1
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Chen L, Alabdullah M, Mahnke K. Adenosine, bridging chronic inflammation and tumor growth. Front Immunol 2023; 14:1258637. [PMID: 38022572 PMCID: PMC10643868 DOI: 10.3389/fimmu.2023.1258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Adenosine (Ado) is a well-known immunosuppressive agent that may be released or generated extracellularly by cells, via degrading ATP by the sequential actions of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by leukocytes and tissue cells by different means to initiate the healing phase. Ado downregulates the activation and the effector functions of different leukocyte (sub-) populations and stimulates proliferation of fibroblasts for re-establishment of intact tissues. Therefore, the anti-inflammatory actions of Ado are already intrinsically triggered during each episode of inflammation. These tissue-regenerating and inflammation-tempering purposes of Ado can become counterproductive. In chronic inflammation, it is possible that Ado-driven anti-inflammatory actions sustain the inflammation and prevent the final clearance of the tissues from possible pathogens. These chronic infections are characterized by increased tissue damage, remodeling and accumulating DNA damage, and are thus prone for tumor formation. Developing tumors may further enhance immunosuppressive actions by producing Ado by themselves, or by "hijacking" CD39+/CD73+ cells that had already developed during chronic inflammation. This review describes different and mostly convergent mechanisms of how Ado-induced immune suppression, initially induced in inflammation, can lead to tumor formation and outgrowth.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
3
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
4
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
5
|
Natsume H, Szczepaniak K, Yamada H, Iwashita Y, Gędek M, Šuto J, Ishino K, Kasajima R, Matsuda T, Manirakiza F, Nzitakera A, Wu Y, Xiao N, He Q, Guo W, Cai Z, Ohta T, Szekely T, Kadar Z, Sekiyama A, Oshima T, Yoshikawa T, Tsuburaya A, Kurono N, Wang Y, Miyagi Y, Gurzu S, Sugimura H. Non-CpG sites preference in G:C > A:T transition of TP53 in gastric cancer of Eastern Europe (Poland, Romania and Hungary) compared to East Asian countries (China and Japan). Genes Environ 2023; 45:1. [PMID: 36600315 DOI: 10.1186/s41021-022-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
AIM Mutation spectrum of TP53 in gastric cancer (GC) has been investigated world-widely, but a comparison of mutation spectrum among GCs from various regions in the world are still sparsely documented. In order to identify the difference of TP53 mutation spectrum in GCs in Eastern Europe and in East Asia, we sequenced TP53 in GCs from Eastern Europe, Lujiang (China), and Yokohama, Kanagawa (Japan) and identified the feature of TP53 mutations of GC in these regions. SUBJECTS AND METHOD In total, 689 tissue samples of GC were analyzed: 288 samples from East European populations (25 from Hungary, 71 from Poland and 192 from Romania), 268 from Yokohama, Kanagawa, Japan and 133 from Lujiang, Anhui province, China. DNA was extracted from FFPE tissue of Chinese, East European cases; and from frozen tissue of Japanese GCs. PCR products were direct-sequenced by Sanger method, and in ambiguous cases, PCR product was cloned and up to 8 clones were sequenced. We used No. NC_000017.11(hg38) as the reference sequence of TP53. Mutation patterns were categorized into nine groups: six base substitutions, insertion, deletion and deletion-insertion. Within G:C > A:T mutations the mutations in CpG and non-CpG sites were divided. The Cancer Genome Atlas data (TCGA, ver.R20, July, 2019) having somatic mutation list of GCs from Whites, Asians, and other ethnicities were used as a reference for our data. RESULTS The most frequent base substitutions were G:C > A:T transition in all the areas investigated. The G:C > A:T transition in non-CpG sites were prominent in East European GCs, compared with Asian ones. Mutation pattern from TCGA data revealed the same trend between GCs from White (TCGA category) vs Asian countries. Chinese and Japanese GCs showed higher ratio of G:C > A:T transition in CpG sites and A:T > G:C mutation was more prevalent in Asian countries. CONCLUSION The divergence in mutation spectrum of GC in different areas in the world may reflect various pathogeneses and etiologies of GC, region to region. Diversified mutation spectrum in GC in Eastern Europe may suggest GC in Europe has different carcinogenic pathway of those from Asia.
Collapse
Affiliation(s)
- Hiroko Natsume
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kinga Szczepaniak
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Medical University of Warsaw, 1B Banacha Street, Warsaw, Poland
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Marta Gędek
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Medical University of Lublin, ul. Radziwiłłowska 11, wew, 5647, Lublin, Poland
| | - Jelena Šuto
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Department of Oncology, Clinical Hospital Centre Split, Split, Croatia
| | - Keiko Ishino
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Rika Kasajima
- The Center for Cancer Genome Medicine, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan.,Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yijia Wu
- Lujiang People Hospital, 32 Wenmingzhong Road, Lujiang, Hefei, 231501, China
| | - Nong Xiao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Qiong He
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Wenwen Guo
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.,Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Zhenming Cai
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1230 Miyakoda-cho, Kita-ku, Hamamatsu, Shizuoka, 431-2102, Japan
| | - Tıberiu Szekely
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania.,Department of Oncology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania
| | - Zoltan Kadar
- Department of Oncology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania
| | - Akiko Sekiyama
- Department of Clinical Laboratory, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Tsuburaya
- Department of Surgery, Ozawa Hospital, 1-1-17, Honcho, Odawara, Kanagawa, 250-0012, Japan
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yaping Wang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania.
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan. .,Sasaki Foundation Sasaki Institute, 2-2, KandaSurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
6
|
He H, Zhang P, Li F, Zeng C, Liu D, Wu K. Predicting the prognosis of esophageal cancer based on extensive analysis of new inflammatory response‐related signature. J Biochem Mol Toxicol 2022; 37:e23291. [PMID: 36536508 DOI: 10.1002/jbt.23291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The prognosis of esophageal cancer (ESCA) is very poor, with a 5-year survival rate of less than 20%. On the other hand, inflammation is the characteristic hallmark of ESCA; however, the prognostic relationship between inflammatory response-related genes and ESCA has not been clarified yet. Therefore, in the present manuscript, we intend to investigate the correlation and specific signature of inflammation for the prediction of the prognosis of ESCA. A total of 173 samples were obtained from The Cancer Genome Atlas (TCGA) database, including 162 tumors and 11 normal specimens. The prognostic signature was established by least absolute shrinkage and selection operator Cox regression analysis. The transcription factor regulatory network with genes of the prognostic signature was analyzed from the transcriptional regulatory relationships unravelled by sentence-based text-mining database. Chemotherapy sensitivity and immunotherapy analysis were also performed. Multivariate Cox analysis showed that the signature was an independent prognostic risk factor. The low-risk group had poorer outcomes than the high-risk group. In the high-risk group, the infiltration of most immune cells was high and strongly correlated with the riskScore. In chemotherapeutic drug sensitivity analysis, OSM, AHR, and BTG2 were significantly correlated with the current chemotherapeutic drugs of ESCA. We have demonstrated a valid prognostic signature of inflammatory response-related genes and found strong associations with immune cells, targeted genes, and chemotherapeutic agents.
Collapse
Affiliation(s)
- Hongbo He
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Peng Zhang
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Feng Li
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Cheng Zeng
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Donglei Liu
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Kai Wu
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| |
Collapse
|
7
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
8
|
Petřivalský M, Luhová L. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:598. [PMID: 32508862 PMCID: PMC7248558 DOI: 10.3389/fpls.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Nitration of diverse biomolecules, including proteins, lipids and nucleic acid, by reactive nitrogen species represents one of the key mechanisms mediating nitric oxide (NO) biological activity across all types of organisms. 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) has been described as a unique electrophilic intermediate involved in intracellular redox signaling. In animal cells, 8-nitro-cGMP is formed from guanosine-5'-triphosphate by a combined action of reactive nitrogen (RNS) and oxygen species (ROS) and guanylate cyclase. As demonstrated originally in animal models, 8-nitro-cGMP shows certain biological activities closely resembling its analog cGMP; however, its regulatory functions are mediated mainly by its electrophilic properties and chemical interactions with protein thiols resulting in a novel protein post-translational modification termed S-guanylation. In Arabidopsis thaliana, 8-nitro-cGMP was reported to mediate NO-dependent signaling pathways controlling abscisic acid (ABA)-induced stomatal closure, however, its derivative 8-mercapto-cGMP (8-SH-cGMP) was later shown as the active component of hydrogen sulfide (H2S)-mediated guard cell signaling. Here we present a survey of current knowledge on biosynthesis, metabolism and biological activities of nitrated nucleotides with special attention to described and proposed functions of 8-nitro-cGMP and its metabolites in plant physiology and stress responses.
Collapse
|
9
|
Chmielowska-Bąk J, Arasimowicz-Jelonek M, Deckert J. In search of the mRNA modification landscape in plants. BMC PLANT BIOLOGY 2019; 19:421. [PMID: 31610789 PMCID: PMC6791028 DOI: 10.1186/s12870-019-2033-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/12/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Precise regulation of gene expression is indispensable for the proper functioning of organisms in both optimal and challenging conditions. The most commonly known regulative mechanisms include the modulation of transcription, translation and adjustment of the transcript, and protein half-life. New players have recently emerged in the arena of gene expression regulators - chemical modifications of mRNAs. MAIN TEXT The latest studies show that modified ribonucleotides affect transcript splicing, localization, secondary structures, interaction with other molecules and translation efficiency. Thus far, attention has been focused mostly on the most widespread mRNA modification - adenosine methylation at the N6 position (m6A). However, initial reports on the formation and possible functions of other modified ribonucleotides, such as cytosine methylated at the 5' position (m5C), 8-hydroxyguanosine (8-OHG) and 8-nitroguanosine (8-NO2G), have started to appear in the literature. Additionally, some reports indicate that pseudouridine (Ψ) is present in mRNAs and might perform important regulatory functions in eukaryotic cells. The present review summarizes current knowledge regarding the above-mentioned modified ribonucleotides (m6A, m5C, 8-OHG, 8-NO2G) in transcripts across various plant species, including Arabidopsis, rice, sunflower, wheat, soybean and potato. CONCLUSIONS Chemical modifications of ribonucleotides affect mRNA stability and translation efficiency. They thus constitute a newly discovered layer of gene expression regulation and have a profound effect on the development and functioning of various organisms, including plants.
Collapse
Affiliation(s)
- Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
10
|
Fu L, Xie C. A lucid review of Helicobacter pylori-induced DNA damage in gastric cancer. Helicobacter 2019; 24:e12631. [PMID: 31295756 DOI: 10.1111/hel.12631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (H pylori) is the main risk factor for gastric cancer (GC). In recent years, many studies have addressed the effects of H pylori itself and of H pylori-induced chronic inflammation on DNA damage. Unrepaired or inappropriately repaired DNA damage is one possible carcinogenic mechanism. We may conclude that H pylori-induced DNA damage is one of the carcinogenic mechanisms of GC. In this review, we summarize the interactions between H pylori and DNA damage and the effects of H pylori-induced DNA damage on GC. Then, focusing on oxidative stress, we introduce the application of antioxidants in GC. At the end of this review, we discuss the outlook for further research on H pylori-induced DNA damage.
Collapse
Affiliation(s)
- Li Fu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J. A physiological perspective on targets of nitration in NO-based signaling networks in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4379-4389. [PMID: 31340379 DOI: 10.1093/jxb/erz300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 07/10/2019] [Indexed: 05/17/2023]
Abstract
Although peroxynitrite (ONOO-) has been well documented as a nitrating cognate of nitric oxide (NO) in plant cells, modifications of proteins, fatty acids, and nucleotides by nitration are relatively under-explored topics in plant NO research. As a result, they are seen mainly as hallmarks of redox processes or as markers of nitro-oxidative stress under unfavorable conditions, similar to those observed in human and other animal systems. Protein tyrosine nitration is the best-known nitrative modification in the plant system and can be promoted by the action of both ONOO- and related NO-derived oxidants within the cell environment. Recent progress in 'omics' and modeling tools have provided novel biochemical insights into the physiological and pathophysiological fate of nitrated proteins. The nitration process can be specifically involved in various cell regulatory mechanisms that control redox signaling via nitrated cGMP or nitrated fatty acids. In addition, there is evidence to suggest that nitrative modifications of nucleotides embedded in DNA and RNA can be considered as smart switches of gene expression that fine-tune adaptive cellular responses to stress. This review highlights recent advances in our understanding of the potential implications of biotargets in the regulation of intracellular traffic and plant biological processes.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego, Poznan, Poland
| | | |
Collapse
|
12
|
Zhang S, Shi D, Li M, Li Y, Wang X, Li W. The relationship between gastric microbiota and gastric disease. Scand J Gastroenterol 2019; 54:391-396. [PMID: 30945954 DOI: 10.1080/00365521.2019.1591499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traditionally, the stomach was believed to be a sterile organ unsuitable for microbiota growth. However, the discovery of H. pylori subverted this conception. With the development of molecular techniques, an abundance of microbiota of great diversity was found in the stomach. In addition, various lines of evidence suggest that the gastric microbiota plays a critical role in the development and progression of the gastric disease.The gastrointestinal microbiome plays an important role in various physiologic and pathologic processes.
Collapse
Affiliation(s)
- Shuyi Zhang
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China
| | - Dan Shi
- b Tianjin Medical University Graduate School , Tianjin , China
| | - Muran Li
- c Department of gastroenterology , Tianjin Union Medical Center , Tianjin , China
| | - Yanru Li
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China
| | - Ximo Wang
- d Tianjin Clinical Medicine Research Centre for ITCWM Acute abdomen Tianjin Hospital of ITCWM Nankai Hospital , Tianjin , China
| | - Wen Li
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China.,b Tianjin Medical University Graduate School , Tianjin , China
| |
Collapse
|
13
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
14
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
15
|
Hata Y, Ma N, Yoneda M, Morimoto S, Okano H, Murayama S, Kawanishi S, Kuzuhara S, Kokubo Y. Nitrative Stress and Tau Accumulation in Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC) in the Kii Peninsula, Japan. Front Neurosci 2018; 11:751. [PMID: 29403345 PMCID: PMC5786541 DOI: 10.3389/fnins.2017.00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Objective: The Kii Peninsula of Japan is known to be a high incidence area of amyotrophic lateral sclerosis/parkinsonism-dementia complex (Kii ALS/PDC) with tauopathy. Nitrative stress and oxidative stress on ALS/PDC and their relationship to tau pathology were clarified. Methods: Seven patients with Kii ALS/PDC (3 males and 4 females, average age 70.7 years, 3 with ALS, 2 with ALS with dementia, and 2 with PDC) were analyzed in this study. Five patients with Alzheimer's disease and five normal aged subjects were used as controls. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded temporal lobe sections (the hippocampal area including hippocampus, prosubiculum, subiculum, presubiculum, and parahippocampal gyri) using antibodies to detect phosphorylated tau (anti-AT-8), nitrated guanine (anti-8-NG), anti-iNOS, anti-NFκB, and oxidized guanine (anti-8-OHdG) antibodies. Results: Most hippocampal neurons of Kii ALS/PDC patients were stained with anti-8-NG, anti-iNOS, anti-NFκB, and anti-8-OHdG antibodies and some AT-8 positive neurons were co-stained with anti-8-NG antibody. The numbers of 8-NG positive neurons and 8-OHdG positive neurons were greater than AT-8 positive neurons and the number of 8-NG positive neurons was larger in patients with Kii ALS/PDC than in controls. Conclusion: Nitrative and oxidative stress may take priority over tau accumulation and lead to the neurodegeneration in Kii ALS/PDC.
Collapse
Affiliation(s)
- Yukiko Hata
- Department of Neurology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Ning Ma
- Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Mie, Japan
| | - Misao Yoneda
- Department of Medical Welfare, Suzuka University of Medical Science, Mie, Japan
| | - Satoru Morimoto
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Mie, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Neuropathology, Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan
| | - Shigeki Kuzuhara
- Department of Neurology and Medicine, School of Nursing, Suzuka University of Medical Science, Mie, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Center, Graduate School of Regional Innovation studies, Mie University, Mie, Japan
| |
Collapse
|
16
|
Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Meller B, Kuźnicki D, Arasimowicz-Jelonek M. RNA and mRNA Nitration as a Novel Metabolic Link in Potato Immune Response to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2018; 9:672. [PMID: 29896206 PMCID: PMC5987678 DOI: 10.3389/fpls.2018.00672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 05/05/2023]
Abstract
Peroxynitrite (ONOO-) exhibits a well-documented nitration activity in relation to proteins and lipids; however, the interaction of ONOO- with nucleic acids remains unknown in plants. The study uncovers RNA and mRNA nitration as an integral event in plant metabolism intensified during immune response. Using potato-avr/vr Phytophthora infestans systems and immunoassays we documented that potato immunity is accompanied by two waves of boosted ONOO- formation affecting guanine nucleotides embedded in RNA/mRNA and protein tyrosine residues. The early ONOO- generation was orchestrated with an elevated level of protein nitration and a huge accumulation of 8-nitroguanine (8-NO2-G) in RNA and mRNA pools confirmed as a biomarker of nucleic acid nitration. Importantly, potato cells lacking ONOO- due to scavenger treatment and attacked by the avr pathogen exhibited a low level of 8-NO2-G in the mRNA pool correlated with reduced symptoms of programmed cell death (PCD). The second burst of ONOO- coincided both with an enhanced level of tyrosine-nitrated proteins identified as subtilisine-like proteases and diminished protease activity in cells surrounding the PCD zone. Nitration of both RNA/mRNA and proteins via NO/ONOO- may constitute a new metabolic switch in redox regulation of PCD, potentially limiting its range in potato immunity to avr P. infestans.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Magdalena Arasimowicz-Jelonek, ;
| |
Collapse
|
17
|
Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases. Curr Top Microbiol Immunol 2017; 400:27-52. [PMID: 28124148 DOI: 10.1007/978-3-319-50520-6_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The innate immune response is a critical hallmark of Helicobacter pylori infection. Epithelial and myeloid cells produce effectors, including the chemokine CXCL8, reactive oxygen species (ROS), and nitric oxide (NO), in response to bacterial components. Mechanistic and epidemiologic studies have emphasized that dysregulated and persistent release of these products leads to the development of chronic inflammation and to the molecular and cellular events related to carcinogenesis. Moreover, investigations in H. pylori-infected patients about polymorphisms of the genes encoding CXCL8 and inducible NO synthase, and epigenetic control of the ROS-producing enzyme spermine oxidase, have further proven that overproduction of these molecules impacts the severity of gastric diseases. Lastly, the critical effect of the crosstalk between the human host and the infecting bacterium in determining the severity of H. pylori-related diseases has been supported by phylogenetic analysis of the human population and their H. pylori isolates in geographic areas with varying clinical and pathologic outcomes of the infection.
Collapse
|
18
|
Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Oikawa S, Murata M. Nitrative and oxidative DNA damage in infection-related carcinogenesis in relation to cancer stem cells. Genes Environ 2017; 38:26. [PMID: 28050219 PMCID: PMC5203929 DOI: 10.1186/s41021-016-0055-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including bacterium Helicobacter pylori (H. pylori), viruses [hepatitis B virus (HBV), hepatitis C virus (HCV), human papillomavirus (HPV) and Epstein-Barr virus (EBV)] and parasites [Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)]. H. pylori, HBV/HCV, HPV, EBV, SH and OV are important risk factors for gastric cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, bladder cancer, and cholangiocarcinoma, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues, and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that nitrative and oxidative DNA damage in stem cells may play a key role in infection-related carcinogenesis via chronic inflammation.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Ning Ma
- Faculty of Nursing, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| |
Collapse
|
19
|
Gobert AP, Wilson KT. The Immune Battle against Helicobacter pylori Infection: NO Offense. Trends Microbiol 2016; 24:366-376. [PMID: 26916789 DOI: 10.1016/j.tim.2016.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/07/2023]
Abstract
Helicobacter pylori is a successful pathogen of the human stomach. Despite a vigorous immune response by the gastric mucosa, the bacterium survives in its ecological niche, thus favoring diseases ranging from chronic gastritis to adenocarcinoma. The current literature demonstrates that high-output of nitric oxide (NO) production by the inducible enzyme NO synthase-2 (NOS2) plays major functions in host defense against bacterial infections. However, pathogens have elaborated several strategies to counteract the deleterious effects of NO; this includes inhibition of host NO synthesis and transcriptional regulation in response to reactive nitrogen species, allowing the bacteria to face the nitrosative stress. Moreover, NO is also a critical mediator of inflammation and carcinogenesis. In this context, we review the recent findings on the expression of NOS2 in H. pylori-infected gastric tissues and epithelial cells, the role of NO in H. pylori-related diseases and H. pylori gene expression, and the mechanisms whereby H. pylori regulates NO synthesis by host cells.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
20
|
Valenzuela MA, Canales J, Corvalán AH, Quest AFG. Helicobacter pylori-induced inflammation and epigenetic changes during gastric carcinogenesis. World J Gastroenterol 2015; 21:12742-12756. [PMID: 26668499 PMCID: PMC4671030 DOI: 10.3748/wjg.v21.i45.12742] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The sequence of events associated with the development of gastric cancer has been described as “the gastric precancerous cascade”. This cascade is a dynamic process that includes lesions, such as atrophic gastritis, intestinal metaplasia and dysplasia. According to this model, Helicobacter pylori (H. pylori) infection targets the normal gastric mucosa causing non-atrophic gastritis, an initiating lesion that can be cured by clearing H. pylori with antibiotics or that may then linger in the case of chronic infection and progress to atrophic gastritis. The presence of virulence factors in the infecting H. pylori drives the carcinogenesis process. Independent epidemiological and animal studies have confirmed the sequential progression of these precancerous lesions. Particularly long-term follow-up studies estimated a risk of 0.1% for atrophic gastritis/intestinal metaplasia and 6% in case of dysplasia for the long-term development of gastric cancer. With this in mind, a better understanding of the genetic and epigenetic changes associated with progression of the cascade is critical in determining the risk of gastric cancer associated with H. pylori infection. In this review, we will summarize some of the most relevant mechanisms and focus predominantly but not exclusively on the discussion of gene promoter methylation and miRNAs in this context.
Collapse
|
21
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
22
|
Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 2014:149185. [PMID: 24901008 PMCID: PMC4036716 DOI: 10.1155/2014/149185] [Citation(s) in RCA: 1143] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022] Open
Abstract
Acute inflammation is a response to an alteration induced by a pathogen or a physical or chemical insult, which functions to eliminate the source of the damage and restore homeostasis to the affected tissue. However, chronic inflammation triggers cellular events that can promote malignant transformation of cells and carcinogenesis. Several inflammatory mediators, such as TNF-α, IL-6, TGF-β, and IL-10, have been shown to participate in both the initiation and progression of cancer. In this review, we explore the role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis. Finally, we will provide an in-depth analysis of the participation of these cytokines in two types of cancer attributable to chronic inflammatory disease: colitis-associated colorectal cancer and cholangiocarcinoma.
Collapse
Affiliation(s)
- Glauben Landskron
- Disciplinary Program, Institute of Biomedical Sciences, School of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Marjorie De la Fuente
- Disciplinary Program, Institute of Biomedical Sciences, School of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Peti Thuwajit
- Department of Immunology, School of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, School of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok 10700, Thailand
| | - Marcela A. Hermoso
- Disciplinary Program, Institute of Biomedical Sciences, School of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| |
Collapse
|
23
|
|
24
|
Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M, Kawanishi S. DNA damage in inflammation-related carcinogenesis and cancer stem cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:387014. [PMID: 24382987 PMCID: PMC3870134 DOI: 10.1155/2013/387014] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells and result in oxidative and nitrative DNA damage, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in the initiation and/or promotion of inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including parasites (Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)), viruses (hepatitis C virus (HCV), human papillomavirus (HPV), and Epstein-Barr virus (EBV)), and bacterium Helicobacter pylori (HP). SH, OV, HCV, HPV, EBV, and HP are important risk factors for bladder cancer, cholangiocarcinoma, hepatocellular carcinoma, cervical cancer, nasopharyngeal carcinoma, and gastric cancer, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that oxidative and nitrative DNA damage in stem cells may play a key role in inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| | - Ning Ma
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka 510-0293, Mie, Japan
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Olfat Hammam
- Departments of Pathology and Urology, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| |
Collapse
|
25
|
Thanan R, Pairojkul C, Pinlaor S, Khuntikeo N, Wongkham C, Sripa B, Ma N, Vaeteewoottacharn K, Furukawa A, Kobayashi H, Hiraku Y, Oikawa S, Kawanishi S, Yongvanit P, Murata M. Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis. Free Radic Biol Med 2013; 65:1464-1472. [PMID: 23917144 DOI: 10.1016/j.freeradbiomed.2013.07.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 07/06/2013] [Accepted: 07/18/2013] [Indexed: 01/21/2023]
Abstract
Nitrative and oxidative DNA damage plays an important role in inflammation-related carcinogenesis. Chronic inflammation such as parasite infection and primary sclerosing cholangitis can be an etiological factor of cholangiocarcinoma. Using a proteomic approach and double-fluorescent staining, we identified high expression and colocalization of albumin and cytokeratin-19 in liver fluke-associated cholangiocarcinoma tissues, compared with normal livers from cholangiocarcinoma patients and cadaveric donors, respectively. Albumin was detected not only in cells of hyperplastic bile ducts and cholangiocarcinoma, but also in liver stem/progenitor cell origin, such as canal of Hering, ductules, and ductular reactions, suggesting the involvement of stem/progenitor cells in cholangiocarcinoma development. To clarify the involvement of liver stem/progenitor cells in cholangiocarcinoma, we examined several stem/progenitor cell markers (CD133, CD44, OV6, and Oct3/4) in cholangiocarcinoma tissues analyzed by immunohistochemical staining, and measured 8-oxodG levels by using HPLC-ECD as an inflammation-related DNA lesion. In addition, a stem/progenitor cell factor Bmi1, 8-nitroguanine (formed during nitrative DNA damage), DNA damage response (DDR) proteins (phosphorylated ATM and γ-H2AX), and manganese-SOD (Mn-SOD) were analyzed by immunohistochemistry. Stem/progenitor cell markers (CD133, OV6, CD44, and Oct3/4) were positively stained in 56, 38, 47, and 56% of 34 cholangiocarcinoma cases, respectively. Quantitative analysis of 8-oxodG revealed significantly increased levels in CD133- and/or Oct3/4-positive tumor tissues compared to negative tumor tissues, as well as 8-nitroguanine formation detected by immunohistochemistry. In the cases of CD44- and/or OV6-positive tissue, no significant difference was observed. Cholangiocarcinoma patients with CD133- and/or Oct3/4-positive tumor tissues showed significantly lower expression of Mn-SOD and higher DDR protein, γ-H2AX. Moreover, CD133- and/or Oct3/4-positive cholangiocarcinoma patients had significant associations with tumor histology types, tumor stage, and poor prognoses. Our results suggest that CD133 and Oct3/4 in cholangiocarcinoma are associated with increased formation of DNA lesions and the DDR protein, which may be involved in genetic instability and lead to cholangiocarcinoma development with aggressive clinical features.
Collapse
Affiliation(s)
- Raynoo Thanan
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ning Ma
- Faculty of Health Science, Suzuka, Mie, 510-0293, Japan
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ayako Furukawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shosuke Kawanishi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
26
|
Sugiura H, Okita S, Kato T, Naka T, Kawanishi S, Ohnishi S, Oshida Y, Ma N. Protection by Taurine Against INOS-Dependent DNA Damage in Heavily Exercised Skeletal Muscle by Inhibition of the NF-κB Signaling Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:237-46. [DOI: 10.1007/978-1-4614-6130-2_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Nuclear localization of COX-2 in relation to the expression of stemness markers in urinary bladder cancer. Mediators Inflamm 2012; 2012:165879. [PMID: 22577245 PMCID: PMC3337674 DOI: 10.1155/2012/165879] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/12/2012] [Indexed: 12/26/2022] Open
Abstract
Inflammation may activate stem cells via prostaglandin E2 (PGE2) production mediated by cyclooxygenase-2 (COX-2) expression. We performed an immunohistochemical analysis of the expression of stemness markers (Oct3/4 and CD44v6) and COX-2 in urinary bladder tissues obtained from cystitis and cancer patients with and without Schistosoma haematobium infections. Immunoreactivity to Oct3/4 was significantly higher in S. haematobium-associated cystitis and cancer tissues than in normal tissues. CD44v6 expression was significantly higher in bladder cancer without S. haematobium than in normal tissues. COX-2 was located in the cytoplasmic membrane, cytoplasm, and nucleus of the cancer cells. Interestingly, the nuclear localization of COX-2, which was reported to function as a transcription factor, was significantly associated with the upregulation of Oct3/4 and CD44v6 in bladder cancer tissues with and without S. haematobium infection, respectively. COX-2 activation may be involved in inflammation-mediated stem cell proliferation/differentiation in urinary bladder carcinogenesis.
Collapse
|
28
|
Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012; 2012:623019. [PMID: 22363173 PMCID: PMC3272848 DOI: 10.1155/2012/623019] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Chronic inflammation induced by biological, chemical, and physical factors has been found to be associated with the increased risk of cancer in various organs. We revealed that infectious agents including liver fluke, Helicobacter pylori, and human papilloma virus and noninfectious agents such as asbestos fiber induced iNOS-dependent formation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) in cancer tissues and precancerous regions. Our results with the colocalization of phosphorylated ATM and γ-H2AX with 8-oxodG and 8-nitroguanine in inflammation-related cancer tissues suggest that DNA base damage leads to double-stranded breaks. It is interesting from the aspect of genetic instability. We also demonstrated IL-6-modulated iNOS expression via STAT3 and EGFR in Epstein-Barr-virus-associated nasopharyngeal carcinoma and found promoter hypermethylation in several tumor suppressor genes. Such epigenetic alteration may occur by controlling the DNA methylation through IL-6-mediated JAK/STAT3 pathways. Collectively, 8-nitroguanine would be a useful biomarker for predicting the risk of inflammation-related cancers.
Collapse
|
29
|
Lee SF, Pervaiz S. Assessment of Oxidative Stress-Induced DNA Damage by Immunoflourescent Analysis of 8-OxodG. Methods Cell Biol 2011; 103:99-113. [DOI: 10.1016/b978-0-12-385493-3.00005-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Hiraku Y. Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 2010; 15:63-72. [PMID: 19921494 PMCID: PMC2824100 DOI: 10.1007/s12199-009-0118-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/15/2009] [Indexed: 12/24/2022] Open
Abstract
Chronic infection and inflammation contribute to a substantial part of environmental carcinogenesis. Recently, it has been estimated that chronic inflammation accounts for approximately 25% of cancer cases. Various infectious diseases and physical, chemical, and immunological factors participate in inflammation-related carcinogenesis. Under inflammatory conditions, reactive oxygen and nitrogen species, which are generated from inflammatory and epithelial cells, may play an important role in carcinogenesis by causing DNA damage. 8-Nitroguanine is a mutagenic DNA lesion formed during chronic inflammation. In an earlier publication, our group reported the results of an immunohistochemical analysis of animals infected with the liver fluke Opisthorchis viverrini and demonstrated for the first time that 8-nitroguanine was formed at the sites of carcinogenesis. This DNA lesion was found to accumulate in the carcinogenic process in clinical specimens of cancer-prone inflammatory diseases caused by various pathogens, including human papillomavirus and Epstein-Barr virus. Moreover, strong 8-nitroguanine formation in tumor tissues was closely associated with a poor prognosis. On the basis of these findings, 8-nitroguanine could be a potential biomarker to evaluate the risk of inflammation-related carcinogenesis and the prognosis of cancer patients. In this review, the significance of 8-nitroguanine formation in inflammation-related carcinogenesis and tumor progression will be discussed.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, 514-8507 Japan
| |
Collapse
|
31
|
Hiraku Y. Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 2010; 15:63-72. [PMID: 19921494 DOI: 10.1007/s12199-009-0118-5/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/15/2009] [Indexed: 05/25/2023] Open
Abstract
Chronic infection and inflammation contribute to a substantial part of environmental carcinogenesis. Recently, it has been estimated that chronic inflammation accounts for approximately 25% of cancer cases. Various infectious diseases and physical, chemical, and immunological factors participate in inflammation-related carcinogenesis. Under inflammatory conditions, reactive oxygen and nitrogen species, which are generated from inflammatory and epithelial cells, may play an important role in carcinogenesis by causing DNA damage. 8-Nitroguanine is a mutagenic DNA lesion formed during chronic inflammation. In an earlier publication, our group reported the results of an immunohistochemical analysis of animals infected with the liver fluke Opisthorchis viverrini and demonstrated for the first time that 8-nitroguanine was formed at the sites of carcinogenesis. This DNA lesion was found to accumulate in the carcinogenic process in clinical specimens of cancer-prone inflammatory diseases caused by various pathogens, including human papillomavirus and Epstein-Barr virus. Moreover, strong 8-nitroguanine formation in tumor tissues was closely associated with a poor prognosis. On the basis of these findings, 8-nitroguanine could be a potential biomarker to evaluate the risk of inflammation-related carcinogenesis and the prognosis of cancer patients. In this review, the significance of 8-nitroguanine formation in inflammation-related carcinogenesis and tumor progression will be discussed.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, 514-8507 Japan
| |
Collapse
|
32
|
Katsurahara M, Kobayashi Y, Iwasa M, Ma N, Inoue H, Fujita N, Tanaka K, Horiki N, Gabazza EC, Takei Y. Reactive nitrogen species mediate DNA damage in Helicobacter pylori-infected gastric mucosa. Helicobacter 2009; 14:552-8. [PMID: 19889073 DOI: 10.1111/j.1523-5378.2009.00719.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) and reactive nitrogen species (RNS) can play an important role in cellular injury and carcinogenesis of gastric epithelial cells infected with Helicobacter pylori. 8-OH-deoxy guanosine (8-OHdG) and 8-nitroguanine (8-NG) are markers for ROS- and RNS-mediated DNA oxidation, respectively. In this study, RNS-mediated DNA damage in gastric mucosa was observed directly using a newly developed antibody to 8-NG to clarify how H. pylori infection causes nitrative DNA damage to gastric epithelial cells. METHODS Immunohistochemistry with anti-8-OHdG and anti-8-NG antibodies was performed on gastric tissue samples from 45 patients (25 men and 20 women) with H. pylori-positive gastritis and 19 patients (11 men and 8 women) exhibiting successful H. pylori eradication. Histologic factors for gastric mucosal inflammation were graded according to the guidelines of the Updated Sydney system. RESULTS In corpus mucosa, 8-OHdG and 8-NG production were significantly associated with the degree of glandular atrophy, infiltration of chronic inflammatory cells and intestinal metaplasia in the glandular epithelial cells. Successful H. pylori eradication resulted in a significant reduction of chronic inflammatory cell infiltration and neutrophilic activity. Mean 8-OHdG production was lower after H. pylori eradication in both corpus and antral mucosa (p = .022 and .049, respectively). However, the reduction in 8-NG exhibited was more pronounced than the reduction of 8-OhdG (p = .004 and .007, respectively). CONCLUSIONS Helicobacter pylori infection can induce inflammatory cells infiltration, which evokes DNA damage of gastric epithelial cells through ROS and RNS production. 8-NG might be a more sensitive biomarker than 8-OHdG for H. pylori-induced DNA damage in gastric mucosa.
Collapse
Affiliation(s)
- Masaki Katsurahara
- Department of Gastroenterology and Hepatology, Division of Clinical Medicine and Biochemical Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Damage to RNA from ultraviolet light, oxidation, chlorination, nitration, and akylation can include chemical modifications to nucleobases as well as RNA-RNA and RNA-protein crosslinking. In vitro studies have described a range of possible damage products, some of which are supported as physiologically relevant by in vivo observations in normal growth, stress conditions, or disease states. Damage to both messenger RNA and noncoding RNA may have functional consequences, and work has begun to elucidate the role of RNA turnover pathways and specific damage recognition pathways in clearing cells of these damaged RNAs.
Collapse
|
34
|
Hiraku Y, Kawanishi S. Immunohistochemical analysis of 8-nitroguanine, a nitrative DNA lesion, in relation to inflammation-associated carcinogenesis. Methods Mol Biol 2009; 512:3-13. [PMID: 19347269 DOI: 10.1007/978-1-60327-530-9_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chronic inflammation is induced by various infectious/infected agents and by many physical, chemical and immunological factors. Many malignancies arise from areas of infection and inflammation. Reactive oxygen species and reactive nitrogen species are considered to play the key role in inflammation-associated carcinogenesis by causing oxidative and nitrative DNA damage. 8-Nitroguanine is a mutagenic nitrative DNA lesion formed during inflammation. Development of a detection method for 8-nitroguanine would provide an insight into the mechanism of inflammation-associated carcinogenesis and the assessment of carcinogenic risk in patients with inflammatory diseases. We established the method to produce highly sensitive and specific anti-8-nitroguanine rabbit polyclonal antibody, and detect 8-nitroguanine formation in biopsy specimens and animal tissues by immunohistochemistry. We have found that 8-nitroguanine is formed at the sites of carcinogenesis regardless of etiology, and proposed the possibility that 8-nitroguanine is a potential biomarker to evaluate the risk of inflammation-associated carcinogenesis. In this paper, we describe the procedures of these experiments and the application to clinical specimens and animal tissues.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | | |
Collapse
|
35
|
Protective Effect of Taurine against Nitrosative Stress in the Stomach of Rat with Water Immersion Restraint Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:273-83. [DOI: 10.1007/978-0-387-75681-3_28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
36
|
Dimitri A, Jia L, Shafirovich V, Geacintov NE, Broyde S, Scicchitano DA. Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair (Amst) 2008; 7:1276-88. [PMID: 18555749 DOI: 10.1016/j.dnarep.2008.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 04/03/2008] [Accepted: 04/09/2008] [Indexed: 12/24/2022]
Abstract
Damage in transcribed DNA presents a challenge to the cell because it can partially or completely block the progression of an RNA polymerase, interfering with transcription and compromising gene expression. While blockage of RNA polymerase progression is thought to trigger the recruitment of transcription-coupled DNA repair (TCR), bypass of the lesion can also occur, either error-prone or error-free. Error-prone transcription is often referred to as transcriptional mutagenesis (TM). Elucidating why some lesions pose blocks to transcription elongation while others do not remains a challenging problem. As part of an effort to understand this, we studied transcription past a 5-guanidino-4-nitroimidazole (NI) lesion, using two structurally different RNA polymerases, human RNA polymerase II (hRNAPII) and bacteriophage T7 RNA polymerase (T7RNAP). The NI damage results from the oxidation of guanine in DNA by peroxynitrite, a well known, biologically important oxidant. It is of structural interest because it is a ring-opened and conformationally flexible guanine lesion. Our results show that NI acts as a partial block to T7RNAP while posing a major block to hRNAPII, which has a more constrained active site than T7RNAP. Lesion bypass by T7RNAP induces base misincorporations and deletions opposite the lesion (C>A>-1 deletion >G >>> U), but hRNAPII exhibits error-free transcription although lesion bypass is a rare event. We employed molecular modeling methods to explain the observed blockage or bypass accompanied by nucleotide incorporation opposite the lesion. The results of the modeling studies indicate that NI's multiple hydrogen-bonding capabilities and torsional flexibility are important determinants of its effect on transcription in both enzymes. These influence the kinetics of lesion bypass and may well play a role in TM and TCR in cells.
Collapse
Affiliation(s)
- Alexandra Dimitri
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, Luo DZ, Mo WG, Fukui Y, Kawanishi S. Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: the relation to STAT3 activation and EGFR expression. Int J Cancer 2008; 122:2517-25. [PMID: 18307254 DOI: 10.1002/ijc.23415] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV) infection. Recently, reactive nitrogen and oxygen species are considered to participate in inflammation-related carcinogenesis through DNA damage. In our study, we obtained biopsy and surgical specimens of nasopharyngeal tissues from NPC patients in southern China, and performed double immunofluorescent staining to examine the formation of 8-nitroguanine, a nitrative DNA lesion and 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative DNA lesion, in these specimens. Strong DNA lesions were observed in cancer cells and inflammatory cells in stroma of NPC patients. Intensive immunoreactivity of iNOS was detected in the cytoplasm of 8-nitroguanine-positive cancer cells. DNA lesions and iNOS expression were also observed in epithelial cells of EBV-positive patients with chronic nasopharyngitis, although their intensities were significantly weaker than those in NPC patients. In EBV-negative subjects, no or little DNA lesions and iNOS expression were observed. EGFR and phosphorylated STAT3 were strongly expressed in cancer cells of NPC patients, but NF-kappaB was not expressed, suggesting that STAT3-dependent mechanism is important for NPC carcinogenesis. IL-6 was expressed mainly in inflammatory cells of nasopharyngeal tissues of EBV-infected patients. EBV-encoded RNAs (EBERs) and latent membrane protein 1 (LMP1) were detected in cancer cells from all EBV-infected patients. In vitro cell system, nuclear accumulation of EGFR was observed in LMP1-expressing cells, and IL-6 induced phosphorylated STAT3 and iNOS. These data suggest that nuclear accumulation of EGFR and STAT3 activation by IL-6 play the key role in iNOS expression and resultant DNA damage, leading to EBV-mediated NPC.
Collapse
Affiliation(s)
- Ning Ma
- Department of Anatomy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yoshitake J, Kato K, Yoshioka D, Sueishi Y, Sawa T, Akaike T, Yoshimura T. Suppression of NO production and 8-nitroguanosine formation by phenol-containing endocrine-disrupting chemicals in LPS-stimulated macrophages: Involvement of estrogen receptor-dependent or -independent pathways. Nitric Oxide 2008; 18:223-8. [DOI: 10.1016/j.niox.2008.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 01/12/2023]
|
39
|
Vaninetti NM, Geldenhuys L, Porter GA, Risch H, Hainaut P, Guernsey DL, Casson AG. Inducible nitric oxide synthase, nitrotyrosine and p53 mutations in the molecular pathogenesis of Barrett's esophagus and esophageal adenocarcinoma. Mol Carcinog 2008; 47:275-85. [PMID: 17849424 DOI: 10.1002/mc.20382] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) has been implicated as a potential causative factor for endogenous p53 mutations in gastrointestinal malignancy. To investigate the role of NO in esophageal adenocarcinoma (EADC), we studied patterns of p53 mutations, expression of inducible nitric oxide synthase (iNOS) and the tissue accumulation of nitrotyrosine (NTS), a stable reaction product of NO and a marker for cellular protein damage, in human premalignant and malignant esophageal epithelia. Tissues were obtained from patients with gastroesophageal reflux disease (GERD)-induced esophagitis (n = 76), Barrett's esophagus (BE; n = 119) and primary EADC (n = 54). DNA sequencing was used to characterize p53 mutations, RT-PCR to study iNOS mRNA expression, and immunohistochemistry to study NTS. Relative to self-matched normal epithelia, a progressive increase in iNOS mRNA expression was seen in GERD (30%; 23/76), BE (48%; 57/119), and EADC (63%; 34/54) tissues (P < 0.001). Among patients with EADC, elevated levels of NTS immunoreactivity were more frequent in tumors with p53 mutations (11/21; 52%) compared with tumors with wild-type p53 (9/33; 27%; P = 0.063), and specifically in tumors with p53 mutations at CpG dinucleotides (10/12; 83%) compared with non-CpG p53 mutations (1/9; 11%; P = 0.008). The increasing frequency of iNOS (mRNA) overexpression in GERD, BE and EADC supports the hypothesis that an active inflammatory process, most likely a consequence of GERD, underlies molecular progression to EADC. The highly significant association between NTS, reflecting chronic NO-induced cellular protein damage, and endogenous p53 mutations at CpG dinucleotides, provides further evidence for a molecular link between chronic inflammation and esophageal malignancy.
Collapse
Affiliation(s)
- Nadine M Vaninetti
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Gonzalez-Moles MA, Scully C, Gil-Montoya JA. Oral lichen planus: controversies surrounding malignant transformation. Oral Dis 2008; 14:229-43. [PMID: 18298420 DOI: 10.1111/j.1601-0825.2008.01441.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Studies of the malignant potential of oral lichen planus (OLP) have been hampered by inconsistencies in the diagnostic criteria used for OLP, the criteria adopted to identify a true case of malignant transformation in OLP, the risk factors for malignant transformation and the optimum management of patients to ensure the early diagnosis of transformation. Consensus remains elusive, and leading workers in this field have recently published conflicting reports on the malignant potential of OLP and on the important question of the advisability of excluding patients with epithelial dysplasia or a tobacco habit from studies on this issue. The present review outlines these debates and proposes a possible a molecular basis for the malignant transformation in this disease.
Collapse
Affiliation(s)
- M A Gonzalez-Moles
- Oral Medicine Department, Faculty of Dentistry, University of Granada, Granada, Spain.
| | | | | |
Collapse
|
41
|
Kaneko K, Akuta T, Sawa T, Kim HW, Fujii S, Okamoto T, Nakayama H, Ohigashi H, Murakami A, Akaike T. Mutagenicity of 8-nitroguanosine, a product of nitrative nucleoside modification by reactive nitrogen oxides, in mammalian cells. Cancer Lett 2008; 262:239-47. [PMID: 18248787 DOI: 10.1016/j.canlet.2007.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/18/2022]
Abstract
8-Nitroguanosine is a nitratively modified nucleoside that is formed endogeneously under inflammatory conditions dependent on nitric oxide production, particularly associated with cancer risks. Here, we investigated the mutagenic potential of 8-nitroguanosine in mammalian cells. Treatment with 8-nitroguanosine (10-1000 microM) for 1h significantly increased (by 6-8 times) the mutation frequency of the xanthine-guanine phosphoribosyltransferase (gpt) gene in AS52 cells without cytotoxic effects. 8-Nitroguanosine treatment induced a G-to-T transversion in gpt gene at position 86. It also significantly increased levels of abasic sites in DNA. These observations suggest that formation of 8-nitroguanosine may contribute to the pathogenesis of inflammation-associated carcinogenesis.
Collapse
Affiliation(s)
- Kazuyoshi Kaneko
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hiraku Y, Tabata T, Ma N, Murata M, Ding X, Kawanishi S. Nitrative and oxidative DNA damage in cervical intraepithelial neoplasia associated with human papilloma virus infection. Cancer Sci 2007; 98:964-72. [PMID: 17488337 PMCID: PMC11158700 DOI: 10.1111/j.1349-7006.2007.00497.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, it was proposed that inflammation plays an integral role in the development of human papilloma virus (HPV)-induced cervical cancer. The present study sought to examine if 8-nitroguanine, a mutagenic nitrative DNA lesion formed during inflammation, contributes to cervical carcinogenesis. We obtained biopsy specimens from 30 patients with cervical intraepithelial neoplasia (CIN)1 (n = 9), CIN2 (n = 10), CIN3 (n = 6) and condyloma acuminatum (n = 5). We used immunohistochemistry to detect the formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidative DNA lesion, and compared it with the expression of the cyclin-dependent kinase inhibitor p16, which is considered to be a biomarker for cervical neoplasia. Double immunofluorescence labeling revealed that 8-nitroguanine and 8-oxodG were colocalized in cervical epithelial cells. Samples from CIN2-3 patients, most of whom were infected with high-risk HPV subtypes, exhibited significantly more intense staining for 8-nitroguanine than those with condyloma acuminatum. 8-Nitroguanine and 8-oxodG immunoreactivities correlated significantly with the CIN grade. We observed the expression of inducible nitric oxide synthase in epithelial and inflammatory cells from CIN lesions. Proliferating cell nuclear antigen was expressed specifically in dysplastic epithelial cells, but not in those of condyloma acuminatum. There were no statistically significant differences in p16 expression between CIN and condyloma acuminatum samples. These results suggest that high-risk HPV types promote inducible nitric oxide synthase-dependent DNA damage, which leads to dysplastic changes and carcinogenesis; in contrast, p16 appears to be merely a marker of HPV infection. Thus, 8-nitroguanine is a more suitable and promising biomarker for evaluating the risk of inflammation-mediated cervical carcinogenesis than p16.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Beda NV, Nedospasov AA. NO-dependent modifications of nucleic acids. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:195-228. [PMID: 17476982 DOI: 10.1134/s106816200702001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review is devoted to chemical transformations of nucleic acids and their components under the action of nitrogen oxide metabolites. The deamination reaction of bases is discussed in the context of possible competing transformations of its intermediates (nitrosamines, diazonium cations, diazotates, triazenes, and diazoanhydrides) and mechanisms of crosslink formation with proteins and nucleic acids. The oxidation and nitration of bases by NO2 is considered together with the possibility of radical transfer to domains from the base stacks in DNA. Reduction of redox potentials of bases as a result of stacking interactions explains the possibility of their reactions within nucleic acids with the oxidants whose redox potential is insufficient for the effective reactions with mononucleotides. Modifications of nucleic acids with peroxynitrite derivatives are discussed in the context of the effect of the DNA primary structure and the modification products formed on the reactivity of single bases. The possibility of reduction of nitro groups within modified bases to amino derivatives and their subsequent diazotation is considered. The substitution of oxoguanine for nitroguanine residues may result; the reductive diazotation can lead to undamaged guanine. The intermediate modified bases, e.g., 8-aminoguanine and 8-diazoguanine, were shown to participate in noncanonical base pairing, including the formation of more stable bonds with two bases, which is characteristic of the DNA Z-form. A higher sensitivity of RNA in comparison with DNA to NO-dependent modifications (NODMs) is predicted on the basis of the contribution of medium microheterogeneity and the known mechanisms of nitrosylation and nitration. The possible biological consequences of nucleic acids NODMs are briefly considered. It is shown that the NODMs under the action of nitrogen oxide metabolites generated by macrophages and similar cells in inflammations or infections should lead to a sharp increase in the number of mutations in the case of RNA-containing viruses. As a result, the defense mechanisms of the host organism may contribute to the appearance of new, including more dangerous, variants of infecting viruses.
Collapse
|
44
|
Hoki Y, Hiraku Y, Ma N, Murata M, Matsumine A, Nagahama M, Shintani K, Uchida A, Kawanishi S. iNOS-dependent DNA damage in patients with malignant fibrous histiocytoma in relation to prognosis. Cancer Sci 2007; 98:163-8. [PMID: 17233833 PMCID: PMC11158705 DOI: 10.1111/j.1349-7006.2006.00376.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Malignant fibrous histiocytoma (MFH) is one of the most common soft tissue sarcomas. MFH has been proposed to be a lesion accompanied with inflammatory responses. During chronic inflammation, reactive nitrogen and oxygen species generated from inflammatory cells are considered to participate in carcinogenesis by causing DNA damage. 8-nitroguanine is a mutagenic nitrative DNA lesion formed during chronic inflammation. We examined whether nitrative DNA damage is related to the prognosis of MFH patients. We performed immunohistochemical analyses to examine the distribution of DNA damage and the expression of inflammation-related molecules including inducible nitric oxide synthase (iNOS), nuclear factor-kappaB (NF-kappaB), and cyclooxygenase-2 (COX-2) in clinical specimens from 25 patients with MFH. We also analyzed the correlation of DNA damage or the expression of these genes with the prognosis of MFH patients. Immunohistochemical staining revealed that the formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidative DNA lesion, occurred to a much greater extent in MFH tissue specimens from deceased patients than in live patients. iNOS, NF-kappaB and COX-2 were colocalized with 8-nitroguanine in MFH tissues. It is noteworthy that the statistical analysis using the Kaplan-Meier method demonstrated strong 8-nitroguanine staining to be associated with a poor prognosis. In conclusion, 8-nitroguanine appears to participate in not only the initiation and promotion of MFH, but also in the progression of MFH, and could therefore be used as a promising biomarker to evaluate the prognosis of cancer patients.
Collapse
Affiliation(s)
- Yoko Hoki
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
46
|
Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities. Med Res Rev 2007; 27:317-52. [PMID: 16991100 DOI: 10.1002/med.20092] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a pleiotropic molecule critical to a number of physiological and pathological processes. The last decade has witnessed major advances in dissecting NO biology and its role in cancer pathogenesis. However, the complexity of the interactions between different levels of NO and several aspects of tumor development/progression has led to apparently conflicting findings. Furthermore, both anti-NO and NO-based anticancer strategies appear effective in several preclinical models. This paradoxical dichotomy is leaving investigators with a double challenge: to determine the net impact of NO on cancer behavior and to define the therapeutic role of NO-centered anticancer strategies. Only a comprehensive and dynamic view of the cascade of molecular and cellular events underlying tumor biology and affected by NO will allow investigators to exploit the potential antitumor properties of drugs interfering with NO metabolism. Available data suggest that NO should be considered neither a universal target nor a magic bullet, but rather a signal transducer to be modulated according to the molecular makeup of each individual cancer and the interplay with conventional antineoplastic agents.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Oncological and Surgical Sciences, School of Medicine, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
47
|
Pinlaor S, Hiraku Y, Yongvanit P, Tada-Oikawa S, Ma N, Pinlaor P, Sithithaworn P, Sripa B, Murata M, Oikawa S, Kawanishi S. iNOS-dependent DNA damage via NF-kappaB expression in hamsters infected with Opisthorchis viverrini and its suppression by the antihelminthic drug praziquantel. Int J Cancer 2006; 119:1067-72. [PMID: 16570287 DOI: 10.1002/ijc.21893] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inflammation-mediated DNA damage triggered by Opisthorchis viverrini (OV) infection is a major risk factor of cholangiocarcinoma (CCA). We have recently reported that nitrative and oxidative DNA damage participates in CCA development caused by repeated infection with OV [Pinlaor et al., Carcinogenesis 2004; 25:1535-42]. Therefore, to clarify the preventive effect of the antihelminthic drug praziquantel against cholangiocarcinogenesis, we assessed the effect of this drug on nitrative and oxidative DNA damage, including the formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and the expression of inducible nitric oxide synthase (iNOS) by immunohistochemistry in OV-infected hamsters. We also examined the expression of nuclear factor-kappaB (NF-kappaB), which functions as a tumor promoter in inflammation-associated cancer. Our results showed that although 1-week treatment with praziquantel did not kill parasites completely in hamsters on days 14 and 30, this drug dramatically reduced inflammatory cell infiltration. Double immunofluorescence staining showed that drug treatment almost completely diminished OV-induced 8-nitroguanine and 8-oxodG formation in bile duct epithelial cells. Quantitative analysis using an electrochemical detector coupled to HPLC revealed that 8-oxodG level in the liver of OV-infected hamsters was significantly decreased by drug treatment (p<0.05). Western blotting and immunohistochemistry revealed that the expression of NF-kappaB and iNOS in bile duct epithelium was reduced by drug treatment. The amount of nitrate plus nitrite in the liver and plasma was significantly decreased after drug treatment. It is concluded that praziquantel can exhibit a preventive effect against OV-induced cholangiocarcinoma by inhibiting iNOS-dependent DNA damage through not only elimination of parasites but also a potential antiinflammatory effect.
Collapse
|
48
|
Kawanishi S, Hiraku Y, Pinlaor S, Ma N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 2006; 387:365-72. [PMID: 16606333 DOI: 10.1515/bc.2006.049] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infection and chronic inflammation are proposed to contribute to carcinogenesis through inflammation-related mechanisms. Infection with hepatitis C virus, Helicobacter pylori and the liver fluke, Opisthorchis viverrini (OV), are important risk factors for hepatocellular carcinoma (HCC), gastric cancer and cholangiocarcinoma, respectively. Inflammatory bowel diseases (IBDs) and oral diseases, such as oral lichen planus (OLP) and leukoplakia, are associated with colon carcinogenesis and oral squamous cell carcinoma (OSCC), respectively. We performed a double immunofluorescence labeling study and found that nitrative and oxidative DNA lesion products, 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), were formed and inducible nitric oxide synthase (iNOS) was expressed in epithelial cells and inflammatory cells at the site of carcinogenesis in humans and animal models. Antibacterial, antiviral and antiparasitic drugs dramatically diminished the formation of these DNA lesion markers and iNOS expression. These results suggest that oxidative and nitrative DNA damage occurs at the sites of carcinogenesis, regardless of etiology. Therefore, it is considered that excessive amounts of reactive nitrogen species produced via iNOS during chronic inflammation may play a key role in carcinogenesis by causing DNA damage. On the basis of our results, we propose that 8-nitroguanine is a promising biomarker to evaluate the potential risk of inflammation-mediated carcinogenesis.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan.
| | | | | | | |
Collapse
|
49
|
Terasaki Y, Akuta T, Terasaki M, Sawa T, Mori T, Okamoto T, Ozaki M, Takeya M, Akaike T. Guanine nitration in idiopathic pulmonary fibrosis and its implication for carcinogenesis. Am J Respir Crit Care Med 2006; 174:665-73. [PMID: 16741153 DOI: 10.1164/rccm.200510-1580oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nitric oxide (NO)-induced nitrative stress of nucleic acids, as evidenced by guanine nitration, appears to be involved in inflammation-induced carcinogenesis. A high incidence of lung cancer in idiopathic pulmonary fibrosis (IPF) is the major reason for poor prognosis in patients with IPF. OBJECTIVES AND METHODS We immunohistochemically analyzed the formation and localization of 8-nitroguanine in lung tissues from control subjects, patients with IPF, and patients with lung cancer. MAIN RESULTS Immunohistochemical analysis of control smoker and nonsmoker lungs showed weak immunoreactivity for 8-nitroguanine, mainly in cytoplasm of bronchial epithelial cells. In addition to the bronchial epithelial cells, metaplastic regenerated epithelial cells overlying dense fibrotic lesions in IPF showed strong 8-nitroguanine staining in the cytoplasm. The staining in these metaplastic cells colocalized with staining of inducible and endothelial NO synthases and 8-oxodeoxyguanosine, as evidenced by double-immunostaining analysis. Confocal and immunoelectron microscopy revealed localization of 8-nitroguanine in metaplastic epithelial cytoplasm, mostly in mitochondria. Appreciable 8-nitroguanine immunostaining was also observed in both nuclei and cytoplasm of malignant epithelial cells in squamous cell carcinoma. No significant difference was found in the epithelial 8-nitroguanine formation between control smokers and nonsmokers, but much higher guanine nitration was observed in patients with IPF than in control subjects and patients with lung cancer, via a quantitative immunofluorescence image analysis. CONCLUSIONS The present study indicates that not only oxidative stress but also nitrative stress induced by NO may participate in the pathogenesis of epithelial cell damage and aberrant regeneration occurring in IPF. Thus, guanine nitration may be a major risk factor for lung cancer development in IPF.
Collapse
Affiliation(s)
- Yasuhiro Terasaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ohshima H, Sawa T, Akaike T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 2006; 8:1033-45. [PMID: 16771693 DOI: 10.1089/ars.2006.8.1033] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors review studies on 8-nitroguanine (8-NO(2)-G) formed by reactions of guanine, guanosine, and 2 - deoxyguanosine, either free or in DNA or RNAwith reactive nitrogen species (RNS) generated from peroxynitrite, the myeloperoxidase-H(2)O(2)-nitrite system, and others. Use of antibodies against 8-NO(2)-G has revealed increased formation of 8-NO(2)-G in various pathological conditions, including RNA virus-induced pneumonia in mice, intrahepatic bile ducts of hamsters infected with the liver fluke Opisthorchis viverrini, and gastric mucosa of patients with Helicobacter pylori-induced gastritis. Immunoreactivity has been found in the cytosol as well as in the nucleus of inflammatory cells and epithelial cells in inflamed tissues, but not in normal tissues. 8- NO(2)-G in DNA is potentially mutagenic, yielding G:C to T:A transversion, possibly through its rapid depurination to form an apurinic site and/or miscoding with adenine. 8-NO(2)-G in RNA may interfere with RNA functions and metabolism. Nitrated guanine nucleosides and nucleotides in the nucleotide pool may contribute to oxidative stress via production of superoxide mediated by various reductases and may disturb or modulate directly various important enzymes such as GTP-binding proteins and cGMP-dependent enzymes. Further studies are warranted to establish the roles of 8-NO(2)-G in various pathophysiological conditions and inflammation-associated cancer.
Collapse
|