) participate at several stages in neural patterning, even if early neural induction consists of the inhibition of the BMP pathway. BMPs, secreted dorsally, interact with FGFs in the frontal aspect of the hemispheres, and with PAX6-dependent signaling sources located laterally, to pattern the dorsal telencephalon. The actions of other morphogens are also described in this context, such as the ventralizing factor SHH, the dorsalizing element GLI3, and other factors related to the dorsomedial telencephalon such as WNTs and EMXs. The main conclusion we draw from this review is the well-known phylogenetic and developmental conservatism of signaling pathways, which in evolution have been applied in different embryological contexts, generating novel interactions between morphogenetic fields and leading to the generation of new morphological structures.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría y Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | |
Collapse
|
20
|
|
21
|
Cartwright P, Schierwater B, Buss LW. Expression of a Gsx parahox gene, Cnox-2, in colony ontogeny in Hydractinia (Cnidaria: Hydrozoa). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:460-9. [PMID: 16615106 DOI: 10.1002/jez.b.21106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ontogeny of colonial animals is markedly distinct from that of solitary animals, yet no regulatory genes have thus far been implicated in colonial development. In cnidarians, colony ontogeny is characterized by the production of a nexus of vascular stolons, from which the feeding and reproductive structures, called polyps, are budded. Here we describe and characterize the Gsx parahox gene, Cnox-2, in the colonial cnidarian Hydractinia symbiolongicarpus of the class Hydrozoa. Cnox-2 is expressed in prominent components of the colony-wide patterning system; in the epithelia of distal stolon tips and polyp bud rudiments. Both are regions of active morphogenetic activity, characterized by cytologically and behaviorally distinct epithelia. Experimental induction and elimination of stolonal tips result in up- and down-regulation, respectively, of Cnox-2 expression. In the developing polyp, Cnox-2 expression remains uniformly high throughout the period of axial differentiation. The differential oral-aboral Cnox-2 expression in the epithelia of the mature polyp, previously described for this and another hydrozoan, arises after oral structures have completed development. Differential Cnox-2 expression is, thus, associated with key aspects of patterning of both the colony and the polyp, a finding that is particularly striking given that polyp and colony form are dissociable in the evolution of Hydrozoa.
Collapse
Affiliation(s)
- Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | |
Collapse
|
22
|
D'Aniello S, D'Aniello E, Locascio A, Memoli A, Corrado M, Russo MT, Aniello F, Fucci L, Brown ER, Branno M. The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function. Differentiation 2006; 74:222-34. [PMID: 16759288 DOI: 10.1111/j.1432-0436.2006.00071.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.
Collapse
Affiliation(s)
- Salvatore D'Aniello
- Neurobiology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Deuterostome animals exhibit widely divergent body plans. Echinoderms have either radial or bilateral symmetry, hemichordates include bilateral enteropneust worms and colonial pterobranchs, and chordates possess a defined dorsal-ventral axis imposed on their anterior-posterior axis. Tunicates are chordates only as larvae, following metamorphosis the adults acquire a body plan unique for the deuterostomes. This paper examines larval and adult body plans in the deuterostomes and discusses two distinct ways of evolving divergent body plans. First, echinoderms and hemichordates have similar feeding larvae, but build a new adult body within or around their larvae. In hemichordates and many direct-developing echinoderms, the adult is built onto the larva, with the larval axes becoming the adult axes and the larval mouth becoming the adult mouth. In contrast, indirect-developing echinoderms undergo radical metamorphosis where adult axes are not the same as larval axes. A second way of evolving a divergent body plan is to become colonial, as seen in hemichordates and tunicates. Early embryonic development and gastrulation are similar in all deuterostomes, but, in chordates, the anterior-posterior axis is established at right angles to the animal-vegetal axis, in contrast to hemichordates and indirect-developing echinoderms. Hox gene sequences and anterior-posterior expression patterns illuminate deuterostome phylogenetic relationships and the evolution of unique adult body plans within monophyletic groups. Many genes that are considered vertebrate 'mesodermal' genes, such as nodal and brachyury T, are likely to ancestrally have been involved in the formation of the mouth and anus, and later were evolutionarily co-opted into mesoderm during vertebrate development.
Collapse
Affiliation(s)
- B J Swalla
- Center for Developmental Biology, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| |
Collapse
|
24
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
25
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
26
|
Stock DW. The Dlx gene complement of the leopard shark, Triakis semifasciata, resembles that of mammals: implications for genomic and morphological evolution of jawed vertebrates. Genetics 2005; 169:807-17. [PMID: 15489533 PMCID: PMC1449088 DOI: 10.1534/genetics.104.031831] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 10/29/2004] [Indexed: 11/18/2022] Open
Abstract
Extensive gene duplication is thought to have occurred in the vertebrate lineage after it diverged from cephalochordates and before the divergence of lobe- and ray-finned fishes, but the exact timing remains obscure. This timing was investigated by analysis of the Dlx gene family of a representative cartilaginous fish, the leopard shark, Triakis semifasciata. Dlx genes encode homeodomain transcription factors and are arranged in mammals as three convergently transcribed bigene clusters. Six Dlx genes were cloned from Triakis and shown to be orthologous to single mammalian Dlx genes. At least four of these are arranged in bigene clusters. Phylogenetic analyses of Dlx genes were used to propose an evolutionary scenario in which two genome duplications led to four Dlx bigene clusters in a common ancestor of jawed vertebrates, one of which was lost prior to the diversification of the group. Dlx genes are known to be involved in jaw development, and changes in Dlx gene number are mapped to the same branch of the vertebrate tree as the origin of jaws.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.
| |
Collapse
|
27
|
Abstract
Large-scale gene duplications occurred early in the vertebrate lineage after the split with protochordates. Thus, protochordate hormones and their receptors, transcription factors, and signaling pathways may be the foundation for the endocrine system in vertebrates. A number of hormones have been identified including cionin, a likely ancestor of cholecytokinin (CCK) and gastrin. Both insulin and insulin-like growth hormone (IGF) have been identified in separate cDNAs in a tunicate, whereas only a single insulin-like peptide was found in amphioxus. In tunicates, nine distinct forms of gonadotropin-releasing hormone (GnRH) are shown to induce gamete release, even though a pituitary gland and sex steroids are lacking. In both tunicates and amphioxus, there is evidence of some components of a thyroid system, but the lack of a sequenced genome for amphioxus has slowed progress in the structural identification of its hormones. Immunocytochemistry has been used to tentatively identify a number of hormones in protochordates, but structural and functional studies are needed. For receptors, protochordates have many vertebrate homologs of nuclear receptors, such as the thyroid, retinoic acid, and retinoid X receptors. Also, tunicates have cell surface receptors including the G-protein-coupled type, such as β-adrenergic, putative endocannabinoid, cionin (CCK-like), and two GnRH receptors. Several tyrosine kinase receptors include two epidermal growth factor (EGF) receptors (tunicates) and an insulin/IGF receptor (amphioxus). Interestingly, neither steroid receptors nor a full complement of enzymes for synthesis of sex steroids are encoded in the Ciona genome. Tunicates appear to have some but not all of the necessary molecules to develop a vertebrate-like pituitary or complete thyroid system.
Collapse
|
28
|
Russo MT, Donizetti A, Locascio A, D'Aniello S, Amoroso A, Aniello F, Fucci L, Branno M. Regulatory elements controlling Ci-msxb tissue-specific expression during Ciona intestinalis embryonic development. Dev Biol 2004; 267:517-28. [PMID: 15013810 DOI: 10.1016/j.ydbio.2003.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Revised: 11/04/2003] [Accepted: 11/04/2003] [Indexed: 10/26/2022]
Abstract
The msh/Msx family is a subclass of homeobox-containing genes suggested to perform a conserved function in the patterning of the early embryo. We had already isolated a member of this gene family (Ci-msxb) in Ciona intestinalis, which has a very complex expression pattern during embryogenesis. To identify the regulatory elements controlling its tissue-specific expression, we have characterized the gene structure and the regulatory upstream region. By electroporation experiments, we demonstrated that a 3.8-kb region located upstream of the gene contains all the regulatory elements able to reproduce its spatial expression pattern. Analyzing progressively truncated fragments of this region, three discrete and separate regions driving LacZ reporter gene expression in the ventral epidermis, primordial pharynx and neural territories have been identified. We further investigated the element(s) necessary for Ci-msxb activation in the nervous system during embryonic development by in vivo and in vitro experiments. Both electroporation and gel-shift assays of overlapping wild type and mutated oligonucleotides demonstrated that a unique sequence of 30 bp is involved in Ci-msxb neural activation from neurula to larva stage. This sequence contains consensus binding sites for various ubiquitous transcription factors such as TCF11 whose possible implication in formation of the regulatory complexes is discussed.
Collapse
Affiliation(s)
- Monia Teresa Russo
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica "A. Dohrn", Naples 80121, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wada S, Tokuoka M, Shoguchi E, Kobayashi K, Di Gregorio A, Spagnuolo A, Branno M, Kohara Y, Rokhsar D, Levine M, Saiga H, Satoh N, Satou Y. A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors. Dev Genes Evol 2003; 213:222-34. [PMID: 12736825 DOI: 10.1007/s00427-003-0321-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 03/11/2003] [Indexed: 11/25/2022]
Abstract
Homeobox-containing genes play crucial roles in various developmental processes, including body-plan specification, pattern formation and cell-type specification. The present study searched the draft genome sequence and cDNA/EST database of the basal chordate Ciona intestinalis to identify 83 homeobox-containing genes in this animal. This number of homeobox genes in the Ciona genome is smaller than that in the Caenorhabditis elegans, Drosophila melanogaster, human and mouse genomes. Of the 83 genes, 76 have possible human orthologues and 7 may be unique to Ciona. The ascidian homeobox genes were classified into 11 classes, including Hox class, NK class, Paired class, POU class, LIM class, TALE class, SIX class, Prox class, Cut class, ZFH class and HNF1 class, according to the classification scheme devised for known homeobox genes. As to the Hox cluster, the Ciona genome contains single copies of each of the paralogous groups, suggesting that there is a single Hox cluster, if any, but genes orthologous to Hox7, 8, 9 and 11 were not found in the genome. In addition, loss of genes had occurred independently in the Ciona lineage and was noticed in Gbx of the EHGbox subclass, Sax, NK3, Vax and vent of the NK class, Cart, Og9, Anf and Mix of the Paired class, POU-I, III, V and VI of the POU class, Lhx6/7 of the LIM class, TGIF of the TALE class, Cux and SATB of the Cut class, and ZFH1 of the ZFH class, which might have reduced the number of Ciona homeobox genes. Interestingly, one of the newly identified Ciona intestinalis genes and its vertebrate counterparts constitute a novel subclass of HNF1 class homeobox genes. Furthermore, evidence for the gene structures and expression of 54 of the 83 homeobox genes was provided by analysis of ESTs, suggesting that cDNAs for these 54 genes are available. The present data thus reveal the repertoire of homeodomain-containing transcription factors in the Ciona genome, which will be useful for future research on the development and evolution of chordates.
Collapse
Affiliation(s)
- Shuichi Wada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Spagnuolo A, Ristoratore F, Di Gregorio A, Aniello F, Branno M, Di Lauro R. Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Gene 2003; 309:71-9. [PMID: 12758123 DOI: 10.1016/s0378-1119(03)00488-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hox genes are organized in genomic clusters. In all organisms where their role has been studied, Hox genes determine developmental fate along the antero-posterior axis. Hence, these genes represent an ideal system for the understanding of relationships between the number and expression of genes and body organization. We report in this paper that the ascidian Ciona intestinalis genome appears to contain a single Hox gene complex which shows absence of some of the members found in all chordates investigated up to now. Furthermore, the complex appears to be either unusually long or split in different subunits. We speculate that such an arrangement of Hox genes does not correspond to the chordate primordial cluster but occurred independently in the ascidian lineage.
Collapse
Affiliation(s)
- Antonietta Spagnuolo
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Ghanem N, Jarinova O, Amores A, Long Q, Hatch G, Park BK, Rubenstein JLR, Ekker M. Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res 2003; 13:533-43. [PMID: 12670995 PMCID: PMC430168 DOI: 10.1101/gr.716103] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dlx homeobox genes of vertebrates are generally arranged as three bigene clusters on distinct chromosomes. The Dlx1/Dlx2, Dlx5/Dlx6, and Dlx3/Dlx7 clusters likely originate from duplications of an ancestral Dlx gene pair. Overlaps in expression are often observed between genes from the different clusters. To determine if the overlaps are a result of the conservation of enhancer sequences between paralogous clusters, we compared the Dlx1/2 and the Dlx5/Dlx6 intergenic regions from human, mouse, zebrafish, and from two pufferfish, Spheroides nephelus and Takifugu rubripes. Conservation between all five vertebrates is limited to four sequences, two in Dlx1/Dlx2 and two in Dlx5/Dlx6. These noncoding sequences are >75% identical over a few hundred base pairs, even in distant vertebrates. However, when compared to each other, the four intergenic sequences show a much more limited similarity. Each intergenic sequence acts as an enhancer when tested in transgenic animals. Three of them are active in the forebrain with overlapping patterns despite their limited sequence similarity. The lack of sequence similarity between paralogous intergenic regions and the high degree of sequence conservation of orthologous enhancers suggest a rapid divergence of Dlx intergenic regions early in chordate/vertebrate evolution followed by fixation of cis-acting regulatory elements.
Collapse
Affiliation(s)
- Noël Ghanem
- Ottawa Health Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Koh EGL, Lam K, Christoffels A, Erdmann MV, Brenner S, Venkatesh B. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis. Proc Natl Acad Sci U S A 2003; 100:1084-8. [PMID: 12547909 PMCID: PMC298730 DOI: 10.1073/pnas.0237317100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes.
Collapse
Affiliation(s)
- Esther G L Koh
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | | | | | |
Collapse
|
33
|
Dlx genes in craniofacial and limb morphogenesis">Dlx genes in craniofacial and limb morphogenesis. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-1799(03)13004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
D'Ambrosio P, Fanelli A, Pischetola M, Spagnuolo A. Ci-GATAa, a GATA-class gene from the ascidian Ciona intestinalis: isolation and developmental expression. Dev Dyn 2003; 226:145-8. [PMID: 12508236 DOI: 10.1002/dvdy.10216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in controlling gene expression in a variety of cell types in many metazoan. Here, we describe the identification of Ci-GATAa, a member of this gene family, in the ascidian Ciona intestinalis. Whole-mount in situ hybridization showed that Ci-GATAa was expressed in a highly dynamic manner. The maternal transcript was evenly distributed in the embryo during early stages of development; however, the signal gradually decreased until it disappeared at the 64-cell stage. A zygotic transcript was detected at the 110-cell stage in the blastomeres precursors of three different tissues (brain vesicle, mesenchyme, and trunk lateral cells) and the signal was conserved in these territories up to the larval stage, indicating an important role for Ci-GATAa during ascidian differentiation.
Collapse
Affiliation(s)
- Palmira D'Ambrosio
- Laboratory of Biochemistry and Molecular Biology, Stazione Zologica A. Dohrn, Villa Comunale, Naples, Italy
| | | | | | | |
Collapse
|
35
|
Lemaire P, Bertrand V, Hudson C. Early steps in the formation of neural tissue in ascidian embryos. Dev Biol 2002; 252:151-69. [PMID: 12482707 DOI: 10.1006/dbio.2002.0861] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascidians are simple invertebrate chordates whose lineage diverged from that of vertebrates at the base of the chordate tree. Their larvae display a typical chordate body plan, but are composed of a remarkably small number of cells. Ascidians develop with an invariant cell lineage, and their embryos can be easily experimentally manipulated during the cleavage stages. Their larval nervous system is organised in a similar way as in vertebrates but is composed of less than 130 neurones and around 230 glial cells. This remarkable simplicity offers an opportunity to understand, at the cellular and molecular levels, the ontogeny and function of each neural cell. Here, we first review the organisation of the ascidian nervous system and its lineage. We then focus on the current understanding of the processes of neural specification and patterning before and during gastrulation. We discuss these advances in the context of what is currently known in vertebrates.
Collapse
Affiliation(s)
- P Lemaire
- Institut de Biologie du Développement de Marseille, Laboratoire de Génétique et Physiologie du Développement, CNRS Université de la Méditerranée, Case 907, Campus de Luminy, F-13288 Marseille, France.
| | | | | |
Collapse
|
36
|
Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 2002; 298:2157-67. [PMID: 12481130 DOI: 10.1126/science.1080049] [Citation(s) in RCA: 1191] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
Collapse
Affiliation(s)
- Paramvir Dehal
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nishida H. Specification of developmental fates in ascidian embryos: molecular approach to maternal determinants and signaling molecules. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:227-76. [PMID: 12019564 DOI: 10.1016/s0074-7696(02)17016-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tadpole larvae of ascidians represent the basic body plan of chordates with a relatively small number and few types of cells. Because of their simplicity, ascidians have been intensively studied. More than a century of research on ascidian embryogenesis has uncovered many cellular and molecular mechanisms responsible for cell fate specification in the early embryo. This review describes recent advances in our understanding of the molecular mechanisms of fate specification mainly uncovered in model ascidian species--Halocynthia roretzi, Ciona intestinalis, and Ciona savignyi. One category of developmentally important molecules represents maternal localized mRNAs that are involved in cell-autonomous processes. In the second category, signaling molecules and downstream transcription factors are involved in inductive cell interactions. Together with genome-wide information, there is a renewed interest in studying ascidian embryos as a fascinating model system for understanding how single-celled eggs develop a highly organized chordate body plan.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
38
|
Abstract
The Hox family of homeobox genes encode transcription factors that control different aspects of metazoan development. They appear clustered in the genomes of those animals in which their relative positions have been mapped. Although clustering is assumed to be a general property of Hox genes in all bilaterians, just a few species have been studied in sufficient detail to support this claim. Linear duplication of genes inside the cluster, as well as full-cluster duplications account for the actual complexity of HOX clusters in the different animal groups that have been studied (mainly vertebrates). Understanding how the Hox genes are regulated during development will depend, ultimately, on the generation of more powerful tools for cloning intact HOX clusters and for elucidating their cis-regulatory components. To clarify the roles of the Hox genes themselves, we will need to characterize in detail their downstream targets, and some progress in this direction is coming mainly from the recent use of arrayed libraries. Moreover, a comprehensive study of Hox target genes in tissues and organisms promises, in the long term, to give us a clear idea of the role that Hox genes play during development and how they have evolved over time.
Collapse
Affiliation(s)
- Pedro Martinez
- Department of Anatomy and Cell Biology, University of Bergen, Aarstadveien, 19, 5009, Bergen, Norway.
| | | |
Collapse
|
39
|
Abstract
Distal-less is the earliest known gene specifically expressed in developing insect limbs; its expression is maintained throughout limb development. The homeodomain transcription factor encoded by Distal-less is required for the elaboration of proximodistal pattern elements in Drosophila limbs and can initiate proximodistal axis formation when expressed ectopically. Distal-less homologs, the Dlx genes, are expressed in developing appendages in at least six phyla, including chordates, consistent with requirements for Dlx function in normal appendage development across the animal kingdom. Recent work implicates the Dlx genes of vertebrates in a variety of other developmental processes ranging from neurogenesis to hematopoiesis. We review what is known about the invertebrate and vertebrate Dll/Dlx genes and their varied roles during development. We propose revising the vertebrate nomenclature to reflect phylogenetic relationships among the Dlx genes.
Collapse
Affiliation(s)
- Grace Panganiban
- Department of Anatomy, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
40
|
Ferrier DEK, Holland PWH. Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol Phylogenet Evol 2002; 24:412-7. [PMID: 12220984 DOI: 10.1016/s1055-7903(02)00204-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Hox gene cluster, and its evolutionary sister the ParaHox gene cluster, pattern the anterior-posterior axis of animals. The spatial and temporal regulation of the genes seems to be intimately linked to the gene order within the clusters. In some animals the tight organisation of the clusters has disintegrated. We note that these animals develop in a derived fashion relative to the norm of their respective lineages. Here we present the genomic organisation of the ParaHox genes of Ciona intestinalis, and note that tight clustering has been lost in evolution. We present a hypothesis that the Hox and ParaHox clusters are constrained as ordered clusters by the mechanisms producing temporal colinearity; when temporal colinearity is no longer needed or used during development, the clusters can fall apart. This disintegration may be mediated by the invasion of transposable elements into the clusters, and subsequent genomic rearrangements.
Collapse
Affiliation(s)
- David E K Ferrier
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK.
| | | |
Collapse
|
41
|
Abstract
Ascidians are marine protochordates at the evolutionary boundary between invertebrates and vertebrates. Ascidian larvae provide a simple system for unraveling gene regulation networks underlying the formation of the basic chordate body plan. After being used for over a century as a model for embryological studies, ascidians have become, in the past decade, an increasingly popular organism for studying gene regulation. Part of the renewed appeal of this system is the use of electroporation to introduce transgenic DNAs into developing embryos. This method is considerably more efficient than conventional microinjection assays and permits the simultaneous transformation of hundreds of embryos. Electroporation has allowed the identification and characterization of cis-regulatory DNAs that mediate gene expression in a variety of tissues, including the notochord, tail muscles, CNS, and endoderm. Electroporation has also provided a simple method for misexpressing patterning genes and producing dominant mutant phenotypes. Recent studies have used electroporation to create "knock-out" phenotypes by overexpressing dominant negative forms of particular proteins. Here we review the past and present uses of electroporation in ascidian development, and speculate on potential future uses.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Molecular and Cell Biology, Division of Genetics and Development, 401 Barker Hall, University of California at Berkeley, 94720-3204, USA.
| | | |
Collapse
|
42
|
Force A, Amores A, Postlethwait JH. Hox cluster organization in the jawless vertebrate Petromyzon marinus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:30-46. [PMID: 11932947 DOI: 10.1002/jez.10091] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Large-scale gene amplifications may have facilitated the evolution of morphological innovations that accompanied the origin of vertebrates. This hypothesis predicts that the genomes of extant jawless fish, scions of deeply branching vertebrate lineages, should bear a record of these events. Previous work suggests that nonvertebrate chordates have a single Hox cluster, but that gnathostome vertebrates have four or more Hox clusters. Did the duplication events that produced multiple vertebrate Hox clusters occur before or after the divergence of agnathan and gnathostome lineages? Can investigation of lamprey Hox clusters illuminate the origins of the four gnathostome Hox clusters? To approach these questions, we cloned and sequenced 13 Hox cluster genes from cDNA and genomic libraries in the lamprey, Petromyzon marinus. The results suggest that the lamprey has at least four Hox clusters and support the model that gnathostome Hox clusters arose by a two-round-no-cluster-loss mechanism, with tree topology [(AB)(CD)]. A three-round model, however, is not rigorously excluded by the data and, for this model, the tree topologies [(D(C(AB))] and [(C(D(AB))] are most parsimonious. Gene phylogenies suggest that at least one Hox cluster duplication occurred in the lamprey lineage after it diverged from the gnathostome lineage. The results argue against two or more rounds of duplication before the divergence of agnathan and gnathostome vertebrates. If Hox clusters were duplicated in whole-genome duplication events, then these data suggest that, at most, one whole genome duplication occurred before the evolution of vertebrate developmental innovations.
Collapse
Affiliation(s)
- Allan Force
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
43
|
Minguillón C, Ferrier DEK, Cebrián C, Garcia-Fernàndez J. Gene duplications in the prototypical cephalochordate amphioxus. Gene 2002; 287:121-8. [PMID: 11992730 DOI: 10.1016/s0378-1119(01)00828-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chordata, Nonvertebrate/embryology
- Chordata, Nonvertebrate/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Evolution, Molecular
- Gene Duplication
- Gene Expression Regulation, Developmental
- Genes, Homeobox/genetics
- Homeodomain Proteins/genetics
- In Situ Hybridization
- Larva/growth & development
- Larva/metabolism
- Molecular Sequence Data
- Phylogeny
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Carolina Minguillón
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona., Avenida Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Schilling TF, Knight RD. Origins of anteroposterior patterning and Hox gene regulation during chordate evolution. Philos Trans R Soc Lond B Biol Sci 2001; 356:1599-613. [PMID: 11604126 PMCID: PMC1088539 DOI: 10.1098/rstb.2001.0918] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.
Collapse
Affiliation(s)
- T F Schilling
- Department of Developmental and Cell Biology, 5210 Bio Sci II, University of California, Irvine, CA 92697-2300, USA.
| | | |
Collapse
|
45
|
Corbo JC, Di Gregorio A, Levine M. The ascidian as a model organism in developmental and evolutionary biology. Cell 2001; 106:535-8. [PMID: 11551501 DOI: 10.1016/s0092-8674(01)00481-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J C Corbo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
46
|
Corrado M, Aniello F, Fucci L, Branno M. Ci-IPF1, the pancreatic homeodomain transcription factor, is expressed in neural cells of Ciona intestinalis larva. Mech Dev 2001; 102:271-4. [PMID: 11287209 DOI: 10.1016/s0925-4773(01)00311-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the cloning and the expression pattern of insulin promoter factor 1 in the ascidian Ciona intestinalis (Ci-IPF1). Northern blot analysis showed that transcripts appeared at the late tailbud stage and increased at the larval stage. We have raised a specific antibody against the Ci-IPF1-GST fusion protein to determine the spatial expression of this gene. The protein is immunodetected at the larval stage in the sensory vesicle, in the visceral ganglion and in the mesenchymal cells. Our results support the hypothesis that IPF1/IDX1 might have extrapancreatic functions during animal development, particularly in neural cells.
Collapse
Affiliation(s)
- M Corrado
- Department of Biochemistry and Molecular Biology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy
| | | | | | | |
Collapse
|
47
|
Neidert AH, Virupannavar V, Hooker GW, Langeland JA. Lamprey Dlx genes and early vertebrate evolution. Proc Natl Acad Sci U S A 2001; 98:1665-70. [PMID: 11172008 PMCID: PMC29314 DOI: 10.1073/pnas.98.4.1665] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2000] [Indexed: 11/18/2022] Open
Abstract
Gnathostome vertebrates have multiple members of the Dlx family of transcription factors that are expressed during the development of several tissues considered to be vertebrate synapomorphies, including the forebrain, cranial neural crest, placodes, and pharyngeal arches. The Dlx gene family thus presents an ideal system in which to examine the relationship between gene duplication and morphological innovation during vertebrate evolution. Toward this end, we have cloned Dlx genes from the lamprey Petromyzon marinus, an agnathan vertebrate that occupies a critical phylogenetic position between cephalochordates and gnathostomes. We have identified four Dlx genes in P. marinus, whose orthology with gnathostome Dlx genes provides a model for how this gene family evolved in the vertebrate lineage. Differential expression of these lamprey Dlx genes in the forebrain, cranial neural crest, pharyngeal arches, and sensory placodes of lamprey embryos provides insight into the developmental evolution of these structures as well as a model of regulatory evolution after Dlx gene duplication events.
Collapse
Affiliation(s)
- A H Neidert
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The sensory vesicle of ascidians is thought to be homologous to the vertebrate forebrain and midbrain (Development 125 (1998) 1113). Here we report the isolation of two sensory vesicle markers in the ascidian Ciona intestinalis, which are homologs of vertebrate otx and gsx homeobox genes. By using these markers to analyze the induction of anterior neural tissue in Ciona, we find that the restriction of anterior neural fate to the progeny of the anterior animal blastomeres is due to a combination of two factors. The vegetal blastomeres show a differential inducing activity along the anterior-posterior axis, while the competence to respond to this inducing signal is markedly higher in the anterior animal blastomeres than in the posterior animal blastomeres. This differential competence to respond is also observed in response to bFGF, a candidate neural inducer in ascidians (J. Physiol. 511.2 (1998) 347) and can be detected by the gastrula stage. Our results, however, indicate that bFGF can only induce a subset of the responses of the endogenous inducer, suggesting that additional signals in the embryo are necessary to induce a fully patterned nervous system.
Collapse
Affiliation(s)
- C Hudson
- Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS-INSERM-Universite de la Mediterranee-AP de Marseille, France.
| | | |
Collapse
|
49
|
Caracciolo A, Di Gregorio A, Aniello F, Di Lauro R, Branno M. Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis. Mech Dev 2000; 99:173-6. [PMID: 11091088 DOI: 10.1016/s0925-4773(00)00474-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several homeobox-containing genes related to Drosophila Distal-less (Dll) have been isolated from a wide variety of organisms and have been shown to function as developmental regulators. While in Drosophila only one Dll gene has been described so far, in Vertebrates many components of the Dlx multigenic family have been characterized. This suggests that, during the evolution of the Chordate phylum, the Dlx genes arose from an ancestral Dll/Dlx gene via gene duplication. We have previously reported the isolation of two Dll-related homeoboxes from the protochordate Ciona intestinalis, and described their clustered arrangement (Gene 156 (1995) 253). Here we present the detailed genomic organization and spatial-temporal expression of these two genes, Ci-Dll-A and Ci-Dll-B, and describe the isolation and characterization of another member of the ascidian family of Dll-related genes, which we tentatively named Ci-Dll-C.
Collapse
Affiliation(s)
- A Caracciolo
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy
| | | | | | | | | |
Collapse
|
50
|
Quint E, Zerucha T, Ekker M. Differential expression of orthologous Dlx genes in zebrafish and mice: implications for the evolution of the Dlx homeobox gene family. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 288:235-41. [PMID: 11069141 DOI: 10.1002/1097-010x(20001015)288:3<235::aid-jez4>3.0.co;2-j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dlx homeobox genes of vertebrates are often organised as physically linked pairs in which the two genes are transcribed convergently (tail-to-tail arrangement). Three such Dlx pairs have been found in mouse, human, and zebrafish and are thought to have originated from the duplication of an ancestral gene pair. These pairs include Dlx1/Dlx2, Dlx7/Dlx3, and Dlx6/Dlx5 (the zebrafish orthologue of Dlx5 is named dlx4). Expression patterns of physically linked Dlx genes overlap extensively. Furthermore, orthologous Dlx genes often show highly similar expression patterns. We analysed Dlx expression during the gastrula and early somitogenesis of the mouse and zebrafish. It was found that expression of the mouse Dlx6 gene takes place in the rostral ectoderm and presumptive olfactory and otic placodes with patterns similar to the previously reported expression of the physically linked Dlx5 gene. However, we observed only very weak expression of the mouse Dlx3 gene at the same stage. This contrasts with the expression of dlx genes in zebrafish where dlx3 and dlx7, but not dlx4 and dlx6 are expressed during gastrulation in the rostral ectoderm and presumptive placodes. Thus, Dlx expression patterns at early stages are better conserved between paralogous pairs of physically linked genes than between orthologous pairs. This suggests that early expression of Dlx genes existed prior to the duplications that led to the multiple pairs of physically linked genes but was differentially conserved in different paralogs in zebrafish and mice.
Collapse
Affiliation(s)
- E Quint
- Loeb Health Research Institute at the Ottawa Hospital, Ontario, Canada
| | | | | |
Collapse
|