1
|
Matsuoka T, Abe M, Kobayashi H. Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction. Int J Mol Sci 2024; 25:3745. [PMID: 38612557 PMCID: PMC11012052 DOI: 10.3390/ijms25073745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects around 850 million people worldwide, posing significant challenges in healthcare due to complications like renal anemia, end-stage kidney disease, and cardiovascular diseases. This review focuses on the intricate interplay between iron metabolism, inflammation, and renal dysfunction in CKD. Renal anemia, prevalent in CKD, arises primarily from diminished erythropoietin (EPO) production and iron dysregulation, which worsens with disease progression. Functional and absolute iron deficiencies due to impaired absorption and chronic inflammation are key factors exacerbating erythropoiesis. A notable aspect of CKD is the accumulation of uremic toxins, such as indoxyl sulfate (IS), which hinder iron metabolism and worsen anemia. These toxins directly affect renal EPO synthesis and contribute to renal hypoxia, thus playing a critical role in the pathophysiology of renal anemia. Inflammatory cytokines, especially TNF-α and IL-6, further exacerbate CKD progression and disrupt iron homeostasis, thereby influencing anemia severity. Treatment approaches have evolved to address both iron and EPO deficiencies, with emerging therapies targeting hepcidin and employing hypoxia-inducible factor (HIF) stabilizers showing potential. This review underscores the importance of integrated treatment strategies in CKD, focusing on the complex relationship between iron metabolism, inflammation, and renal dysfunction to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
2
|
Cutts A, Chowdhury S, Ratkay LG, Eyers M, Young C, Namdari R, Cadieux JA, Chahal N, Grimwood M, Zhang Z, Lin S, Tietjen I, Xie Z, Robinette L, Sojo L, Waldbrook M, Hayden M, Mansour T, Pimstone S, Goldberg YP, Webb M, Cohen CJ. Potent, Gut-Restricted Inhibitors of Divalent Metal Transporter 1: Preclinical Efficacy against Iron Overload and Safety Evaluation. J Pharmacol Exp Ther 2023; 386:4-14. [PMID: 36958846 DOI: 10.1124/jpet.122.001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Divalent metal transporter 1 (DMT1) cotransports ferrous iron and protons and is the primary mechanism for uptake of nonheme iron by enterocytes. Inhibitors are potentially useful as therapeutic agents to treat iron overload disorders such as hereditary hemochromatosis or β-thalassemia intermedia, provided that inhibition can be restricted to the duodenum. We used a calcein quench assay to identify human DMT1 inhibitors. Dimeric compounds were made to generate more potent compounds with low systemic exposure. Direct block of DMT1 was confirmed by voltage clamp measurements. The lead compound, XEN602, strongly inhibits dietary nonheme iron uptake in both rats and pigs yet has negligible systemic exposure. Efficacy is maintained for >2 weeks in a rat subchronic dosing assay. Doses that lowered iron content in the spleen and liver by >50% had no effect on the tissue content of other divalent cations except for cobalt. XEN602 represents a powerful pharmacological tool for understanding the physiologic function of DMT1 in the gut. SIGNIFICANCE STATEMENT: This report introduces methodology to develop potent, gut-restricted inhibitors of divalent metal transporter 1 (DMT1) and identifies XEN602 as a suitable compound for in vivo studies. We also report novel animal models to quantify the inhibition of dietary uptake of iron in both rodents and pigs. This research shows that inhibition of DMT1 is a promising means to treat iron overload disorders.
Collapse
Affiliation(s)
- Alison Cutts
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Laszlo G Ratkay
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Maryanne Eyers
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Clint Young
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Rostam Namdari
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Jay A Cadieux
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Navjot Chahal
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Michael Grimwood
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Zaihui Zhang
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Ian Tietjen
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Zhiwei Xie
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Lee Robinette
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Luis Sojo
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Michael Hayden
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Tarek Mansour
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Simon Pimstone
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Y Paul Goldberg
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Michael Webb
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc., Burnaby, British Columbia, Canada(A.C., S.C., L.G.R., M.E., C.Y., R.N., J.A.C., N.C., M.G., Z.Z., S.L., I.T., Z.X., L.R., L.S., M.W., M.H., T.M., S.P., Y.P.G., M.W., C.J.C.) and Division of General Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.P.)
| |
Collapse
|
3
|
Arora EK, Sharma V. Iron metabolism: pathways and proteins in homeostasis. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.
Collapse
Affiliation(s)
- Ekta Kundra Arora
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| | - Vibha Sharma
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| |
Collapse
|
4
|
Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms. Biochem Soc Trans 2021; 49:747-759. [PMID: 33929529 DOI: 10.1042/bst20200672] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Iron is fundamental for several biological functions, but when in excess can lead to the development of toxic events. Some tissues and cells are more susceptible than others, but systemic iron levels can be controlled by treating patients with iron-chelating molecules and phlebotomy. An early diagnostic can be decisive to limit the progression of musculoskeletal complications like osteoarthritis and osteoporosis because of iron toxicity. In iron-related osteoarthritis, aggravation can be associated to a few events that can contribute to joints articular cartilage exposure to high iron concentrations, which can promote articular degeneration with very little chance of tissue regeneration. In contrast, bone metabolism is much more dynamic than cartilage, but progressive iron accumulation and ageing can be decisive factors for bone health. The iron overload associated with hereditary diseases like hemochromatosis, hemophilias, thalassemias and other hereditary anaemias increase the negative impact of iron toxicity in joints and bone, as well as in life quality, even when iron levels can be controlled. The molecular mechanisms by which iron can compromise cartilage and bone have been illusive and only in the last 20 years studies have started to shed some light into the molecular mechanisms associated with iron toxicity. Ferroptosis and the regulation of intracellular iron levels is instrumental in the balance between detoxification and induced cell death. In addition, these complications are accompanied with multiple susceptibility factors that can aggravate iron toxicity and should be identified. Therefore, understanding tissues microenvironment and cell communication is fundamental to contextualize iron toxicity.
Collapse
|
5
|
Abstract
Iron is critically important and highly regulated trace metal in the human body. However, in its free ion form, it is known to be cytotoxic; therefore, it is bound to iron storing protein, ferritin. Ferritin is a key regulator of body iron homeostasis able to form various types of minerals depending on the tissue environment. Each mineral, e.g. magnetite, maghemite, goethite, akaganeite or hematite, present in the ferritin core carry different characteristics possibly affecting cells in the tissue. In specific cases, it can lead to disease development. Widely studied connection with neurodegenerative conditions is widely studied, including Alzheimer disease. Although the exact ferritin structure and its distribution throughout a human body are still not fully known, many studies have attempted to elucidate the mechanisms involved in its regulation and pathogenesis. In this review, we try to summarize the iron uptake into the body. Next, we discuss the known occurrence of ferritin in human tissues. Lastly, we also examine the formation of iron oxides and their involvement in brain functions.
Collapse
|
6
|
Abstract
Iron is required for key aspects of cellular physiology including mitochondrial function and DNA synthesis and repair. However, free iron is an aberration because of its ability to donate electrons, reduce oxygen, and generate reactive oxygen species. Iron-mediated cell injury or ferroptosis is a central player in the pathogenesis of acute kidney injury. There are several homeostatic proteins and pathways that maintain critical balance in iron homeostasis to allow iron's biologic functions yet avoid ferroptosis. Hepcidin serves as the master regulator of iron homeostasis through its ability to regulate ferroportin-mediated iron export and intracellular H-ferritin levels. Hepcidin is a protective molecule in acute kidney injury. Drugs targeting hepcidin, H-ferritin, and ferroptosis pathways hold great promise to prevent or treat kidney injury. In this review we discuss iron homeostasis under physiological and pathologic conditions and highlight its importance in acute kidney injury.
Collapse
|
7
|
He W, Li X, Ding K, Li Y, Li W. Ascorbic Acid can Reverse the Inhibition of Phytic Acid, Sodium Oxalate and Sodium Silicate on Iron Absorption in Caco-2 cells. INT J VITAM NUTR RES 2019; 88:65-72. [PMID: 31119995 DOI: 10.1024/0300-9831/a000503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the present study is to determine the effect of phytic acid (PA), sodium oxalate (SO) and sodium silicate (SS) on non-heme iron bioavailability in both the presence and absence of ascorbic acid (AA) using an in vitro digestion/Caco-2 cell model, and the levels of AA needed to promote Fe absorption from Fe complexed with PA, SO or SS were also determined. The results indicated that adding PA at 1:1, 3:1, 5:1 and 10:1 molar as compared to Fe decreased ferrous iron uptake by 55.80 %(P < 0.05), 72.33 % (P < 0.05), 73.32 % (P < 0.05), and 73.26 % (P < 0.05), respectively. Adding SS at 1:1, 3:1, 5:1 and 10:1 molar as compared to Fe also decreased ferrous iron uptake by 51.40 % (P < 0.05), 66.12 %(P < 0.05), 60.19 % (P < 0.05) and 45.11 % (P < 0.05), respectively. Adding SO at 5:1 and 10:1 molar as compared to Fe decreased ferrous iron uptake by 40.81 % (P < 0.05) and 33.14 % (P < 0.05), respectively. When adding AA to iron plus organic acid medias reached molar ratios of 5:5:1 AA:PA:Fe, 3:5:1 AA:SO:Fe and 5:5:1 AA:SS:Fe, iron absorption from FeSO4 were significantly increased (P < 0.05). However, no significant effect was observed in iron absorption from FeCl3 when adding AA to the media. The results showed that PA, SS or SO decreases iron uptake from ferrous Fe, and AA can counteract their inhibiting effect on ferrous iron absorption and thus increase ferrous iron uptake. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.
Collapse
Affiliation(s)
- Wanling He
- 1 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xiaoli Li
- 1 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Ke Ding
- 1 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yuanxiao Li
- 1 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Wang Li
- 1 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
8
|
Blanco-Rojo R, Vaquero MP. Iron bioavailability from food fortification to precision nutrition. A review. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Zariwala MG, Bendre H, Markiv A, Farnaud S, Renshaw D, Taylor KM, Somavarapu S. Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery. Int J Nanomedicine 2018; 13:5837-5848. [PMID: 30310283 PMCID: PMC6166747 DOI: 10.2147/ijn.s166901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Encapsulation of hydrophilic drugs within liposomes can be challenging. Methods A novel chitosan derivative, O-palmitoyl chitosan (OPC) was synthesized from chitosan and palmitoyl chloride using methane-sulfonic acid as a solvent. The success of synthesis was confirmed by Fourier transform infra-red (FT-IR) spectroscopy and proton NMR spectroscopy (H-NMR). Liposomes encapsulating ferrous sulphate as a model hydrophilic drug for intestinal delivery were prepared with or without OPC inclusion (Lipo-Fe and OPC-Lipo-Fe). Results Entrapment of iron was significantly higher in OPC containing liposomes compared to controls. Quantitative iron absorption from the OPC liposomes was significantly higher (1.5-fold P<0.05) than free ferrous sulphate controls. Qualitative uptake analysis by confocal imaging using coumarin-6 dye loaded liposomes also indicated higher cellular uptake and internalization of the OPC-containing liposomes. Conclusion These findings suggest that addition of OPC during liposome preparation creates robust vesicles that have improved mucoadhesive and absorption enhancing properties. The chitosan derivative OPC therefore provides a novel alternative for formulation of delivery vehicles targeting intestinal absorption.
Collapse
Affiliation(s)
- M Gulrez Zariwala
- Faculty of Science and Technology, University of Westminster, London, UK
| | - Harshada Bendre
- Department of Pharmaceutics, University College London School of Pharmacy, London, UK,
| | - Anatoliy Markiv
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sebastien Farnaud
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Derek Renshaw
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Kevin Mg Taylor
- Department of Pharmaceutics, University College London School of Pharmacy, London, UK,
| | | |
Collapse
|
10
|
Ferreira AC, Sousa N, Bessa JM, Sousa JC, Marques F. Metabolism and adult neurogenesis: Towards an understanding of the role of lipocalin-2 and iron-related oxidative stress. Neurosci Biobehav Rev 2018; 95:73-84. [PMID: 30267731 DOI: 10.1016/j.neubiorev.2018.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
The process of generating new functional neurons in the adult mammalian brain occurs from the local neural stem and progenitor cells and requires tight control of the progenitor cell's activity. Several signaling pathways and intrinsic/extrinsic factors have been well studied over the last years, but recent attention has been given to the critical role of cellular metabolism in determining the functional properties of progenitor cells. Here, we review recent advances in the current understanding of when and how metabolism affects neural stem cell (NSC) behavior and subsequent neuronal differentiation and highlight the role of lipocalin-2 (LCN2), a protein involved in the control of oxidative stress, as a recently emerged regulator of NSC activity and neuronal differentiation.
Collapse
Affiliation(s)
- Ana Catarina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
11
|
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Front Neurosci 2018; 12:632. [PMID: 30250423 PMCID: PMC6139360 DOI: 10.3389/fnins.2018.00632] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
As people age, iron deposits in different areas of the brain may impair normal cognitive function and behavior. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, and ultimately leads to cell death. There is an imbalance in iron homeostasis in Alzheimer's disease (AD). Excessive iron contributes to the deposition of β-amyloid and the formation of neurofibrillary tangles, which in turn, promotes the development of AD. Therefore, iron-targeted therapeutic strategies have become a new direction. Iron chelators, such as desferoxamine, deferiprone, deferasirox, and clioquinol, have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Given the limitations and side effects of the long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin, as self-synthesized naturally small molecules, have shown very intriguing biological activities in blocking Aβ-aggregation, tauopathy and neuronal damage. Despite a lack of evidence for any clinical benefits, the conjecture that therapeutic chelation, with a special focus on iron ions, is a valuable approach for treating AD remains widespread.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zheng-Sheng Yang
- Department of Dermatology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Medical Cell Biology of Ministry of Education, Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
12
|
Refaat B, Abdelghany AH, BaSalamah MA, El-Boshy M, Ahmad J, Idris S. Acute and Chronic Iron Overloading Differentially Modulates the Expression of Cellular Iron-homeostatic Molecules in Normal Rat Kidney. J Histochem Cytochem 2018; 66:825-839. [PMID: 29873589 DOI: 10.1369/0022155418782696] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about the renal responses to acute iron overloading. This study measured the renal tubular expression of transferrin receptor-1 (TfR1), cubilin/megalin receptors, hepcidin, ferroportin, and ferritin chains following subacute intoxication of 40 male Wistar rats with a single oral dose of ferrous iron (300 mg/kg). The animals were randomly subdivided into 4 equal subgroups at the time of necropsy (1, 2, 4, and 8 hr). The results were compared with the controls ( n=15) and with the chronic group ( n=15), which received iron for 4 weeks (75 mg/kg/day; 5 days/week). Although both toxicity models inhibited TfR1, they upregulated the cubilin/megalin receptors and hepcidin, and triggered iron deposition in tubular cells. The ferritin heavy-chain and ferroportin were downregulated in the 2-hr and 4-hr acute subgroups, whereas chronic toxicity promoted their expression, compared with controls. Moreover, the 4-hr and 8-hr subgroups had higher intracellular Fe+2 and marked cell apoptosis compared with the chronic group. In conclusion, the kidney appears to sustain iron reabsorption in both intoxication models. However, the cellular iron storage and exporter proteins were differentially expressed in both models, and their inhibition post-acute toxicity might contribute toward the intracellular accumulation of Fe+2, oxidative stress, and ferroptosis.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelghany Hassan Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Pathology Department, Faculty of Medicine.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
13
|
Ferreira AC, Santos T, Sampaio-Marques B, Novais A, Mesquita SD, Ludovico P, Bernardino L, Correia-Neves M, Sousa N, Palha JA, Sousa JC, Marques F. Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Mol Psychiatry 2018; 23:1031-1039. [PMID: 28485407 DOI: 10.1038/mp.2017.95] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/24/2022]
Abstract
In the adult mammalian brain, newborn granule cells are continuously integrated into hippocampal circuits, and the fine-tuning of this process is important for hippocampal function. Thus, the identification of factors that control adult neural stem cells (NSCs) maintenance, differentiation and integration is essential. Here we show that the deletion of the iron trafficking protein lipocalin-2 (LCN2) induces deficits in NSCs proliferation and commitment, with impact on the hippocampal-dependent contextual fear discriminative task. Mice deficient in LCN2 present an increase in the NSCs population, as a consequence of a G0/G1 cell cycle arrest induced by increased endogenous oxidative stress. Of notice, supplementation with the iron-chelating agent deferoxamine rescues NSCs oxidative stress, promotes cell cycle progression and improves contextual fear conditioning. LCN2 is, therefore, a novel key modulator of neurogenesis that, through iron, controls NSCs cell cycle progression and death, self-renewal, proliferation and differentiation and, ultimately, hippocampal function.
Collapse
Affiliation(s)
- A C Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - T Santos
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - B Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A Novais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - S D Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - P Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - L Bernardino
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - M Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - J A Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - J C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - F Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
14
|
Nevoa JC, Mendes MT, da Silva MV, Soares SC, Oliveira CJF, Ribeiro JMC. An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru. PLoS Negl Trop Dis 2018; 12:e0006243. [PMID: 29462134 PMCID: PMC5834209 DOI: 10.1371/journal.pntd.0006243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/02/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
Triatomines are hematophagous arthropod vectors of Trypanosoma cruzi, the causative agent of Chagas Disease. Panstrongylus lignarius, also known as Panstrongylus herreri, is considered one of the most versatile triatomines because it can parasitize different hosts, it is found in different habitats and countries, it has sylvatic, peridomestic and domestic behavior and it is a very important vector of Chagas disease, especially in Peru. Molecules produced and secreted by salivary glands and fat body are considered of important adaptational value for triatomines because, among other functions, they subvert the host haemostatic, inflammatory and immune systems and detoxify or protect them against environmental aggressors. In this context, the elucidation of the molecules produced by these tissues is highly valuable to understanding the ability of this species to adapt and transmit pathogens. Here, we use high-throughput sequencing techniques to assemble and describe the coding sequences resulting from the transcriptome of the fat body and salivary glands of P. lignarius. The final assembly of both transcriptomes together resulted in a total of 11,507 coding sequences (CDS), which were mapped from a total of 164,676,091 reads. The CDS were subdivided according to their 10 folds overexpression on salivary glands (513 CDS) or fat body (2073 CDS). Among the families of proteins found in the salivary glands, lipocalins were the most abundant. Other ubiquitous families of proteins present in other sialomes were also present in P. lignarius, including serine protease inhibitors, apyrase and antigen-5. The unique transcriptome of fat body showed proteins related to the metabolic function of this organ. Remarkably, nearly 20% of all reads mapped to transcripts coded by Triatoma virus. The data presented in this study improve the understanding on triatomines' salivary glands and fat body function and reveal important molecules used in the interplay between vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Jessica C. Nevoa
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria T. Mendes
- University of Texas at El Paso, El Paso, Texas, United States of America
| | - Marcos V. da Silva
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Siomar C. Soares
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo J. F. Oliveira
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José M. C. Ribeiro
- National Institute of Allergy and Infectious Diseases (NIAID), Laboratory of Malaria and Vector Research (LMVR), Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
16
|
Zhang CW, Tai YK, Chai BH, Chew KCM, Ang ET, Tsang F, Tan BWQ, Hong ETE, Asad ABA, Chuang KH, Lim KL, Soong TW. Transgenic Mice Overexpressing the Divalent Metal Transporter 1 Exhibit Iron Accumulation and Enhanced Parkin Expression in the Brain. Neuromolecular Med 2017; 19:375-386. [PMID: 28695462 PMCID: PMC5570798 DOI: 10.1007/s12017-017-8451-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022]
Abstract
Exposure to divalent metals such as iron and manganese is thought to increase the risk for Parkinson's disease (PD). Under normal circumstances, cellular iron and manganese uptake is regulated by the divalent metal transporter 1 (DMT1). Accordingly, alterations in DMT1 levels may underlie the abnormal accumulation of metal ions and thereby disease pathogenesis. Here, we have generated transgenic mice overexpressing DMT1 under the direction of a mouse prion promoter and demonstrated its robust expression in several regions of the brain. When fed with iron-supplemented diet, DMT1-expressing mice exhibit rather selective accumulation of iron in the substantia nigra, which is the principal region affected in human PD cases, but otherwise appear normal. Alongside this, the expression of Parkin is also enhanced, likely as a neuroprotective response, which may explain the lack of phenotype in these mice. When DMT1 is overexpressed against a Parkin null background, the double-mutant mice similarly resisted a disease phenotype even when fed with iron- or manganese-supplemented diet. However, these mice exhibit greater vulnerability toward 6-hydroxydopamine-induced neurotoxicity. Taken together, our results suggest that iron accumulation alone is not sufficient to cause neurodegeneration and that multiple hits are required to promote PD.
Collapse
Affiliation(s)
- Cheng-Wu Zhang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yee Kit Tai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore
| | - Bing-Han Chai
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Katherine C M Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore
| | - Eng-Tat Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore
| | - Fai Tsang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore
| | - Bryce W Q Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore
| | - Eugenia T E Hong
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Abu Bakar Ali Asad
- Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, 138667, Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, 138667, Singapore
| | - Kah-Leong Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore.
- Duke-NUS Medical School, Singapore, 169857, Singapore.
- NUS Graduate School for Integrative Science and Engineering, Singapore, 117456, Singapore.
- LSI Neurobiology/Ageing Programme, NUS, Singapore, 117456, Singapore.
| | - Tuck Wah Soong
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Science and Engineering, Singapore, 117456, Singapore.
- LSI Neurobiology/Ageing Programme, NUS, Singapore, 117456, Singapore.
| |
Collapse
|
17
|
Abstract
Iron is an essential metal involved in several major cellular processes required to maintain life. Because of iron's ability to cause oxidative damage, its transport, metabolism, and storage is strictly controlled in the body, especially in the small intestine, liver, and kidney. Iron plays a major role in acute kidney injury and has been a target for therapeutic intervention. However, the therapies that have been effective in animal models of acute kidney injury have not been successful in human beings. Targeting iron trafficking via ferritin, ferroportin, or hepcidin may offer new insights. This review focuses on the biology of iron, particularly in the kidney, and its implications in acute kidney injury.
Collapse
Affiliation(s)
- Vyvyca J Walker
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Birmingham Veterans Administration Medical Center, Birmingham, AL.
| |
Collapse
|
18
|
Mode of oral iron administration and the amount of iron habitually consumed do not affect iron absorption, systemic iron utilisation or zinc absorption in iron-sufficient infants: a randomised trial. Br J Nutr 2016; 116:1046-60. [PMID: 27546308 DOI: 10.1017/s0007114516003032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different metabolic pathways of supplemental and fortification Fe, or inhibition of Zn absorption by Fe, may explain adverse effects of supplemental Fe in Fe-sufficient infants. We determined whether the mode of oral Fe administration or the amount habitually consumed affects Fe absorption and systemic Fe utilisation in infants, and assessed the effects of these interventions on Zn absorption, Fe and Zn status, and growth. Fe-sufficient 6-month-old infants (n 72) were randomly assigned to receive 6·6 mg Fe/d from a high-Fe formula, 1·3 mg Fe/d from a low-Fe formula or 6·6 mg Fe/d from Fe drops and a formula with no added Fe for 45 d. Fractional Fe absorption, Fe utilisation and fractional Zn absorption were measured with oral (57Fe and 67Zn) and intravenous (58Fe and 70Zn) isotopes. Fe and Zn status, infection and growth were measured. At 45 d, Hb was 6·3 g/l higher in the high-Fe formula group compared with the Fe drops group, whereas serum ferritin was 34 and 35 % higher, respectively, and serum transferrin 0·1 g/l lower in the high-Fe formula and Fe drops groups compared with the low-Fe formula group (all P<0·05). No intervention effects were observed on Fe absorption, Fe utilisation, Zn absorption, other Fe status indices, plasma Zn or growth. We concluded that neither supplemental or fortification Fe nor the amount of Fe habitually consumed altered Fe absorption, Fe utilisation, Zn absorption, Zn status or growth in Fe-sufficient infants. Consumption of low-Fe formula as the only source of Fe was insufficient to maintain Fe stores.
Collapse
|
19
|
Cheng CM, Wang D, Cao X, Luo QQ, Lu YP, Zhu L. Iron Regulatory Protein 1 Suppresses Hypoxia-Induced Iron Uptake Proteins Expression and Decreases Iron Levels in HepG2 Cells. J Cell Biochem 2016; 116:1919-31. [PMID: 25727755 DOI: 10.1002/jcb.25147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/24/2015] [Indexed: 11/07/2022]
Abstract
Transferrin receptor (TfR1) and divalent metal transporter 1 (DMT1) are important proteins for cellular iron uptake, and both are regulated transcriptionally through the binding of hypoxia-inducible factor 1 (HIF-1) to hypoxia-responsive elements (HREs) under hypoxic conditions. These proteins are also regulated post-transcriptionally through the binding of iron regulatory protein 1 (IRP1) to iron-responsive elements (IREs) located in the mRNA untranslated region (UTR) to control cellular iron homeostasis. In iron-deficient cells, IRP1-IRE interactions stabilize TfR1 and DMT1 mRNAs, enhancing iron uptake. However, little is known about the impact of IRP1 on the regulation of cellular iron homeostasis under hypoxia. Thus, to investigate the role of IRP1 in hypoxic condition, overexpression and knockdown assays were performed using HepG2 cells. The overexpression of IRP1 suppressed the hypoxia-induced increase in TfR1 and DMT1 (+IRE) expression and reduced the stability of TfR1 and DMT1 (+IRE) mRNAs under hypoxia, whereas IRP1 knockdown further increased the hypoxia-induced expression of both proteins, preventing the decrease in IRE-dependent luciferase activity induced by hypoxia. Under hypoxic conditions, ferrous iron uptake, the labile iron pool (LIP), and total intracellular iron reduced when IRP1 was overexpressed and further increased when IRP1 was knocked down. IRP1 expression declined and TfR1/DMT1 (+IRE) expression increased with the time of hypoxia prolonged, whereas the binding of IRP1 to the IRE of TfR1/DMT1 mRNA maintained. In summary, IRP1 suppressed TfR1/DMT1 (+IRE) expression, limited the cellular iron content and decreased lactate dehydrogenase (LDH) release induced by hypoxia.
Collapse
Affiliation(s)
- Chun-Ming Cheng
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Dan Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Xian Cao
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Qian-Qian Luo
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Ya-Peng Lu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Li Zhu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, PR China
| |
Collapse
|
20
|
Cagin YF, Sahin N, Polat A, Erdogan MA, Atayan Y, Eyol E, Bilgic Y, Seckin Y, Colak C. The Acute Effect of Humic Acid on Iron Accumulation in Rats. Biol Trace Elem Res 2016; 171:145-55. [PMID: 26380988 DOI: 10.1007/s12011-015-0507-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/18/2015] [Indexed: 01/03/2023]
Abstract
Free iron leads to the formation of pro-oxidant reactive oxygen species (ROS). Humic acids (HAs) enhance permeability of cellular wall and act as a chelator through electron transferring. This study was designed to test chelator effect of HA on iron as well as its anti-oxidant effect against the iron-induced hepatotoxicity and cardiotoxicity. The rats used were randomly divided into four groups (n = 8/group): group I (the control group); group II (the HA group), humic acid (562 mg/kg) was given over 10 days by oral gavage; group III (the iron group), iron III hydroxide polymaltose (250 mg/kg) was given over 10 days by intraperitoneal route; and group IV (the HA plus iron group), received the iron (similar to group II) plus humic acid (similar to those in groups II and III) group. Blood and two tissue samples both from liver and heart were obtained for biochemical and histopathological evaluations. Iron deposition, the iron-induced hepatotoxicity, and cardiotoxicity were demonstrated by histopathological and biochemical manner. However, no significant differences were observed in the serum biochemical values and the histopathological results among the iron and the HA plus iron groups in the liver tissue but not in the heart tissue. The protective effects of humic acid against iron-induced cardiotoxicity were shown but not against hepatotoxicity in our study.
Collapse
Affiliation(s)
- Yasir Furkan Cagin
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey.
| | - N Sahin
- Department of Pathology, Medical Faculty, Inonu University, Malatya, Turkey
| | - A Polat
- Department of Physiology, Medical Faculty, Inonu University, Malatya, Turkey
| | - M A Erdogan
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Y Atayan
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - E Eyol
- Department of Pharmaceutical Toxicology, Inonu University, Malatya, Turkey
| | - Y Bilgic
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Y Seckin
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - C Colak
- Department of Biostatistics and Medical Informatics, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
21
|
Ndfip2 is a potential regulator of the iron transporter DMT1 in the liver. Sci Rep 2016; 6:24045. [PMID: 27048792 PMCID: PMC4822147 DOI: 10.1038/srep24045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
The regulation of divalent metal ion transporter DMT1, the primary non-heme iron importer in mammals, is critical for maintaining iron homeostasis. Previously we identified ubiquitin-dependent regulation of DMT1 involving the Nedd4 family of ubiquitin ligases and the Ndfip1 and Ndfip2 adaptors. We also established the in vivo function of Ndfip1 in the regulation of DMT1 in the duodenum of mice. Here we have studied the function of Ndfip2 using Ndfip2-deficient mice. The DMT1 protein levels in the duodenum were comparable in wild type and Ndfip2−/− mice, as was the transport activity of isolated enterocytes. A complete blood examination showed no significant differences between wild type and Ndfip2−/− mice in any of the hematological parameters measured. However, when fed a low iron diet, female Ndfip2−/− mice showed a decrease in liver iron content, although they maintained normal serum iron levels and transferrin saturation, compared to wild type female mice that showed a reduction in serum iron and transferrin saturation. Ndfip2−/− female mice also showed an increase in DMT1 expression in the liver, with no change in male mice. We suggest that Ndfip2 controls DMT1 in the liver with female mice showing a greater response to altered dietary iron than the male mice.
Collapse
|
22
|
Miseta A, Nagy J, Nagy T, Poór VS, Fekete Z, Sipos K. Hepcidin and its potential clinical utility. Cell Biol Int 2015; 39:1191-202. [PMID: 26109250 DOI: 10.1002/cbin.10505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Abstract
A number of pathophysiological conditions are related to iron metabolism disturbances. Some of them are well known, others are newly discovered or special. Hepcidin is a newly identified iron metabolism regulating hormone, which could be a promising biomarker for many disorders. In this review, we provide background information about mammalian iron metabolism, cellular iron trafficking, and the regulation of expression of hepcidin. Beside these molecular biological processes, we summarize the methods that have been used to determine blood and urine hepcidin levels and present those pathological conditions (cancer, inflammation, neurological disorders) when hepcidin measurement may have clinical relevance.
Collapse
Affiliation(s)
- Attila Miseta
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Tamas Nagy
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Viktor Soma Poór
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Zsuzsanna Fekete
- Department of Medical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Rokus Street 2. Pecs, Hungary
| |
Collapse
|
23
|
Ferreira AC, Dá Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. From the periphery to the brain: Lipocalin-2, a friend or foe? Prog Neurobiol 2015; 131:120-36. [PMID: 26159707 DOI: 10.1016/j.pneurobio.2015.06.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/23/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023]
Abstract
Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.
Collapse
Affiliation(s)
- Ana C Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
24
|
He Y, Cao X, Li K, Hu Y, Chen YR, Blissard G, Kanost MR, Jiang H. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:23-37. [PMID: 25662101 PMCID: PMC4476920 DOI: 10.1016/j.ibmb.2015.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 05/09/2023]
Abstract
Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kai Li
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Institute of Biological Sciences, Donghua University, Songjiang, Shanghai 310029, China
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
25
|
Connor JR, Zhang X, Nixon AM, Webb B, Perno JR. Comparative evaluation of nephrotoxicity and management by macrophages of intravenous pharmaceutical iron formulations. PLoS One 2015; 10:e0125272. [PMID: 25973894 PMCID: PMC4431721 DOI: 10.1371/journal.pone.0125272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/23/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is a significant clinical need for effective treatment of iron deficiency. A number of compounds that can be administered intravenously have been developed. This study examines how the compounds are handled by macrophages and their relative potential to provoke oxidative stress. METHODS Human kidney (HK-2) cells, rat peritoneal macrophages and renal cortical homogenates were exposed to pharmaceutical iron preparations. Analyses were performed for indices of oxidative stress and cell integrity. In addition, in macrophages, iron uptake and release and cytokine secretion was monitored. RESULTS HK-2 cell viability was decreased by iron isomaltoside and ferumoxytol and all compounds induced lipid peroxidation. In the renal cortical homogenates, lipid peroxidation occurred at lowest concentrations with ferric carboxymaltose, iron dextran, iron sucrose and sodium ferric gluconate. In the macrophages, iron sucrose caused loss of cell viability. Iron uptake was highest for ferumoxytol and iron isomaltoside and lowest for iron sucrose and sodium ferric gluconate. Iron was released as secretion of ferritin or as ferrous iron via ferroportin. The latter was blocked by hepcidin. Exposure to ferric carboxymaltose and iron dextran resulted in release of tumor necrosis factor α. CONCLUSIONS Exposure to iron compounds increased cell stress but was tissue and dose dependent. There was a clear difference in the handling of iron from the different compounds by macrophages that suggests in vivo responses may differ.
Collapse
Affiliation(s)
- James R. Connor
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Xuesheng Zhang
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Anne M. Nixon
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Becky Webb
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Joseph R. Perno
- Luitpold Pharmaceuticals, Inc., Norristown, Pennsylvania, United States of America
| |
Collapse
|
26
|
Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808-47. [PMID: 25970586 PMCID: PMC4496698 DOI: 10.3390/biom5020808] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
27
|
Krenn MA, Schürz M, Teufl B, Uchida K, Eckl PM, Bresgen N. Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal "metastability" in primary hepatocytes determining in vitro cell survival. Free Radic Biol Med 2015; 80:48-58. [PMID: 25532933 DOI: 10.1016/j.freeradbiomed.2014.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
Several pathologies are associated with elevated levels of serum ferritin, for which growth inhibitory properties have been reported; however, the underlying mechanisms are still poorly defined. Previously we have described cytotoxic properties of isoferritins released from primary hepatocytes in vitro, which induce apoptosis in an iron and oxidative stress-dependent mode. Here we show that this ferritin species stimulates endosome clustering and giant endosome formation in primary hepatocytes accompanied by enhanced lysosomal membrane permeability (LMP). In parallel, protein modification by lipid peroxidation-derived 4-hydroxynonenal (HNE) is strongly promoted by ferritin, the HNE-modified proteins (HNE-P) showing remarkable aggregation. Emphasizing the prooxidant context, GSH is rapidly depleted and the GSH/GSSG ratio is substantially declining in ferritin-treated cells. Furthermore, ferritin triggers a transient upregulation of macroautophagy which is abolished by iron chelation and apparently supports HNE-P clearance. Macroautophagy inhibition by 3-methyladenine strongly amplifies ferritin cytotoxicity in a time- and concentration-dependent mode, suggesting an important role of macroautophagy on cellular responses to ferritin endocytosis. Moreover, pointing at an involvement of lysosomal proteolysis, ferritin cytotoxicity and lysosome fragility are aggravated by the protease inhibitor leupeptin. In contrast, EGF which suppresses ferritin-induced cell death attenuates ferritin-mediated LMP. In conclusion, we propose that HNE-P accumulation, lysosome dysfunction, and macroautophagy stimulated by ferritin endocytosis provoke lysosomal "metastability" in primary hepatocytes which permits cell survival as long as in- and extrinsic determinants (e.g., antioxidant availability, damage repair, EGF signaling) keep the degree of lysosomal destabilization below cell death-inducing thresholds.
Collapse
Affiliation(s)
- Margit A Krenn
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Melanie Schürz
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Bernhard Teufl
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Peter M Eckl
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Nikolaus Bresgen
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria.
| |
Collapse
|
28
|
Sudden sensorineural hearing loss and polymorphisms in iron homeostasis genes: new insights from a case-control study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834736. [PMID: 25789325 PMCID: PMC4348611 DOI: 10.1155/2015/834736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022]
Abstract
Background. Even if various pathophysiological events have been proposed as explanations, the putative cause of sudden hearing loss remains unclear. Objectives. To investigate and to reveal associations (if any) between the main iron-related gene variants and idiopathic sudden sensorineural hearing loss. Study Design. Case-control study. Materials and Methods. A total of 200 sudden sensorineural hearing loss patients (median age 63.65 years; range 10-92) were compared with 400 healthy control subjects. The following genetic variants were investigated: the polymorphism c.-8CG in the promoter of the ferroportin gene (FPN1; SLC40A1), the two isoforms C1 and C2 (p.P570S) of the transferrin protein (TF), the amino acidic substitutions p.H63D and p.C282Y in the hereditary hemochromatosis protein (HFE), and the polymorphism c.-582AG in the promoter of the HEPC gene, which encodes the protein hepcidin (HAMP). Results. The homozygous genotype c.-8GG of the SLC40A1 gene revealed an OR for ISSNHL risk of 4.27 (CI 95%, 2.65-6.89; P = 0.001), being overrepresented among cases. Conclusions. Our study indicates that the homozygous genotype FPN1 -8GG was significantly associated with increased risk of developing sudden hearing loss. These findings suggest new research should be conducted in the field of iron homeostasis in the inner ear.
Collapse
|
29
|
Liao J, Xia X, Wang GZ, Shi YM, Ge JW. Naotaifang extract treatment results in increased ferroportin expression in the hippocampus of rats subjected to cerebral ischemia. Mol Med Rep 2015; 11:4047-52. [PMID: 25672910 PMCID: PMC4394947 DOI: 10.3892/mmr.2015.3309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 09/09/2014] [Indexed: 01/06/2023] Open
Abstract
The expression of Ferroportin (Fpn) was examined at different time points in rats following focal cerebral ischemia treated with or without the traditional Chinese medicine Naotaifang. Initially, rats were randomly divided into 2, 6, 12, 24 and 72 h groups following middle cerebral artery occlusion (MCAO) and the mRNA and protein level of Fpn was detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT‑PCR) at the above time points. Secondly, the rats were randomly divided into five groups as follows: Sham surgery group, model group, low‑dose group (3 g/kg NTE), medium dose group (9 g/kg NTE) and the high‑dose group (27 g/kg NTE). After 3 days of corresponding therapy by intragastric administration once a day, the regional cerebral ischemia model was reproduced by the MCAO suture method. On the third day, the neurological behavior of the rats was analyzed by neurobehavioral assessment. Fpn in the hippocampal CA2 region was measured by immunohistochemistry and the mRNA level of Fpn was detected by RT‑PCR. Expression of Fpn in the hippocampal CA2 region reached a peak 12 h after surgery (P<0.05, compared with the model group). The high‑dose group (27 g/kg NTE) exhibited a lower neurological behavior score (P<0.05) and a higher level of expression of Fpn at the mRNA and protein level compared with the sham surgery group and model group (P<0.05). Dysregulation of intracellular iron balance is possibly a new mechanism underlying cerebral ischemia. NTE can protect the neuronal population in the hippocampal CA2 region by adjusting the expression of Fpn to balance iron levels following cerebral ischemia.
Collapse
Affiliation(s)
- Jun Liao
- Department of Anatomy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xing Xia
- Campus Network Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Guo-Zuo Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yong-Mei Shi
- Department of Anatomy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jin-Wen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
30
|
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014; 13:1045-60. [PMID: 25231526 DOI: 10.1016/s1474-4422(14)70117-6] [Citation(s) in RCA: 1127] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARY In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood-brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection.
Collapse
Affiliation(s)
- Roberta J Ward
- Centre for Neuroinflammation and Neurodegeneration, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK; Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert R Crichton
- Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
31
|
Ito S, Ikuta K, Kato D, Shibusa K, Niizeki N, Tanaka H, Addo L, Toki Y, Hatayama M, Inamura J, Shindo M, Sasaki K, Iizuka N, Fujiya M, Torimoto Y, Kohgo Y. Non-transferrin-bound iron assay system utilizing a conventional automated analyzer. Clin Chim Acta 2014; 437:129-35. [PMID: 25072389 DOI: 10.1016/j.cca.2014.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Iron is an essential metal in the body, but its excessive accumulation causes damage in various organs through free radical production. Iron homeostasis is therefore tightly regulated. However, when iron balance collapses, such as in prolonged transfusion, transferrin (Tf) is fully saturated and non-Tf-bound iron (NTBI) appears in the serum. Monitoring serum NTBI levels is therefore crucial in the assessment of the clinical status of patients with iron overload, since NTBI is associated with cellular and organ damage. Several methods for NTBI determination have been reported, but these are extremely complicated and very few laboratories can quantify NTBI at present. METHODS We established a novel assay system utilizing automated analyzers that are widely used in clinical laboratories for diagnostic testing. In this assay, NTBI is chelated by nitrilotriacetic acid (NTA), after which the iron is reduced and transferred to nitroso-PSAP, a chromogen. RESULTS The assay shows excellent linearity, reproducibility, and compatibility with HPLC, one of the most reliable conventional methods for NTBI quantification. CONCLUSIONS Our novel method for NTBI measurement is high-throughput and may be a useful and powerful tool in the study of the physiological and clinical importance of NTBI.
Collapse
Affiliation(s)
- Satoshi Ito
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | - Daisuke Kato
- Research and Development Department, Shino-Test Corporation, Sagamihara, Kanagawa, Japan
| | - Kotoe Shibusa
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Noriyasu Niizeki
- Department of Medical Laboratory and Blood Center, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, Japan
| | - Hiroki Tanaka
- Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Lynda Addo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yasumichi Toki
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Mayumi Hatayama
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Junki Inamura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Motohiro Shindo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Katsunori Sasaki
- Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Naomi Iizuka
- Research and Development Department, Shino-Test Corporation, Sagamihara, Kanagawa, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yoshihiro Torimoto
- Oncology Center, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
32
|
Veuthey T, Wessling-Resnick M. Pathophysiology of the Belgrade rat. Front Pharmacol 2014; 5:82. [PMID: 24795636 PMCID: PMC4000996 DOI: 10.3389/fphar.2014.00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023] Open
Abstract
The Belgrade rat is an animal model of divalent metal transporter 1 (DMT1) deficiency. This strain originates from an X-irradiation experiment first reported in 1966. Since then, the Belgrade rat’s pathophysiology has helped to reveal the importance of iron balance and the role of DMT1. This review discusses our current understanding of iron transport homeostasis and summarizes molecular details of DMT1 function. We describe how studies of the Belgrade rat have revealed key roles for DMT1 in iron distribution to red blood cells as well as duodenal iron absorption. The Belgrade rat’s pathology has extended our knowledge of hepatic iron handling, pulmonary and olfactory iron transport as well as brain iron uptake and renal iron handling. For example, relationships between iron and manganese metabolism have been discerned since both are essential metals transported by DMT1. Pathophysiologic features of the Belgrade rat provide us with a unique and interesting animal model to understand iron homeostasis.
Collapse
Affiliation(s)
- Tania Veuthey
- Department of Genetics and Complex Diseases, Harvard School of Public Health Boston, MA, USA
| | | |
Collapse
|
33
|
Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thévenod F. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 2014; 28:2134-45. [PMID: 24448823 DOI: 10.1096/fj.13-240564] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In mammalian cells, mitochondria receive most incoming iron, yet no entry pathway for iron at the outer mitochondrial membrane (OMM) has been characterized. Our results show that the divalent metal transporter 1 (DMT1) occurs in the OMM. Immunoblots detected DMT1 in mitochondria from a pneumocyte cell model in their OMM. Using the split-ubiquitin yeast 2-hybrid system, we found that cytochrome c oxidase subunit II (COXII) and the translocase of OMM 6-kDa subunit (Tom6) homologue interact with DMT1. COXII coimmunoprecipitates with DMT1. There are 4 DMT1 isoforms that differ at the N and C termini. Using HEK293 cells that inducibly express all of the 4 ends of DMT1, we found all of them in the OMM, as detected by immunoblots after cell fractionation, and in isolated mitochondria, as detected by immunofluorescence. Immunoblot analysis of purified cell fractions from rat renal cortex confirmed and extended these results to the kidney, which expressed high levels of DMT1. Immunogold labeling detected DMT1 colocalization in mitochondria with the voltage-dependent anion-selective channel protein-1, which is expressed in the OMM. We suggest that DMT1 not only exports iron from endosomes, but also serves to import the metal into the mitochondria.
Collapse
Affiliation(s)
- Natascha A Wolff
- 1Department of Physiology and Pathophysiology and ZBAF, University of Witten/Herdecke, Stockumer Strasse 12, D-58453 Witten, Germany. F.T.,
| | | | | | | | | | | | | |
Collapse
|
34
|
Jhurry ND, Chakrabarti M, McCormick SP, Gohil VM, Lindahl PA. Mössbauer study and modeling of iron import and trafficking in human jurkat cells. Biochemistry 2013; 52:7926-42. [PMID: 24180611 DOI: 10.1021/bi401015t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Fe content of Jurkat cells grown on transferrin-bound iron (TBI) and Fe(III) citrate (FC) was characterized using Mössbauer, electron paramagnetic resonance, and UV-vis spectroscopies, as well as electron and inductively coupled plasma mass spectrometry. Isolated mitochondria were similarly characterized. Fe-limited cells contained ~100 μM essential Fe, mainly as mitochondrial Fe and nonmitochondrial non-heme high-spin Fe(II). Cells replete with Fe also contained ferritin-bound Fe and Fe(III) oxyhydroxide nanoparticles. Only 400 ± 100 Fe ions were loaded per ferritin complex, regardless of the growth medium Fe concentration. Ferritin regulation thus appears to be more complex than is commonly assumed. The magnetic and structural properties of Jurkat nanoparticles differed from those of yeast mitochondria. They were smaller and may be located in the cytosol. The extent of nanoparticle formation scaled nonlinearly with the concentration of Fe in the medium. Nanoparticle formation was not strongly correlated with reactive oxygen species (ROS) damage. Cells could utilize nanoparticle Fe, converting such aggregates into essential Fe forms. Cells grown on galactose rather than glucose respired faster, grew slower, exhibited more ROS damage, and generally contained more nanoparticles. Cells grown with TBI rather than FC contained less Fe overall, more ferritin, and fewer nanoparticles. Cells in which the level of transferrin receptor expression was increased contained more ferritin Fe. Frataxin-deficient cells contained more nanoparticles than comparable wild-type cells. Data were analyzed by a chemically based mathematical model. Although simple, it captured essential features of Fe import, trafficking, and regulation. TBI import was highly regulated, but FC import was not. Nanoparticle formation was not regulated, but the rate was third-order in cytosolic Fe.
Collapse
Affiliation(s)
- Nema D Jhurry
- Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843-2128, United States
| | | | | | | | | |
Collapse
|
35
|
Singh A, Haldar S, Horback K, Tom C, Zhou L, Meyerson H, Singh N. Prion protein regulates iron transport by functioning as a ferrireductase. J Alzheimers Dis 2013; 35:541-52. [PMID: 23478311 DOI: 10.3233/jad-130218] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP-/-). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP-/- mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP-/- mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP-/- mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP-/- BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Edmunds MC, Czopek A, Wigmore SJ, Kluth DC. Paradoxical effects of heme arginate on survival of myocutaneous flaps. Am J Physiol Regul Integr Comp Physiol 2013; 306:R10-22. [PMID: 24089372 DOI: 10.1152/ajpregu.00240.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia reperfusion injury (IRI) contributes to partial flap and solid organ transplant failure. Heme-oxygenase 1 (HO-1) is an inducible, cytoprotective enzyme which protects against IRI in solid organ transplant models. Heme arginate (HA), a HO-1 inducer, is a promising, translatable, preconditioning agent. This study investigated the effects of preconditioning with HA on the clinical outcome of a myocutaneous IRI model. Forty male Lewis rats were randomized to intravenously receive 1) Control-NaCl, 2) HA, 3) HA and tin mesoporphyrin (SnMP), a HO-1 inhibitor; and 4) SnMP alone. Twenty-four hours later, an in situ transverse rectus abdominis myocutaneous flap was performed under isoflurane anesthesia. Viability of flaps was measured clinically and by laser-Doppler perfusion scanning. In vitro work on human epidermal keratinocytes (HEKa) assessed the effects of HA, SnMP, and the iron chelator desferrioxamine on 1) cytotoxicity, 2) intracellular reactive oxygen species (ROS) concentration, and 3) ROS-mediated DNA damage. In contrast to our hypothesis, HA preconditioning produced over 30% more flap necrosis at 48 h compared with controls (P = 0.02). HA-containing treatments produced significantly worse flap perfusion at all postoperative time points. In vitro work showed that HA is cytotoxic to keratinocytes. This cytotoxicity was independent of HO-1 and was mediated by the generation of ROS by free heme. In contrast to solid organ data, pharmacological preconditioning with HA significantly worsened clinical outcome, thus indicating that this is not a viable approach in free flap research.
Collapse
Affiliation(s)
- Marie-Claire Edmunds
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; and
| | | | | | | |
Collapse
|
37
|
Ghoneum M, Elbaghdady HAM, El-Shebly AA, Pan D, Assanah E, Lawson G. Protective effect of hydroferrate fluid, MRN-100, against lethality and hematopoietic tissue damage in γ-radiated Nile tilapia, Oreochromis niloticus. JOURNAL OF RADIATION RESEARCH 2013; 54:852-862. [PMID: 23589025 PMCID: PMC3766301 DOI: 10.1093/jrr/rrt029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/05/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Hydroferrate fluid, MRN-100, an iron-based compound derived from bivalent and trivalent ferrates, is a potent antioxidant compound. Therefore, we examined the protective effect of MRN-100 against γ-radiation-induced lethality and damage to hematopoietic tissues in fish. A total of 216 Nile tilapia fish (Oreochromis niloticus) were randomly divided into four groups. Group 1 served as a control that was administered no radiation and no MRN-100 treatment. Group 2 was exposed only to γ-radiation (15 Gy). Groups 3 and 4 were pre-treated with MRN-100 at doses of either 1 ml/l or 3 ml/l in water for 1 week, and subsequently exposed to radiation while continuing to receive MRN-100 for 27 days. The survival rate was measured, and biochemical and histopathological analyses of hematopoietic tissues were performed for the different treatment groups at 1 and 4 weeks post-radiation. Exposure to radiation reduced the survival rate to 27.7%, while treatment with MRN-100 maintained the survival rate at 87.2%. In addition, fish exposed to γ-radiation for 1 week showed a significant decrease in the total number of white blood cells (WBCs) and red blood cells (RBCs) series. However, treatment with MRN-100 protected the total WBC count and the RBCs series when compared with irradiated fish. Furthermore, significant histological lesions were observed in the hepatopancreas, spleen and gills of irradiated fish. However, treatment with MRN-100 protected the histopathology of various organs. We conclude that MRN-100 is a radioprotective agent in fish and may be useful as an adjuvant treatment to counteract the adverse side effects associated with radiation exposure.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Departments of Otolaryngology, Charles Drew University of Medicine and Science, 1621 East, 120th Street, Los Angeles, California 90059
| | | | - Abdallah A. El-Shebly
- National Institute of Oceanography and Fisheries, 101 Kaser El Aini Street, Cairo, Egypt
| | - Deyu Pan
- Internal Medicine, Charles Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059
| | - Edward Assanah
- Research, Charles Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059
| | - Greg Lawson
- Pathology and Laboratory Medicine, Division of Laboratory Animal Medicine, David Geffen School of Medicine at UCLA, 724 Westwood Blvd., Seventh Floor, Los Angeles, CA 90095
| |
Collapse
|
38
|
Wang CY, Knutson MD. Hepatocyte divalent metal-ion transporter-1 is dispensable for hepatic iron accumulation and non-transferrin-bound iron uptake in mice. Hepatology 2013; 58:788-98. [PMID: 23508576 PMCID: PMC4572840 DOI: 10.1002/hep.26401] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/14/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED Divalent metal-ion transporter-1 (DMT1) is required for iron uptake by the intestine and developing erythroid cells. DMT1 is also present in the liver, where it has been implicated in the uptake of transferrin-bound iron (TBI) and non-transferrin-bound iron (NTBI), which appears in the plasma during iron overload. To test the hypothesis that DMT1 is required for hepatic iron uptake, we examined mice with the Dmt1 gene selectively inactivated in hepatocytes (Dmt1(liv/liv) ). We found that Dmt1(liv/liv) mice and controls (Dmt1(flox/flox) ) did not differ in terms of hepatic iron concentrations or other parameters of iron status. To determine whether hepatocyte DMT1 is required for hepatic iron accumulation, we crossed Dmt1(liv/liv) mice with Hfe(-) (/) (-) and hypotransferrinemic (Trf(hpx/hpx) ) mice that develop hepatic iron overload. Double-mutant Hfe(-) (/) (-) Dmt1(liv/liv) and Trf(hpx/hpx) ;Dmt1(liv/liv) mice were found to accumulate similar amounts of hepatic iron as did their respective controls. To directly assess the role of DMT1 in NTBI and TBI uptake, we injected (59) Fe-labeled ferric citrate (for NTBI) or (59) Fe-transferrin into plasma of Dmt1(liv/liv) and Dmt1(flox/flox) mice and measured uptake of (59) Fe by the liver. Dmt1(liv/liv) mice displayed no impairment of hepatic NTBI uptake, but TBI uptake was 40% lower. Hepatic levels of transferrin receptors 1 and 2 and ZRT/IRT-like protein 14, which may also participate in iron uptake, were unaffected in Dmt1(liv/liv) mice. Additionally, liver iron levels were unaffected in Dmt1(liv/liv) mice fed an iron-deficient diet. CONCLUSION Hepatocyte DMT1 is dispensable for hepatic iron accumulation and NTBI uptake. Although hepatocyte DMT1 is partially required for hepatic TBI uptake, hepatic iron levels were unaffected in Dmt1(liv/liv) mice, suggesting that this pathway is a minor contributor to the iron economy of the liver.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Food Science and Human Nutrition Department; University of Florida; Gainesville FL
| | - Mitchell D. Knutson
- Food Science and Human Nutrition Department; University of Florida; Gainesville FL
| |
Collapse
|
39
|
Zariwala MG, Somavarapu S, Farnaud S, Renshaw D. Comparison study of oral iron preparations using a human intestinal model. Sci Pharm 2013; 81:1123-39. [PMID: 24482777 PMCID: PMC3867244 DOI: 10.3797/scipharm.1304-03] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency and related iron deficiency anaemia (IDA) are the most prevalent nutritional disorders worldwide. The standard treatment involves supplementation with solid or liquid iron supplement preparations, usually based on a ferrous salt such as ferrous sulphate, ferrous fumarate, or ferrous gluconate. In the present study, we compared iron uptake and absorption from various solid and liquid iron supplement preparations currently available in the United Kingdom using the well-characterised human epithelial adenocarcinoma cell line Caco-2. Intracellular ferritin protein formation by the Caco-2 cell was considered an indicator of cellular iron uptake and absorption. We investigated the effects of formulation ingredients at a defined pH on iron uptake and absorption, and designed a novel two-stage dissolution-absorption protocol that mimicked physiological conditions. Our experiments revealed wide variations in the rate of dissolution between the various solid iron preparations. Conventional-release ferrous iron tablets dissolved rapidly (48 ± 4 mins to 64 ± 4 mins), whereas modified-released tablets and capsules took significantly longer to undergo complete dissolution (274 ± 8 to 256 ± 8 mins). Among the solid iron preparations, ferrous sulphate conventional-release tablets demonstrated the highest iron absorption, whereas modified-release ferrous preparations demonstrated uniformly low iron absorption, as compared to the control (P < 0.05). Taken together, our results demonstrate that there are wide-ranging variations in dissolution times and iron uptake from oral iron preparations, with the physical characteristics of the preparation as well as the form of iron playing a key role.
Collapse
Affiliation(s)
- Mohammed Gulrez Zariwala
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sebastien Farnaud
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Derek Renshaw
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
40
|
Martines AMF, Masereeuw R, Tjalsma H, Hoenderop JG, Wetzels JFM, Swinkels DW. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat Rev Nephrol 2013; 9:385-98. [DOI: 10.1038/nrneph.2013.98] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Loke SY, Siddiqi NJ, Alhomida AS, Kim HC, Ong WY. Expression and localization of duodenal cytochrome b in the rat hippocampus after kainate-induced excitotoxicity. Neuroscience 2013; 245:179-90. [PMID: 23597830 DOI: 10.1016/j.neuroscience.2013.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/30/2013] [Accepted: 04/06/2013] [Indexed: 11/24/2022]
Abstract
Brain iron accumulation and oxidative stress are common features of many neurodegenerative diseases, and could be due in part to increased iron influx across the blood-brain interface. The iron transport protein, divalent metal transporter 1 (DMT1) is found in reactive astrocytes of the lesioned hippocampal CA fields after excitotoxicity induced by the glutamate analog kainate (KA), but in order for iron to be transported by DMT1, it must be converted from the ferric to the ferrous form. The present study was carried out to investigate the expression of a ferric reductase, duodenal cytochrome b (DCYTB), in the rat hippocampus after KA injury. Quantitative reverse transcriptase-polymerase chain reaction showed significant increases in DCYTB mRNA expression of 2.5, 2.7, and 5.2-fold in the hippocampus at 1week, 2weeks and 1month post-KA lesions respectively compared to untreated controls, and 3.0-fold compared to 1month post-saline injection. DCYTB-positive cells were double labeled with glial fibrillary acidic protein, and electron microscopy showed that the DCYTB-positive cells had dense bundles of glial filaments, characteristic of astrocytes, and were present as end-feet around unlabeled brain capillary endothelial cells. DMT1 labeling in astrocytes and increased iron staining were also observed in the lesioned hippocampus. Together, the present findings of DCYTB and DMT1 localization in astrocytes suggest that DCYTB is a ferric reductase for reduction of ferric iron, for transport by DMT1 into the brain. We postulate that the coordinated action of these two proteins could be important in iron influx across the blood-brain interface, in areas undergoing neurodegeneration.
Collapse
Affiliation(s)
- S-Y Loke
- Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | | | | | | | | |
Collapse
|
42
|
Kosman DJ. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation. Coord Chem Rev 2013; 257:210-217. [PMID: 23264695 PMCID: PMC3524981 DOI: 10.1016/j.ccr.2012.06.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron's aqueous chemistry, occurs as 'rust', insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H(2)O)(6)](3+). Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting Fe(II) which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the 'rusting out' of Fe(III) and the ROS-generating autoxidation of Fe(II) so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology.
Collapse
Affiliation(s)
- Daniel J. Kosman
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
43
|
Wysokinski D, Danisz K, Blasiak J, Dorecka M, Romaniuk D, Szaflik J, Szaflik JP. An association of transferrin gene polymorphism and serum transferrin levels with age-related macular degeneration. Exp Eye Res 2013; 106:14-23. [DOI: 10.1016/j.exer.2012.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/18/2012] [Accepted: 10/08/2012] [Indexed: 12/16/2022]
|
44
|
Handling of Iron Oxide and Silver Nanoparticles by Astrocytes. Neurochem Res 2012; 38:227-39. [DOI: 10.1007/s11064-012-0930-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/31/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022]
|
45
|
Abstract
Friedreich ataxia is a rare disorder characterized by an autosomal recessive pattern of inheritance. The disease is noted for a constellation of clinical symptoms, notably loss of coordination and a variety of neurologic and cardiac complications. More recently, scientists have focused their research on an array of general investigations of the underlying cellular basis for the disease, including mitochondrial biogenesis, iron-sulfur cluster synthesis, iron metabolism, antioxidant responses, and mitophagy. Combined with investigations that have explored the pathogenesis of the disease and the function of the protein frataxin, these studies have led to insights that will be key to identifying new therapeutic strategies for treating the disease.
Collapse
Affiliation(s)
- Massimo Pandolfo
- Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium.
| |
Collapse
|
46
|
Schubert KO, Föcking M, Prehn JHM, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 2012; 17:669-81. [PMID: 21986877 DOI: 10.1038/mp.2011.123] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the best-characterized mechanism governing cellular membrane and protein trafficking. In this hypothesis review, we integrate recent evidence implicating CME and related cellular trafficking mechanisms in the pathophysiology of psychotic disorders such as schizophrenia and bipolar disorder. The evidence includes proteomic and genomic findings implicating proteins and genes of the clathrin interactome. Additionally, several important candidate genes for schizophrenia, such as dysbindin, are involved in processes closely linked to CME and membrane trafficking. We discuss that key aspects of psychosis neuropathology such as synaptic dysfunction, white matter changes and aberrant neurodevelopment are all influenced by clathrin-dependent processes, and that other cellular trafficking mechanisms previously linked to psychoses interact with the clathrin interactome in important ways. Furthermore, many antipsychotic drugs have been shown to affect clathrin-interacting proteins. We propose that the targeted pharmacological manipulation of the clathrin interactome may offer fruitful opportunities for novel treatments of schizophrenia.
Collapse
Affiliation(s)
- K O Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | | | |
Collapse
|
47
|
Le Blanc S, Garrick MD, Arredondo M. Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am J Physiol Cell Physiol 2012; 302:C1780-5. [DOI: 10.1152/ajpcell.00080.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heme-Fe is an important source of dietary iron in humans; however, the mechanism for heme-Fe uptake by enterocytes is poorly understood. Heme carrier protein 1 (HCP1) was originally identified as mediating heme-Fe transport although it later emerged that it was a folate transporter. We asked what happened to heme-Fe and folate uptake and the relative abundance of hcp1 and ho1 mRNA in Caco-2 cells after knockdown by transfection with HCP1-directed short hairpin (sh)RNA. Control Caco-2 cells were cultured in bicameral chambers with 0–80 μM heme-Fe for selected times. Intracellular Fe and heme concentration increased in Caco-2 cells reflecting higher external heme-Fe concentrations. Maximum Fe, heme, and heme oxygenase 1 (HO1) expression and activity were observed between 12 and 24 h of incubation. Quantitative RT-PCR for hcp1 revealed that its mRNA decreased at 20 μM heme-Fe while ho1 mRNA and activity increased. When shRNA knocked down hcp1 mRNA, heme-55Fe uptake and [3H]folate transport mirrored the mRNA decrease, ho1 mRNA increased, and flvcr mRNA was unchanged. These data argue that HCP1 is involved in low-affinity heme-Fe uptake not just in folate transport.
Collapse
Affiliation(s)
- Solange Le Blanc
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; and
| | - Michael D. Garrick
- Department of Biochemistry, State University of New York, Buffalo, New York
| | - Miguel Arredondo
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; and
| |
Collapse
|
48
|
Ruvin Kumara VM, Wessling-Resnick M. Olfactory ferric and ferrous iron absorption in iron-deficient rats. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1280-6. [PMID: 22492739 DOI: 10.1152/ajplung.00004.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The absorption of metals from the nasal cavity to the blood and the brain initiates an important route of occupational exposures leading to health risks. Divalent metal transporter-1 (DMT1) plays a significant role in the absorption of intranasally instilled manganese, but whether iron uptake would be mediated by the same pathway is unknown. In iron-deficient rats, blood (59)Fe levels after intranasal administration of the radioisotope in the ferrous form were significantly higher than those observed for iron-sufficient control rats. Similar results were obtained when ferric iron was instilled intranasally, and blood levels of (59)Fe were even greater in the iron-deficient rats compared with the amount of ferrous iron absorbed. Experiments with Belgrade (b/b) rats showed that DMT1 deficiency limited ferric iron uptake from the nasal cavity to the blood compared with +/b controls matched for iron deficiency. These results indicate that olfactory uptake of ferric iron by iron-deficient rats involves DMT1. Western blot experiments confirmed that DMT1 levels are significantly higher in iron-deficient rats compared with iron-sufficient controls in olfactory tissue. Thus the molecular mechanism of olfactory iron absorption is regulated by body iron status and involves DMT1.
Collapse
Affiliation(s)
- V M Ruvin Kumara
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
49
|
Wysokinski D, Zaras M, Dorecka M, Waszczyk M, Szaflik J, Blasiak J, Szaflik JP. An association between environmental factors and the IVS4+44C>A polymorphism of the DMT1 gene in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2012; 250:1057-65. [PMID: 22371024 PMCID: PMC3382657 DOI: 10.1007/s00417-012-1966-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is an ocular disease affecting macula — the central part of the retina, resulting in the degeneration of photoreceptors and retinal epithelium and causing severe central vision impairment. The pathophysiology of the disease is not completely known, but a significant role is attributed to genetic factors. The contribution of oxidative stress in AMD as a trigger of the degenerative process is well-established. Iron ions may act as a source of reactive oxygen species; therefore, maintaining iron homeostasis is important for redox balance in the organism. Diversity in iron homeostasis genes may counterpart in unbalanced redox state, and thus be involved in AMD pathophysiology. Methods In this work, we searched for an association between some single nucleotide polymorphisms in the divalent metal transporter 1 (DMT1) gene intronic IVS4+44C>A (rs224589) and 3’-UTR c.2044T>C (rs2285230) and environmental factors and AMD. Genotyping was performed using the PCR-RFLP method. DNA was obtained from 436 AMD patients and 168 controls. Results We did not find any association between the genotypes of the two polymorphisms and AMD occurrence. However, we observed that AMD patients living in a rural environment and having the CC genotype of the IVS4+44C>A polymorphism had an increased risk of AMD, while individuals with the CA genotype or the A allele had a decreased risk of the disease. Moreover, in male AMD patients the C allele increased the risk of the disease, while the AA genotype decreased it. Conclusions These results suggest that the VS4+44C>A polymorphism of the DMT1 gene may interact with place of living and gender to modulate the risk of AMD.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
50
|
|