1
|
Sharma L, Bisht GS. Unveiling the Self-assembly and Therapeutic Efficacy of Antimicrobial Peptides SA4 Against Multidrug-Resistant A. baumannii. Curr Microbiol 2024; 81:395. [PMID: 39375209 DOI: 10.1007/s00284-024-03923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Infections linked to Acinetobacter baumannii are one of the main risks of modern medicine. Biofilms formed by A. baumannii due to a protective extracellular polysaccharide matrix make them highly tolerant to conventional antibiotics and raise the possibility of antibiotic resistance. Antimicrobial peptides (AMPs) are gaining popularity due to their broad-spectrum actions and key properties of peptide self-assembly, making them a promising alternative to antibiotics. Here, we demonstrate that 12-residue synthetic self-assembled peptide SA4 nanostructures have enough antibacterial action to prevent the growth of mature bacterial biofilms. The SA4 peptide was successfully synthesized by using the solid-phase peptide synthesis method, and its self-assembly was prepared in water. The self-assembled peptide hydrogel formed nanotube structure was observed under a scanning electron microscope and further characterized to confirm their physical and molecular properties. The resulting hydrogel exhibits significant antibacterial activity against MDR A. baumannii strains (MDR-1 and MDR-2), responsible for many nosocomial infections. In addition, at various gel concentrations, this hydrogel has the potential to inhibit about 30-80% of biofilms formed by MDR strains. Furthermore, under a microscope, it has been observed that the rupture of the bacterial cell membrane and cell wall of A. baumannii cells is caused by peptide nanotubes generated by self-assemblies. Thus, peptide-based nanotubes present intriguing avenues for various biomedical applications. This is the first report of bacterial biofilm removal with SA4 peptide nanotubes, and offering a unique treatment for infections linked to biofilms.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India.
| |
Collapse
|
2
|
Sharma A, Rashid M, Chauhan P, Kaur S, Kaur A. In vitro antibacterial and anti-biofilm potential of an endophytic Schizophyllum commune. AMB Express 2024; 14:10. [PMID: 38245627 PMCID: PMC10799838 DOI: 10.1186/s13568-024-01663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
The emergence of antibiotic resistance in pathogens is one of the major health concerns facing mankind as different bacterial strains have developed resistance to antibiotics over the period of time due to overuse and misuse of antibiotics. Besides this, ability to form biofilms is another major factor contributing to antibiotic resistance, which has necessitated the need for exploration for novel and effective compounds with ability to inhibit biofilm formation. Endophytic fungi are reported to exhibit antibacterial and anti-biofilm potential and could serve as a potent source of novel antibacterial compounds. Majority of the bioactivities have been reported from fungi belonging to phylum Ascomycota. Endophytic basidiomycetes, inspite of their profound ability to serve as a source of bioactive compounds have not been exploited extensively. In present study, an attempt was made to assess the antibacterial, anti-biofilm and biofilm dispersion potential of an endophytic basidiomycetous fungus Schizophyllum commune procured from the culture collection of our lab. Ethyl acetate extract of S. commune showed good antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Vibrio cholerae. Minimum inhibitory concentration and minimum bactericidal concentration of the extract were in the range of 1.25-10 mg/ml against the tested bacterial pathogens. The mode of action was determined to be bactericidal which was further confirmed by time kill studies. Good anti-biofilm activity of S. commune extract was recorded against K. pneumoniae and S. enterica, which was further validated by fluorescence microscopy. The present study highlights the importance of endophytic basidiomycetes as source of therapeutic compounds.
Collapse
Affiliation(s)
- Avinash Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pooja Chauhan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
3
|
Kurmanjiang T, Wang X, Li J, Mamat N, Nurmamat M, Xu G. A novel pyrazolone complex P-FAH-Cu-bpy induces death of Escherichia coli and Staphylococcus aureus by disrupting cell structure and blocking energy. Arch Microbiol 2023; 205:376. [PMID: 37940792 DOI: 10.1007/s00203-023-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
A novel pyrazolone-based copper complex [Cu(L)(bpy)]∙CH3OH (P-FAH-Cu-bpy) was synthesized and previously characterized to have antitumor properties. This study aimed to investigate its antibacterial properties and action modes against Escherichia coli and Staphylococcus aureus. By agar diffusion assay, P-FAH-Cu-bpy showed strong antibacterial activity against E. coli and S. aureus with the diameter of inhibition zone of 10.17-12.50 mm and 11.83-14 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the complex were 1.5 and 3 μM, respectively. Destroyed bacteria cells and debris were clearly observed by SEM. At 2 MIC and 4 MIC of P-FAH-Cu-bpy, 1.1683 and 1.9083 pg copper per cell was taken by E. coli, and 4.5670 and 8.5250 pg per cell by S. aureus, respectively. Multi-step resistance selection showed both bacteria were sensitive to P-FAH-Cu-bpy without induction of resistance within 30 generations. With P-FAH-Cu-bpy treatment, the release of nucleotides and proteins and alkaline phosphatase was increased, but the activity of K+-Na+-ATPase and Ca2+-Mg2+-ATPase and membrane conductivity were decreased in both pathogens. In conclusion, P-FAH-Cu-bpy induced death of both bacteria by destroying the cell membrane structure and blocking energy and exhibited strong antibacterial activity against E. coli and S. aureus without inducing microbial resistance.
Collapse
Affiliation(s)
- Tamasha Kurmanjiang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Xiaojing Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Jinyu Li
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China.
| | - Nuramina Mamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Marhaba Nurmamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Guanchen Xu
- Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, China
| |
Collapse
|
4
|
Lu Y, Guan T, Wang S, Zhou C, Wang M, Wang X, Zhang K, Han X, Lin J, Tang Q, Wang C, Zhou W. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms. Bioorg Med Chem 2023; 83:117232. [PMID: 36940608 DOI: 10.1016/j.bmc.2023.117232] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.
Collapse
Affiliation(s)
- Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China
| | - Shaobing Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Cui Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Meizhu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Jinchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., 201315 Shanghai, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
5
|
Sharma L, Bisht GS. Synergistic effects of short peptides and antibiotics against bacterial and fungal strains. J Pept Sci 2023; 29:e3446. [PMID: 35931657 DOI: 10.1002/psc.3446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
There is a rising tide of concern about the antibiotic resistance issue. To reduce the possibility of antibiotic-resistant infections, a new generation of antimicrobials must be developed. Antimicrobial peptides are potential alternatives to antibiotics that can be used alone or together with conventional antibiotics to combat antimicrobial resistance. In this work, lead compounds LP-23, DP-23, SA4, and SPO from previously published studies were synthesized by solid-phase peptide synthesis and their antimicrobial evaluation was carried out against various bacterial and fungal strains. Peptide combinations with antibiotics were evaluated by using the checkerboard method and their minimal inhibitory concentration (MIC) in combination was calculated by using the fractional inhibitory concentration (FIC) index. Cytotoxicity evaluations of these peptides further confirmed their selectivity toward microbial cells. Based on the FIC values, LP-23, DP-23, and SPO demonstrated synergy in combination with gentamicin against a gentamicin-resistant clinical isolate of Escherichia coli. For Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium, seven combinations exhibited synergistic effects between peptide/peptoids and the tested antibiotics. Additionally, almost all the combinations of peptides/peptoids with amphotericin B and fluconazole also showed effective synergy against Aspergillus niger and Aspergillus flavus. The synergy found between LP-23, DP-23, SA4, and SPO with the selected antibiotics may have the potential to be used as a combination therapy against various microbial infections.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
6
|
Antibacterial Peptide NP-6 Affects Staphylococcus aureus by Multiple Modes of Action. Int J Mol Sci 2022; 23:ijms23147812. [PMID: 35887160 PMCID: PMC9319634 DOI: 10.3390/ijms23147812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Our previous study extracted and identified an antibacterial peptide that was named NP-6. Herein, we investigated the physicochemical properties of NP-6, and elucidated the mechanisms underlying its antimicrobial activity against Staphylococcus aureus. The results showed that the hemolysis activity of NP-6 was 2.39 ± 0.13%, lower than Nisin A (3.91 ± 0.43%) at the same concentration (512 µg/mL). Negligible cytotoxicity towards RAW264.7 cells was found when the concentration of NP-6 was lower than 512 µg/mL. In addition, it could keep most of its activity in fetal bovine serum. Moreover, transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry results showed that NP-6 can destroy the integrity of the bacterial cell membrane and increase the membrane permeability. Meanwhile, NP-6 had binding activity with bacterial DNA and RNA in vitro and strongly inhibited the intracellular β-galactosidase activity of S. aureus. Our findings suggest that NP-6 could be a promising candidate against S. aureus.
Collapse
|
7
|
Wu CL, Peng KL, Yip BS, Chih YH, Cheng JW. Boosting Synergistic Effects of Short Antimicrobial Peptides With Conventional Antibiotics Against Resistant Bacteria. Front Microbiol 2021; 12:747760. [PMID: 34733262 PMCID: PMC8558513 DOI: 10.3389/fmicb.2021.747760] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
The global spread of antibiotic-resistant infections has meant that there is an urgent need to develop new antimicrobial alternatives. In this study, we developed a strategy to boost and/or synergize the activity of conventional antibiotics by combination with antimicrobial peptides tagged with the bulky non-natural amino acid β-naphthylalanine (Nal) to their N- or C-terminus. A checkerboard method was used to evaluate synergistic effects of the parent peptide and the Nal-tagged peptides. Moreover, boron-dipyrro-methene labeled vancomycin was used to characterize the synergistic mechanism of action between the peptides and vancomycin on the bacterial strains. These Nal-tagged antimicrobial peptides also reduced the antibiotic-induced release of lipopolysaccharide from Gram-negative bacteria by more than 99.95%. Our results demonstrate that Nal-tagged peptides could help in developing antimicrobial peptides that not only have enhanced antibacterial activities but also increase the synergistic effects with conventional antibiotics against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Lung Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuang-Li Peng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bak-Sau Yip
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ya-Han Chih
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jya-Wei Cheng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Mach M, Kowalska M, Olechowska K, Płachta Ł, Wydro P. The studies on the membrane activity of triester of phosphatidylcholine in artificial membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183711. [PMID: 34343534 DOI: 10.1016/j.bbamem.2021.183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Due to the increasing number of infections together with the appearance of bacteria exhibiting multi-drug resistance, new antibiotics are being sought. In this context the interest of the cationic lipoids increases because of their amphiphilic structure and positive charge that can stimulates the antibacterial action of these compounds. Thus, in this work we have performed the studies on the effect of one selected triesters of phosphatidylcholine, namely 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine (EDPPC), on the model lipid membranes. The investigations included the analysis of the impact of EDPPC on multicomponent monolayers and bilayers consisting of the lipids naturally occurring in bacterial membranes (phosphatidylethanolamines (PE), phosphatidylglycerols (PG) and cardiolipin (CL)), mixed in proportions reflecting the lipid composition of these biomembranes. In the study, the Langmuir monolayers (registered on water and PBS buffer) and liposomes as model bacterial biomembranes were applied. The obtained results demonstrate that the presence of cationic lipoid in PE/PG and PE/PG/CL systems significantly modifies their properties and molecular organization. The incorporation of EDPPC into model bacterial membranes primarily impact on the intermolecular interactions. It was shown that the strength of the interaction between the cationic lipid and the components of the model membranes depends both on the composition of the membrane as well as on the type of subphase. Furthermore, the investigated cationic lipoid leads to the decrease of the ordering of acyl chains and thus to the increase of fluidity of membranes. The obtained results allow one to propose that EDPPC may behave as antibiotic active at the level of membrane.
Collapse
Affiliation(s)
- Marzena Mach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Magdalena Kowalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Karolina Olechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Łukasz Płachta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
9
|
Reis PVM, Lima VM, Souza KR, Cardoso GA, Melo-Braga MN, Santos DM, Verly RM, Pimenta AMC, Dos Santos VL, de Lima ME. Synthetic Peptides Derived From Lycosa Erythrognatha Venom: Interaction With Phospholipid Membranes and Activity Against Resistant Bacteria. Front Mol Biosci 2021; 8:680940. [PMID: 34169094 PMCID: PMC8217815 DOI: 10.3389/fmolb.2021.680940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of μmol L−1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.
Collapse
Affiliation(s)
- Pablo V M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius M Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kelton R Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Gabriele A Cardoso
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel M Santos
- Departamento de Bioquímica e Biologia Molecular, Campos Centro Oeste. Universidade Federal de São João Del-Rei, Diamantina, Brazil
| | - Rodrigo M Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vera Lúcia Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Faculdade Santa Casa de Belo Horizonte, Programa de Pós-Graduação em Medicina - Biomedicina, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Ngobeni B, Mashele SS, Malebo NJ, van der Watt E, Manduna IT. Disruption of microbial cell morphology by Buxus macowanii. BMC Complement Med Ther 2020; 20:266. [PMID: 32867768 PMCID: PMC7457497 DOI: 10.1186/s12906-020-03049-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
Background Microbial infections are one of the major causes of death globally. This is attributed to the rising costs of primary healthcare and its inaccessibility especially in developing countries. Moreover, there has been an increase in microbial strains that have reduced susceptibility to antimicrobial drugs. Research on the antimicrobial properties of medicinal plants, which could address these problems, has become more important as they present fewer side effects when compared to the antibiotics currently in use. This study evaluated the antimicrobial properties of a methanolic extract from Buxus macowanii in order to assess its potential in the development of novel antimicrobial drugs. Methods Antimicrobial activity of the extract was evaluated using the broth microdilution method. The effects of B. macowanii on the morphology of B. cereus were observed using Scanning and Transmission electron microscopy. Chemical profiling of the plant extract was performed using the GCMS. Results The extract showed antimicrobial activity against all the microbial species used. Microscopic examination of the cells of B. cereus cells treated with Buxus macowanii showed some changes in morphology such as damage of the cell wall, swelling of the cells and incomplete cell division that eventually resulted in cell death. Neophytadiene, an antimicrobial compound was detected in the extract using GCMS. Conclusion The morphological disruptions of the cell wall of Bacillus cereus explain the antimicrobial properties of B. macowanii and indicate its possible application in the development of natural antimicrobial drugs.
Collapse
Affiliation(s)
- B Ngobeni
- Department of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - S S Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - N J Malebo
- Department of Life Sciences, Central University of Technology, Bloemfontein, South Africa
| | - E van der Watt
- Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa
| | - I T Manduna
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Private Bag X20539, Bloemfontein, 9300, South Africa.
| |
Collapse
|
11
|
Proadrenomedullin N-terminal 20 peptide (PAMP) and its C-terminal 12-residue peptide, PAMP(9-20): Cell selectivity and antimicrobial mechanism. Biochem Biophys Res Commun 2020; 527:744-750. [PMID: 32439180 DOI: 10.1016/j.bbrc.2020.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022]
Abstract
Proadrenomedullin N-terminal 20 peptide (PAMP) is a regulatory peptide that is found in various cell types. It is involved in many biological activities and is rich in basic and hydrophobic amino acids, a common feature of antimicrobial peptides (AMPs). In this study, the cell selectivity and antimicrobial mechanism of PAMP and its C-terminal peptide, PAMP(9-20), were investigated. PAMP and PAMP(9-20) displayed potent antimicrobial activity (minimum inhibitory concentration: 4-32 μM) against standard bacterial strains, but showed no hemolytic activity even at the highest tested concentration of 256 μM. PAMP(9-20) showed 2- to 4-fold increase in antimicrobial activity against gram-negative bacteria compared to PAMP. Cytoplasmic membrane depolarization, leakage of calcein dye from membrane mimic liposomes, SYTOX Green uptake, membrane permeabilization, and flow cytometry studies indicated that the major target of PAMP and PAMP(9-20) is not the microbial cell membrane. Interestingly, laser-scanning confocal microscopy demonstrated that FITC-labeled PAMP and PAMP(9-20) enter the cytoplasm of Escherichia coli similar to buforin-2, and gel retardation assay indicated that PAMP and PAMP(9-20) effectively bind to bacterial DNA. These results suggest that the intracellular target mechanism is responsible for the antimicrobial action of PAMP and PAMP(9-20). Collectively, PAMP and PAMP(9-20) could be considered promising candidates for the development of new antimicrobial agents.
Collapse
|
12
|
Wu CL, Hsueh JY, Yip BS, Chih YH, Peng KL, Cheng JW. Antimicrobial Peptides Display Strong Synergy with Vancomycin Against Vancomycin-Resistant E. faecium, S. aureus, and Wild-Type E. coli. Int J Mol Sci 2020; 21:ijms21134578. [PMID: 32605123 PMCID: PMC7369893 DOI: 10.3390/ijms21134578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/25/2023] Open
Abstract
There is an urgent and imminent need to develop new antimicrobials to fight against antibiotic-resistant bacterial and fungal strains. In this study, a checkerboard method was used to evaluate the synergistic effects of the antimicrobial peptide P-113 and its bulky non-nature amino acid substituted derivatives with vancomycin against vancomycin-resistant Enterococcus faecium, Staphylococcus aureus, and wild-type Escherichia coli. Boron-dipyrro-methene (BODIPY) labeled vancomycin was used to characterize the interactions between the peptides, vancomycin, and bacterial strains. Moreover, neutralization of antibiotic-induced releasing of lipopolysaccharide (LPS) from E. coli by the peptides was obtained. Among these peptides, Bip-P-113 demonstrated the best minimal inhibitory concentrations (MICs), antibiotics synergism, bacterial membrane permeabilization, and supernatant LPS neutralizing activities against the bacteria studied. These results could help in developing antimicrobial peptides that have synergistic activity with large size glycopeptides such as vancomycin in therapeutic applications.
Collapse
Affiliation(s)
- Chih-Lung Wu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Ju-Yun Hsueh
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Kuang-Li Peng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
- Correspondence: ; Tel.: +886-3-574-2763; Fax: +886-3-571-5934
| |
Collapse
|
13
|
Shorter Antibacterial Peptide Having High Selectivity for E. coli Membranes and Low Potential for Inducing Resistance. Microorganisms 2020; 8:microorganisms8060867. [PMID: 32521823 PMCID: PMC7356157 DOI: 10.3390/microorganisms8060867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been recognised as a significant therapeutic option for mitigating resistant microbial infections. It has been found recently that Plasmodium falciparum-derived, 20 residue long, peptide 35409 had antibacterial and haemolytic activity, making it an AMP having reduced selectivity, and suggesting that it should be studied more extensively for obtaining new AMPs having activity solely targeting the bacterial membrane. Peptide 35409 was thus used as template for producing short synthetic peptides (<20 residues long) and evaluating their biological activity and relevant physicochemical characteristics for therapeutic use. Four of the sixteen short peptides evaluated here had activity against E. coli without any associated haemolytic effects. The 35409-1 derivative (17 residues long) had the best therapeutic characteristics as it had high selectivity for bacterial cells, stability in the presence of human sera, activity against E. coli multiresistant clinical isolates and was shorter than the original sequence. It had a powerful membranolytic effect and low potential for inducing resistance in bacteria. This peptide’s characteristics highlighted its potential as an alternative for combating infection caused by E. coli multiresistant bacteria and/or for designing new AMPs.
Collapse
|
14
|
Sharma P, Rashid M, Kaur S. Novel enterocin E20c purified from Enterococcus hirae 20c synergised with ß-lactams and ciprofloxacin against Salmonella enterica. Microb Cell Fact 2020; 19:98. [PMID: 32366243 PMCID: PMC7197179 DOI: 10.1186/s12934-020-01352-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background An increasing rate of antibiotic resistance among Gram-negative bacterial pathogens has created an urgent need to discover novel therapeutic agents to combat infectious diseases. Use of bacteriocins as therapeutic agents has immense potential due to their high potency and mode of action different from that of conventional antibiotics. Results In this study, a novel bacteriocin E20c of molecular weight 6.5 kDa was purified and characterized from the probiotic strain of Enterococcus hirae. E20c had bactericidal activities against several multidrug resistant (MDR) Gram-negative bacterial pathogens. Flow cytometry and scanning electron microscopy studies showed that it killed the Salmonella enterica cells by forming ion-permeable channels in the cell membrane leading to enhanced cell membrane permeability. Further, checkerboard titrations showed that E20c had synergistic interaction with antibiotics such as ampicillin, penicillin, ceftriaxone, and ciprofloxacin against a ciprofloxacin- and penicillin-resistant strain of S. enterica. Conclusion Thus, this study shows the broad spectrum antimicrobial activity of novel enterocin E20c against various MDR pathogens. Further, it highlights the importance of bacteriocins in lowering the minimum inhibitory concentrations of conventional antibiotics when used in combination.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
15
|
Antibacterial Peptide Nucleic Acids-Facts and Perspectives. Molecules 2020; 25:molecules25030559. [PMID: 32012929 PMCID: PMC7038079 DOI: 10.3390/molecules25030559] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug-resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene-specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA.
Collapse
|
16
|
Mohan NM, Zorgani A, Jalowicki G, Kerr A, Khaldi N, Martins M. Unlocking NuriPep 1653 From Common Pea Protein: A Potent Antimicrobial Peptide to Tackle a Pan-Drug Resistant Acinetobacter baumannii. Front Microbiol 2019; 10:2086. [PMID: 31620099 PMCID: PMC6759681 DOI: 10.3389/fmicb.2019.02086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
While the antibiotic era has come and gone, antimicrobial peptides (AMPs) hold promise as novel therapies to treat multidrug resistant (MDR) pathogens in an age where the threat of multidrug resistance escalates worldwide. Here, we report the bactericidal properties of NuriPep 1653, a novel 22 mer and non-modified peptide. NuriPep 1653 was identified within the sequence of the non-antimicrobial P54 protein, which is involved in nutrient reservoir activity in Pisum sativum. Total bacterial clearance of Acinetobacter baumannii cells (1 × 108 cells/mL) was observed using only 4 × MIC (48 μg/mL) of NuriPep 1653 after just 20 min of treatment. We uncovered a synergistic interaction between NuriPep 1653 and another antimicrobial peptide, colistin. The MIC of NuriPep 1653 and colistin dropped from 12 and 8 μg/mL to 2 and 1 μg/mL, respectively, when they were combined. NuriPep 1653 exhibits no cytotoxicity in different human cell lines and has a low propensity to induce bacterial resistance in a colistin resistant clinical isolate of A. baumannii. The existence of these peptides embedded in proteins unearths potentially new classes of antimicrobials with activity against clinically relevant pathogens. Our findings push the boundaries of traditional peptide discovery and represent a leading edge for natural bioactive compounds which may have a common existence in nature but remain unexposed.
Collapse
Affiliation(s)
- Niamh Maire Mohan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Nuritas Limited, Dublin, Ireland
| | | | | | | | | | - Marta Martins
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Sharma D, Choudhary M, Vashistt J, Shrivastava R, Bisht GS. Cationic antimicrobial peptide and its poly-N-substituted glycine congener: Antibacterial and antibiofilm potential against A. baumannii. Biochem Biophys Res Commun 2019; 518:472-478. [PMID: 31443965 DOI: 10.1016/j.bbrc.2019.08.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/10/2019] [Indexed: 01/02/2023]
Abstract
Acinetobacter baumannii is one of the clinically important nosocomial pathogen that has become resistant to most of the conventional antimicrobials. Biofilms formed by A. baumannii are difficult to eradicate, thereby highlighting the need for new therapeutic options to treat biofilm associated infections. Antimicrobial peptides have recently emerged as new alternatives to conventional antibiotics, but peptides often suffer with drawbacks such as poor proteolytic stability and high cost of production. To tackle these limitations, mimetics based on antimicrobial peptides are usually designed and synthesized. In this study we have designed and synthesized a peptoid based on a minimum amphipathic template of a twelve residue cationic peptide. Antimicrobial evaluation of peptide and peptoid was carried out against biofilm producing A. baumannii strains. Further, proteolytic stability study of these compounds was carried out in human serum and morphological alterations caused by them on A. baumannii were visualized by SEM analysis. In addition, these compounds were found to be non toxic to human erythrocytes at their minimum inhibitory concentrations against A. baumannii strains. Overall results obtained in this study suggest that these compounds might be potential antimicrobial agents against biofilm forming A. baumannii and it may be postulated that their mode of action on A. baumannii is disruption of bacterial cell membrane.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Monika Choudhary
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Gopal Singh Bisht
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India; Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India.
| |
Collapse
|
18
|
Galbraith P, Henry R, McCarthy DT. Rise of the killer plants: investigating the antimicrobial activity of Australian plants to enhance biofilter-mediated pathogen removal. J Biol Eng 2019; 13:52. [PMID: 31182974 PMCID: PMC6555726 DOI: 10.1186/s13036-019-0175-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilters are soil-plant based passive stormwater treatment systems which demonstrate promising, although inconsistent, removal of faecal microorganisms. Antimicrobial-producing plants represent a safe, inexpensive yet under-researched biofilter design component that may enhance treatment reliability. The mechanisms underlying plant-mediated microbial removal in biofilters have not been fully elucidated, particularly with respect to antimicrobial production. The aim of this study was therefore to inform biofilter vegetation selection guidelines for optimal pathogen treatment by conducting antimicrobial screening of biofilter-suitable plant species. This involved: (1) selecting native plants suitable for biofilters (17 species) in a Victorian context (southeast Australia); and (2) conducting antimicrobial susceptibility testing of selected plant methanolic extracts (≥ 5 biological replicates/species; 86 total) against reference stormwater faecal bacteria (Salmonella enterica subsp. enterica ser. Typhimurium, Enterococcus faecalis and Escherichia coli). RESULTS The present study represents the first report on the inhibitory activity of polar alcoholic extracts from multiple tested species. Extracts of plants in the Myrtaceae family, reputed for their production of antimicrobial oils, demonstrated significantly lower minimum inhibitory concentrations (MICs) than non-myrtaceous candidates (p < 0.0001). Melaleuca fulgens (median MIC: 8 mg/mL; range: [4-16 mg/mL]), Callistemon viminalis (16 mg/mL, [2-16 mg/mL]) and Leptospermum lanigerum (8 mg/mL, [4-16 mg/mL]) exhibited the strongest inhibitory activity against the selected bacteria (p < 0.05 compared to each tested non-myrtaceous candidate). In contrast, the Australian biofilter gold standard Carex appressa demonstrated eight-fold lower activity than the highest performer M. fulgens (64 mg/mL, [32-64 mg/mL]). CONCLUSION Our results suggest that myrtaceous plants, particularly M. fulgens, may be more effective than the current vegetation gold standard in mediating antibiosis and thus improving pathogen treatment within biofilters. Further investigation of these plants in biofilter contexts is recommended to refine biofilter vegetation selection guidelines.
Collapse
Affiliation(s)
- P. Galbraith
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| | - R. Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| | - D. T. McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| |
Collapse
|
19
|
Kumar A, Parveen S, Sharma I, Pathak H, Deshmukh MV, Sharp JA, Kumar S. Structural and mechanistic insights into EchAMP: A antimicrobial protein from the Echidna milk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1260-1274. [PMID: 30951703 DOI: 10.1016/j.bbamem.2019.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antibiotic resistance is a problem that necessitates the identification of new antimicrobial molecules. Milk is known to have molecules with antimicrobial properties (AMPs). Echidna Antimicrobial Protein (EchAMP) is one such lactation specific AMP exclusively found in the milk of Echidna, an egg-laying mammal geographically restricted to Australia and New Guinea. Previous studies established that EchAMP exhibits substantial bacteriostatic activity against multiple bacterial genera. However, the subsequent structural and functional studies were hindered due to the unavailability of pure protein. RESULTS In this study, we expressed EchAMP protein using a heterologous expression system and successfully purified it to >95% homogeneity. The purified recombinant protein exhibits bacteriolytic activity against both Gram-positive and Gram-negative bacteria as confirmed by live-dead staining and scanning electron microscopy. Structurally, this AMP belongs to the family of intrinsically disordered proteins (IDPs) as deciphered by the circular-dichroism, tryptophan fluorescence, and NMR spectroscopy. Nonetheless, EchAMP has the propensity to acquire structure with amphipathic molecules, or membrane mimics like SDS, lipopolysaccharides, and liposomes as again observed through multiple spectroscopic techniques. CONCLUSIONS Recombinant EchAMP exhibits broad-spectrum bacteriolytic activity by compromising the bacterial cell membrane integrity. Hence, we propose that this intrinsically disordered antimicrobial protein interact with the bacterial cell membrane and undergoes conformational changes to form channels in the membrane resulting in cell lysis. GENERAL SIGNIFICANCE EchAMP, the evolutionarily conserved, lactation specific AMP from an oviparous mammal may find application as a broad-spectrum antimicrobial against pathogens that affect mammary gland or otherwise cause routine infections in humans and livestock.
Collapse
Affiliation(s)
- Alok Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Sadiya Parveen
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Isha Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Himani Pathak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Mandar V Deshmukh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Julie A Sharp
- Instit for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia
| | - Satish Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India.
| |
Collapse
|
20
|
Molchanova N, Wang H, Hansen PR, Høiby N, Nielsen HM, Franzyk H. Antimicrobial Activity of α-Peptide/β-Peptoid Lysine-Based Peptidomimetics Against Colistin-Resistant Pseudomonas aeruginosa Isolated From Cystic Fibrosis Patients. Front Microbiol 2019; 10:275. [PMID: 30842761 PMCID: PMC6391360 DOI: 10.3389/fmicb.2019.00275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/01/2019] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa infection is a predominant cause of morbidity and mortality in patients with cystic fibrosis infection and with a compromised immune system. Emergence of bacterial resistance renders existing antibiotics inefficient, and therefore discovery of new antimicrobial agents is highly warranted. In recent years, numerous studies have demonstrated that antimicrobial peptides (AMPs) constitute potent agents against a range of pathogenic bacteria. However, AMPs possess a number of drawbacks such as susceptibility to proteolytic degradation with ensuing low bioavailability. To circumvent these undesired properties of AMPs unnatural amino acids or altered backbones have been incorporated to provide stable peptidomimetics with retained antibacterial activity. Here, we report on antimicrobial α-peptide/β-peptoid lysine-based peptidomimetics that exhibit high potency against clinical drug-resistant P. aeruginosa strains obtained from cystic fibrosis patients. These clinical strains possess phoQ and/or pmrB mutations that confer high resistance to colistin, the last-resort antibiotic for treatment of infections caused by P. aeruginosa. The lead peptidomimetic LBP-2 demonstrated a 12-fold improved anti-pseudomonal activity as compared to colistin sulfate as well as favorable killing kinetics, similar antibiofilm activity, and moderate cytotoxicity.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hengzhuang Wang
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Kong X, Yang M, Abbas HMK, Wu J, Li M, Dong W. Antimicrobial genes from Allium sativum and Pinellia ternata revealed by a Bacillus subtilis expression system. Sci Rep 2018; 8:14514. [PMID: 30266995 PMCID: PMC6162269 DOI: 10.1038/s41598-018-32852-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial genes are found in all classes of life. To efficiently isolate these genes, we used Bacillus subtilis and Escherichia coli as target indicator bacteria and transformed them with cDNA libraries. Among thousands of expressed proteins, candidate proteins played antimicrobial roles from the inside of the indicator bacteria (internal effect), contributing to the sensitivity (much more sensitivity than the external effect from antimicrobial proteins working from outside of the cells) and the high throughput ability of screening. We found that B. subtilis is more efficient and reliable than E. coli. Using the B. subtilis expression system, we identified 19 novel, broad-spectrum antimicrobial genes. Proteins expressed by these genes were extracted and tested, exhibiting strong external antibacterial, antifungal and nematicidal activities. Furthermore, these newly isolated proteins could control plant diseases. Application of these proteins secreted by engineered B. subtilis in soil could inhibit the growth of pathogenic bacteria. These proteins are thermally stable and suitable for clinical medicine, as they exhibited no haemolytic activity. Based on our findings, we speculated that plant, animal and human pathogenic bacteria, fungi or even cancer cells might be taken as the indicator target cells for screening specific resistance genes.
Collapse
Affiliation(s)
- Xi Kong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Mei Yang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Mengge Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
22
|
Kumar S, Kumar A, Kaushal M, Kumar P, Mukhopadhyay K, Kumar A. Fungal-derived xenobiotic exhibits antibacterial and antibiofilm activity against Staphylococcus aureus . Drug Discov Ther 2018; 12:214-223. [DOI: 10.5582/ddt.2018.01042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Arvind Kumar
- Department of Biotechnology, Central University of South Bihar
| | - Manisha Kaushal
- Department of Botany, Gurunakak Degree College Umra kala Siohara
| | - Prince Kumar
- School of Environmental Sciences, Jawaharlal Nehru University
| | | | - Antresh Kumar
- Department of Biotechnology, Central University of South Bihar
| |
Collapse
|
23
|
Rishi P, Vij S, Maurya IK, Kaur UJ, Bharati S, Tewari R. Peptides as adjuvants for ampicillin and oxacillin against methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog 2018; 124:11-20. [PMID: 30118800 DOI: 10.1016/j.micpath.2018.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/12/2018] [Accepted: 08/13/2018] [Indexed: 01/15/2023]
Abstract
Fast emerging antibiotic resistance in pathogens requires special attention for strengthening the reservoir of antimicrobial compounds. In view of this, several peptides with known antimicrobial activities have been reported to enhance the efficacy of antibiotics against multidrug resistant (MDR) pathogens. In the present study, potential of peptides having distinct mechanism of action, if any, was evaluated to improve the efficacy of conventional antibiotics against methicillin-resistant S. aureus (MRSA). After primary screening of six peptides, two peptides namely T3 and T4 showing very high minimum inhibitory concentrations (MICs) were selected to assess their role in altering the MICs of antibiotics to which the pathogen was resistant. In the presence of the peptides, the MICs of the antibiotics were found to be reduced as per the fractional inhibitory concentration indices (FICI) and time kill assay. These observations prompted us to look for their mechanism of action. The effect of peptides on the morphology of pathogen by field emission scanning electron microscopy (FE-SEM) revealed no damage to the cells at the sub-inhibitory concentrations of the peptide which correlated well with the higher MIC of the peptide, indicating no direct impact on the pathogen. However, dielectric spectroscopy, confocal microscopy and flow cytometry confirmed the interaction and localization of peptides with the bacterial membrane. The peptides were also found to inhibit efflux of ethidium bromide which is the substrate for many proteins involved in efflux system. Therefore, it is speculated that the peptides after interacting with the membrane of the pathogen might have resulted in the inhibition of the efflux of antibiotics thereby reducing their effective concentrations. The study thus suggests that peptides with no antimicrobial activity of their own, can also enhance the efficacy of the antibiotics by interacting with the pathogen thereby, acting as adjuvants for the antibiotics.
Collapse
Affiliation(s)
- Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block-I, Panjab University, Chandigarh, India.
| | - Shania Vij
- Department of Microbiology, Basic Medical Sciences Block-I, Panjab University, Chandigarh, India
| | | | - Ujjwal Jit Kaur
- Department of Microbiology, Basic Medical Sciences Block-I, Panjab University, Chandigarh, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, School of Allied Health Sciences, Manipal University, Manipal, Karnataka, India
| | - Rupinder Tewari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
24
|
Reis PVM, Boff D, Verly RM, Melo-Braga MN, Cortés ME, Santos DM, Pimenta AMDC, Amaral FA, Resende JM, de Lima ME. LyeTxI-b, a Synthetic Peptide Derived From Lycosa erythrognatha Spider Venom, Shows Potent Antibiotic Activity in Vitro and in Vivo. Front Microbiol 2018; 9:667. [PMID: 29681894 PMCID: PMC5897548 DOI: 10.3389/fmicb.2018.00667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/21/2018] [Indexed: 01/07/2023] Open
Abstract
The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1β cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Pablo V M Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daiane Boff
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo M Verly
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - María E Cortés
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel M Santos
- Serviço de Proteômica e Aracnídeos - Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Adriano M de C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria E de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. Aureus. Bioorg Chem 2018; 76:538-547. [DOI: 10.1016/j.bioorg.2017.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 01/24/2023]
|
26
|
Joshi S, Mumtaz S, Singh J, Pasha S, Mukhopadhyay K. Novel Miniature Membrane Active Lipopeptidomimetics against Planktonic and Biofilm Embedded Methicillin-Resistant Staphylococcus aureus. Sci Rep 2018; 8:1021. [PMID: 29348589 PMCID: PMC5773577 DOI: 10.1038/s41598-017-17234-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Escalating multidrug resistance and highly evolved virulence mechanisms have aggravated the clinical menace of methicillin-resistant Staphylococcus aureus (MRSA) infections. Towards development of economically viable staphylocidal agents here we report eight structurally novel tryptophan-arginine template based peptidomimetics. Out of the designed molecules, three lipopeptidomimetics (S-6, S-7 and S-8) containing 12-amino dodecanoic acid exhibited cell selectivity and good to potent activity against clinically relevant pathogens MRSA, methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (MIC: 1.4–22.7 μg/mL). Mechanistically, the active peptidomimetics dissipated membrane potential and caused massive permeabilization on MRSA concomitant with loss of viability. Against stationary phase MRSA under nutrient-depleted conditions, active peptidomimetics S-7 and S-8 achieved > 6 log reduction in viability upon 24 h incubation while both S-7 (at 226 μg/mL) and S-8 (at 28 μg/mL) also destroyed 48 h mature MRSA biofilm causing significant decrease in viability (p < 0.05). Encouragingly, most active peptidomimetic S-8 maintained efficacy against MRSA in presence of serum/plasma while exhibiting no increase in MIC over 17 serial passages at sub-MIC concentrations implying resistance development to be less likely. Therefore, we envisage that the current template warrants further optimization towards the development of cell selective peptidomimetics for the treatment of device associated MRSA infections.
Collapse
Affiliation(s)
- Seema Joshi
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyotsna Singh
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Santosh Pasha
- Peptide Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
27
|
Tang C, Xie B, Sun Z. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Beter M, Kara HK, Topal AE, Dana A, Tekinay AB, Guler MO. Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity. Mol Pharm 2017; 14:3660-3668. [DOI: 10.1021/acs.molpharmaceut.7b00434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mustafa Beter
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Hatice K. Kara
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Ahmet E. Topal
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Aykutlu Dana
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Ayse B. Tekinay
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
- Neuroscience
Graduate Program, Bilkent University, Ankara 06800, Turkey
| | - Mustafa O. Guler
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
29
|
Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A. PLoS One 2017; 12:e0185215. [PMID: 28934314 PMCID: PMC5608353 DOI: 10.1371/journal.pone.0185215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022] Open
Abstract
NZ2114 and MP1102 are novel plectasin-derived peptides with potent activity against Gram-positive bacteria. The antibacterial characteristics and mechanism of NZ2114 and MP1102 against gas gangrene-associated Clostridium perfringens were studied for the first time. The minimal inhibitory concentration and minimal bactericidal concentration of NZ2114 and MP1102 against resistant C. perfringens type A strain CVCC 46 were 0.91 μM. Based on the fractional inhibitory concentration index (FICI) result, an additive or synergic effect was observed between NZ2114 (FICI = 0.5~0.75) or MP1102 (FICI = 0.375~1.0) and antibiotics. The flow cytometry, scanning and transmission electron microscopy analysis showed that both NZ2114 and MP1102 induced obviously membrane damage, such as the leakage of cellular materials, partial disappearance of the cell membrane and membrane peeling, as well as retracting cytoplasm and ghost cell. The gel retardation and circular dichroism (CD) detection showed that NZ2114 and MP1102 could bind to C. perfringens genomic DNA and change the DNA conformation. Moreover, NZ2114 also interfered with the double helix and unwind the genomic DNA. The cell cycle analysis showed that C. perfringens CVCC 46 cells exposed to NZ2114 and MP1102 were arrested at the phase I. These data indicated that both NZ2114 and MP1102 have potential as new antimicrobial agents for gas gangrene infection resulting from resistant C. perfringens.
Collapse
|
30
|
Tang M, Zhou Y, Gao J, Peng J, Wang Y, Zhao Q, Liao L, Wang K, Pan M, Xing M, Pan W, Dai D, Fu M, Yu L, Zhang C, Wang Y, Zhang Y, Xu L, Li J, Bao X, Piao W, Lin S, Lu K, Zhang X, Cao W, Yang K, He Z, Weng S, Liu Q, He J. Heat conjugation of antibacterial agents from amino acids and plant oil. Sci Rep 2017; 7:10852. [PMID: 28883646 PMCID: PMC5589812 DOI: 10.1038/s41598-017-11451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides are components of the innate immune systems in animals and plants as natural defense against pathogens. Critical issues like manufacturing costs have to be addressed before mass production of these peptides for agriculture or community sterilizations. Here, we report a cost-effective chemical synthesis method to produce antimicrobial cocktails, which was based on the heat conjugation of amino acids in the presence of phosphoric acid and plant oil at 150 °C. The conjugates showed potent biological activities against all tested bacteria including a multi-drug resistant Staphylococcus aureus strain Y5 and ampicillin resistant Pseudomonas aerugenosa ATCC9027 strain, demonstrating potential in agriculture, and prophylactic applications in hospital and community settings.
Collapse
Affiliation(s)
- Man Tang
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanchao Zhou
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiayang Gao
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingli Peng
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuan Wang
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qirui Zhao
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lihao Liao
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Mengjia Pan
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Meng Xing
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wen Pan
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Danling Dai
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Fu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuqing Zhang
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuchuan Wang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Li Xu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Xiao Bao
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenxian Piao
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shihong Lin
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kaibei Lu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuelan Zhang
- College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiguo Cao
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Kai Yang
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhumei He
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoping Weng
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiuyun Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jianguo He
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, State Key Laboratory of Biocontrol, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
31
|
Równicki M, Wojciechowska M, Wierzba AJ, Czarnecki J, Bartosik D, Gryko D, Trylska J. Vitamin B 12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci Rep 2017; 7:7644. [PMID: 28794451 PMCID: PMC5550456 DOI: 10.1038/s41598-017-08032-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 01/02/2023] Open
Abstract
Short modified oligonucleotides targeted at bacterial DNA or RNA could serve as antibacterial agents provided that they are efficiently taken up by bacterial cells. However, the uptake of such oligonucleotides is hindered by the bacterial cell wall. To overcome this problem, oligomers have been attached to cell-penetrating peptides, but the efficiency of delivery remains poor. Thus, we have investigated the ability of vitamin B12 to transport peptide nucleic acid (PNA) oligomers into cells of Escherichia coli and Salmonella Typhimurium. Vitamin B12 was covalently linked to a PNA oligomer targeted at the mRNA of a reporter gene expressing Red Fluorescent Protein. Cu-catalyzed 1,3-dipolar cycloaddition was employed for the synthesis of PNA-vitamin B12 conjugates; namely the vitamin B12 azide was reacted with PNA possessing the terminal alkyne group. Different types of linkers and spacers between vitamin B12 and PNA were tested, including a disulfide bond. We found that vitamin B12 transports antisense PNA into E. coli cells more efficiently than the most widely used cell-penetrating peptide (KFF)3K. We also determined that the structure of the linker impacts the antisense effect. The results of this study provide the foundation for developing vitamin B12 as a carrier of PNA oligonucleotides into bacterial cells.
Collapse
Affiliation(s)
- Marcin Równicki
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Banacha 2c, 02-097, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Monika Wojciechowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Aleksandra J Wierzba
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
32
|
|
33
|
Taniguchi M, Ochiai A. Characterization and production of multifunctional cationic peptides derived from rice proteins. Biosci Biotechnol Biochem 2017; 81:634-650. [DOI: 10.1080/09168451.2016.1277944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
34
|
Mularski A, Separovic F. Atomic Force Microscopy Studies of the Interaction of Antimicrobial Peptides with Bacterial Cells. Aust J Chem 2017. [DOI: 10.1071/ch16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are promising therapeutic alternatives to conventional antibiotics. Many AMPs are membrane-active but their mode of action in killing bacteria or in inhibiting their growth remains elusive. Recent studies indicate the mechanism of action depends on peptide structure and lipid components of the bacterial cell membrane. Owing to the complexity of working with living cells, most of these studies have been conducted with synthetic membrane systems, which neglect the possible role of bacterial surface structures in these interactions. In recent years, atomic force microscopy has been utilized to study a diverse range of biological systems under non-destructive, physiologically relevant conditions that yield in situ biophysical measurements of living cells. This approach has been applied to the study of AMP interaction with bacterial cells, generating data that describe how the peptides modulate various biophysical behaviours of individual bacteria, including the turgor pressure, cell wall elasticity, bacterial capsule thickness, and organization of bacterial adhesins.
Collapse
|
35
|
Barreto-Santamaría A, Curtidor H, Arévalo-Pinzón G, Herrera C, Suárez D, Pérez WH, Patarroyo ME. A New Synthetic Peptide Having Two Target of Antibacterial Action in E. coli ML35. Front Microbiol 2016; 7:2006. [PMID: 28066341 PMCID: PMC5167725 DOI: 10.3389/fmicb.2016.02006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
The increased resistance of microorganisms to the different antimicrobials available to today has highlighted the need to find new therapeutic agents, including natural and/or synthetic antimicrobial peptides (AMPs). This study has evaluated the antimicrobial activity of synthetic peptide 35409 (RYRRKKKMKKALQYIKLLKE) against Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 15442 and Escherichia coli ML 35 (ATCC 43827). The results have shown that peptide 35409 inhibited the growth of these three bacterial strains, having 16-fold greater activity against E. coli and P. aeruginosa, but requiring less concentration regarding E. coli (22 μM). When analyzing this activity against E. coli compared to time taken, it was found that this peptide inhibited bacterial growth during the first 60 min and reduced CFU/mL 1 log after 120 min had elapsed. This AMP permeabilized the E. coli membrane by interaction with membrane phospholipids, mainly phosphatidylethanolamine, inhibited cell division and induced filamentation, suggesting two different targets of action within a bacterial cell. Cytotoxicity studies revealed that peptide 35409 had low hemolytic activity and was not cytotoxic for two human cell lines. We would thus propose, in the light of these findings, that the peptide 35409 sequence should provide a promising template for designing broad-spectrum AMPs.
Collapse
Affiliation(s)
- Adriana Barreto-Santamaría
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; Faculty of Sciences and Education, Universidad Distrital Francisco José de CaldasBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Hernando Curtidor
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Chonny Herrera
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Diana Suárez
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Walter H Pérez
- Escuela Colombiana de Carreras Industriales Bogotá, Colombia
| | - Manuel E Patarroyo
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; Faculty of Medicine, Universidad Nacional de ColombiaBogotá, Colombia
| |
Collapse
|
36
|
Yang M, Zhang C, Zhang X, Zhang MZ, Rottinghaus GE, Zhang S. Structure-function analysis of Avian β-defensin-6 and β-defensin-12: role of charge and disulfide bridges. BMC Microbiol 2016; 16:210. [PMID: 27613063 PMCID: PMC5016922 DOI: 10.1186/s12866-016-0828-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Avian beta-defensins (AvBD) are small, cationic, antimicrobial peptides. The potential application of AvBDs as alternatives to antibiotics has been the subject of interest. However, the mechanisms of action remain to be fully understood. The present study characterized the structure-function relationship of AvBD-6 and AvBD-12, two peptides with different net positive charges, similar hydrophobicity and distinct tissue expression profiles. Results AvBD-6 was more potent than AvBD-12 against E. coli, S. Typhimurium, and S. aureus as well as clinical isolates of extended spectrum beta lactamase (ESBL)-positive E. coli and K. pneumoniae. AvBD-6 was more effective than AvBD-12 in neutralizing LPS and interacting with bacterial genomic DNA. Increasing bacterial concentration from 105 CFU/ml to 109 CFU/ml abolished AvBDs’ antimicrobial activity. Increasing NaCl concentration significantly inhibited AvBDs’ antimicrobial activity, but not the LPS-neutralizing function. Both AvBDs were mildly chemotactic for chicken macrophages and strongly chemotactic for CHO-K1 cells expressing chicken chemokine receptor 2 (CCR2). AvBD-12 at higher concentrations also induced chemotactic migration of murine immature dendritic cells (DCs). Disruption of disulfide bridges abolished AvBDs’ chemotactic activity. Neither AvBDs was toxic to CHO-K1, macrophages, or DCs. Conclusions AvBDs are potent antimicrobial peptides under low-salt conditions, effective LPS-neutralizing agents, and broad-spectrum chemoattractant peptides. Their antimicrobial activity is positively correlated with the peptides’ net positive charges, inversely correlated with NaCl concentration and bacterial concentration, and minimally dependent on intramolecular disulfide bridges. In contrast, their chemotactic property requires the presence of intramolecular disulfide bridges. Data from the present study provide a theoretical basis for the design of AvBD-based therapeutic and immunomodulatory agents.
Collapse
Affiliation(s)
- Ming Yang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Michael Z Zhang
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - George E Rottinghaus
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA. .,Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
37
|
Mularski A, Wilksch JJ, Hanssen E, Strugnell RA, Separovic F. Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1091-8. [DOI: 10.1016/j.bbamem.2016.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 11/26/2022]
|
38
|
Taniguchi M, Ochiai A, Takahashi K, Nakamichi SI, Nomoto T, Saitoh E, Kato T, Tanaka T. Effect of alanine, leucine, and arginine substitution on antimicrobial activity against candida albicans and action mechanism of a cationic octadecapeptide derived from α-amylase of rice. Biopolymers 2016; 106:219-229. [DOI: 10.1002/bip.22817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
- Center for Transdisciplinary Research, Niigata University; Niigata 950-2181 Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Kiyoshi Takahashi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Shun-ichi Nakamichi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Takafumi Nomoto
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Eiichi Saitoh
- Graduate School of Technology; Niigata Institute of Technology; Niigata 945-1195 Japan
| | - Tetsuo Kato
- Department of Chemistry; Tokyo Dental College; Tokyo 101-0062 Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| |
Collapse
|
39
|
Hansen AM, Bonke G, Larsen CJ, Yavari N, Nielsen PE, Franzyk H. Antibacterial Peptide Nucleic Acid-Antimicrobial Peptide (PNA-AMP) Conjugates: Antisense Targeting of Fatty Acid Biosynthesis. Bioconjug Chem 2016; 27:863-7. [PMID: 26938833 DOI: 10.1021/acs.bioconjchem.6b00013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antisense peptide nucleic acid (PNA) oligomers constitute a novel class of potential antibiotics that inhibit bacterial growth via specific knockdown of essential gene expression. However, discovery of efficient, nontoxic delivery vehicles for such PNA oligomers has remained a challenge. In the present study we show that antimicrobial peptides (AMPs) with an intracellular mode of action can be efficient vehicles for bacterial delivery of an antibacterial PNA targeting the essential acpP gene. The results demonstrate that buforin 2-A (BF2-A), drosocin, oncocin 10, Pep-1-K, KLW-9,13-a, (P59→W59)-Tat48-60, BF-2A-RXR, and drosocin-RXR are capable of transporting PNA effectively into E. coli (MICs of 1-4 μM). Importantly, presence of the inner-membrane peptide transporter SbmA was not required for antibacterial activity of PNA-AMP conjugates containing Pep-1-K, KLW-9,13-a, or drosocin-RXR (MICs of 2-4 μM).
Collapse
Affiliation(s)
- Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Gitte Bonke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Camilla Josephine Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen , Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen , Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
40
|
Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss. J Colloid Interface Sci 2015; 453:48-59. [DOI: 10.1016/j.jcis.2015.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/23/2022]
|
41
|
Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep 2015; 5:13412. [PMID: 26292786 PMCID: PMC4544038 DOI: 10.1038/srep13412] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of antibiotic resistant bacteria has led to exploration of alternative therapeutic agents such as ribosomally synthesized bacterial peptides known as bacteriocins. Biofilms, which are microbial communities that cause serious chronic infections, form environments that enhance antimicrobial resistance. Bacteria in biofilm can be upto thousand times more resistant to antibiotics than the same bacteria circulating in a planktonic state. In this study, sonorensin, predicted to belong to the heterocycloanthracin subfamily of bacteriocins, was found to be effectively killing active and non-multiplying cells of both Gram-positive and Gram-negative bacteria. Sonorensin showed marked inhibition activity against biofilm of Staphylococcus aureus. Fluorescence and electron microscopy suggested that growth inhibition occurred because of increased membrane permeability. Low density polyethylene film coated with sonorensin was found to effectively control the growth of food spoilage bacteria like Listeria monocytogenes and S. aureus. The biopreservative effect of sonorensin coated film showing growth inhibition of spoilage bacteria in chicken meat and tomato samples demonstrated the potential of sonorensin as an alternative to current antibiotics/ preservatives.
Collapse
|
42
|
Taniguchi M, Ochiai A, Takahashi K, Nakamichi SI, Nomoto T, Saitoh E, Kato T, Tanaka T. Antimicrobial activity and mechanism of action of a novel cationic α-helical octadecapeptide derived from α-amylase of rice. Biopolymers 2015; 104:73-83. [DOI: 10.1002/bip.22605] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/04/2014] [Accepted: 12/20/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
- Center for Transdisciplinary Research; Niigata University; Niigata 950-2181 Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Kiyoshi Takahashi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Shun-ichi Nakamichi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Takafumi Nomoto
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology; Niigata 945-1195 Japan
| | - Tetsuo Kato
- Department of Chemistry; Tokyo Dental College; Tokyo 101-0062 Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| |
Collapse
|
43
|
Bahnsen JS, Franzyk H, Sayers EJ, Jones AT, Nielsen HM. Cell-Penetrating Antimicrobial Peptides – Prospectives for Targeting Intracellular Infections. Pharm Res 2015; 32:1546-56. [DOI: 10.1007/s11095-014-1550-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022]
|
44
|
Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S. N-terminal aromatic tag induced self assembly of tryptophan–arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 2015. [DOI: 10.1039/c5ra12095k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel, ultra short, N-terminal modified tryptophan–arginine rich sequence undergoes facile self assembly in water and exhibit excellent anti-MRSA activity.
Collapse
Affiliation(s)
- Seema Joshi
- CSIR-Institute of Genomics and Integrative Biology
- Delhi
- India
| | - Rikeshwer P. Dewangan
- CSIR-Institute of Genomics and Integrative Biology
- Delhi
- India
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Jamia Hamdard
- New Delhi
- India
| | | | - Santosh Pasha
- CSIR-Institute of Genomics and Integrative Biology
- Delhi
- India
| |
Collapse
|
45
|
Li L, Shi Y, Cheng X, Xia S, Cheserek MJ, Le G. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA. Food Chem 2015; 166:231-239. [DOI: 10.1016/j.foodchem.2014.05.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 04/09/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
|
46
|
Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications. Biochim Biophys Acta Gen Subj 2014; 1840:3264-76. [PMID: 25088798 DOI: 10.1016/j.bbagen.2014.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. METHOD Porous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line. RESULTS Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control. CONCLUSION The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929). GENERAL SIGNIFICANCE The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.
Collapse
|
47
|
N-terminally modified linear and branched spermine backbone dipeptidomimetics against planktonic and sessile methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58:5435-47. [PMID: 24982082 DOI: 10.1128/aac.03391-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Toward the discovery of useful therapeutic molecules, we report the design and synthesis of a focused library of new ultrashort N-terminally modified dipeptidomimetics, with or without modifications in the spermine backbone leading to linear (series 1) or branched (series 2) tryptophans, as antimicrobial agents. Eight peptidomimetics in the library showed good antibacterial activity (MICs of 1.77 to 14.2 μg/ml) against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis bacterial strains. Tryptophan fluorescence measurements on artificial bacterial or mammalian mimic membranes and assessment of the MRSA potential depolarization ability of the designed compounds revealed membrane interactions dependent on tryptophan positioning and N-terminal tagging. Among active peptidomimetics, compounds 1c and 1d were found to be nonhemolytic, displaying rapid bactericidal activity (at 4× MIC) against exponentially growing MRSA. Further, scanning electron microscopy of peptidomimetic 1c- and 1d-treated MRSA showed morphological changes with damage to cell walls, defining a membrane-active mode of action. Moreover, peptidomimetics 1c and 1d did not induce significant drug resistance in MRSA even after 17 passages. We also investigated the activity of these molecules against MRSA biofilms. At sub-MIC levels (∼2 to 4 μg/ml), both peptidomimetics inhibited biofilm formation. At concentrations higher than the MIC (35 to 140 μg/ml), peptidomimetics 1c and 1d significantly reduced the metabolic activity and biomass of mature (24-h) MRSA biofilms. These results were corroborated by confocal laser scanning microscopy (live/dead assay). The in vitro protease stability and lower cytotoxicity of peptidomimetics against peripheral blood mononuclear cells (PBMCs) support them being novel staphylocidal peptidomimetics. In conclusion, this study provides two peptidomimetics as potential leads for treatment of staphylococcal infections under planktonic and sessile conditions.
Collapse
|
48
|
Lohan S, Monga J, Cameotra SS, Bisht GS. In vitro and in vivo antibacterial evaluation and mechanistic study of ornithine based small cationic lipopeptides against antibiotic resistant clinical isolates. Eur J Med Chem 2014; 88:19-27. [PMID: 24961161 DOI: 10.1016/j.ejmech.2014.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Abstract
We investigated the in vitro activities of short lipopeptides against a large panel of clinical isolates of antibiotic resistant bacteria. In the animal model, LP16 (5 mg/kg) significantly decreased the burden of viable colony forming unit (CFU) of bacteria. MTT assay results revealed the high selectivity of lipopeptides toward microbial cells. Calcein dye leakage experiments and flow cytometric analysis suggests the membranolytic effect of lipopeptides, which was further confirmed by visualizing bacterial damage via electron microscopy tool (SEM & TEM). Moreover, stability in human blood plasma and no sign of resistance development against clinical isolates of Escherichia coli and Staphylococcus aureus were observed for lead lipopeptides. These results demonstrate the potential of short lipopeptides as a novel class of anti-infectives.
Collapse
Affiliation(s)
- Sandeep Lohan
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India
| | - Jitender Monga
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Swaranjit Singh Cameotra
- Environmental Biotechnology & Microbial Biochemistry, Institute of Microbial Technology, Chandigarh 160036, India
| | - Gopal Singh Bisht
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| |
Collapse
|
49
|
Lee MO, Jang HJ, Han JY, Womack JE. Chicken NK-lysin is an alpha-helical cationic peptide that exerts its antibacterial activity through damage of bacterial cell membranes. Poult Sci 2014; 93:864-70. [PMID: 24706963 DOI: 10.3382/ps.2013-03670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The antimicrobial peptides (AMP) are important elements of the first line of defense against pathogens in animals, and an important constituent of innate immunity. Antimicrobial peptides act on a broad spectrum of microbial organisms. NK-Lysin is a cationic antibacterial peptide that was originally isolated from porcine intestinal tissue based on its antibacterial activity. We synthesized peptides corresponding to each helical region of chicken NK-lysin and analyzed their secondary structures in addition to their antimicrobial activity. Circular dichroism spectroscopy of the synthetic chicken NK-lysin (cNK-78) and 4 small peptides in negatively charged liposomes demonstrated transition in the conformation of α-helical peptides relative to the charged environment. Chicken NK-lysin inhibits the growth of a representative gram-negative bacterium, Escherichia coli. The antimicrobial activity of 2 peptides designated H23 and H34 was similar to that of mature NK-lysin, cNK-78. Microscopic analyses revealed the death of bacterium with disrupted membranes after peptide treatment, suggesting that chicken NK-lysin, an alpha-helical cationic peptide, exerts its antimicrobial activity by damaging the bacterial cell membrane.
Collapse
Affiliation(s)
- Mi Ok Lee
- World Class University Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea 151-742
| | | | | | | |
Collapse
|
50
|
Almaaytah A, Tarazi S, Alsheyab F, Al-Balas Q, Mukattash T. Antimicrobial and Antibiofilm Activity of Mauriporin, a Multifunctional Scorpion Venom Peptide. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9405-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|